

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

SDMX-ML:

SCHEMA AND DOCUMENTATION
(VERSION 1.0)

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 2

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

Initial Release September 2004 31

© SDMX 2004 32

http://www.sdmx.org/ 33

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 3

 34

I. BACKGROUND..5 35

A. XML in the Case Study and Batch Data Exchange Projects 5 36

B. Results: the XML Design .. 6 37

C. Fostering the Use of a Standard SDMX-ML ... 6 38

II. NORMATIVE REFERENCES...7 39

III. CONFORMANCE..7 40

IV. DESIGN OVERVIEW ..7 41

A. Scope and Requirements ... 7 42

B. Design Approach .. 9 43

C. SDMX-ML Packaging: Namespace Modules.. 11 44

V. GENERIC (NON-KEY-FAMILY-SPECIFIC) SCHEMAS.................................13 45

A. SDMX Message Namespace Module ... 14 46

Global Elements.. 14 47

Complex Types ... 15 48

Simple Types ... 19 49

B. SDMX Structure Namespace Module .. 19 50

Complex Types ... 19 51

Simple Types ... 27 52

C. SDMX Generic Data Namespace Module.. 28 53

Global Elements.. 28 54

Complex Types ... 28 55

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 4

D. SDMX Query Namespace Module... 31 56

Global Elements.. 31 57

Complex Types ... 31 58

Simple Types ... 35 59

E. SDMX Common Namespace Module ... 36 60

Complex Types ... 36 61

Simple Types ... 36 62

F. Data Formatting and Character Encoding ... 37 63

VI. KEY-FAMILY-SPECIFIC SCHEMAS: CORE STRUCTURES & STANDARD 64

MAPPINGS ..37 65

A. Compact Data Message Core Structure ... 38 66

Global Elements.. 38 67

Complex Types ... 38 68

B. Utility Data Message Core Structure ... 39 69

Global Elements.. 39 70

Complex Types ... 39 71

C. Cross-Sectional Data Message Core Structure .. 40 72

Global Elements.. 40 73

Complex Types ... 40 74

D. Mappings to Key-Family-Specific Schemas .. 41 75

General Rules: .. 41 76

Compact Schemas: .. 42 77

Cross-Sectional Schemas ... 47 78

Utility Schemas.. 52 79

VII. APPENDIX: SAMPLE SDMX-ML MESSAGES..57 80

A. CompactSample.xml.. 57 81

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 5

B. UtilitySample.xml .. 59 82

C. GenericSample.xml .. 59 83

D. CrossSectionalSample.xml .. 60 84

 85

 86

 87

 88

 89

I. BACKGROUND 90

A. XML in the Case Study and Batch Data Exchange Projects 91

During the course of the Batch Data Exchange (BDE) and Case Study Projects, two 92

XML schemas were developed, both based on the information model found in the 93

GESMES/TS specification. As a result, they were similar in many respects. However, 94

there were differences resulting from the differing technical requirements of these two 95

projects. 96

o The BDE XML was optimized for batch exchange of large data sets. It 97
was designed to support exactly the same type of exchanges for 98
which GESMES/TS was designed, but to leverage the benefits of an 99
XML syntax. 100

o The Case Study XML was designed and optimized to support web 101
dissemination and to accommodate a registry-based data-sharing 102
architecture. 103

It is clear that a single XML would be preferable to having multiple approaches and 104

this has fostered the development of a standard SDMX-ML at the earliest possible 105

date. 106

 107

In looking at the combined requirements for all the processes supported by the 108

earlier work, it was determined that having a single document type was probably not 109

the best approach. All the SDMX technology artefacts (XML and EDIFACT data 110

formats, registry, etc.) share an information model, and thus carry the same 111

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 6

information. This fact was leveraged in the resulting XML design, for which there are 112

now five or six anticipated document types. 113

 114

B. Results: the XML Design 115

All of these document types will share a common "envelope" at the message level 116

("SDMXMessage.xsd"), as well as a set of common low-level components 117

(“SDMXCommon.xsd”) so that header information and basic structure will always be 118

the same. 119

o Key family structure description schema ("SDMXStructure.xsd") 120

o Generic data schema for data-sharing exchange 121
("SDMXGenericData.xsd") 122

o Generic query schema for invoking web services ("SDMXQuery.xsd") 123

o Key-family-specific schema for updates and revisions/bilateral 124
exchange ("SDMXCompactData.xsd") 125

o Key-family-specific schema for presentational processing and internal 126
use ("SDMXUtilityData.xsd") 127

o Requested: Key-family-specific schema for cross-sectional data – 128
which may be combined with the Compact document type 129
("SDMXCrossSectionalData.xsd") 130

 131

C. Fostering the Use of a Standard SDMX-ML 132

In addition to these different formats, standard mappings and corresponding 133

transformation tools are to be developed for the creation of key-family-specific 134

schemas from structure descriptions, to transform XML data instances from one XML 135

data description format to another, and from these formats into the corresponding 136

SDMX-ML messages. This level of free tools support will foster the early use of 137

SDMX and permit the data to be easily used across all processes, which is otherwise 138

a difficult requirement to meet. Ultimately, it is the fact that all formats share a 139

common information model that enables this approach to meet the wide set of SDMX 140

requirements. 141

 142

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 7

 143

II. NORMATIVE REFERENCES 144

W3C XML Schema Definition Language, version 1.0 (URL: 145

http://www.w3c.org/XML/Schema#dev), World Wide Web Consortium 146

W3C Extensible Markup Language, version 1.0, Third Edition (URL: 147

http://www.w3c.org/TR/2004/REC-xml-20040204/), World Wide Web Consortium 148

III. CONFORMANCE 149

Sections V and VI of this document are normative, providing rules for the creation of 150

conformant SDMX-ML XML instances and W3C XML Schemas. 151

IV. DESIGN OVERVIEW 152

A. Scope and Requirements 153

To understand the relationships between the several document types, it is important 154

to have some familiarity with the requirements they are designed to fulfill. 155

Traditionally, GESMES/TS (and before that, GESMES/CB) were created for the 156

exchange of large amounts of data between counter-parties. This use of the data 157

format presents several requirements, which SDMX-ML adopts as its own, this being 158

one of the use cases it is required to support: 159

• Large amounts of data must be captured in a reasonably compact format, 160

because of the potential size of databases being exchanged. 161

• It must be possible to send incremental updates, rather than entire, 162

complete databases. The validation of such exchanges demands not 163

that an entire data set be exchanged, but only that enough information 164

be sent to ensure accurate updating and revision processes. 165

• Structural information as well as data will need to be transmitted. 166

• There must be a reliable transformation to and from the GESMES/TS 167

EDIFACT syntax. 168

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 8

• It should be possible to present natural-language information in mutliple, 169

equivalent languages. 170

This was the set of requirements which the Batch Data Exchange XML format was 171

designed to meet. These types of exchanges tend to be bilateral in nature (or 172

“gateway” exchanges, in which a degree of standardization is imposed on a set of 173

bilateral exchanges). In these types of exchanges, both counter-parties have agreed 174

to the exchange process and the key families to be used, so that there is no difficulty 175

in these areas. 176

 177

SDMX-ML faces a larger set of requirements, however. The biggest one of these is 178

the requirement to support web dissemination, in which there are not counter-parties, 179

per se, but rather a data provider and a data consumer. These roles have no 180

necessary relationship outside of a single exchange of data, and thus there may be 181

difficulties involved in understanding the dissemination process, the key families 182

used, etc. Additionally, SDMX-ML is designed to support the use of XML within a 183

registry-centric architecture, potentially using web services technology. These use 184

cases come with requirements additional to those of the bilateral exchange and 185

updating of databases: 186

• To support web services and similar technological approaches, there is a 187

requirement to send queries to information sources as well as data and 188

structure. 189

• Users (and registry services) may not know about a specific key family, 190

and will need to be able to handle data across key families, and even 191

(for, say, a comparison service) to put data structured according to 192

multiple key families in a single XML instance. 193

• The XML must be as simple as possible (but no simpler) to allow use by 194

web-masters and developers who are not familiar with statistics as a 195

domain. 196

• The XML should behave as “normally” as possible within standard XML 197

tools such as web development environments, parsers, guided editing 198

tools, etc. 199

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 9

• Validation of data sets should provide validation that the data set is 200

complete – the validation profile for incremental updates is not 201

sufficient. 202

• Data should be structured not only as time series data, but potentially 203

also as cross-sectional data, to meet the demands of different users. It 204

must be possible to take data structured according to a single key 205

family and transform it into a standard format enabling either of these 206

structural optimizations. 207

• XML formats should promote re-use of common semantics, concepts, 208

and codelists to the greatest possible extent, while still recognizing the 209

agency which maintains a specific resource (a codelist, a key family, a 210

data set, etc.) 211

 212

This is a very broad set of requirements, and in examining these it becomes evident 213

that some of the requirements are very much at cross-purposes. It is almost 214

impossible to design a single XML document type which will satisfy all of these 215

requirements. At the same time, it was very much felt that whatever design was 216

adopted should have a clear relationship with the information model, so that it was 217

easily comprehensible to users who understood the idea of a key family and its 218

relationship to statistical data. 219

 220

B. Design Approach 221

One of the most powerful aspects of the GESMES/TS implementation guide is its 222

data model, which allows the EDIFACT message to be used for many different types 223

of data. The XML design built on this approach by extending the use of the model to 224

span not only types of statistical data – expressed as key families – but also 225

syntaxes. A key family is a metadata construct – it can be expressed in many 226

syntaxes, but relies on none. In looking at the idea of using the SDMX Information 227

Model (a superset of the GESMES/TS data model) to span syntaxes, it became 228

apparent that a similar approach could be used to span use-case-specific XML 229

formats. Because they would all be based on the same model, their equivalence 230

would be guaranteed. With a simple transformation, anyone’s data, expressed in 231

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 10

EDIFACT or a process-specific XML, could be transformed into the flavor preferred 232

by the receiver of the data. Further, from a processable description of a key family 233

(the XML description), it would be possible to generate format descriptions, tools, and 234

configurations specific to that key family. 235

 236

The main argument against this approach is its apparent complexity, which is a 237

negative factor when launching international standards. In looking at requirements, 238

moreover, it was realized that not only were key-family-specific XML formats needed, 239

but also formats which could accommodate more than one key family without 240

changing – that is, to be non-key-family-specific. 241

 242

The result of this analysis was the idea of a compromise position. It was immediately 243

agreed that there could be only one XML format for describing a key family – more 244

than one is unnecessary. A requirement existed for services which could use data 245

structured according to any key family, and sometimes in combination. This 246

presented the need for a “generic” data format. The querying requirement insisted 247

that a Query message be created (which had, at one time, been discussed within the 248

GESMES/TS community, although never finalized.) Additionally, it was seen that 249

there were at least two, and possibly three other scenarios which had significantly 250

conflicting requirements in terms of XML design: 251

 252

• Database exchange, update, and revision 253

• “Normal” XML use and processing for webmasters, developers, and other 254

users of typical XML tools 255

• Exchange of cross-sectional data (which could potentially be the same as 256

the Database Exchange scenario) 257

 258

To support the broad set of requirements, it was felt that a small number of standard 259

document types should be articulated, to meet specific processing requirements. This 260

included the three scenarios described above, and the use of the query document 261

type, which would only be needed for those developing web services or similar 262

applications involving run-time creation of SDMX-ML data from databases. 263

 264

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 11

The idea of reuse has not been lost in this design, however – wherever possible, 265

common structures have been reused. This has resulted in a common “message” 266

structure, in which there is a single header shared by all document types, and a 267

single “envelope” (not to be confused with a web-services SOAP envelope, which 268

contains entire SDMX-ML messages of any type). Additionally, the core structure of 269

any key-family-specific XML document type should be common with that of any other, 270

to the greatest extent reasonably possible. A shared set of XML constructs was also 271

developed, to be used throughout all the XML formats, to increase consistency. 272

 273

The end result is a primary division between “generic” XML formats, which are not 274

specific to particular key families, and a set of formats which are specific to key 275

families and to particular scenarios for use. 276

 277

Such design decisions as whether something is to be expressed as an XML element 278

or attribute have been made based on the specific requirements for each XML 279

format. For those formats where compactness of data is paramount, almost 280

everything is expressed as attributes, because this results in a more compact 281

expression of the data. In other cases – in UtilityData messages, for example – other 282

types of structures are used which are more verbose, but which capture more of the 283

metadata expressed in the key family (eg, ordering of the key). This type of 284

difference in design stems always from the requirements for the specific XML format 285

being designed. 286

 287

C. SDMX-ML Packaging: Namespace Modules 288

In the proposed XML Schema design, there is a packaging scheme based on the 289

idea that XML namespaces can be used as “modules”, so that any given user or 290

application need only be familiar with a subset of the entire library in order to use it. 291

This approach fit very well with the design described above, and is often used in 292

major XML standards for other domains. 293

 294

The other major benefit of namespaces – especially in light of the requirement that 295

maintenance agencies be tracked across the potential reuse of the structures and 296

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 12

data they maintained – is that it allows SDMX to own certain namespace modules, 297

and allows other maintenance agencies to own namespaces specific to the key-298

families they also maintain. 299

 300

The result is a set of namespace packages which agree with the design approach 301

described above. Each module is a single instance of the W3C XML Schema 302

Language’s schema element, associated with its own XML namespace. Where 303

these modules have dependencies on one another, they use the XML Schema 304

importing mechanism to draw on constructs described in another module. 305

 306

• An SDMX Namespace Module containing the common message 307

constructs, including the common header information 308

(“SDMXMessage.xsd”) - used with all other SDMX-ML namespace 309

modules 310

• An SDMX Namespace Module containing the descriptions of structural 311

metadata such as key families, concepts, and codelists 312

(“SDMXStructure.xsd”) 313

• An SDMX Namespace Module containing constructs shared in common 314

across all of the SDMX message types (“SDMXCommon.xsd”) – needed 315

for all other SDMX-ML namespace modules (also included for 316

convenience is the XML namespace [“xml.xsd”] provided by the W3C 317

for including the xml:lang attribute in schemas). 318

• An SDMX Namespace Module describing the generic (non-key-family-319

specific) format for formatting data (“SDMXGenericData.xsd”) 320

• An SDMX Namespace Module for describing the structure of the generic 321

query message (“SDMXQuery.xsd”) – for web services developers 322

and users, etc. 323

• An SDMX Namespace Module providing the common framework to be 324

used for all key-family-specific schemas for Database Exchange, 325

Update, and Revisions (“SDMXCompactData.xsd”) – for bilateral use 326

• A set of namespaced modules created and maintained by those who 327

create key-family-specific “Compact” schemas – not maintained by 328

SDMX 329

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 13

• An SDMX Namespace Module providing the common framework to be 330

used for all key-family-specific schemas for webmasters and 331

developers using standard XML tools (“SDMXUtilityData.xsd”) –for 332

processing and publication production use 333

• A set of namespaced modules created and maintained by those who 334

create key-family-specific “Utility” schemas – not maintained by SDMX 335

• An SDMX Namespace Module providing the common framework to be 336

used for all key-family-specific schemas for cross-sectional data 337

(“SDMXCrossSectionalData.xsd”) – for bilateral use and cross-338

sectional processing of data 339

• A set of namespaced modules created and maintained by those who 340

create key-family-specific “Cross-sectional” schemas – not maintained 341

by SDMX 342

The following sections describe in detail the proposed XML formats, which should be 343

examined alongside the documentation provided. These proposed schemas are 344

divided into the generic schemas, for which a complete set of schema definitions can 345

be provided, and key-family-specific schemas, for which a core structure is provided 346

(with schema code), plus a guide to how a specific key-family can be mapped onto 347

the core structure. 348

 349

V. GENERIC (NON-KEY-FAMILY-SPECIFIC) SCHEMAS 350

Some SDMX-ML schemas are the same for all key families. These include: 351

• SDMXMessage.xsd, for generically describing the basic message structure 352
common to all SDMX-ML messages 353

• SDMXStructure.xsd, for describing key families, code lists, and concepts 354

• SDMXGenericData.xsd, for describing data across key-families for generic 355
processing 356

• SDMXQuery.xsd, for marking-up queries against SDMX-conformat 357
databases and web services 358

• SDMXCommon.xsd, describing the common constructs used in other schemas 359

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 14

Of these, only the SDMXStructure message and the SDMXGenericData 360
message are required for general exchange of data. The documentation for each of 361
these schemas are provided below. (The schemas themselves are appended 362
separately.) 363

A. SDMX Message Namespace Module 364

Namespace: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/message 365

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/structure 366

(SDMXStructure.xsd) 367

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/generic 368

(SDMXGenericData.xsd) 369

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/utility 370

(SDMXUtilityData.xsd) 371

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/compact 372

(SDMXCompactData.xsd) 373

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/cross 374

(SDMXCrossSectionalData.xsd) 375

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/query 376

(SDMXQuery.xsd) 377

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/common 378

(SDMXCommon.xsd) 379

 380

Global Elements 381

Structure(StructureType): The Structure is a message that contains all the 382
structural metadata about a data set. This can be key families, concepts, or codelists. 383

GenericData(GenericDataType): The GenericDataType is used to convey data 384
in a cross-key-family form. 385

UtilityData(UtilityDataType): The UtilityData contains data in an XML form which 386
is specific to each key family, according to standard mappings, and which is 387
optimized to support guided editing tools and other applications which expect a 388
"typical" XML schema. This format can be used to validate data in a key-family-389
specific fashion as is typically expected of XML schemas, and requires the entire 390
data set. It cannot be used for incremental updates. 391

CompactData(CompactDataType): CompactData contains data in an XML 392
format which is optimized for incremental updating, and the transfer of large data sets 393

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 15

bilaterally. It is specific to each key family, according to standard mappings. It allows 394
for key values to be expressed at a Group level. 395

CrossSectionalData(CrossSectionalDataType): CrossSectionalData contains 396
data in an XML format which is optimized for describing many observations at a 397
single point in time, and for the transfer of large data sets bilaterally. It is specific to 398
each key family, according to standard mappings. It allows for key values to be 399
expressed from the Group level down to the Observation level, and permits multiple 400
observation values with different "measures". Time is attached at the DataSet level. 401

QueryMessage(QueryMessageType): The QueryMessageType is used to query 402
databases published on the web, and to invoke web services. It allows for queries to 403
be made regarding both data and structural metadata. 404

MessageGroup(MessageGroupType): The MessageGroupType is used to 405
allow for more than one data message of a single type to be included in a single 406
transmission. This element arises from the requirement for some services to be able 407
to exchange data which may come from more than one source, and be structured 408
according to more than one key family. 409

Header(HeaderType): Header type is declared globally so that it can function as 410
the head of a substitution group for schemas which are used internally. While this is 411
an exception to the overall design of SDMX-ML, many users feel this construct is 412
useful. Note that when SDMX-ML messages are exchanged outside an organization, 413
the standard header should be used - no assumptions about additional fields in 414
substituted types should be made unless explicitly agreed-to by counterparties. 415

 416

Complex Types 417

MessageType: The Message is an abstract type which is used by all of the 418
messages, to allow inheritance of common features. It also provides uniqueness 419
constraints for the header fields. 420

Element Content (Type): 421

 422

Header (HeaderType) 423

StructureType: StructureType defines the contents of a structure message. 424

 425

Extends: MessageType 426

 427

Element Content (Type): 428

 429

Agencies (structure:AgenciesType) - min. 0 430

CodeLists (structure:CodeListsType) - min. 0 431

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 16

Concepts (structure:ConceptsType) - min. 0 432

KeyFamilies (structure:KeyFamiliesType) - min. 0 433

GenericDataType: GenericDataType defines the contents of a GenericData 434
message. 435

 436

Extends: MessageType 437

 438

Element Content (Type): 439

 440

DataSet (generic:DataSetType) 441

UtilityDataType: UtilityDataType defines the contents of a UtilityData message. 442

 443

Extends: MessageType 444

 445

Element Content (Type): 446

 447

[Reference] (utility:DataSet) 448

CompactDataType: CompactDataType defines the contents of a CompactData 449
message. 450

 451

Extends: MessageType 452

 453

Element Content (Type): 454

 455

[Reference] (compact:DataSet) 456

CrossSectionalDataType: CrossSectionalDataType defines the contents of a 457
CrossSectionalData message. 458

 459

Extends: MessageType 460

 461

Element Content (Type): 462

 463

[Reference] (cross:DataSet) 464

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 17

QueryMessageType: QueryMessageType defines the contents of a 465
QueryMessage. 466

 467

Extends: MessageType 468

 469

Element Content (Type): 470

 471

Query (query:QueryType) 472

MessageGroupType: MessageGroupType defines the contents of a 473
MessageGroup message. 474

 475

Extends: MessageType 476

Choice: 477

[Reference] (generic:DataSet) - max. unbounded 478

Choice: 479

[Reference] (utility:DataSet) - max. unbounded 480

Choice: 481

[Reference] (compact:DataSet) - max. unbounded 482

Choice: 483

[Reference] (cross:DataSet) - max. unbounded 484

Attribute: id(xs:NMTOKEN) - optional 485

HeaderType: HeaderType defines the header fields used for all messages. ID 486
identifies a data flow definition, which, when combined with time, uniquely identifies 487
the data set. Test indicates whather the message is for test purposes or not. 488
Truncated is used in data messages which are responding to Query messages, and 489
is set to true only if the response has been truncated to meet size limits suggested by 490
the defaultLimit attribute in the Query mesage. Name provides a name for the 491
transmission. Prepared is the date prepared. Sender is information about the sender, 492
and Receiver is information about the receiver. Agency provides the code 493
identifier/abbreviation for the maintenance agency of a data set. Data set id provides 494
an identifier for a contained data set. Action code provides a code for determining 495
whether the enclosed message is an Update or Delete message (not to be used with 496
the UtilityData message). KeyFamilyRef is used to reference a key family for a 497
contained data set, using its id. (This information is required at the DataSet level for 498
some messages, but is provided here as a convenience for those messages which 499
do not require it.) KeyFamilyAgency specifies the agency of the key family using its 500
coded id. Fields which refer to a contained data set need not be used if the message 501
contains a query or structural information - these messages provide specific fields for 502
holding this information. The ones here are not to be used as defaults. Extracted is a 503

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 18

time-stamp from the system rendering the data; ReportingBegin and ReportingEnd 504
provide the time period covered by the message (in the case of data). Source 505
provides human-readable information about the source of the data. 506

Element Content (Type): 507

 508

ID (xs:NCName) 509

Test (xs:boolean) 510

Truncated (xs:boolean) 511

Name (common:TextType) - min. 0 - max. unbounded 512

Prepared (HeaderTimeType) 513

Sender (PartyType) 514

Receiver (PartyType) - min. 0 - max. unbounded 515

KeyFamilyRef (xs:NMTOKEN) - min. 0 516

KeyFamilyAgency (xs:NMTOKEN) – min. 0 517

DataSetAgency (xs:NMTOKEN) - min. 0 518

DataSetID (xs:NMTOKEN) - min. 0 519

DataSetAction (common:ActionType) - min. 0 520

Extracted (xs:dateTime) - min. 0 521

ReportingBegin (HeaderTimeType) - min. 0 522

ReportingEnd (HeaderTimeType) - min. 0 523

Source (common:TextType) - min. 0 - max. unbounded 524

PartyType: PartyType defines the information which is sent about various parties 525
such as senders and receivers of messages. The Name is the ID of the party, and 526
Contact provides contact details. 527

Element Content (Type): 528

 529

Name (common:TextType) - min. 0 - max. unbounded 530

Contact (ContactType) - min. 0 - max. unbounded 531

Attribute: id (xs:NMTOKEN) - required 532

ContactType: ContactType provides defines the contact information about a party. 533
The Name provides a human-readable name. 534

Element Content (Type): 535

 536

Name (common:TextType) - min. 0 - max. unbounded 537

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 19

Department (common:TextType) - min. 0 - max. unbounded 538

Role (common:TextType) - min. 0 - max. unbounded 539

Choice: min. 0 - max. unbounded 540

Telephone (xs:string) 541

 Fax (xs:string) 542

X400 (xs:string) 543

 URI (xs:string) 544

Email (xs:string) 545

 546

 547

 548

 549

 550

Simple Types 551

HeaderTimeType: Provides a union type of xs:date and xs:dateTime for the 552
header fields in the message. 553

 554

 555

B. SDMX Structure Namespace Module 556

Namespace: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/structure 557

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/common 558

(SDMXCommon.xsd) 559

 560

Complex Types 561

AgenciesType: AgenciesType contains one or more Agencies. 562

Element Content (Type): 563

 564

Agency (AgencyType) - max. unbounded 565

AgencyType: AgencyType provides a structure for describing agencies and their 566
contact information. The id attribute carries a code identifying the agency. The 567
version attribute indicates the version of the agency description. The uri attribute 568
provides a uri for an alternate way of identifying the agency information (typically a 569
URL resolving to an agency described in SDMX-ML). Name is an element which 570

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 20

provides for a human-readable name for the organization. MaintenanceContact 571
provides contact information for the agency when acting as a MaintenanceAgency; 572
CollectorContact does the same when the agency is acting as a statistics collector; 573
DisseminatorContact for when the agency functions as a statistics disseminator; and 574
ReporterContact for when the Agency is functioning as a statistics reporter. 575
OtherContact is used to describe any other role. Note that the Role field in the 576
contact information structure should only be specified for OtherContact. It is 577
allowable to reference full Agency information by using (at a minimum) only the id, 578
name, and uri fields, with the uri pointing to an external description in a valid SDMX-579
ML Structure message which provides more complete information. (This is termed an 580
"external reference".) If an external reference is being made, the isExternalReference 581
attribute must be set to “true”. 582

Element Content (Type): 583

 584

Name (common:TextType) - max. unbounded 585

MaintenanceContact (ContactType) - min. 0 586

CollectorContact (ContactType) - min. 0 587

DisseminatorContact (ContactType) - min. 0 588

ReporterContact (ContactType) - min. 0 589

OtherContact (ContactType) - min. 0 - max. unbounded 590

Attribute: id (xs:NCName) - required 591

Attribute: version (xs:string) - optional 592

Attribute: uri (xs:anyURI) – optional 593

Attribute: isExternalReference (xs:Boolean) - optional 594

ContactType: ContactType provides defines the contact information about a party. 595
The id element is used to carry user id information for the contact, whereas Name 596
provides a human-readable name. 597

Element Content (Type): 598

 599

Name (common:TextType) - min. 0 - max. unbounded 600

id (xs:NMTOKEN) - min. 0 601

Department (common:TextType) - min. 0 - max. unbounded 602

Role (common:TextType) - min. 0 - max. unbounded 603

Choice: min. 0 - max. unbounded 604

Telephone (xs:string) 605

 Fax (xs:string) 606

X400 (xs:string) 607

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 21

 URI (xs:string) 608

Email (xs:string) 609

 610

CodeListsType: CodelistsType contains one or more codelists. It also defines 611
uniqueness constraints for codelist IDs. 612

Element Content (Type): 613

 614

CodeList (CodeListType) - min. 0 - max. unbounded 615

CodeListType: CodeListType defines the contents of a codelist. This includes an 616
ID, the agency which maintains the codelist, its version, and a URL where it is 617
located. Elements are provided for supplying a name and the codes. It is acceptable 618
to provide only the id, name, and uri fields at a minimum, with the uri pointing to an 619
SDMX Structure message containing complete details on the codelist. (This is 620
termed an "external reference".) If an external reference is made, the 621
isExternalReference attribute must be set to “true”. 622

Element Content (Type): 623

 624

Name (common:TextType) - max. unbounded 625

Code (CodeType) – min. 0 - max. unbounded 626

Annotations (common:AnnotationsType) - min. 0 627

Attribute: id (xs:NCName) - required 628

Attribute: agency (xs:NMTOKEN) - optional 629

Attribute: version (xs:string) - optional 630

Attribute: uri (xs:anyURI) – optional 631

Attribute: isExternalReference (xs:Boolean) - optional 632

CodeType: CodeType defines the structure of a code. This allows for plain-text 633
descriptions as element content, and the coded value as the value attribute. (Short 634
descriptions or other presentational information may be added using Annotations with 635
an indicative type field [eg, “ShortDescription”]). 636

Element Content (Type): 637

 638

Description (common:TextType) - max. unbounded 639

Annotations (common:AnnotationsType) - min. 0 640

Attribute: value (xs:NMTOKEN) - required 641

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 22

ConceptsType: ConceptsType defines the structure of a set of Concepts. 642

Element Content (Type): 643

 644

Concept (ConceptType) - max. unbounded 645

ConceptType: ConceptType specifies the information provided for a single 646
concept. This includes a name, as element content, and an ID. It is possible to use 647
the uri field to point to the location of an SDMX-ML Structure message which 648
contains a more detailed version of the concept. (This is termed an "external 649
reference".) If an external reference is being made, the isExternalReference attribute 650
must be set to “true”. 651

Element Content (Type): 652

 653

Name (common:TextType) - max. unbounded 654

Annotations (common:AnnotationsType) - min. 0 655

Attribute: id (xs:NCName) - required 656

Attribute: agency (xs:NMTOKEN) - optional 657

Attribute: version (xs:string) - optional 658

Attribute: uri (xs:anyURI) – optional 659

Attribute: isExternalReference (xs:Boolean) - optional 660

KeyFamiliesType: KeyFamiliesType defines the structure for describing one or 661
more key families. It also provides uniqueness constraints for each of the key family 662
IDs. 663

Element Content (Type): 664

 665

KeyFamily (KeyFamilyType) - max. unbounded 666

KeyFamilyType: KeyFamilyType defines the structure of a key-family description. 667
This includes the name and a set of components (attributes and dimensions) as 668
element content, and an ID, agency, version, and the URL where located as 669
attributes. 670

Element Content (Type): 671

 672

Name (common:TextType) - max. unbounded 673

Components (ComponentsType) 674

Annotations (common:AnnotationsType) - min. 0 675

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 23

Attribute: id (xs:NCName) - required 676

Attribute: agency (xs:NMTOKEN) - optional 677

Attribute: version (xs:string) - optional 678

Attribute: uri (xs:anyURI) - optional 679

ComponentsType: ComponentsType describes the dimensions, groups, 680
attributes, and measures of the key family. If TimeDimension is included in the key 681
family - which it must be if time series formats for the data (GenericData, 682
CompactData, and UtilityData formats) are to be used - then there must also be a 683
frequency dimension. 684

Element Content (Type): 685

 686

Dimension (DimensionType) - min. 0 - max. unbounded 687

TimeDimension (TimeDimensionType) - min. 0 688

PrimaryMeasure (PrimaryMeasureType) 689

CrossSectionalMeasure (CrossSectionalMeasureType) – min. 0 – max 690

unbounded 691

Group (GroupType) - min. 0 - max. unbounded 692

Attribute (AttributeType) - min. 0 - max. unbounded 693

 694

DimensionType: DimensionType describes the structure of non-Time dimensions. 695
The order of their declaration is significant: it is used to describe the order in which 696
they will appear in data formats for which key values are supplied in an ordered 697
fashion (exclusive of the Time dimension, which is not represented as a member of 698
the ordered key). In the case of key families which are used for cross-sectional data 699
as well as time-series data, any "measure" dimension must have the value of the 700
"isMeasureDimension" attribute set to "true". If a dimension is declared to be a 701
measure dimension, it must have a measure declared elsewhere in the key family 702
which corresponds to each value in the codelist which represents it. Any dimension 703
which corresponds to the frequency concept must have its isFrequencyDimension 704
attribute set to "true". There may only be one such dimension in any key family. 705
(Conventionally, it is the first dimension in the ordered set of dimensions - the key.) If 706
a key family describes cross-sectional data, then for each non-time dimension, the 707
crossSectionalAttachDataSet, crossSectionalAttachGroup, 708
crossSectionalAttachSection, and crossSectionalAttachObservation attributes must 709
be given values. A value of "true" for any of these attributes indicates that the 710
dimension may be provided a value at the indicated level within the cross-sectional 711
structure. Note that these attributes do not need to be provided for any dimension 712
with the isFrequencyDimension set to "true", as these dimensions are always 713
attached only at the group level, as is time. A key family designed for cross-sectional 714
use must be structured such that any observation’s complete key can be 715

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 24

unambiguously described by taking each dimension value from its observation level, 716
section level, group level, and data set level, and ordered according to the sequence 717
given in the key family. 718

Element Content (Type): 719

 720

Annotations (common:AnnotationsType) - min. 0 721

Attribute: concept (xs:NMTOKEN) - required 722

Attribute: codelist (xs:NMTOKEN) - required 723

Attribute: isMeasureDimension (xs:boolean) - default: false 724

Attribute: isFrequencyDimension (xs:boolean) - default: false 725

Attribute: crossSectionalAttachDataSet (xs:boolean) - optional 726

Attribute: crossSectionalAttachGroup (xs:boolean) - optional 727

Attribute: crossSectionalAttachSection (xs:boolean) - optional 728

Attribute: crossSectionalAttachObservation (xs:boolean) - optional 729

TimeDimensionType: TimeDimensionType describes the special Time dimension. 730
Any key family which will be used for time-series formats (GenericData, 731
CompactData, and UtilityData) must include the time dimension. Any key family 732
which uses the time dimension must also declare a frequency dimension, 733
conventionally the first dimension in the key (the set of ordered non-time 734
dimensions). A TextFormat element may be included for indicating the representation 735
of time in some non-XML data formats. The concept attribute must contain the 736
concept name of the time concept. The codelist attribute may provide the value of the 737
concept name of a codelist if needed. 738

Element Content (Type): 739

 740

TextFormat (TextFormatType) - min. 0 741

Annotations (common:AnnotationsType) - min. 0 742

Attribute: concept (xs:NMTOKEN) - required 743

Attribute: codelist (xs:NMTOKEN) - optional 744

GroupType: GroupType declares any useful groupings of data, based on a 745
selection of the declared (non-Time) dimensions (indicated with the DimensionRef 746
element) which form partial keys to which attributes may be attached. The value of 747
the DimensionRef element is the concept of the dimension - that is, the value of the 748
dimension's concept attribute. Thus, if data is to be presented as a set of time series 749
which vary only according to their differing frequencies, a "sibling group" would be 750
declared, with all dimensions except the frequency dimension in it. If data is 751

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 25

commonly grouped as a set of all countries, then a "Country Group" could be 752
declared, with all dimensions except the country dimension forming part of the partial 753
key. Any dimension which is not part of a group has a value which varies at the 754
series level (for time series formats). There is no requirement to have only a single 755
dimension ommitted from a partial key - it can be any subset of the set of ordered 756
dimensions (that is, all dimensions except the time dimension, which may never be 757
declared as belonging to a group partial key). All groups declared in the key family 758
must be unique - that is, you may not have duplicate partial keys. All groups must 759
also be given unique names (id attributes). Although it is conventional to declare 760
dimensions in the same order as they are declared in the ordered key, there is no 761
requirement to do so - the ordering of the values of the key are taken from the order 762
in which the dimensions are declared. The Description element provides a human-763
readable description (potentially in multiple, parallel languages) of the group. Note 764
that for cross-sectional formats, the named group mechanism is not used, but is 765
instead replaced by a generic group which carries time and frequency values with it, 766
and allows for any available group-level attributes to be specified if desired. 767

Element Content (Type): 768

 769

DimensionRef (xs:NMTOKEN) - max. unbounded 770

Description (common:TextType) - min. 0 - max. unbounded 771

Annotations (common:AnnotationsType) - min. 0 772

Attribute: name (xs:NMTOKEN) - required 773

AttributeType: AttributeType describes the structure of attributes declared in the 774
key family. If the codelist attribute is not used, then the attribute is uncoded. You may 775
use the TextFormat element to specify constraints on the value of the uncoded 776
attribute. The concept attribute contains the name of a concept. The codelist attribute 777
supplies the id value of a codelist. The attachmentLevel attribute indicates the level 778
to which the attribute is attached in time-series formats (GenericData, CompactData, 779
and UtilityData formats). The assignmentStatus attribute indicates whether a value 780
must be provided for the attribute when sending documentation along with the data. 781
The AttachmentGroup element is included only when the attribute is attached at the 782
Group level, to indicate which declared group or groups the attribute may be attached 783
to. For each such group, an AttachmentGroup element should appear, with the 784
content of the element being the name of the group. The AttachmentMeasure 785
element is similar, indicating for cross-sectional formats which declared measure or 786
measures the attribute attached at the observation level may be attached to. The 787
isTimeFormat attribute indicates that the attribute represents the concept of time 788
format (typically a mandatory series-level attribute with a codelist representation 789
taken from ISO 8601). For key families not used to structure cross-sectional formats, 790
this element may be ommitted. Each such element contains the name of the declared 791
measure. The attributes crossSectionalAttachDataSet, crossSectionalAttachGroup, 792
crossSectionalAttachSection, and crossSectionalAttachObservation indicate what the 793
attachment level or levels are for cross-sectional data formats, and may be ommitted 794
if the key family will not be used to structure them. A value of "true" indicates that it is 795
permissible to provide a value for the attribute at the specified level within the 796
structure. Note that all groups in cross-sectional formats are replaced by a generic 797

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 26

group which has any values for time and frequency, and allows any group-level 798
attributes to be attached to it. 799

Element Content (Type): 800

 801

TextFormat (TextFormatType) - min. 0 802

AttachmentGroup (xs:NMTOKEN) - min. 0 - max. unbounded 803

AttachmentMeasure (xs:NMTOKEN) - min. 0 - max. unbounded 804

Annotations (common:AnnotationsType) - min. 0 805

Attribute: concept (xs:NMTOKEN) - required 806

Attribute: codelist (xs:NMTOKEN) - optional 807

Attribute: attachmentLevel (structure:AttachmentLevelType) - 808
required 809

Attribute: assignmentStatus (structure:AssignmentStatusType) - 810
required 811

Attribute: isTimeFormat (xs:boolean) – default: false 812

Attribute: crossSectionalAttachDataSet (xs:boolean) - optional 813

Attribute: crossSectionalAttachGroup (xs:boolean) - optional 814

Attribute: crossSectionalAttachSection (xs:boolean) - optional 815

Attribute: crossSectionalAttachObservation (xs:boolean) - optional 816

TextFormatType: TextFormatType defines the information for describing a text 817
format. If the TextType attribute is not specified, any valid characters may be 818
included in the text field. (It corresponds to the xs:string datatype of W3C XML 819
Schema.) In this case, the Length attribute is interpreted as a maximum length. 820
Otherwise, length provides either maximum or set string lengths as per the TextType 821
attribute value. The decimals attribute provides the precision (the number of decimal 822
places) that numeric data must use. This is an integer indicating the number of digits 823
to occur after the decimal separator ("."). If used, a missing digit in numeric data is to 824
be interpreted as a 0. If not used, no restrictions on the number of digits provided in 825
data exist for the purposes of exchange. 826

Attribute: length (xs:integer) - optional 827

Attribute: decimals (xs:integer) - optional 828

Attribute: TextType (TextTypeType) - optional 829

PrimaryMeasureType: PrimaryMeasureType describes the observation 830
values for all presentations of the data, except those cross-sectional formats 831

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 27

which have multiple measures (for which a set of cross-sectional measures 832
are used instead). The concept attribute points to the unique concept 833
represented by the measure. The PrimaryMeasure is conventionally 834
associated with the OBS-VALUE concept. 835

Element Content (Type): 836

 837

Annotations (common:AnnotationsType) - min. 0 838

Attribute: concept (xs:NMTOKEN) - required 839

CrossSectionalMeasureType: CrossSectionalMeasureType describes the 840
observation values for multiple-measure cross-sectional data formats. For 841
non-cross sectional key families, it is not necesary to specify any cross-842
sectional measures.The concept attribute points to the unique concept 843
represented by the measure. The measureDimension attribute contains the 844
concept name of the measure dimension. The code attribute contains the 845
value of its corresponding code in the codelist used to represent the measure 846
dimension. A CrossSectionalMeasure must be declared for each code in the 847
codelist used to represent the measure dimension - these will replace the 848
primary measure for multiple-measure cross-sectional data formats. 849

Element Content (Type): 850

 851

Annotations (common:AnnotationsType) - min. 0 852

Attribute: concept (xs:NMTOKEN) - required 853

Attribute: measureDimension (xs:NMTOKEN) - required 854

Attribute: code (xs:NMTOKEN) - required 855

 856

Simple Types 857

AttachmentLevelType: 858

Restricts xs:NMTOKEN 859

Code: DataSet - Data set level 860

Code: Group - Group level 861

Code: Series - Series level 862

Code: Observation - Observation level 863

AssignmentStatusType: 864

Restricts xs:NMTOKEN 865

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 28

Code: Mandatory - Providing attribute value is mandatory 866

Code: Conditional - Providing attribute value is optional 867

TextTypeType: TextTypeType provides an enumerated list of the types of 868
characters allowed in a TextFormat field. 869

Restricts xs:NMTOKEN 870

Code: Alpha - Allows any non-numeric characters to be used in the string, 871

with a maximum as specified in the length attribute. 872

Code: AlphaFixed - Allows any non-numeric characters to be used in the 873

string, with a set length as specified in the length attribute. 874

Code: Num - Allows any numeric character (0 - 9) to be used in the string, 875

with a maximum as specified in the length attribute. 876

Code: NumFixed - Allows any numeric character (0 - 9) to be used in the 877

string, with a set length as specified in the length attribute. 878

Code: AlphaNum - Allows any numeric or non-nuumeric characters to be 879

used in the string, with a maximum as specified in the length attribute. 880

Code: AlphaNumFixed - Allows any numeric or non-numeric characters to be 881

used in the string, with a set length as specified in the length attribute. 882

 883

 884

 885

C. SDMX Generic Data Namespace Module 886

Namespace: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/generic 887

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/common 888

(SDMXCommon.xsd) 889

 890

Global Elements 891

DataSet(DataSetType): The DataSet element contains one or more groups that 892
comprise the data set. 893

 894

Complex Types 895

DataSetType: DataSetType defines the structure of a data set. This consists of a 896
key family reference which contains the ID of the key family, and the attribute values 897

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 29

attached at the data set level. A DataSet may be used to transmit documentation 898
(that is, only attribute values), data, or a combination of both. If providing only 899
documentation, you need not send the complete set of attributes. If transmitting only 900
data, the Group may be omitted if desired. Uniqueness constraints are defined for the 901
attributes of the data set. If dataset-level attributes are sent in a delete message, 902
then any valid attribute value will indicate that the current attribute value should be 903
deleted. The keyFamilyURI attribute is provided to allow a URI (typically a URL) to be 904
provided, pointing to an SDMX-ML Structure message describing the key family. 905

 Attribute: keyFamilyURI (xs:anyURI) – optional 906

Element Content (Type): 907

KeyFamilyRef (xs:NCName) 908

Attributes (ValuesType) - min. 0 909

Choice: - min. 0 – max. unbounded 910

Group (GroupType) - min. 0 – max. unbounded 911

Series (SeriesType) – min. 0 – max. unbounded 912

 913

Annotations (common:AnnotationsType) - min. 0 914

GroupType: The key values at the group level may be stated explicitly, and all 915
which are not wildcarded listed in GroupKey - they must also all be given a value at 916
the series level. It is not necessary to specify the group key, however, as this may be 917
inferred from the values repeated at the series level. If only documentation (group-918
level attributes) are being transmitted, however, the GroupKey cannot be omitted. 919
The type attribute contains the name of the declared group in the key family. If any 920
group-level attributes are specified in a delete message, then any valid value 921
supplied for the attribute indicates that the current attribute value should be deleted 922
for the specified attribute. 923

Attribute: type (xs:NMTOKEN) – required 924

 Element Content (Type): 925

GroupKey (ValuesType) – min. 0 926

Attributes(ValuesType) – min. 0 927

Series (SeriesType) - max. unbounded 928

Annotations (AnnotationsType) – min. 0 929

 930

SeriesType: SeriesType specifies the structure of a series. This includes all of the 931
key values, values for all the attributes, and the set of observations making up the 932
series content. Messages may transmit only attributes, only data, or both. 933
Regardless, the series key is always required. Key values appear at the Series level 934
in an ordered sequence which corresponds to the key sequence in the key family. A 935

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 30

series in a delete message need not supply more than the key, indicating that the 936
entire series identified by that key should be deleted. If series attributes are sent in a 937
delete message, and valid value specified for an attribute indicates that the attribute 938
should be deleted. 939

Element Content (Type): 940

 941

SeriesKey (SeriesKeyType) 942

Attributes (ValuesType) - min. 0 943

Obs (ObsType) - min. 0 - max. unbounded 944

Annotations (common:AnnotationsType) - min. 0 945

SeriesKeyType: SeriesKeyType defines the contents of a series key. Each non-946
time dimension must have a value supplied for it, in the order in which the 947
dimensions are specified in the key family. 948

Element Content (Type): 949

 950

Value (ValueType) - max. unbounded 951

ObsType: ObsType defines the structure of an observation. This includes a time 952
and observation value, as well as values for each of the attributes assigned at the 953
observation level by the key family. In a delete message, only the time need be 954
given, indicating that the observation identified by the key and time should be 955
deleted. For an update message, both time and observation value are required. If 956
any attributes appear in a delete message, any valid value supplied for an attribute 957
indicates that the current value should be deleted. 958

Element Content (Type): 959

 960

Time (common:TimePeriodType) 961

ObsValue (ObsValueType) - min. 0 962

Attributes (ValuesType) - min. 0 963

Annotations (common:AnnotationsType) - min. 0 964

ValuesType: 965

Element Content (Type): 966

 967

Value (ValueType) - max. unbounded 968

ValueType: ValueType is used to assign a single value to a concept, as for attribute 969
values and key values. It has no element content. 970

Attribute: concept (xs:NCName) 971

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 31

Attribute: value (xs:string) 972

ObsValueType: ObsValueType describes the information set for an observation 973
value. This is associated with the primary measure concept declared in the key 974
family. 975

Attribute: value (xs:double) 976

 977

 978

 979

D. SDMX Query Namespace Module 980

Namespace: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/query 981

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/common 982

(SDMXCommon.xsd) 983

 984

Global Elements 985

Query(QueryType): The Query message allows standard querying of SDMX-986
compliant databases and web services. It allows queries to retrieve data, key 987
families, codelists, and concepts. 988

 989

Complex Types 990

QueryType: The Query element is a top-level element for this namespace, which is 991
referenced by the SDMX message envelope, or could be put inside another 992
envelope, such as SOAP. It contains a query. The defaultLimit attribute is the 993
suggested maximum response size in kilobytes. 994

Element Content (Type): 995

 996

DataWhere (DataWhereType) - min. 0 - max. unbounded 997

KeyFamilyWhere (KeyFamilyWhereType) - min. 0 - max. unbounded 998

CodelistWhere (CodelistWhereType) - min. 0 - max. unbounded 999

ConceptWhere (ConceptWhereType) - min. 0 - max. unbounded 1000

AgencyWhere (AgencyWhereType) - min. 0 - max. unbounded 1001

Attribute: defaultLimit (xs:integer) - optional 1002

DataWhereType: The DataWhere element representes a query for data. It contains 1003
all of the clauses in that query, represented by its child elements. 1004

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 32

Element Content (Type): 1005

(Choice) 1006

DataSet (xs:string) 1007

KeyFamily (xs:string) 1008

Dimension (DimensionType) 1009

Attribute (AttributeType) 1010

Codelist (CodelistType) 1011

Time (TimeType) 1012

Category (CategoryType) 1013

Concept (xs:string) 1014

Agency (xs:string) 1015

Or (OrType) 1016

And (AndType) 1017

AndType: For the And element, each of its immediate child elements represent 1018
clauses all of which represent conditions which must be satisfied. If children are A, B, 1019
and C, then any legitimate response will meet conditions A, B, and C. 1020

Element Content (Type): 1021

 1022

DataSet (xs:string) - min. 0 - max. unbounded 1023

KeyFamily (xs:string) - min. 0 - max. unbounded 1024

Dimension (DimensionType) - min. 0 - max. unbounded 1025

Attribute (AttributeType) - min. 0 - max. unbounded 1026

Codelist (CodelistType) - min. 0 - max. unbounded 1027

Time (TimeType) - min. 0 - max. unbounded 1028

Category (CategoryType) - min. 0 - max. unbounded 1029

Concept (xs:string) - min. 0 - max. unbounded 1030

Agency (xs:string) - min. 0 - max. unbounded 1031

Or (OrType) - min. 0 - max. unbounded 1032

And (AndType) - min. 0 - max. unbounded 1033

OrType: The Or element's immediate children represent clauses in the query any 1034
one of which is sufficient to satisfy the query. If these children are A, B, and C, then 1035
any result which meets condition A, or condition B, or condition C is a match for that 1036
query. 1037

Element Content (Type): 1038

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 33

 1039

DataSet (xs:string) - min. 0 - max. unbounded 1040

KeyFamily (xs:string) - min. 0 - max. unbounded 1041

Dimension (DimensionType) - min. 0 - max. unbounded 1042

Attribute (AttributeType) - min. 0 - max. unbounded 1043

Codelist (CodelistType) - min. 0 - max. unbounded 1044

Time (TimeType) - min. 0 - max. unbounded 1045

Category (CategoryType) - min. 0 - max. unbounded 1046

Concept (xs:string) - min. 0 - max. unbounded 1047

Agency (xs:string) - min. 0 - max. unbounded 1048

Or (OrType) - min. 0 - max. unbounded 1049

And (AndType) - min. 0 - max. unbounded 1050

DimensionType: Dimension elements contain the (single) value being searched on 1051
within the key of data set. The name attribute holds the agency-qualified ID of the 1052
dimension. If the content is empty, then the query is for any dimension with the given 1053
name. If the name attribute is not supplied, then the query is for the given key value 1054
within any dimension. 1055

 1056

[data] (xs:string) 1057

AttributeType: Attribute elements contain the (single) value of an attribute being 1058
queried for. The name attribute contains the agency-qualified name of the attribute. 1059
The attachmentLevel attribute specifies the attachment level of the attribute. If the 1060
content of Attribute is empty, then the search is for the specified attribute (and 1061
attachment level). If the name attribute is not specified, then the search is on any 1062
attribute. If the attachmentLevel attribute is not specified, then the query is for an 1063
attribute at any attachment level, as the value defaults to "Any". 1064

 1065

[data] (xs:string) 1066

CodelistType: The Codelist element allows queries to specify a (single) value 1067
found within a codelist as the element content, and the agency-qualified name of the 1068
codelist being queried for in the name attribute. If no content is supplied, then the 1069
query is for the named codelist. If the name attribute is left empty, then the value is 1070
searched for in any codelist. 1071

 1072

[data] (xs:string) 1073

CategoryType: The Category element allows for a search to be made on the 1074
values within a specific category, which is specified (in agency-qualified form) with 1075
the name attribute. If there is no element content, then the search is for the named 1076

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 34

Category; if the name is not supplied, then the category value supplied as content 1077
should be sought-for in all available categories. 1078

 1079

[data] (xs:string) 1080

KeyFamilyWhereType: The KeyFamilyWhere element representes a query for a 1081
key family or key families. It contains all of the clauses in that query, represented by 1082
its child elements. 1083

Element Content (Type): 1084

(Choice) 1085

KeyFamily (xs:string) 1086

Dimension (DimensionType) 1087

Attribute (AttributeType) 1088

Codelist (CodelistType) 1089

Category (CategoryType) 1090

Concept (xs:string) 1091

Agency (xs:string) 1092

Or (OrType) 1093

And (AndType) 1094

CodelistWhereType: The CodelistWhere element representes a query for a 1095
codelist or codelists. It contains all of the clauses in that query, represented by its 1096
child elements. 1097

Element Content (Type): 1098

(Choice) 1099

Codelist (CodelistType) 1100

Agency (xs:string) 1101

Or (OrType) 1102

And (AndType) 1103

ConceptWhereType: The ConceptWhere element representes a query for a 1104
concept or concepts. It contains all of the clauses in that query, represented by its 1105
child elements. 1106

Element Content (Type): 1107

(Choice) 1108

Concept (xs:string) 1109

Agency (xs:string) 1110

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 35

Or (OrType) 1111

And (AndType) 1112

AgencyWhereType: The AgencyWhere element representes a query for details 1113
for an Agency. It contains all of the clauses in that query, represented by its child 1114
elements. 1115

Element Content (Type): 1116

(Choice) 1117

DataSet (xs:string) - min. 0 - max. unbounded 1118

KeyFamily (xs:string) - min. 0 - max. unbounded 1119

Codelist (CodelistType) - min. 0 - max. unbounded 1120

Category (CategoryType) - min. 0 - max. unbounded 1121

Concept (xs:string) - min. 0 - max. unbounded 1122

Agency (xs:string) - min. 0 - max. unbounded 1123

Or (OrType) - min. 0 - max. unbounded 1124

And (AndType) - min. 0 - max. unbounded 1125

TimeType: TimeType contains the time point or period for which results 1126
should be supplied. When StartTime and EndTime are used, these must be 1127
understood as inclusive. 1128

Element Content (Type): 1129

(Choice) 1130

StartTime (common:TimePeriodType) 1131

EndTime (common:TimePeriodType) – min. 0 1132

Or: 1133

Time (common:TimePeriodType) 1134

 1135

Simple Types 1136

AttachmentLevelType: This type supplies an enumeration of attachment levels 1137
corresponding to those in the SDMX Information Model, plus a value of "Any" where 1138
the search is wildcarded. 1139

Restricts xs:NMTOKEN 1140

Code: DataSet - Attached at the Data Set level 1141

Code: Group - Attached at the Group level 1142

Code: Series - Attached at the Series level 1143

Code: Observation - Attached at the Observation level 1144

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 36

Code: Any - Attached at any attachment level 1145

 1146

 1147

 1148

E. SDMX Common Namespace Module 1149

Namespace: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/common 1150

Imports: http://www.w3.org/XML/1998/namespace (xml.xsd) 1151

 1152

Complex Types 1153

TextType: TextType provides for a set of language-specific alternates to be 1154
provided for any human-readable construct in the instance. 1155

 1156

[data] (xs:string) 1157

AnnotationType: AnnotationType provides for non-documentation notes and 1158
annotations to be embedded in data and structure messages. It provides optional 1159
fields for providing a title, a type description, a URI, and the text of the annotation. 1160

Element Content (Type): 1161

 1162

AnnotationTitle (xs:string) - min. 0 1163

AnnotationType (xs:string) - min. 0 1164

AnnotationURL (xs:anyURI) - min. 0 1165

AnnotationText (TextType) - min. 0 - max. unbounded 1166

AnnotationsType: AnnotationsType provides for a list of annotations to be 1167
attached to data and structure messages. 1168

Element Content (Type): 1169

 1170

Annotation (AnnotationType) - max. unbounded 1171

 1172

Simple Types 1173

TimePeriodType: TIME_PERIOD is not completely expressable in XML Schema's 1174
date type: instead we use the union of dateTime, date, gYearMonth, and gYear. The 1175
default name for the concept is TIME_PERIOD. Semi-annual and quarterly periods 1176

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 37

would be described in terms of their beginning month, weekly periods in terms of 1177
their Monday: e.g. the second quarter of 2002 as 2002-04, since it starts with April. 1178

ActionType: ActionType provides a list of actions, describing the intention of the 1179
data transmission from the sender's side. Each action applies to the entire dataset for 1180
which it is given. 1181

Restricts xs:NMTOKEN 1182

Code: Update - Data is an incremental update for an existing data set or the 1183

provision of new data or documentation (attribute values) formerly absent. 1184

Code: Delete - Data is to be deleted. 1185

AlphaType: This type is used for datatyping the contents of uncoded attributesIt 1186
places no restrictions on characters used, but carries the semantic of the key-family 1187
designer in a fashion similar to that of the corresponding SDMX_EDI message. 1188

Restricts xs:string 1189

AlphaNumericType: This type is used for datatyping the contents of uncoded 1190
attributes. It places no restrictions on characters used, but carries the semantic of the 1191
key-family designer in a fashion similar to that of the corresponding SDMX_EDI 1192
message. 1193

Restricts xs:string 1194

 1195

 1196

 1197

F. Data Formatting and Character Encoding 1198

In all SDMX-ML documents – whether key-family-specific or not - the character 1199

encoding must be UTF-8. To simplify the exchange of statistical data and metadata 1200

globally, restrictions also apply to the expression of numeric formats: the decimal 1201

separator is always a period (“.”). There is no character used to separate thousands 1202

in data. 1203

 1204

VI. KEY-FAMILY-SPECIFIC SCHEMAS: CORE STRUCTURES & STANDARD MAPPINGS 1205

Some schemas are specific to key families, and therefore there is no single schema 1206
for all users. In these cases, standard mappings are provided so that even though 1207
one schema cannot be published, the schemas can be predicted from an 1208
examination of SDMXStructure messages that describe the key families on which 1209

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 38

they are based. Automatic creation of key-family-specific schemas according to these 1210
mappings is a natural consequence of this correspondence, and free tools to enable 1211
this creation of key-family-specific schemas is envisioned. 1212

It is important to note that all key-family-specific schemas are based on a core of 1213
identical constructs, allowing the smallest possible number of tags to differ from key-1214
family to key-family. This section first documents these “core” structures, each in their 1215
own SDMX-maintained namespace module, and then discusses the mappings from a 1216
key family to the key-family-specific schema. 1217

These schemas are all as similar as possible. They vary according to where in the 1218
common structure key values and attributes may be specified, and also – in the case 1219
of cross-sectional data – allow for time to be specified only once, at the data set 1220
level, along with the incidence of multiple observations. A less obvious difference is 1221
seen in the Utility schema, which is designed to carry as much structural metadata as 1222
possible in order to allow “typical” XML tools (such as schema-guided editors and 1223
parsers) to benefit from the availability of this data - such tools are generally 1224
incapable of consulting the key family for structural metadata. 1225

A. Compact Data Message Core Structure 1226

Namespace: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/compact 1227

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/common 1228

(SDMXCommon.xsd) 1229

 1230

Global Elements 1231

DataSet(DataSetType): The DataSet element contains the data set. 1232

Group(GroupType): The Group element contains the group. 1233

Series(SeriesType): The Series element contains the series. 1234

Obs(ObsType): The Obs element contains the observation. 1235

 1236

Complex Types 1237

DataSetType: DataSetType acts as a structural base, which is extended through 1238
the addition of attributes to reflect the particular needs of a specific key family using 1239
the xs:extends element. 1240

GroupType: GroupType acts as a structural base, which is renamed and extended 1241
through the addition of attributes to reflect the particular needs of a specific key 1242
family using the xs:extends element. 1243

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 39

SeriesType: SeriesType acts as a structural base, which is extended through the 1244
addition of attributes to reflect the particular needs of a specific key family using the 1245
xs:extends element. 1246

ObsType: ObsType acts as a structural base, which is extended through the 1247
addition of attributes to reflect the particular needs of a specific key family using the 1248
xs:extends element. 1249

 1250

 1251

 1252

B. Utility Data Message Core Structure 1253

Namespace: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/utility 1254

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/common 1255

(SDMXCommon.xsd) 1256

 1257

Global Elements 1258

DataSet(DataSetType): DataSet exists to act as the head of a substitution group 1259
to which key-family-specific attributes and elements are bound. 1260

Group(GroupType): Group exists to act as the head of a substitution group to 1261
which key-family-specific attributes and elements are bound. 1262

Series(SeriesType): Series exists to act as the head of a substitution group to 1263
which key-family-specific attributes and elements are bound. 1264

Key(KeyType): Key is an element which serves as the head of a substitution group 1265
containing the key-family-specific key values. 1266

Obs(ObsType): Obs exists to act as the head of a substitution group to which key-1267
family-specific attributes and elements are bound. 1268

 1269

Complex Types 1270

DataSetType: DataSetType acts as a structural base, which is extended through 1271
the addition of attributes and elements to reflect the particular needs of a specific key 1272
family using the xs:extends element. 1273

GroupType: GroupType acts as a structural base, which is renamed and extended 1274
through the addition of attributes to reflect the particular needs of a specific key 1275
family using the xs:extends element. 1276

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 40

SeriesType: SeriesType acts as a structural base, which is extended through the 1277
addition of attributes to reflect the particular needs of a specific key family using the 1278
xs:extends element. 1279

KeyType: KeyType describes the abstract type which defines the Key element. 1280

ObsType: ObsType acts as a structural base, which is extended through the 1281
addition of attributes to reflect the particular needs of a specific key family using the 1282
xs:extends element. 1283

 1284

C. Cross-Sectional Data Message Core Structure 1285

Namespace: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/cross 1286

Imports: http://www.SDMX.org/resources/SDMXML/schemas/v1_0/common 1287

(SDMXCommon.xsd) 1288

 1289

Global Elements 1290

DataSet(DataSetType): DataSet contains the data set. 1291

Group(GroupType): Group contains the group. 1292

Section(SectionType): Section contains the data section. 1293

Obs(ObsType): Obs contains the observation, with one or more measures. 1294

 1295

Complex Types 1296

DataSetType: DataSetType acts as a structural base, which is extended through 1297
the addition of attributes to reflect the particular needs of a specific key family using 1298
the xs:extends element. 1299

GroupType: GroupType acts as a structural base, which is extended through the 1300
addition of attributes to reflect the particular needs of a specific key family using the 1301
xs:extends element. The time attribute holds the value for the time dimension 1302
concept as specified in the key family. If time is not used as a concept in the key 1303
family, then no value need be provided. 1304

Attribute: time (common:TimePeriodType) - optional 1305

SectionType: SectionType acts as a structural base, which is extended through the 1306
addition of attributes to reflect the particular needs of a specific key family using the 1307
xs:extends element. 1308

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 41

ObsType: ObsType acts as a structural base, which is extended through the 1309
addition of attributes to reflect the particular needs of a specific key family using the 1310
xs:extends element. It is capable of expressing the value and attributes of any single 1311
available cross-sectional measure (when extended). 1312

 1313

 1314

D. Mappings to Key-Family-Specific Schemas 1315

General Rules: 1316

 1317

For all key-family-specific schemas (Compact, Utility, and Cross-Sectional) SDMX 1318

provides a namespace to be used as the extension base for key-family-specific 1319

schemas of that type. The key-family-specific schema will be created in its own target 1320

name space, owned and maintained by the creating agency. It will use the 1321

targetNamespace attribute of the schema element to identify the namespace which 1322

contains the key-family-specific schema. The namespace module provided by SDMX 1323

for that class of key-family-specific schema will be incorporated using the import 1324

element in the key-family-specific schema. The SDMX Common namespace module 1325

must also be imported into the schema. Other xml:namespace attributes may be 1326

added to the schema element as needed. 1327

 1328

The elementFormDefault attribute on the schema element will be given a value of 1329

"qualified", and the attributeFormDefault attribute on the schema element will be 1330

given a value of "unqualified". 1331

 1332

All additions to the SDMX module will be made using the extends element from W3C 1333

XML Schema. The term "levels of structure," when referring to the imported SDMX 1334

modules, include the following: 1335

 1336

• DataSet level 1337

• Group level 1338

• Series level 1339

• Observation level 1340

 1341

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 42

These levels normally refer to the element provided by the SDMX module to which 1342

attributes and elements may be assigned. In some cases, specific named constructs 1343

in the key family will become members of a set of elements corresponding to one of 1344

the levels named above. 1345

 1346

For all of the key-family-specific mappings provided below, SDMX-ML namespace 1347

modules are identified with the abbreviations used in the standard schemas 1348

(“compact:” refers to the CompactData module; “common:” to the Common 1349

namespace module, “utility:” to the UtilityData namespace module; and “cross:” to the 1350

CrossSectionalData module). 1351

 1352

Note that for all of the following mappings the term “concept name” is the value of the 1353

id attribute of the concept as found in the SDMX-ML message describing the key 1354

family. 1355

 1356

Compact Schemas: 1357

 1358

Compact schemas express all attribute and dimension values as XML attributes. 1359

These may be placed at various levels within the imported SDMX "compact" 1360

structure. The key-family-specific schema uses XSD substitution groups to attach 1361

key-family-specific elements and attributes to the structures provided in the 1362

“compact:” namespace. 1363

 1364

A global element named “DataSet” will be declared, with an XSD substitutionGroup 1365

attribute which has a value referencing the DataSet element in the “compact:” 1366

namespace. Its type attribute will reference DataSetType in the key-family-specific 1367

namespace. 1368

 1369

An XSD complexType will be declared named “DataSetType”. It will have XSD 1370

complexContent containing an XSD extension element, with a base attribute of 1371

DataSetType in the “compact:” namespace. The extension will consist of an XSD 1372

choice element, with a minOccurs attribute with a value of “0” and a maxOccurs 1373

value of “unbounded”. The choice will contain an XSD element reference for each 1374

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 43

named group declared in the key family. They will each have an XSD ref attribute 1375

with a value of the group name provided in the key family. (These elements will take 1376

the names of the groups declared in the key family.) Additionally, an XSD element 1377

will be declared in the choice with a ref attribute with a value of Series. Further, an 1378

element named Annotations will be added to the choice, with a type of 1379

AnnotationsType from the “common:” namespace. 1380

 1381

For each attribute declared in the key family with an attachmentLevel of “DataSet”, 1382

an XML attribute will also be declared in the extension. It will have the same name as 1383

the attribute’s concept in the key family. It will have a “use” attribute value of 1384

“optional”. For coded attributes, the XML attribute will be given a type value which is 1385

the name of the codelist which represents it. In the key-family-specific namespace, 1386

this codelist will be represented by a simpleType declaration which contains a list of 1387

enumerations, equivalent to the values of the codelist, as described in the key family. 1388

These will be extensions of the XSD "string" datatype. The enumerated values will be 1389

the values of the codes. The descriptions of the codes will be placed inside XSD 1390

"documentation" elements, contained in XSD "annotation" elements, which are 1391

themselves contained in the XSD "enumeration" elements as the first instance of the 1392

XSD documentation element. No other text shall occur within this particular instance 1393

of the XSD documentation element, although other XSD documentation elements 1394

may occur within any given XSD enumeration element. 1395

 1396

Uncoded attributes will also be represented with XSD simpleType elements declared 1397

in the key-family-specific namespace, with names formed by taking the name of the 1398

attribute in the key family and appending “Type” to them. If unrestricted, these will be 1399

of the W3C XML Schema primitive type “string”; if restrictions are specified in the key 1400

family, these will be restrictions of the XSD "string" datatype, unless they have a 1401

maximum length specified in the key family. If a maximum length is provided in the 1402

key family description, this will be handled as follows: 1403

 1404

• If numeric, then the restriction base will be of the XSD datatype "decimal". 1405

• If alphabetic, then the restriction base will be of the common:AlphaType 1406

datatype. 1407

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 44

• If alphanumeric, then the restriction base will be of the 1408

common:AlphaNumericType datatype. 1409

 1410

If maximum length is specified, but the attribute's value is not fixed length, then the 1411

maxLength facet in the XSD simpleType should be set to equal the maximum length 1412

of the attribute as specified in the key family. If the attribute's value is fixed length, 1413

then the XSD minLength attribute should additionally be set to the same value. If an 1414

uncoded attribute is a numeric type, and a number of decimals has been specified in 1415

the key family, then the simple type’s fracDig facet should take the value specified in 1416

the key family. 1417

 1418

For each named Group in the key family, a global XSD element will be declared, 1419

taking the name of the group. Its XSD type attribute will have a value formed by 1420

taking the name of the element and adding “Type” to the end of it. It will have a 1421

substitutionGroup attribute which references the Group element declared in the 1422

“compact:” namespace. 1423

 1424

An XSD complexType will be declared for each named group declared in the key 1425

family, with a name formed by taking the name of the group in the key family and 1426

appending “Type” to it. It will have an XSD complexContent element which contains 1427

an XSD extends with a base attribute value of compact:GroupType. The extends will 1428

contain an XSD sequence element. An element named Annotations will be added to 1429

the end of the sequence, with a type of AnnotationsType from the “common:” 1430

namespace. It will also have a minOccurs value of “0”. 1431

 1432

For each attribute in the key family with an attachmentLevel of “Group”, an XSD 1433

attribute element will be added to the extends element, with a use attribute set to 1434

“optional” and a type attribute defined as for the DataSet level, above. The name will 1435

be the concept name of the attribute in the key family. 1436

 1437

For each dimension referenced by DimensionRef element in the named Group 1438

declaration in the key family XML , an XSD attribute element will also be added to the 1439

extends element, with a use attribute set to “required” and a type defined as for 1440

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 45

coded attributes for the dataset level, above. The name will be the concept name of 1441

the dimension in the key family. 1442

 1443

A XSD global element named Series will be declared in the key-family-specific 1444

namespace, with a type of SeriesType and a substitutionGroup attribute referencing 1445

compact:Series. 1446

 1447

An XSD complexType will then be declared with a name of SeriesType. It will have 1448

XSD complexContent, with an XSD extension element that has a base attribute value 1449

of compact:SeriesType. The extends element will contain an XSD sequence 1450

element, which will contain an XSD element with a ref attribute whose value is “Obs”. 1451

Its minOccurs attribute will have a value of “0” and a maxOccurs value of 1452

“unbounded”. An element named Annotations will be added to the end of the 1453

sequence, with a type of AnnotationsType from the “common:” namespace. It will 1454

also have a minOccurs value of “0”. 1455

 1456

For each attribute in the key family with an attachmentLevel of “Series”, an XSD 1457

attribute element will be added to the extends element, with a use attribute set to 1458

“optional” and a type attribute defined as for the DataSet level, above. The name will 1459

be the name of the attribute’s concept in the key family. The exception is where an 1460

attribute has an isTimeFormat attribute value of “true” – in this case, it is treated the 1461

same as other series-level attributes except that its use attribute has a value of 1462

“required”. 1463

 1464

An XSD global element will be declared named “Obs”. It will have a 1465

substitutionGroup attribute with a value “compact:Obs”. It will have a type of 1466

“ObsType”. 1467

 1468

An XSD complexType element will be declared with a name “ObsType” and an XSD 1469

complexContent. This will contain an XSD extends element with a base attribute of 1470

“compact:ObsType”. It will contain an XSD sequence element. The sequence 1471

element will contain an element named Annotations, with a type of AnnotationsType 1472

from the “common:” namespace. It will have a minOccurs value of “0”. 1473

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 46

 1474

The extension element will also have an XSD attribute element in it, which will have a 1475

name attribute whose value is the name of the TimeDimension concept from the key 1476

family. It will have a use attribute of “optional” and a type of 1477

“common:TimePeriodType”. 1478

 1479

The extension element will also have an XSD attribute element in it, which will have a 1480

name attribute whose value is the concept name of the primary measure from the 1481

key family. It will have a use attribute of “optional” and a type of XSD “double”. 1482

 1483

For each attribute declared in the key family with an attachmentLevel of 1484

“Observation”, an XSD attribute will be added to the extends. Each XSD attribute will 1485

take the name of the attribute’s concept declared in the key family, and will have a 1486

use attribute of “optional”. Its type will be defined as for the DataSet-level attributes 1487

described above. 1488

 1489

No other declarations or constructs will be added to the schemas created using this 1490

mapping. 1491

 1492

Time Ranges in CompactData: Unlike any other SDMX-ML data format, the key-1493

family-specific CompactData format can express a set of observation values without 1494

having to provide a time for each of them. If a Series has a time provided for the first 1495

observation, subsequent observations in the series may omit the time, and only 1496

provide an observation value (a value for the attribute named after the primary 1497

measure), and whatever attributes are needed (see below). The times of the 1498

subsequent observations can be calculated according to the frequency specified by 1499

the relevant time format attribute value (or, failing that, the frequency dimension 1500

value), which can be calculated by the application. Note that support for this 1501

functionality is not mandatory for applications which do not claim this support in their 1502

conformance statements. It is also permissible to supply a time value for the last 1503

observation in the series, to permit double-checking of the calculation, although this 1504

is not mandatory. 1505

 1506

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 47

Delete and Update Messages in CompactData: In the Header element, the action 1507

field specifies whether a message is an update message or a delete message. If it is 1508

an update message, it is used to send new information or updated information, which 1509

may include only data, only documentation (that is, attribute values as described in 1510

the key family), or both. (Agreements regarding the use of update messages should 1511

be specified between counterparties.) For a delete message, the requirements are 1512

that a complete series key always be sent for the deletion of data, which is identified 1513

either as an entire series by the absence of any specified time periods, or for a 1514

specific set of time periods, by the inclusion of those time periods. Attribute values 1515

may be deleted by sending a complete or partial set of attributes, with any valid value 1516

for the attribute (according to the XSD schema) being taken as an indication that the 1517

current attribute value should be deleted. 1518

 1519

 1520

 1521

Cross-Sectional Schemas 1522

 1523

Key-family-specific cross-sectional schemas express all non-time-series-based 1524

presentations of the data which are made possible in the key family. They also are 1525

capable of expressing statistical data for which time is not a concept – that is, they 1526

can provide the only SDMX-ML format for data which is inherently only cross-1527

sectional. As with the CompactData format, key values and attribute values are 1528

attached to a four-level structure as XML attributes. For cross-sectional data, 1529

however, the term “Series” – an abbreviation of “time series” – is replaced by the 1530

equivalent “Section” construct. 1531

 1532

Please note that named groups declared in the key family are ignored for the 1533

purposes of the cross-sectional data format. They are replaced by a generic Group 1534

element, leaving it up to the writing or processing application to enforce the validity of 1535

attribute values for groups of Sections. This is true also because a single SDMX-ML 1536

cross-sectional schema may be described in the key family such that it allows for 1537

more than one dimension to be expressed at the observation level, replacing the role 1538

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 48

of time in time-series-oriented formats, and therefore allows key values and attribute 1539

values to be attached at more than one level. 1540

 1541

A global element named “DataSet” will be declared, with an XSD substitutionGroup 1542

attribute which has a value referencing the DataSet element in the “cross:” 1543

namespace. Its type attribute will reference DataSetType in the key-family-specific 1544

namespace. 1545

 1546

An XSD complexType will be declared named “DataSetType”. It will have XSD 1547

complexContent containing an XSD extension element, with a base attribute of 1548

DataSetType in the “cross:” namespace. The extension will consist of an XSD 1549

choice element, with a minOcurs of “0” and a maxOccurs of ”unbounded”. The choice 1550

element will contain an XSD element reference with a value of “Group”. Additionally, 1551

an XSD element will be declared in the choice with a ref attribute, whose value is 1552

Section. Further, an element named Annotations will be added to the choice, with a 1553

type of AnnotationsType from the “common:” namespace. It will have a minOccurs 1554

attribute of “0”. 1555

 1556

For each attribute or dimension declared in the key family with a 1557

crossSectionalAttachDataSet of “true”, an XML attribute will also be declared in the 1558

extension. It will have the same name as the attribute concept or dimension concept 1559

in the key family. It will have a “use” attribute value of “optional”. For coded attributes, 1560

the XML attribute will be given a type value which is the name of the codelist which 1561

represents it. In the key-family-specific namespace, this codelist will be represented 1562

by a simpleType declaration which contains a list of enumerations, equivalent to the 1563

values of the codelist, as described in the key family. These will be extension of the 1564

XSD "string" datatype. The enumerated values will be the values of the codes. The 1565

descriptions of the codes will be placed inside XSD "documentation" elements, 1566

contained in XSD "annotation" elements, which are themselves contained in the XSD 1567

"enumeration" elements as the first instance of the XSD documentation element. No 1568

other text shall occur within this particular instance of the XSD documentation 1569

element, although other XSD documentation elements may occur within any given 1570

XSD enumeration element. 1571

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 49

 1572

Uncoded attributes will also be represented with XSD simpleType elements declared 1573

in the key-family-specific namespace, with names formed by taking the name of the 1574

attribute concept in the key family and appending “Type” to them. If unrestricted, 1575

these will be of the W3C XML Schema primitive type “string”; if restrictions are 1576

specified in the key family, these will be restrictions of the XSD "string" datatype, 1577

unless they have a maximum length specified in the key family. If a maximum length 1578

is provided in the key family description, this will be handled as follows: 1579

 1580

• If numeric, then the restriction base will be of the XSD datatype "decimal". 1581

• If alphabetic, then the restriction base will be of the common:AlphaType 1582

datatype. 1583

• If alphanumeric, then the restriction base will be of the 1584

common:AlphaNumericType datatype (where "common:" denotes the 1585

SDMX Common namespace module). 1586

 1587

If maximum length is specified, but the attribute's value is not fixed length, then the 1588

maxLength facet in the XSD simpleType should be set to equal the maximum length 1589

of the attribute as specified in the key family. If the attribute's value is fixed length, 1590

then the XSD minLength attribute should additionally be set to the same value. If an 1591

uncoded attribute is a numeric type, and a number of decimals has been specified in 1592

the key family, then the simple type’s fracDig facet should take the value specified in 1593

the key family. 1594

 1595

A Global XSD element will be declared named Group. Its XSD type attribute will have 1596

a value of GroupType. It will have a substitutionGroup attribute which references the 1597

Group element declared in the “cross:” namespace. 1598

 1599

An XSD complexType named GroupType will be declared. It will have an XSD 1600

complexContent element which contains an XSD extends with a base attribute value 1601

of compact:GroupType. The extends will contain an XSD sequence element, which 1602

will contain an XSD element with a reference to the element Section. Its minOccurs 1603

attribute will have a value of “0” and a maxOccurs value of “unbounded”. An element 1604

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 50

named Annotations will be added to the end of the sequence, with a type of 1605

AnnotationsType from the “common:” namespace. It will also have a minOccurs 1606

value of “0”. 1607

 1608

For each attribute or dimension in the key family with a crossSectionalAttachGroup 1609

value of “true” or an isFrequencyDimension value of “true”, an XSD attribute element 1610

will be added to the extends element, with a use attribute set to “optional” and a type 1611

attribute defined as for the DataSet level, above. The name will be the name of the 1612

attribute concept or dimension concept in the key family. 1613

 1614

 1615

A XSD global element named Section will be declared in the key-family-specific 1616

namespace, with a type of SectionType and a substitutionGroup attribute referencing 1617

compact:Section. 1618

 1619

An XSD complexType will then be declared with a name of SectionType. It will have 1620

XSD complexContent, with an XSD extension element that has a base attribute value 1621

of cross:SectionType. The extends element will contain an XSD choice element with 1622

a minOccurs of “0” and a maxOccurs of “unbounded”, which will contain an XSD 1623

element for each CrossSectionalMeasure declared in the key family, with a ref 1624

attribute whose value is the name of the measure’s concept. An element named 1625

Annotations will be added to the end of the choice, with a type of AnnotationsType 1626

from the “common:” namespace. 1627

 1628

For each attribute or dimension in the key family with a crossSectionalAttachSection 1629

value of “true”, an XSD attribute element will be added to the extends element, with a 1630

use attribute set to “optional” and a type attribute defined as for the DataSet level, 1631

above. The name will be the name of the attribute concept or dimension concept in 1632

the key family. 1633

 1634

An XSD global element will be declared for each CrossSectionalMeasure declared in 1635

the key family, with the name of the measure’s concept. It will have a 1636

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 51

substitutionGroup attribute with a value “cross:Obs”. It will have a type of “ObsType”. 1637

If no CrossSectionalMeasures have been declared, use the PrimaryMeasure instead. 1638

 1639

An XSD complexType element will be declared for each CrossSectionalMeasure 1640

declared in the key family with a name created by appending “Type” to the concept of 1641

the measure. These declarations will contain an XSD complexContent. This will 1642

contain an XSD extends element with a base attribute of “cross:ObsType”. It will 1643

contain an XSD sequence element. The sequence element will contain an element 1644

named Annotations, with a type of AnnotationsType from the “common:” namespace. 1645

It will have a minOccurs value of “0”. 1646

 1647

The extension element will also have an XSD attribute element in it for each attribute 1648

or dimension which has a crossSectionalAttachObservation value of “true” and lists 1649

the name of the measure’s concept in an AttachmentMeasure element in its 1650

declaration. The XSD attribute will take its name value from the name of the 1651

attribute’s concept. It will have a use attribute of optional, and a type as described for 1652

the DataSet level, above. Additionally, an attribute will be declared with a name of 1653

“value” and a type of XSD “double”. Its use attribute will be “optional”. (Note that the 1654

dimension whose coded representation corresponds to the CrossSectionalMeasures 1655

should never have its crossSectionalAttachObservation attribute set to “true”.) 1656

 1657

If no CrossSectionalMeasures were declared in the key family, there will be an XSD 1658

attribute element added to the extension, which will have a name attribute whose 1659

value is the concept name of the PrimaryMeasure concept from the key family. It will 1660

have a use attribute of “optional” and a type of XSD “double”. 1661

 1662

In this case, for each attribute declared in the key family with an attachmentLevel of 1663

“Observation”, an XSD attribute will be added to the extends. Each XSD attribute will 1664

take the name of the attribute’s concept declared in the key family, and will have a 1665

use attribute of “optional”. Its type will be defined as for the DataSet-level attributes 1666

described above. Additionally, an attribute will be declared with a name of value and 1667

a type of “xs:double”. Its use attribute is “optional”. 1668

 1669

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 52

No other declarations or constructs will be added to the schemas created using this 1670

mapping. 1671

 1672

Delete and Update Messages in CrossSectionalData: In the Header element, the 1673

action field specifies whether a message is an update message or a delete message. 1674

If it is an update message, it is used to send new information or updated information, 1675

which may include only data, only documentation (that is, attribute values as 1676

described in the key family), or both. (Agreements regarding the use of update 1677

messages should be specified between counterparties.) For a delete message, the 1678

requirements are that a complete key always be sent for the deletion of data, which is 1679

identified either as an entire series by the absence of any specified time periods, or 1680

for a specific set of time periods, by the inclusion of those time periods. Attribute 1681

values may be deleted by sending a complete or partial set of attributes, with any 1682

valid value for the attribute (according to the XSD schema) being taken as an 1683

indication that the current attribute value should be deleted. 1684

 1685

 1686

Utility Schemas 1687

 1688

Utility schemas are different from the Compact and Cross-Sectional schemas 1689

because they differentiate between the expression of the attributes and dimensions 1690

established in the key family. This design serves to preserve the ordering of the keys 1691

- the design provides much of the key-family structural metadata without requiring the 1692

processor to access the XML structure message describing the key family. This 1693

makes the rules inherent in the structure of the key family available to such tools as 1694

schema-guided XML editors, which are part of the primary reason for the Utility 1695

schema format. 1696

 1697

The Utility schema employs a technique similar to the Compact and Cross-Sectional 1698

schemas by creating substitution groups which are headed by elements at the 1699

DataSet, Group, Series, and Observation levels. This is done in such a way that the 1700

messages can be more completely validated with a generic XML parser but are 1701

considerably larger in size than the CompactData or CrossSectionalData formats. 1702

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 53

 1703

A global element named “DataSet” will be declared, with an XSD substitutionGroup 1704

attribute which has a value referencing the DataSet element in the “utility:” 1705

namespace. Its type attribute will reference DataSetType in the key-family-specific 1706

namespace. 1707

 1708

An XSD complexType will be declared named “DataSetType”. It will have XSD 1709

complexContent containing an XSD extension element, with a base attribute of 1710

DataSetType in the “utility:” namespace. The extension will consist of an XSD 1711

sequence element containing first an XSD choice element, with a maxOccurs value 1712

of “unbounded”. The choice will contain an XSD element reference for each named 1713

group declared in the key family. They will each have an XSD ref attribute with a 1714

value of the group name provided in the key family. (These elements will take the 1715

names of the groups declared in the key family.) If there are no named groups 1716

declared in the key family, an XSD element will be declared in the choice with a ref 1717

attribute with a value of Series. An element named Annotations will be added to the 1718

end of the sequence, with a type of AnnotationsType from the “common:” namespace 1719

and a minOccurs attribute of “0”. 1720

 1721

For each attribute declared in the key family with an attachmentLevel of “DataSet”, 1722

an XML attribute will be declared in the extension. It will have the same name as the 1723

attribute’s concept in the key family. It will have a use attribute with a value of 1724

“required” if the attribute declared in the key family has an assgnmentStatus of 1725

“Mandatory:, and a use attribute with a value of optional if its assignmentStatus in the 1726

key family is “Conditional”. For coded attributes, the XML attribute will be given a type 1727

value which is the id of the codelist which represents it. In the key-family-specific 1728

namespace, this codelist will be represented by a simpleType declaration which 1729

contains a list of enumerations, equivalent to the values of the codelist, as described 1730

in the key family. These will be extension of the XSD "string" datatype. The 1731

enumerated values will be the values of the codes. The descriptions of the codes will 1732

be placed inside XSD "documentation" elements, contained in XSD "annotation" 1733

elements, which are themselves contained in the XSD "enumeration" elements as the 1734

first instance of the XSD documentation element. No other text shall occur within this 1735

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 54

particular instance of the XSD documentation element, although other XSD 1736

documentation elements may occur within any given XSD enumeration element. 1737

 1738

Uncoded attributes will also be represented with XSD simpleType elements declared 1739

in the key-family-specific namespace, with names formed by taking the name of the 1740

attribute’s concept in the key family and appending “Type” to them. If unrestricted, 1741

these will be of the W3C XML Schema primitive type “string”; if restrictions are 1742

specified in the key family, these will be restrictions of the XSD "string" datatype, 1743

unless they have a maximum length specified in the key family. If a maximum length 1744

is provided in the key family description, this will be handled as follows: 1745

 1746

• If numeric, then the restriction base will be of the XSD datatype "decimal". 1747

• If alphabetic, then the restriction base will be of the common:AlphaType 1748

datatype. 1749

• If alphanumeric, then the restriction base will be of the 1750

common:AlphaNumericType datatype. 1751

 1752

If maximum length is specified, but the attribute's value is not fixed length, then the 1753

maxLength facet in the XSD simpleType should be set to equal the maximum length 1754

of the attribute as specified in the key family. If the attribute's value is fixed length, 1755

then the XSD minLength attribute should additionally be set to the same value. If an 1756

uncoded attribute is a numeric type, and a number of decimals has been specified in 1757

the key family, then the simple type’s fracDig facet should take the value specified in 1758

the key family. 1759

 1760

For each named Group in the key family, a global XSD element will be declared, 1761

taking the name of the group. Its XSD type attribute will have a value formed by 1762

taking the name of the element and adding “Type” to the end of it. It will have a 1763

substitutionGroup attribute which references the Group element declared in the 1764

“utility:” namespace. 1765

 1766

An XSD complexType will be declared for each named group declared in the key 1767

family, with a name formed by taking the name of the group in the key family and 1768

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 55

appending “Type” to it. It will have an XSD complexContent element which contains 1769

an XSD extends with a base attribute value of utility:GroupType. The extends will 1770

contain an XSD sequence element, which will contain an XSD element with a 1771

reference to the element Series. Its maxOccurs attribute will have a value of 1772

“unbounded”. An element named Annotations will be added to the end of the 1773

sequence, with a type of AnnotationsType from the “common:” namespace. It will 1774

also have a minOccurs value of “0”. 1775

 1776

For each attribute in the key family with an attachmentLevel of “Group”, an XSD 1777

attribute element may be added to the extends element for any given group. To 1778

determine if a declared Group-level attribute in the key family is to be added to a 1779

particular named group XSD type, look at the AttachmentGroup elements in the XML 1780

of the key family. If the group element in the key-family-specific schema that is being 1781

declared appears in an AttachmentGroup element in the key family XML, then the 1782

attribute should be included in the utility schema being created. If added, this 1783

attribute should be declared as defined for the DataSet level, above. The name will 1784

be the name of the attribute’s concept in the key family. 1785

 1786

A XSD global element named Series will be declared in the key-family-specific 1787

namespace, with a type of SeriesType and a substitutionGroup attribute referencing 1788

utility:Series. 1789

 1790

An XSD complexType will then be declared with a name of SeriesType. It will have 1791

XSD complexContent, with an XSD extension element that has a base attribute value 1792

of utility:SeriesType. The extends element will contain an XSD sequence element, 1793

which will contain first an XSD element whose ref value is “Key”. This is followed by 1794

an XSD element with a ref attribute whose value is “Obs”. Its maxOccurs attribute 1795

will have a value of “unbounded”. An element named Annotations will be added to 1796

the end of the sequence, with a type of AnnotationsType from the “common:” 1797

namespace. It will also have a minOccurs value of “0”. 1798

 1799

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 56

For each attribute in the key family with an attachmentLevel of “Series”, an XSD 1800

attribute element will be added to the extends element, with name, use, and type 1801

attributes defined as for the DataSet level, above. 1802

 1803

A global XSD element named Key will be declared. It will have a type of KeyType, 1804

and a substitutionGroup attribute with a value of utility:Key. 1805

 1806

An XSD complexType will be declared, with a name of KeyType. It will have an XSD 1807

complexContent element with an XSD extends element inside it, whose base 1808

attribute will have a value of “utility:KeyType”. The extends element will contain a 1809

XSD sequence of elements, one for each non-time dimension declared in the key 1810

family, in the order in which they appear in the XML for the key family. These 1811

elements will have names that are the same as the dimension’s concepts in the key 1812

family which they represent. Their type attributes will be the names of simpleTypes 1813

created exactly as for coded attributes at the DataSet level, above. 1814

 1815

An XSD global element will be declared named “Obs”. It will have a 1816

substitutionGroup attribute with a value “utility:Obs”. It will have a type of “ObsType”. 1817

 1818

An XSD complexType element will be declared with a name “ObsType” and an XSD 1819

complexContent. This will contain an XSD extends element with a base attribute of 1820

“compact:ObsType”. It will contain an XSD sequence element. The sequence 1821

element will contain an element whose name is the name of the TimeDimension 1822

concept from the key family, with a type of common:TimePeriodType. It will be 1823

followed by an element whose name is the name of the PrimaryMeasure declared in 1824

the key family, with a type of XSD “double”. Last is an element named Annotations, 1825

with a type of AnnotationsType from the “common:” namespace. It will have a 1826

minOccurs value of “0”. 1827

 1828

For each attribute declared in the key family with an attachmentLevel of 1829

“Observation”, an XSD attribute will be added to the extends. Each XSD attribute will 1830

take the name of the attribute’s concept declared in the key family, and will have a 1831

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 57

use attribute, name, and type created as defined as for the DataSet-level attributes 1832

described above. 1833

 1834

No other declarations or constructs will be added to the schemas created using this 1835

mapping. 1836

 1837

Note: The UtilityData key-family-specific schema does not have any mechanism for 1838

expressing time ranges across a set of observation values. The only permissible 1839

message for this schema type is an “update” message containing a complete set of 1840

attributes and observation values for the transmitted series. There is no concept of a 1841

“delete” message, and the action field in the message Header element is ignored if 1842

specified. 1843

 1844

VII. APPENDIX: SAMPLE SDMX-ML MESSAGES 1845

This appendix is presented to provide example layouts for the SDMX-ML sample 1846

data files, allowing them to be more easily understood. For each sample data file, 1847

one or more tables are offered, to show how the data itself might be formatted. 1848

Please note that all data is fictitious, and used for demonstration purposes only. 1849

(Numbers are not consistent across samples, but are randomly generated.) 1850

 1851

A. CompactSample.xml 1852

ID: Message JD014 (Untruncated Test Message) 1853

Name: Trans46305 1854

Prepared: 2001-03-11T09:30:47-05:00 1855

Sent by: GB Smith from the BIS, +000.000.0000 1856

To: B.S. Featherstone, Statistics Division, ECB, +000.000.0001 1857

 1858

This message contains new or updated data, and was created at 2001-03-1859

11T09:30:47-05:00. 1860

 1861

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 58

External Debt, All Maturities, Bank Loans for Mexico, expressed as Stocks 1862

in Millions of US Dollars, Monthly at the beginning of period. (Free data) 1863

 Time Data 1864
 2000-01 - 3.14 1865
 2001-02 - 2.29 1866
 2000-03 - 3.14 1867
 2000-04 - 5.24 1868
 2000-05 - 3.14 1869
 2000-06 - 3.78 1870
 2000-07 - 3.65 1871
 2000-08 - 2.37 1872
 2000-09 - 3.14 1873
 2000-10 - 3.17 1874
 2000-11 - 3.34 1875
 2000-12 - 1.21 1876
 1877

 1878

 1879

 1880

External Debt, All Maturities, Bank Loans for Mexico, expressed as Stocks 1881

in Millions of US Dollars, Annually at the beginning of period. (Free data) 1882

 1883

Time Data 1884
2000-01 3.14 1885

 1886

External Debt, All Maturities, Debt Securities Issued Abroad for Mexico, 1887

expressed as Stocks in Millions of US Dollars, Monthly at the beginning of 1888

period. (Free data) 1889

 1890
Time Data 1891
2000-01 5.14 1892
2001-02 3.29 1893
2000-03 6.14 1894
2000-04 2.24 1895
2000-05 3.14 1896
2000-06 7.78 1897
2000-07 3.65 1898
2000-08 5.37 1899
2000-09 3.14 1900
2000-10 1.17 1901
2000-11 4.34 1902
2000-12 1.21 1903
 1904

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 59

External Debt, All Maturities, Debt Securities Issued Abroad for Mexico, 1905

expressed as Stocks in Millions of US Dollars, Annually at the beginning 1906

of period. (Free data) 1907

 1908

Time Data 1909
2000–1 4.14 1910

 1911

B. UtilitySample.xml 1912

ID: Message JD01678594 (Untruncated Test Message) 1913

Name: Trans46304 1914

Prepared: 2001-03-11T09:30:47-05:00 1915

Sent by: GB Smith from the BIS, +000.000.0000 1916

To: B.S. Featherstone, Statistics Division, ECB, +000.000.0001 1917

 1918

This message contains new or updated data, and was created at 2001-03-1919

11T09:30:47-05:00. 1920

 1921

External Debt, All Maturities, Bank Loans for Mexico, expressed as Stocks 1922

in Millions of US Dollars, Monthly at the beginning of period. (Free data) 1923

 1924

 Time Data 1925
 2000-01 - 3.14 1926
 2001-02 - 3.19 1927
 2000-03 - 5.26 1928
 2000-04 - 5.12 1929
 2000-05 - 4.13 1930
 2000-06 - 3.12 1931
 2000-07 - 3.14 1932
 2000-08 – 3.79 1933
 2000-09 – 9.79 1934
 2000-10 – 3.14 1935
 2000-11 – 3.19 1936
 2000-12 – 3.14 1937
 1938

 1939

C. GenericSample.xml 1940

ID: Message JD014 (Untruncated Test Message) 1941

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 60

Name: Trans46302 1942

Prepared: 2001-03-11T09:30:47-05:00 1943

Sent by: GB Smith from the BIS, +000.000.0000 1944

To: B.S. Featherstone, Statistics Division, ECB, +000.000.0001 1945

 1946

This message contains new or updated data, and was created at 2001-03-1947

11T09:30:47-05:00. 1948

 1949

External Debt, All Maturities, Bank Loans for Mexico, expressed as Stocks 1950

in Millions of US Dollars, Monthly at the beginning of period. (Free data) 1951

 Time Data 1952
 2000-01 - 3.14 1953
 2001-02 – 3.14 1954
 2000-03 – 4.29 1955
 2000-04 – 6.04 1956
 2000-05 – 5.18 1957
 2000-06 – 5.07 1958
 2000-07 – 3.13 1959
 2000-08 – 1.17 1960
 2000-09 – 1.14 1961
 2000-10 - 3.04 1962
 2000-11 – 1.14 1963
 2000-12 – 3.24 1964
 1965

D. CrossSectionalSample.xml 1966

ID: Message BIS947586 (Untruncated Test Message) 1967

Name: Trans46305 1968

Prepared: 2001-03-11T09:30:47-05:00 1969

Sent by: GB Smith from the BIS, +000.000.0000 1970

To: B.S. Featherstone, Statistics Division, ECB, +000.000.0001 1971

 1972

This message contains new or updated data, and was created at 2001-03-1973

11T09:30:47-05:00. 1974

 1975

External Debt for Mexico, in Millions of US Dollars, at the beginning of 1976

period for 2000. (Free data) 1977

Topic Stocks Flows 1978

 STATISTICAL DATA AND METADATA EXCHANGE INIT IATIVE

 61

All Maturities, Bank Loans 3.14 1.00 1979

All Maturities, Debt Securities Issued Abroad 6.39 2.27 1980

All Maturities, Brady Bonds 2.34 -1.00 1981

All Maturities, Non-Bank Trade Credits 3.19 - 1.06 1982

 1983

 1984

