

SDMX STANDARDS: SECTION 2

INFORMATION MODEL:

UML CONCEPTUAL DESIGN

VERSION 2.1

July 2011

© SDMX 2011
http://www.sdmx.org/

http://www.sdmx.org/

Contents
1 Introduction..1

1.1 Related Documents 1

1.2 Modelling Technique and Diagrammatic Notes 1

1.3 Overall Functionality 2

1.3.1 Information Model Packages ..2

1.3.2 Version 1.0..3

1.3.3 Version 2.0/2.1..3

2 Actors and Use Cases ..5

2.1 Introduction 5

2.2 Use Case Diagrams 6

2.2.1 Maintenance of Structural and Provisioning Definitions ...6

2.2.2 Publishing and Using Data and Reference Metadata...10

3 SDMX Base Package...13

3.1 Introduction 13

3.2 Base Structures - Identification, Versioning, and Maintenance 14

3.2.1 Class Diagram ..14

3.2.2 Explanation of the Diagram...14

3.3 Basic Inheritance 18

3.3.1 Class Diagram– Basic Inheritance from the Base Inheritance Classes18

3.3.2 Explanation of the Diagram...19

3.4 Data Types 19

3.4.1 Class Diagram ..19

3.4.2 Explanation of the Diagram...20

3.5 The Item Scheme Pattern 21

3.5.1 Context..21

3.5.2 Class Diagram ..21

3.5.3 Explanation of the Diagram...22

3.6 The Structure Pattern 23

3.6.1 Context..23

3.6.2 Class Diagrams...24

3.6.3 Explanation of the Diagrams...26

4 Specific Item Schemes ...31

4.1 Introduction 31

4.2 Inheritance View 32

4.3 Codelist 33

4.3.1 Class Diagram ..33

4.3.2 Explanation of the Diagram...34

4.4 Concept Scheme and Concepts 36

4.4.1 Class Diagram - Inheritance ...36

4.4.2 Explanation of the Diagram...37

4.4.3 Class Diagram - Relationship ...38

4.4.4 Explanation of the diagram ...38

4.5 Category Scheme 40

4.5.1 Context..40

4.5.2 Class diagram - Inheritance..40

4.5.3 Explanation of the Diagram...41

4.5.4 Class diagram - Relationship..42

4.6 Organisation Scheme 44

4.6.1 Class Diagram ..44

4.6.2 Explanation of the Diagram...44

4.7 Reporting Taxonomy 48

4.7.1 Class Diagram ..48

4.7.2 Explanation of the Diagram...48

5 Data Structure Definition and Dataset ..51

5.1 Introduction 51

5.2 Inheritance View 52

5.2.1 Class Diagram ..52

5.2.2 Explanation of the Diagram...53

5.3 Data Structure Definition – Relationship View 55

5.3.1 Class Diagram ..55

5.3.2 Explanation of the Diagrams...55

5.4 Data Set – Relationship View 65

5.4.1 Context..65

5.4.2 Class Diagram ..65

5.4.3 Explanation of the Diagram...66

6 Cube..74

6.1 Context 74

6.2 Support for the Cube in the Information Model 74

7 Metadata Structure Definition and Metadata Set ...75

7.1 Context 75

7.2 Inheritance 75

7.2.1 Introduction ...75

7.2.2 Class Diagram - Inheritance ...76

7.2.3 Explanation of the Diagram...77

7.3 Metadata Structure Definition 77

7.3.1 Introduction ...77

7.3.2 Structures Already Described ...77

7.3.3 Class Diagram – Relationship ..78

7.3.4 Explanation of the Diagram...78

7.4 Metadata Set 84

7.4.1 Class Diagram ..84

7.4.2 Explanation of the Diagram...85

8 Hierarchical Code List ..92

8.1 Scope 92

8.2 Inheritance 93

8.2.1 Class Diagram ..93

8.2.2 Explanation of the Diagram...93

8.3 Relationship 94

8.3.1 Class Diagram ..94

8.3.2 Explanation of the Diagram...94

9 Structure Set and Mappings...98

9.1 Scope 98

9.2 Structure Set 99

9.2.1 Class Diagram – Inheritance ..99

9.2.2 Class Diagram – Relationship ..100

9.2.3 Explanation of the Diagram...100

9.3 Structure Map 102

9.3.1 Class Diagram ..102

9.3.2 Explanation of the Diagram...102

9.4 Item Scheme Map 104

9.4.1 Context..104

9.4.2 Class Diagram ..105

9.4.3 Explanation of the Diagram...105

9.5 Hybrid Codelist Map 108

9.5.1 Class Diagram ..108

9.5.2 Explanation of the Diagram...108

10 Constraints...111

10.1 Scope 111

10.2 Inheritance 111

10.2.1 Class Diagram of Constrainable Artefacts - Inheritance...111

10.2.2 Explanation of the Diagram...111

10.3 Constraints 112

10.3.1 Relationship Class Diagram – high level view..112

10.3.2 Explanation of the Diagram...113

10.3.3 Relationship Class Diagram – Detail ..114

11 Data Provisioning..124

11.1 Class Diagram 124

11.2 Explanation of the Diagram 125

11.2.1 Narrative..125

11.2.2 Definitions ...126

12 Process...128

12.1 Introduction 128

12.2 Model – Inheritance and Relationship view 129

12.2.1 Class Diagram ..129

12.2.2 Explanation of the Diagram...129

13 Transformations and Expressions ..132

13.1 Scope 132

13.2 Model - Inheritance View 133

13.2.1 Class Diagram ..133

13.2.2 Explanation of the Diagram...133

14 Appendix 1: A Short Guide To UML in the SDMX Information Model......................................137

14.1 Scope 137

14.2 Use Cases 137

14.3 Classes and Attributes 138

14.3.1 General ...138

14.3.2 Abstract Class...139

14.4 Associations 139

14.4.1 General ...139

14.4.2 Simple Association..139

14.4.3 Aggregation...140

14.4.4 Association Names and Association-end (role) Names ...141

14.4.5 Navigability..141

14.4.6 Inheritance ..142

14.4.7 Derived association...142

Corrigendum

The following problems with the specification dated April 2011 have been rectified as
described below.

1. Problem

Figure 35 - Class diagram of the Item Scheme Map – shows the ItemSchemeMap with
an alias attribute. This attribute is not supported in the schemas.

Rectification

The attribute alias is removed from the ItemSchemeMap class and also from the table
in section 9.4.3.2.

2. Problem

The Time Dimension and Measure Dimension in the Figure 40 - Constraints - Cube
Region and Metadata Target Region Constraints – are shown as inheriting from
Dimension, but in Figure 23 - Relationship class diagram of the Data Structure
Definition excluding representation – they, and Dimension itself, inherit from
DimensionComponent

Rectification

Dimension, TimeDimension, and MeasureDimension all inhetit from
DimensionComponent and Figure 40 is changed to reflect this.

3. Problem

The class SelectionValue is shown as a class in Figure 40 - Constraints - Cube Region
and Metadata Target Region Constraints – but it is not described in the table at
10.3.3.2.

Rectification

The class SelectionValue is added to the the table at 10.3.3.2.

Change History 1

Version 1.0 – initial release September 2004. 2
 3
Version 2.0 – release November 2005 4
 5
Major functional enhancements by addition of new packages: 6
 7

• Metadata Structure Definition 8

• Metadata Set 9

• Hierarchical Code Scheme 10

• Data and Metadata Provisioning 11

• Structure Set and Mappings 12

• Transformations and Expressions 13

• Process and Transitions 14

Re-engineering of some SDMX Base structures to give more functionality: 15
 16

• Item Scheme and Item can have properties – this gives support for complex 17
hierarchical code schemes (where the property can be used to sequence codes in 18
scheme), and Item Scheme mapping tables (where the property can give additional 19
information about the map between the two schemes and the between two Items) 20

• revised Organisation pattern to support maintained schemes of organisations, such as 21
a data provider 22

• modified Component Structure pattern to support identification of roles played by 23
components and the attachment of attributes 24

• change to inheritance to enable more artefacts to be identifiable and versionable 25

Introduction of new types of Item Scheme: 26
 27

• Object Type Scheme to specify object types in support of the Metadata Structure 28
Definition (principally the object types (classes) in this Information Model) 29

• Type Scheme to specify types other than object type 30

• A generic Item Scheme Association to specify the association between Items in two or 31
more Item Schemes, where such associations cannot be described in the Structure Set 32
and Transformation. 33

The Data Structure Definition is introduced as a synonym for Key Family though the term Key 34
Family is retained and used in this specification. 35
 36

Modification to Data Structure Definition (DSD) to 37
 38

• align the cross sectional structures with the functionality of the schema 39

• support Data Structure Definition extension (i.e. to derive and extend a Data Structure 40
Definition from another Data Structure Definition), thus supporting the definition of a 41
related “set” of key families 42

• distinguish between data attributes (which are described in a Data Structure Definition) 43
from metadata attributes (which are described in a metadata structure definition) 44

• attach data attributes to specific identifiable artefacts (formally this was supported by 45
attachable artefact) 46

Domain Category Scheme re-named Category Scheme to better reflect the multiple usage of 47
this type of scheme (e.g. subject matter domain, reporting taxonomy). 48
 49
Concept Scheme enhanced to allow specification of the representation of the Concept. This 50
specification is the default (or core) representation and can be overridden by a construct that 51
uses it (such as a Dimension in a Data Structure Definition). 52
 53
Revision of cross sectional data set to reflect the functionality of the version 1.0 schema. 54
 55
Revision of Actors and Use Cases to reflect better the functionality supported. 56
 57
Version 2.1 – release April 2011 58
 59
The purpose of this revision is threefold: 60
 61

• To introduce requested changes to functionality 62
• To align the model and syntax implementations more closely (note, however, that the 63

model remains syntax neutral) 64
• To correct errors in version 2.0 65

 66
SDMX Base 67
Basic inheritance and patterns 68
 69

1. The following attributes are added to Maintainable: 70
 71

i) isExternalReference 72
ii) structure URL 73
iii) serviceURL 74

 75
2. Added Nameable Artefact and moved the Name and Description associations from 76

Identifiable Artefact to Nameable Artefact. This allows an artefact to be identified (with 77
id and urn) without the need to specify a Name. 78

 79
3. Removed any inheritance from Versionable Artefact with the exception of Maintainable 80

Artefact – this means that only Maintainable objects can be versioned, and objects 81
contained in a maintainable object cannot be independently versioned. 82

 83

4. Renamed MaintenanceAgency to Agency 0 this is its name in the schema and the 84
URN. 85

 86
5. Removed abstract class Association as a subclass of Item (as these association types 87

are not maintained in Item Schemes). Specific associations are modelled explicitly 88
(e.g. Categorisation, ItemScheme, Item). 89

 90
6. Added ActionType to data types. 91
 92
7. Removed Coded Artefact and Uncoded Artefact and all subclasses (e.g. Coded Data 93

Attribute and Uncoded Data Attribute) as the “Representation” is more complex than 94
just a distinction between coded and uncoded. 95

 96
8. Added Representation to the Component. Removed association to Type. 97
 98
9. Removed concept role association (to Item) as roles are identified by a relationship to 99

a Concept. 100
 101

10. Removed abstract class Attribute as both Data Attribute and Metadata Attribute have 102
different properties. Data Attribute and Metadata Attribute inherit directly from 103
Component. 104

 105
11. isPartial attribute added to Item Scheme to support partial Item Schemes (e.g. partial 106

Code list). 107
 108
Representation 109
 110

1. Removed interval and enumeration from Facet. 111
2. added facetValueType to Facet. 112
3. Re-named DataType to facetValueType. 113
4. Added observationalTimePeriod, inclusiveValueRange and exclusiveValueRange to 114

facetValueType. 115
5. Added ExtendedFacetType as a sub class of FacetType. This includes Xhtml as a 116

facet type to support this as an allowed representation for a Metadata Attribute 117
 118
Organisations 119

1. Organisation Role is removed and replaced with specific Organisation Schemes of 120
Agency, Data Provider, Data Consumer, Organisation Unit. 121

 122
Mapping (Structure Maps) 123
 124
Updated Item Scheme Association as follows: 125
 126

1. Renamed to Item Scheme Map to reflect better the sub classes and relate better to the 127
naming in the schema. 128
 129

2. Removed inheritance of Item Scheme Map from Item Scheme, and inherited directly 130
from Nameable Artefact. 131
 132

3. Item Association inherits from Identifiable Artefact. 133
 134

4. Removed Property from the model as this is not supported in the schema. 135

 136
5. Removed association type between Item Scheme Map and Item, and Association and 137

Item. 138
 139

6. Removed Association from the model. 140
 141

7. Made Item Association a sub class of Identifiable, was a sub class Item. 142
 143

8. Removed association to Property from both Item Scheme Map and Item. 144
 145

9. Added attribute alias to both Item Scheme Association and Item Association. 146
 147

10. Made Item Scheme Map and Item Association abstract. 148
 149

11. Added sub-classes to Item Scheme Map – there is a subclass for each type of Item 150
Scheme Association (e.g. Code list Map). 151

 152
12. Added mapping between Reporting Taxonomy as this is an Item Scheme and can be 153

mapped in the same way as other Item Schemes. 154
 155
13. Added Hybrid Code list Map and Hybrid Code Map to support code mappings between 156

a Code list and a Hierarchical Code list. 157
 158
Mapping: Structure Map 159
 160

1. This is a new diagram. Essentially removed inherited /hierarchy association between 161
the various maps, as these no longer inherit from Item, and replaced the associations 162
to the abstract Maintainable and Versionable Artefact classes with the actual concrete 163
classes. 164

 165
2. Removed associations between Code list Map, Category Scheme Map, and Concept 166

Scheme Map and made this association to Item Scheme Map. 167
 168

3. Removed hierarchy of Structure Map. 169
 170

Concept 171
 172

1. Added association to Representation. 173
 174
Data Structure Definition 175
 176

1. Added Measure Dimension to support structure-specific renderings of the DSD. The 177
Measure Dimension is associated to a Concept Scheme that specifies the individual 178
measures that are valid. 179

 180
2. The three types of “Dimension”, - Dimension, Measure Dimension, Time Dimension – 181

have a super class – Dimension Component 182
 183

3. Added association to a Concept that defines the role that the component (Dimension, 184
Data Attribute, Measure Dimension) plays in the DSD. This replaces the Boolean 185
attributes on the components. 186
 187

4. Added Primary Measure and removed this as role of Measure. 188
 189

5. Deleted the derived Data Structure Definition association from Data Structure 190
Definition to itself as this is not supported directly in DSD. 191

 192
6. Deleted attribute GroupKeyDescriptor.isAttachmentConstraint and replaced with an 193

association to an Attachment Constraint. 194
 195

7. Replaced association from Data Attribute to Attachable Artefact with association to 196
Attribute Relationship. 197

 198
8. Added a set of classes to support Attribute Relationship. 199

 200
9. Renamed KeyDescriptor to DimensionDescriptor to better reflect its purpose. 201

 202
10. Renamed GroupKeyDescriptor to GroupDimensionDescriptor to better reflect its 203

purpose. 204
 205
Code list 206
 207

1. CodeList classname changed to Codelist. 208
 209
2. Removed codevalueLength from Codelist as this is supported by Facet. 210

 211
3. Removed hierarchyView association between Code and Hierarchy as this association 212

is not implemented. 213
 214
Metadata Structure Definition(MSD) 215
 216

1. Full Target Identifier, Partial Target Identifier, and Identifier Component are replaced by 217
Metadata Target and Target Object. Essentially this eliminates one level of 218
specification and reference in the MSD, and so makes the MSD more intuitive and 219
easier to specify and to understand. 220

 221
2. Re-named Identifiable Object Type to Identifiable Object Target and moved to the MSD 222

package. 223
 224

3. Added sub classes to Target Object as these are the actual types of object to which 225
metadata can be attached. These are Identifiable Object Target (allows reporting of 226
metadata to any identifiable object), Key Descriptor Values Target (allows reporting of 227
metadata for a data series key, Data Set Target (allows reporting of metadata to a 228
data set), and Reporting Period Target (allows the metadata set to specify a reporting 229
period). 230

 231
4. Allowed Target Object can have any type of Representation, this was restricted in 232

version 2.0 to an enumerated representation in the model (but not in the schemas). 233
 234

5. Removed Object Type Scheme (as users cannot maintain their own list of object 235
types), and replaced with an enumeration of Identifiable Objects. 236

 237
6. Removed association between Metadata Attribute and Identifiable Artefact and 238

replaced this with an association between Report Structure and Metadata Target, and 239

allowed one Report Structure to reference more than on Metadata Target. This 240
allowing a single Report Structure to be defined for many object types. 241

 242
7. Added the ability to specify that a Metadata Attribute can be repeated in a Metadata 243

Set and that a Metadata Attribute can be specified as “presentational” meaning that it 244
is present for structural and presentational purposes, and will not have content in a 245
Metadata Set. 246

 247
8. The Representation of a Metadata Attribute uses Extended Facet (to support Xhtml). 248

 249
Metadata Set 250
 251

1. Added link to Data Provider - 0..1 but note that for metadata set registration this will be 252
1. 253

 254
2. Removed Attribute Property as the underlying Property class has been removed. 255

 256
3. One Metadata Set is restricted to reporting metadata for a single Report Structure. 257

 258
4. The Metadata Report classes are re-structured and re-named to be consistent with the 259

renaming and restructuring of the MSD. 260
 261

5. Metadata Attribute Value is renamed Reported Attribute to be consistent with the 262
schemas. 263
 264

6. Deleted XML attribute and Contact Details from the inheritance diagram. 265
 266

Category Scheme 267
1. Added Categorisation. Category no longer has a direct association to Dataflow and 268

Metadataflow. 269
 270
2. Changed Reporting Taxonomy inheritance from Category Scheme to Maintainable 271

Artefact. 272
 273
3. Added Reporting Category and associated this to Structure Usage. 274

 275
Data Set 276
 277

1. Removed the association to Provision Agreement from the diagram. 278
 279
2. Added association to Data Structure Definition. This association was implied via the 280

dataflow but this is optional in the implementation whereas the association to the Data 281
Structure Definition is mandatory. 282

 283
3. Added attributes to Data Set. 284

 285
4. There is a single, unified, model of the Data Set which supports four types of data set: 286

 287
• Generic Data Set – for reporting any type of data series, including time series 288

and what is sometimes known as “cross sectional data”. In this data set, the 289
value of any one dimension (including the Time Dimension) can be reported 290

with the observation (this must be for the same dimension for the entire data 291
set) 292

 293
• Structure-specific Data Set – for reporting a data series that is specific to a 294

DSD 295
 296

• Generic Time Series Data Set – this is identical to the Generic Data Set except 297
it must contain only time series, which means that a value for the Time 298
Dimension is reported with the Observation 299

 300
• Structure-specific Time Series Data Set - this is identical to the Structure-301

specific Data Set except it must contain only time series, which means that a 302
value for the Time Dimension is reported with the Observation. 303

 304
5. Removed Data Set as a sub class of Identifiable – but note that Data Set has a “setId” 305

attribute. 306
 307

6. Added coded and uncoded variants of Key Value, Observation, and Attribute Value in 308
order to show the relationship between the coded values in the data set and the 309
Codelist in the Data Structure Definition. 310

 311
7. Made Key Value abstract with sub classes for coded, uncoded, measure 312

(MeasureKeyValue) ads time(TimeKeyValue) The Measure Key Value is associated to 313
a Concept as it must take its identify from a Concept. 314

 315
XSDataSet 316

1. This is removed and replaced with the single, unified data set model. 317
 318
Constraint 319

 320
1. Constraint is made Maintainable (was Identifiable). 321

 322
2. Added artefacts that better support and distinguish (from data) the constraints for 323

metadata. 324
 325

3. Added Constraint Role to specify the purpose of the Constraint. The values are 326
allowable content (for validation of sub set code code lists), and actual content (to 327
specify the content of a data or metadata source). 328

 329
Process 330

1. Removed inheritance from Item Scheme and Item: Process inherits directly from 331
Maintainable and Process Step from Identifiable. 332

 333
2. Removed specialisation association between Transition and Association. 334

 335
3. Removed Transition Scheme - transitions are explicitly specified and not maintained as 336

Items in a Item Scheme. 337
 338

4. Removed Expression and replaced with Computation. 339
 340

5. Transition is associated to Process Step and not Process itself. Therefore the source 341
association to Process Step is removed. 342

 343
6. Removed Expressions as these are not implemented in the schemas. But note that the 344

Transformations and Expressions model is retained, though it is not implemented in 345
the schemas. 346

 347
Hierarchical Codelist 348
 349

1. Renamed HierarchicalCodeList to HierarchicalCodelist. 350
2. This is re-modelled to reflect more accurately the way this is implemented: this is as an 351

actual hierarchy rather than a set of relational associations from which the hierarchy 352
can be derived. 353

 354
3. Code Association is re-named Hierarchical Code and the association type association 355

to Code is removed (as these association types are not maintained in an Item 356
Scheme). 357

 358
4. Hierarchical Code is made an aggregate of Hierarchy, and not of Hierarchical Codelist. 359

 360
5. Removed root node in the Hierarchy – there can be many top-level codes in 361

Hierarchical Code. 362
 363

6. Added reference association between Hierarchical Code and Level to indicate the 364
Level if the Hierarchy is a level based hierarchy. 365

 366
Provisioning and Registration 367

1. Data Provider and Provision Agreement have an association to Datasource (was 368
Query Datasource), as the association is to any of Query Datasource and Simple 369
Datasource. 370
 371

2. Provision Agreement is made Maintainable and indexing attributes moved to 372
Registration 373
 374

3. Registration has a registry assigned Id and indexing attributes. 375

1

1 Introduction 376
This document is not normative, but provides a detailed view of the information model on 377
which the normative SDMX specifications are based. Those new to the UML notation or to the 378
concept of Data Structure Definitions may wish to read the appendixes in this document as an 379
introductory exercise. 380

1.1 Related Documents 381
This document is one of two documents concerned with the SDMX Information Model. The 382
complete set of documents is: 383
 384
SDMX SECTION 02 INFORMATION MODEL: UML CONCEPTUAL DESIGN (this document) 385
 386
This document comprises the complete definition of the information model, with the exception 387
of the registry interfaces. It is intended for technicians wishing to understand the complete 388
scope of the SDMX technical standards in a syntax neutral form. 389
 390
SDMX SECTION 05 REGISTRY SPECIFICATION: LOGICAL INTERFACES 391
 392
This document provides the logical specification for the registry interfaces, including 393
subscription/notification, registration/submission of data and metadata, and querying. 394

1.2 Modelling Technique and Diagrammatic Notes 395
The modelling technique used for the SDMX Information Model (SDMX-IM) is the Unified 396
Modelling Language (UML). An overview of the constructs of UML that are used in the SDMX-397
IM can be found in the Appendix “A Short Guide to UML in the SDMX Information Model” 398
 399
UML diagramming allows a class to be shown with or without the compartments for one or 400
both of attributes and operations (sometimes called methods). In this document the operations 401
compartment is not shown as there are no operations. 402
 403

ExtendedFacet
facetType : ExtendedFacetType
facetValue : String
facetValueType : ExtendedFacetType

Figure 1 Class with operations suppressed

 404
In some diagrams for some classes the attribute compartment is suppressed even though 405
there may be some attributes. This is deliberate and is done to aid clarity of the diagram. The 406
method used is: 407
 408

• The attributes will always be present on the class diagram where the class is defined 409
and its attributes and associations are defined. 410

• On other diagrams, such as inheritance diagrams, the attributes may be suppressed 411
from the class for clarity. 412

 413

2

ExtendedFacet

Figure 2 Class with attributes also suppressed

 414
Note that, in any case, attributes inherited from a super class are not shown in the sub class. 415
 416
The following table structure is used in the definition of the classes, attributes, and 417
associations. 418
 419
Class Feature Description

ClassName

 attributeName .

 associationName

 +roleName

 420
The content in the “Feature” column comprises or explains one of the following structural 421
features of the class: 422
 423

• Whether it is an abstract class. Abstract classes are shown in italic Courier font 424

• The superclass this class inherits from, if any 425

• The sub classes of this class, if any 426

• Attribute – the attributeName is shown in Courier font 427

• Association – the associationName is shown in Courier font. If the association is 428
derived from the association between super classes then the format is 429
/associationName 430

• Role – the +roleName is shown in Courier font 431

The Description column provides a short definition or explanation of the Class or Feature. 432
UML class names may be used in the description and if so, they are presented in normal font 433
with spaces between words. For example the class ConceptScheme will be written as 434
Concept Scheme. 435

1.3 Overall Functionality 436

1.3.1 Information Model Packages 437
The SDMX Information Model (SDMX-IM) is a conceptual metamodel from which syntax 438
specific implementations are developed. The model is constructed as a set of functional 439
packages which assist in the understanding, re-use and maintenance of the model. 440
 441

3

In addition to this, in order to aid understanding each package can be considered to be in one 442
of three conceptual layers: 443
 444

• the SDMX Base layer comprises fundamental building blocks which are used by the 445
Structural Definitions layer and the Reporting and Dissemination layer 446

• the Structural Definitions layer comprises the definition of the structural artefacts 447
needed to support data and metadata reporting and dissemination 448

• the Reporting and Dissemination layer comprises the definition of the data and 449
metadata containers used for reporting and dissemination 450

In reality the layers have no implicit or explicit structural function as any package can make 451
use of any construct in another package. 452

1.3.2 Version 1.0 453
In version 1.0 the metamodel supported the requirements for: 454
 455

• Data Structure Definition definition including (domain) category scheme, (metadata) 456
concept scheme, and code list 457

 458
• Data and related metadata reporting and dissemination 459

The SDMX-IM comprises a number of packages. These packages act as convenient 460
compartments for the various sub models in the SDMX-IM. The diagram below shows the sub 461
models of the SDMX-IM that were included in the version 1.0 specification. 462

 463
Figure 3: SDMX Information Model Version 1.0 package structure 464

1.3.3 Version 2.0/2.1 465
The version 2.0/2.1 model extends the functionality of version 1.0. principally in the area of 466
metadata, but also in various ways to define structures to support data analysis by systems 467
with knowledge of cube type structures such as OLAP1 systems. The following major 468
constructs have been added at version 2.0/2.1 469
 470

• Metadata structure definition 471

• Metadata set 472

1 OLAP: On line analytical processing

4

• Hierarchical Codelist 473

• Data and Metadata Provisioning 474

• Process 475

• Mapping 476

• Constraints 477

• Constructs supporting the Registry 478

Furthermore, the term Data Structure Definition replaces the term Key Family: as both of these 479
terms are used in various communities they are synonymous. The term Data Structure 480
Definition is used in the model and this document. 481

Figure 4 SDMX Information Model Version 2.0/2.1 package structure

Additional constructs that are specific to a registry based scenario can be found in the 482
Specification of Registry Interfaces. For information these are shown on the diagram below 483
and comprise: 484
 485

• Subscription and Notification 486

• Registration 487

• Discovery 488

Note that the data and metadata required for registry functions are not confined to the registry, 489
and the registry also makes use of the other packages in the Information Model. 490

 491
Figure 5: SDMX Information Model Version 2.0/2.1 package structure including the registry 492

5

2 Actors and Use Cases 493

2.1 Introduction 494
In order to develop the data models it is necessary to understand the functions to be 495
supported resulting from the requirements definition. These are defined in a use case model. 496
The use case model comprises actors and use cases and these are defined below. 497
 498
Actor 499
“An actor defines a coherent set of roles that users of the system can play when interacting 500
with it. An actor instance can be played by either an individual or an external system” 501
 502
Use case 503
“A use case defines a set of use-case instances, where each instance is a sequence of 504
actions a system performs that yields an observable result of value to a particular actor” 505
 506
The overall intent of the model is to support data and metadata reporting, dissemination, and 507
exchange in the field of aggregated statistical data and related metadata. In order to achieve 508
this, the model needs to support three fundamental aspects of this process: 509
 510

• Maintenance of structural and provisioning definitions 511

• Data and reference metadata publishing (reporting), and consuming (using) 512

• Access to data, reference metadata, and structural and provisioning definitions 513

This document covers the first two aspects, whilst the document on the Registry logical model 514
covers the last aspect. 515

6

2.2 Use Case Diagrams 516

2.2.1 Maintenance of Structural and Provisioning Definitions 517

2.2.1.1 Use cases 518
 519

Maintain Metadataflow
 Definition

Maintain Dataflow
 Definition

Maintain Category
Scheme

Maintain Code
 List

Maintain Hierarchical
 Code Scheme

Maintain Data Structure Definition

Maintain Metadata
Structure Definition

Maintain
Structure Set

Maintenance
Agency

Maintain Reporting
 Taxonomy

Maintain Maintenance
 Agency Scheme

Community
Administrator

(from Actors)

Maintain Structure Definitions
Structural Definitions
Maintenance Agency

Maintain Provision Agreement
Provisioning Definitions
 Maintenance Agency

MaintainConcepts

MaintainProcess

Maintain Organisation Scheme

Maintain Constraints

Figure 6 Use cases for maintaining data and metadata structural and provisioning definitions

7

2.2.1.2 Explanation of the Diagram 520
In order for applications to publish and consume data and reference metadata it is necessary 521
for the structure and permitted content of the data and reference metadata to be defined and 522
made available to the applications, as well as definitions that support the actual process of 523
publishing and consuming. This is the responsibility of a Maintenance Agency. 524
 525
All maintained artefacts are maintained by a Maintenance Agency. For convenience the 526
Maintenance Agency actor is sub divided into two actor roles: 527
 528

• maintaining structural definitions 529

• maintaining provisioning definitions 530

Whilst both these functions may be carried out by the same person, or at least by the same 531
maintaining organization, the purpose of the definitions is different and so the roles have been 532
differentiated: structural definitions define the format and permitted content of data and 533
reference metadata when reported or disseminated, whilst provisioning definitions support the 534
process of reporting and dissemination (who reports what to whom, and when). 535
 536
In a community based scenario where at least the structural definitions may be shared, it is 537
important that the scheme of maintenance agencies is maintained by a responsible 538
organization (called here the Community Administrator), as it is important that the Id of the 539
Maintenance Agency is unique. 540

2.2.1.3 Definitions 541
Actor Use Case Description

Community
Administrator

 Responsible organisation
that administers structural
definitions common to the
community as a whole.

Maintain Maintenance
 Agency Scheme

Creation and maintenance of
the top-level scheme of
maintenance agencies for
the Community.

Maintenance Agency

 Responsible agency for
maintaining structural
artefacts such as code lists,
concept schemes, Data
Structure Definition structural
definitions, metadata
structure definitions, data
and metadata provisioning
artefacts such as provision

8

Actor Use Case Description

agreement, and sub-
maintenance agencies.

sub roles are:

Structural Definitions
Maintenance Agency

Provisioning Definitions
Maintenance Agency

Structural Definitions
Maintenance Agency

 Responsible for maintaining
structural definitions.

Maintain Structure Definitions

The maintenance of
structural definitions. This
use case has sub class use
cases for each of the
structural artefacts that are
maintained.

Maintain Code
 List

MaintainConcepts

Maintain Category
Scheme

Maintain Data Structure Definition

Creation and maintenance of
the Data Structure Definition,
Metadata Structure
Definition, and the supporting
artefacts that they use, such
as code list and concepts

9

Actor Use Case Description

Maintain Metadata
Structure Definition

Maintain Hierarchical
 Code Scheme

Maintain Reporting
 Taxonomy

Maintain Organisation Scheme

MaintainProcess

Maintain Dataflow
 Definition

Maintain Metadataflow
 Definition

This includes Agency, Data
Provider, Data Consumer,
and Organisation Unit
Scheme

Provisioning Definitions
 Maintenance Agency

 Responsible for maintaining
data and metadata
provisioning definitions.

10

Actor Use Case Description

Maintain Provision Agreement

The maintenance of
provisioning definitions.

Figure 7: Table of Actors and Use Cases for Maintenance of Structural and Provisioning Definitions 542

2.2.2 Publishing and Using Data and Reference Metadata 543

2.2.2.1 Use Cases 544

Publish Reference
Metadata

Metadata Publisher

Data and metadata are published and
used according to the specifications
of the structural definitions which
define format and permitted content,
and the provisioning definitions which
define the process of making the data
and metadata available for
consumption

Data Consumer

Metadata
Consumer

Uses Data

Uses Reference Metadata

<<extend>>

Publish DataData Publisher

data source

metadata source

 545
Figure 8: Actors and use cases for data and metadata publishing and consuming 546

2.2.2.2 Explanation of the Diagram 547
Note that in this diagram “publishing” data and reference metadata is deemed to be the same 548
as “reporting” data and reference metadata. In some cases the act of making the data 549
available fulfils both functions. Aggregated data is published and in order for the Data 550
Publisher to do this and in order for consuming applications to process the data and reference 551
metadata its structure must be known. Furthermore, consuming applications may also require 552
access to reference metadata in order to present this to the Data Consumer so that the data is 553
better understood. As with the data, the reference metadata also needs to be formatted in 554
accordance with a maintained structure. The Data Consumer and Metadata Consumer cannot 555

11

use the data or reference metadata unless it is “published” and so there is a “data source” or 556
“metadata source” dependency between the “uses” and “publish” use cases. 557
 558
In any data and reference metadata publishing and consuming scenario both the publishing 559
and the consuming applications will need access to maintained Provisioning Definitions. 560
These definitions may be as simple as who provides what data and reference metadata to 561
whom, and when, or it can be more complex with constraints on the data and metadata that 562
can be provided by a particular publisher, and, in a data sharing scenario where data and 563
metadata are “pulled” from data sources, details of the source. 564

2.2.2.3 Definitions 565
Actor Use Case Description

Data Publisher

 Responsible for publishing
data according to a specified
Data Structure Definition
(data structure) definition,
and relevant provisioning
definitions.

Publish Data

Publish a data set. This
could mean a physical data
set or it could mean to make
the data available for access
at a data source such as a
database that can process a
query.

Data Consumer

 The user of the data. It may
be a human consumer
accessing via a user
interface, or it could be an
application such as a
statistical production system.

Uses Data

Use data that is formatted
according to the structural
definitions and made
available according to the
provisioning definitions.
Data are often linked to
metadata that may reside in
a different location and be
published and maintained
independently.

12

Actor Use Case Description

Metadata Publisher

 Responsible for publishing
reference metadata
according to a specified
metadata structure definition,
and relevant provisioning
definitions.

Publish Reference
Metadata

Publish a reference
metadata set. This could
mean a physical metadata
set or it could mean to make
the reference metadata
available for access at a
metadata source such as a
metadata repository that can
process a query.

Metadata Consumer

 The user of the reference
metadata. It may be a human
consumer accessing via a
user interface, or it could be
an application such as a
statistical production or
dissemination system.

Uses Reference Metadata

Use reference metadata that
is formatted according to the
structural definitions and
made available according to
the provisioning definitions.

 566

13

3 SDMX Base Package 567

3.1 Introduction 568
The constructs in the SDMX Base package comprise the fundamental building blocks that 569
support many of the other structures in the model. For this reason, many of the classes in this 570
package are abstract (i.e. only derived sub-classes can exist in an implementation). 571
 572
The motivation for establishing the SDMX Base package is as follows: 573
 574

• it is accepted “Best Practise” to identify fundamental archetypes occurring in a model 575

• identification of commonly found structures or “patterns” leads to easier understanding 576

• identification of patterns encourages re-use 577

Each of the class diagrams in this section views classes from the SDMX Base package from a 578
different perspective. There are detailed views of specific patterns, plus overviews showing 579
inheritance between classes, and relationships amongst classes. 580
 581

14

3.2 Base Structures - Identification, Versioning, and Maintenance 582

3.2.1 Class Diagram 583
 584

VersionableArtefact
version : String
validFrom : Date
validTo : Date

MaintainableArtefact
final : Boolean
isExternalReference : Boolean
serviceURL : URL
structureURL : URI

Agency

0..* 10..*

+maintainer

1

AnnotableArtefact

LocalisedString
label : String
locale : String

Annotation
id : String
title : String
type : String
url : String

0..1 0..*0..1 0..*

InternationalString
1 0..*1 0..*

0..1

0..1

0..1

+text

0..1

NameableArtefact

0..1

+description

0..1
1

+name

1

IdentifiableArtefact
urn : urn
uri : Url
id : String

Figure 9: SDMX Identification, Maintenance and Versioning

3.2.2 Explanation of the Diagram 585

3.2.2.1 Narrative 586
This group of classes forms the nucleus of the administration facets of SDMX objects. They 587
provide features which are reusable by derived classes to support horizontal functionality such 588
as identity, versioning etc. 589
 590
All classes derived from the abstract class AnnotableArtefact may have Annotations (or 591
notes): this supports the need to add notes to all SDMX-ML elements. The Annotation is used 592
to convey extra information to describe any SDMX construct. This information may be in the 593
form of a URL reference and/or a multilingual text (represented by the association to 594
InternationalString). 595
 596

15

The IdentifiableArtefact is an abstract class that comprises the basic attributes 597
needed for identification. Concrete classes based on IdentifiableArtefact all inherit the 598
ability to be uniquely identified. 599
 600
The NamableArtefact is an abstract class that inherits from IdentifiableArtefact 601
and in addition the +description and +name roles support multilingual descriptions and 602
names for all objects based on NameableArtefact. The InternationalString supports 603
the representation of a description in multiple locales (locale is similar to language but includes 604
geographic variations such as Canadian French, US English etc.). The LocalisedString 605
supports the representation of a description in one locale. 606
 607
VersionableArtefact is an abstract class which inherits from NameableArtefact and 608
adds versioning ability to all classes derived from it. 609
 610
MaintainableArtefact further adds the ability for derived classes to be maintained via its 611
association to Agency, and adds locational information (i.e. from where the object can be 612
retrieved). It is possible to define whether the artefact is draft or final with the final attribute. 613
 614
The inheritance chain from AnnotableArtefact through to MaintainableArtefact 615
allows SDMX classes to inherit the features they need, from simple annotation, through 616
identity, naming, to versioning and maintenance. 617
 618

3.2.2.2 Definitions 619
Class Feature Description

AnnotableArtefact Base inheritance sub
classes are:
IdentifiableArtefact

Objects of classes derived
from this can have attached
annotations.

Annotation Additional descriptive
information attached to an
object.

 id Identifier for the Annotation.
It can be used to
disambiguate one
Annotation from another
where there are several
Annotations for the same
annotated object.

 title A title used to identify an
annotation.

 type Specifies how the annotation
is to be processed.

 url A link to external descriptive
text.

 +text An International String
provides the multilingual text
content of the annotation via
this role.

16

Class Feature Description

IdentifiableArtefact Superclass is
AnnotableArtefact

Base inheritance sub
classes are:
NameableArtefact

Provides identity to all
derived classes. It also
provides annotations to
derived classes because it is
a subclass of Annotable
Artefact.

 id The unique identifier of the
object.

 uri Universal resource identifier
that may or may not be
resolvable.

 urn Universal resource name –
this is for use in registries: all
registered objects have a
urn.

NameableArtefact Superclass is
IdentifiableArtefact
Base inheritance sub
classes are:
VersionableArtefact

Provides a Name and
Description to all derived
classes in addition to
identification and
annotations.

 +description A multi-lingual description is
provided by this role via the
International String class.

 +name A multi-lingual name is
provided by this role via the
International String class

InternationalString The International String is a
collection of Localised
Strings and supports the
representation of text in
multiple locales.

LocalisedString The Localised String
supports the representation
of text in one locale (locale is
similar to language but
includes geographic
variations such as Canadian
French, US English etc.).

 label Label of the string.

 locale The geographic locale of the
string e.g French, Canadian
French.

17

Class Feature Description

VersionableArtefact Superclass is
NameableArtefact
Base inheritance sub
classes are:
MaintainableArtefact

Provides versioning
information for all derived
objects.

 version A version string following an
agreed convention

 validFrom Date from which the version
is valid

 validTo Date from which version is
superceded

MaintainableArtefact Inherits from
VersionableArtefact

An abstract class to group
together primary structural
metadata artefacts that are
maintained by an Agency.

 final Defines whether a
maintained artefact is draft
or final.

 isExternalReference If set to “true” it indicates that
the content of the object is
held externally.

 structureURL The URL of an SDMX-ML
document containing the
external object.

 serviceURL The URL of an SDMX-
compliant web service from
which the external object can
be retrieved.

 +maintainer Association to the
Maintenance Agency
responsible for maintaining
the artefact.

Agency See section on
“Organisations”

 620

18

3.3 Basic Inheritance 621

3.3.1 Class Diagram– Basic Inheritance from the Base Inheritance Classes 622

VersionableArtefact
version : String
validFrom : Date
validTo : Date

ItemScheme Constraint
(from Registry)

IdentifiableArtefact
urn : urn
uri : Url
id : String

Agency

MaintainableArtefact
final : Boolean
isExternalReference : Boolean
serviceURL : URL
structureURL : URI

10..*

+maintainer

10..*

ComponentList

Item

Component

ComponentMap
(from Mapping)

ProvisionAgreement
(from Registry)

AnnotableArtefact

LocalisedString
label : String
locale : String

Annotation
id : String
title : String
type : String
url : String

0..1 0..*0..1 0..*

NameableArtefact InternationalString
1 0..*1 0..*

0..1

0..1

0..1

+text
0..1

0..1
+description

0..1

1

+name

1

Process
(from Process)

Transition
(from Process)

ProcessStep
(from Process)

Hierarchy

HierarchicalCodelist
(from Code-List)

StructureUsage StructureSet
(from Mapping)

StructureMap
(from Mapping)

Structure

 623
Figure 10: Basic Inheritance from the Base Structures 624

19

3.3.2 Explanation of the Diagram 625

3.3.2.1 Narrative 626
The diagram above shows the inheritance within the base structures. The concrete classes 627
are introduced and defined in the specific package to which they relate. 628

3.4 Data Types 629

3.4.1 Class Diagram 630
 631

UsageStatus
mandatory : String
conditional : String

<<enumeration>>

FacetValueType
string
bigInteger
integer
long
short
decimal
float
double
boolean
uri
count
inclusiveValueRange
alpha
alphaNumeric
numeric
exclusiveValueRange
incremental
observationalTimePeriod
standardTimePeriod
basicTimePeriod
gregorianTimePeriod
gregorianYearMonth
gregorianDay
reportingTimePeriod
reportingYear
reportingSemester
reportingTrimester
reportingQuarter
reportingMonth
reportingWeek
reportingDay
dateTime
timesRange
month
monthDay
day
time
duration
keyValues
identifiableReference
dataSetReference

<<enumeration>>
FacetType

isSequence : Boolean
minLength : positiveI...
maxLength : positve...
minValue : Decimal
maxValue : Decimal
startValue : Decimal
endValue : String
interval : Double
timeInterval : Duration
decimals : positiveIn...
pattern : String
startTime : Date
endTime : Date

<<enumeration>>

ToValueType
name : String
description : String
id : String

<<enumeration>>

ActionType
delete : String
replace : String
append : String
information : String

<<enumeration>>

ExtendedFacetValueType
Xhtml : String

<<enumeration>>

ConstraintRoleType
allowableContent : String
actualContent : String

<<enumeration>>

Figure 11: Class Diagram of Basic Data Types 632

20

3.4.2 Explanation of the Diagram 633

3.4.2.1 Narrative 634
The UsageStatus enumeration is used as a data type on a DataAttribute where the 635
value of the attribute in an instance of the class must take one of the values in the 636
UsageStatus (i.e. mandatory, conditional). 637
 638
The FacetType and FacetValueType enumerations are used to specify the valid format of 639
the content of a non enumerated Concept or the usage of a Concept when specified for use 640
on a Component on a Structure (such as a Dimension in a 641
DataStructureDefinition). The description of the various types can be found in the 642
section on ConceptScheme (section 4.4). 643
 644
The ActionType enumeration is used to specify the action that a receiving system should 645
take when processing the content that is the object of the action. It is enumerated as follows: 646
 647

• Append 648
 649

Data or metadata is an incremental update for an existing data/metadata set or the 650
provision of new data or documentation (attribute values) formerly absent. If any of the 651
supplied data or metadata is already present, it will not replace that data or metadata. This 652
corresponds to the "Update" value found in version 1.0 of the SDMX Technical Standards 653
 654
• Replace 655

 656
Data/metadata is to be replaced, and may also include additional data/metadata to be 657
appended. 658

 659
• Delete 660
 661
Data/Metadata is to be deleted. 662

 663
• Information 664

 665
Data and metadata are for information purposes. 666

 667
The IdentifiableObjectType enumeration is used to specify an object type whose class 668
is a sub class of IdentifiableArtefact either directly of via NameableArtefact, 669
VersionableArtefact or MaintainableArtefact. 670
 671
The ToValueType data type contains the attributes to support transformations defined in the 672
StructureMap (see Section 9). 673
 674
The ConstraintRoleType data type contains the attributes that identify the purpose of a 675
Constraint (allowableContent, actualContent). 676

21

3.5 The Item Scheme Pattern 677

3.5.1 Context 678
The Item Scheme is a basic architectural pattern that allows the creation of list schemes for 679
use in simple taxonomies, for example. 680
 681
The ItemScheme is the basis for CategoryScheme, Codelist, ConceptScheme, 682
ReportingTaxonomy, and OrganisationScheme. 683
 684

3.5.2 Class Diagram 685

VersionableArtefact
version : String
validFrom : Date
validTo : Date

ItemScheme
isPartial : Boolean

Item
0..*

1

+child
0..*hierarchy

+parent

1 0..*0..*

items

IdentifiableArtefact
urn : urn
uri : Url
id : String

NameableArtefact

ReportingTaxonomy CategoryScheme

CategoryReportingCategory

Codelist

Code

ConceptScheme

Concept

OrganisationScheme

Organisation

DataProvider

DataProviderScheme

DataConsumer

DataConsumerScheme

AgencyScheme

MaintainableArtefact
final : Boolean
isExternalReference : Boolean
serviceURL : URL
structureURL : URI

AgencyOrganisationUnit

OrganisationUnitScheme

{no hierarchy}{no hierarchy}{no hierarchy}

Figure 12 The Item Scheme pattern

22

3.5.3 Explanation of the Diagram 686

3.5.3.1 Narratve 687
The ItemScheme is an abstract class which defines a set of Item (this class is also abstract). 688
Its main purpose is to define a mechanism which can be used to create taxonomies which can 689
classify other parts of the SDMX Information Model. It is derived from 690
MaintainableArtefact which gives it the ability to be annotated, have identity, naming, 691
versioning and be associated with an Agency. An example of a concrete class is a 692
CategoryScheme. The associated Category are Items. 693
 694
In an exchange environment an ItemScheme is allowed to contain a sub-set of the Items in 695
the maintained ItemScheme. If such an ItemScheme is disseminated with a sub-set of the 696
Items then the fact that this is a sub-set is denoted by setting the isPartial attribute to 697
“true”. 698
 699
A “partial” ItemScheme cannot be maintained independently in its partial form i.e. it cannot 700
contain Items that are not present in the full ItemScheme and the content of any one Item 701
(e.g. names and descriptions) cannot deviate from the content in the full ItemScheme. 702
Furthermore, the Id of the ItemScheme where isPartial is set to “true” is the same as the 703
Id of the full ItemScheme (maintenance agency, id, version). This is important as this is the Id 704
that that is referenced in other structures (e.g. a Codelist referenced in a DSD) and this Id is 705
always the same, regardless of whether the disseminated ItemScheme is the full 706
ItemScheme or a partial ItemScheme. 707
 708
The purpose of a partial ItemScheme is to support the exchange and dissemination of a sub-709
set ItemScheme without the need to maintain multiple ItemSchemes which contain the same 710
Items. For instance when a Codelist is used in a DataStructureDefinition it is 711
sometimes the case that only a sub-set of the Codes in a Codelist are relevant. In this case 712
a partial Codelist can be constructed using the Constraint mechanism explained later in this 713
document. 714
 715
Item inherits from NameableArtefact which gives it the ability to be annotated and have 716
identity, and therefore has id, uri and urn attributes, a name and a description in the form of an 717
InternationalString. Unlike the parent ItemScheme, the Item itself is not a 718
MaintainableArtefact and therefore cannot have an independent Agency (i.e. it implicitly 719
has the same agency as the ItemScheme). 720
 721
The Item can be hierarchic and so one Item can have child Items. The restriction of the 722
hierarchic association is that a child Item can have only parent Item. 723
 724

3.5.3.2 Definitions 725
Class Feature Description

ItemScheme

Inherits from:
MaintainableArtefact

Direct sub classes are:
CategoryScheme
ConceptScheme

The descriptive information
for an arrangement or
division of objects into
groups based on
characteristics, which the
objects have in common.

23

Class Feature Description

Codelist
ReportingTaxonomy
OrganisationScheme

 isPartial Denotes whether the Item
Scheme contains a sub set
of the full set of Items in the
maintained scheme.

 items Association to the Items in
the scheme.

Item

Inherits from:
NameableArtefact
Direct sub classes are
Category
Concept
Code
ReportingCategory
Organisation

The Item is an item of
content in an Item Scheme.
This may be a node in a
taxonomy or ontology, a
code in a code list etc.
Node that at the conceptual
level the Organisation is not
hierarchic

 hierarchy This allows an Item
optionally to have one or
more child Items.

3.6 The Structure Pattern 726

3.6.1 Context 727
The Structure Pattern is a basic architectural pattern which allows the specification of complex 728
tabular structures which are often found in statistical data (such as Data Structure Definition, 729
and Metadata Structure Definition). A Structure is a set of ordered lists. A pattern to underpin 730
this tabular structure has been developed, so that commonalities between these structure 731
definitions can be supported by common software and common syntax structures. 732

24

3.6.2 Class Diagrams 733

DataflowDefinition
(from DataStructureDefinition)

MetadataflowDefinition
(from Metadata-Structure-Defini tion)

AttributeDescriptor
(from DataStructureDefinition)

MeasureDescriptor
(from DataStructureDefinition)

ReportStructure
(from Metadata-Structure-Defini tion)

DataStructureDefinition
(from DataStructureDefinition)

MetadataAttribute
(from Metadata-Structure-Defini tion)

DataAttribute
(from DataStructureDefinition)

PrimaryMeasure
(from DataStructureDefinition)

Dimension
(from DataStructureDefinition)

TimeDimension
(from DataStructureDefinition)

MeasureDimension
(from DataStructureDefinition)

MetadataStructureDefinition
(from Metadata-Structure-Defini tion)

DataSetTarget
(from Metadata-Structure-Defini tion)

DimensionDescriptorValuesTarget
(from Metadata-Structure-Defini tion)

ReportPeriodTarget
(from Metadata-Structure-Defini tion)

IdentifiableObjectTarget
(from Metadata-Structure-Defini tion)

StructureUsage

Structure

0..*

1

0..*

1

structure

ComponentList

1..*

1

1..*

1

grouping

Component

1..*

1

1..*

1

components

Representation0..10..1
localRepresentation

TargetObject
(from Metadata-Structure-Definition)

MetadataTarget
(from Metadata-Structure-Defini tion)

DimensionDescriptor
(from DataStructureDefinition)

DimensionComponent
(from DataStructureDefinition)

GroupDimensionDescriptor
(from DataStructureDefinition)

ConstraintContentTarget
(from Metadata-Structure-Defini tion)

 734
Figure 13: The Structure Pattern 735

25

 736

FacetType
isSequence : Boolean
minLength : positiveI...
maxLength : positve...
minValue : Decimal
maxValue : Decimal
startValue : Decimal
endValue : String
interval : Double
timeInterval : Duration
decimals : positiveIn...
pattern : String
startTime : Date
endTime : Date

<<enumeration>>

mutally
exclusive

OrganisationScheme CategoryScheme

FacetValueType
string
bigInteger
integer
long
short
decimal
float
double
boolean
uri
count
inclusiveValueRange
alpha
alphaNumeric
numeric
exclusiveValueRange
incremental
observationalTimePeriod
standardTimePeriod
basicTimePeriod
gregorianTimePeriod
gregorianYearMonth
gregorianDay
reportingTimePeriod
reportingYear
reportingSemester
reportingTrimester
reportingQuarter
reportingMonth
reportingWeek
reportingDay
dateTime
timesRange
month
monthDay
day
time
duration
keyValues
identifiableReference
dataSetReference

<<enumeration>>

StructureUsage Structure
10..* 10..* structure

ComponentList

1

1..*

1

1..*

grouping

ExtendedFacet
facetType : ExtendedFacetValueType
facetValue : String
facetValueType : ExtendedFacetValueType

ConceptScheme

Component

1

1..*

1

1..*

components

Concept

0..10..1

conceptIdentity

Codelist

Facet
facetType : FacetType
facetValue : String
facetValueType : FacetValueType

Representation

0..*1

+nonEnumerated

0..*1

{Dimension
Data Attribute

Primary Measure
TargetObject

Concept

TimeDimension restricted
 to FacetType representing time

ReportingYearStartDate
restric...

0..*

+nonEnumerated

0..*

{Metadata Attribute}

0..1
+enumerated

0..1

{Measure Dimension}

0..10..1

localRepresentation

0..10..1

coreRepresentation

0..1
+enumerated

0..1

{Dimension
Data Attribute

Metadata Attribute
Primary Measure

Concept}
ItemScheme

0..*
+itemSchemeFacet

0..*

0..1
+enumerated

0..1

{TargetObject}

ExtendedFacetValueType
Xhtml : String

<<enumeration>>

Figure 14: Representation within the Structure Pattern

26

 737

3.6.3 Explanation of the Diagrams 738

3.6.3.1 Narrative 739
The Structure is an abstract class which contains a set of one or more ComponentList(s) 740
(this class is also abstract). An example of a concrete Structure is 741
DataStructureDefinition. 742
 743
The ComponentList is a list of one or more Component(s). The ComponentList has 744
several concrete descriptor classes based on it: DimensionDescriptor, 745
GroupDimensionDescriptor, MeasureDescriptor, and AttributeDescriptor of 746
the DataStructureDefinition and MetadataTarget, and ReportStructure of the 747
MetaDataStructureDefinition. 748
 749
The Component is contained in a ComponentList. The type of Component in a 750
ComponentList is dependent on the concrete class of the ComponentList as follows: 751
 752
DimensionDescriptor: Dimension, Measure Dimension, Time Dimension 753
GroupDimensionDescriptor: Dimension, Measure Dimension, Time 754
Dimension 755
MeasureDescriptor: PrimaryMeasure 756
AttributeDescriptor: Data Attribute 757
MetadataTarget: TargetObject and its sub classes 758
ReportStructure: MetadataAttribute 759
 760
Each Component takes its semantic (and possibly also its representation) from a Concept in 761
a ConceptScheme. This is represented by the conceptIdentity association to Concept. 762
 763
The Component may also have a localRepresentation, This allows a concrete class, 764
such as Dimension, to specify its representation which is local to the Structure in which it 765
is contained (for Dimension this will be DataStructureDefinition), and thus overrides 766
any coreRepresentation specified for the Concept. 767
 768
The Representation can be enumerated or non-enumerated. The valid content of an 769
enumerated representation is specified either in an ItemScheme which can be one of 770
ConceptScheme, Codelist, OrganisationScheme, CategoryScheme, and 771
ReportingTaxonomy. The valid content of a non-enumerated representation is specified as 772
one or more Facet (for example these may specify minimum and maximum values). For a 773
MetadataAttribute this is achieved by one of more Extended Facet which allows the 774
additional representation of XHTML. 775
 776
The types of representation that are valid for specific components is expressed in the model 777
as a constraint on the association viz: 778
 779

• The MeasureDimension must be enumerated and use a ConceptScheme 780
• The Dimension (but not MeasureDimension), DataAttribute, 781

PrimaryMeasure, MetadataAttribute may be enumerated and, if so, use a 782
Codelist 783

27

• The TargetObject may be enumerated and, if so, can use any ItemScheme 784
(Codelist, ConceptScheme, OrganisationScheme, CategoryScheme, 785
ReportingTaxonomy) 786

• The Dimension (but not MeasureDimension), Data Attribute, 787
PrimaryMeasure, TargetObject may be non-enumerated and, if so, use one of 788
more Facet, note that the FacetValueType applicable to the TimeDimension 789
is restricted to those that represent time 790

• The MetadataAttribute may be non-enumerated and, if so, uses one or more 791
ExtendedFacet 792

 793
The Structure may be used by one or more StructureUsage. An example of this in terms 794
of concrete classes is that a DataflowDefinition (sub class of StructureUsage) may 795
use a particular DataStructureDefinition (sub class of Structure), and similar 796
constructs apply for the MetadataflowDefinition (link to 797
MetadataStructureDefinition). 798

3.6.3.2 Definitions 799
Class Feature Description

StructureUsage

Inherits from:
MaintainableArtefact

Sub classes are:
DataflowDefinition
MetadataflowDefinition

An artefact whose
components are described
by a Structure. In concrete
terms (sub-classes) an
example would be a
Dataflow Definition which is
linked to a given structure –
in this case the Data
Structure Definition.

 structure An association to a
Structure specifying the
structure of the artefact.

Structure Inherits from:
MaintainableArtefact

Sub classes are:
DataStructure
Definition
MetadataStructure
Definition

Abstract specification of a
list of lists to define a
complex tabular structure. A
concrete example of this
would be statistical
concepts, code lists, and
their organisation in a data
or metadata structure
definition, defined by a
centre institution, usually for
the exchange of statistical
information with its
partners.

 grouping A composite association to
one or more component
lists.

28

Class Feature Description

ComponentList Inherits from:
IdentifiableArtefact

Sub classes are:
DimensionDescriptor
GroupDimension
Descriptor
MeasureDescriptor
AttributeDescriptor
MetadataTarget
ReportStructure

An abstract definition of a
list of components. A
concrete example is a
Dimension Descriptor which
defines the list of
Dimensions in a Data
Structure Definition.

 components An aggregate association to
one or more components
which make up the list.

Component Inherits from:
IdentifiableArtefact

Sub classes are:
PrimaryMeasure
DataAttribute
DimensionComponent
TargetObject
MetadataAttribute

A component is an abstract
super class used to define
qualitative and quantitative
data and metadata items
that belong to a Component
List and hence a Structure.
Component is refined
through its sub-classes.

 conceptIdentity Association to a Concept in
a Concept Scheme that
identifies and defines the
semantic of the Component

 localRepresentation Association to the
Representation of the
Component if this is
different from the
coreRepresentation of the
Concept which the
Component uses
(ConceptUsage)

Representation The allowable value or
format for Component or
Concept

29

Class Feature Description

 +enumerated Association to an
enumerated list that
contains the allowable
content for the Component
when reported in a data or
metadata set. The type of
enumerated list that is
allowed for any concrete
Component is shown in the
constraints on the
association (e.g. Identifier
Component can have any
of the sub classes of Item
Scheme, whereas Measure
Dimension must have a
Concept Scheme).

 +nonEnumerated Association to a set of
Facets that define the
allowable format for the
content of the Component
when reported in a data or
metadata set.

Facet Defines the format for the
content of the Component
when reported in a data or
metadata set.

 facetType A specific content type
which is constrained by the
FacetType enumeration

 facetValueType The format of the value of a
Component when reported
in a data or metadata set.
This is contrained by the
FacetValueType
enumeration.

 +itemSchemeFacet Defines the format of the
identifiers in an Item
Scheme used by a
Component. Typically this
would define the number of
characters (length) of the
identifier.

ExtendedFacet This has the same function
as Facet but allows
additionally an XHTML
representation. This is
constrained for use with a
Metadata Attribute

 800

30

The specification of the content and use of the sub classes to ComponentList and 801
Component can be found in the section in which they are used 802
(DataStructureDefinition and MetadataStructureDefinition) 803

3.6.3.3 Representation Constructs 804
The majority of SDMX FacetValueTypes are compatible with those found in XML Schema, 805
and have equivalents in most current implementation platforms: 806
 807

SDMX Facet Value
Type

XML Schema Data
Type

.NET Framework Type Java Data Type

String xsd:string System.String java.lang.String
Big Integer xsd:integer System.Decimal java.math.BigInteger
Integer xsd:int System.Int32 int
Long xsd.long System.Int64 long
Short xsd:short System.Int16 short
Decimal xsd:decimal System.Decimal java.math.BigDecimal
Float xsd:float System.Single float
Double xsd:double System.Double double
Boolean xsd:boolean System.Boolean boolean
URI xsd:anyURI System.Uri Java.net.URI or

java.lang.String
DateTime xsd:dateTime System.DateTime javax.xml.datatype.XMLG

regorianCalendar
Time xsd:time System.DateTime javax.xml.datatype.XMLG

regorianCalendar
GregorianYear xsd:gYear System.DateTime javax.xml.datatype.XMLG

regorianCalendar
GregorianMonth xsd:gYearMonth System.DateTime javax.xml.datatype.XMLG

regorianCalendar
GregorianDay xsd:date System.DateTime javax.xml.datatype.XMLG

regorianCalendar
Day, MonthDay,
Month

xsd:g* System.DateTime javax.xml.datatype.XMLG
regorianCalendar

Duration xsd:duration System.TimeSpan javax.xml.datatype.Dura
tion

 808
There are also a number of SDMX data types which do not have these direct 809
correspondences, often because they are composite representations or restrictions of a 810
broader data type. These are detailed in Section 6 of the standards. 811
 812
The Representation is composed of Facets, each of which conveys characteristic 813
information related to the definition of a value domain. Often a set of Facets are needed to 814
convey the required semantic. For example, a sequence is defined by a minimum of two 815
Facets: one to define the start value, and one to define the interval. 816
 817
Facet Type Explanation
isSequence The isSequence facet indicates whether the values are intended to be

ordered, and it may work in combination with the interval, startValue, and
endValue facet or the timeInterval, startTime, and endTime, facets. If this
attribute holds a value of true, a start value or time and a numeric or time
interval must supplied. If an end value is not given, then the sequence
continues indefinitely.

interval The interval attribute specifies the permitted interval (increment) in a

31

4 Specific Item Schemes 818

4.1 Introduction 819
The structures that are an arrangement of objects into hierarchies or lists based on 820
characteristics, and which are maintained as a group inherit from ItemScheme. These 821
concrete classes are: 822
 823

• Codelist 824

sequence. In order for this to be used, the isSequence attribute must
have a value of true.

startValue The startValue facet is used in conjunction with the isSequence and
interval facets (which must be set in order to use this facet). This facet is
used for a numeric sequence, and indicates the starting point of the
sequence. This value is mandatory for a numeric sequence to be
expressed.

endValue The endValue facet is used in conjunction with the isSequence and
interval facets (which must be set in order to use this facet). This facet is
used for a numeric sequence, and indicates that ending point (if any) of
the sequence.

timeInterval The timeInterval facet indicates the permitted duration in a time
sequence. In order for this to be used, the isSequence facet must have a
value of true.

startTime The startTime facet is used in conjunction with the isSequence and
timeInterval facets (which must be set in order to use this facet). This
attribute is used for a time sequence, and indicates the start time of the
sequence. This value is mandatory for a time sequence to be expressed.

endTime The endTime facet is used in conjunction with the isSequence and
timeInterval facets (which must be set in order to use this facet). This
facet is used for a time sequence, and indicates that ending point (if any)
of the sequence.

minLength The minLength facet specifies the minimum and length of the value in
characters.

maxLength The maxLength facet specifies the maximum length of the value in
characters.

minValue The minValue facet is used for inclusive and exclusive ranges, indicating
what the lower bound of the range is. If this is used with an inclusive
range, a valid value will be greater than or equal to the value specified
here. If the inclusive and exclusive data type is not specified (e.g. this
facet is used with an integer data type), the value is assumed to be
inclusive.

maxValue The maxValue facet is used for inclusive and exclusive ranges, indicating
what the upper bound of the range is. If this is used with an inclusive
range, a valid value will be less than or equal to the value specified here.
If the inclusive and exclusive data type is not specified (e.g. this facet is
used with an integer data type), the value is assumed to be inclusive.

decimals The decimals facet indicates the number of characters allowed after the
decimal separator.

pattern The pattern attribute holds any regular expression permitted in the
implementation syntax (e.g. W3C XML Schema).

32

• ConceptScheme 825

• CategoryScheme 826

• AgencyScheme, DataProviderScheme, DataConsumerScheme, 827
OrganisationUnitScheme which all inherit from the abstract class 828
OrganisationScheme 829

• Reporting Taxonomy 830

4.2 Inheritance View 831
The inheritance and relationship views are shown together in each of the diagrams in the 832
specific sections below. 833

33

4.3 Codelist 834

4.3.1 Class Diagram 835
 836

VersionableArtefact
version : String
validFrom : Date
validTo : Date

MaintainableArtefact
final : Boolean
isExternalReference : Boolean
serviceURL : URL
structureURL : URI

Code

ItemScheme
isPartial : Boolean

Item
0..*0..*

items

0..*

1

+child

0..*
hierarchy

+parent

1

IdentifiableArtefact
urn : urn
uri : Url
id : String

InternationalString NameableArtefact0..1

+description

0..1

1

+name

1

Codelist

Figure 15 Class diagram of the Codelist

 837

34

4.3.2 Explanation of the Diagram 838

4.3.2.1 Narrative 839
The Codelist inherits from the ItemScheme and therefore has the following attributes: 840
 841

• id 842

• uri 843

• urn 844

• version 845

• validFrom 846

• validTo 847

• isExternalReference 848

• serviceURL 849

• structureURL 850

• final 851

• isPartial 852

The Code inherits from Item and has the following attributes: 853
 854

• id 855

• uri 856

• urn 857

Both Codelist and Code have the association to InternationalString to support a 858
multi-lingual name, an optional multi-lingual description, and an association to Annotation to 859
support notes (not shown). 860
 861
Through the inheritance the Codelist comprise one or more Codes, and the Code itself can 862
have one or more child Codes in the (inherited) hierarchy association. Note that a child 863
Code can have only one parent Code in this association. A more complex 864
HierachicalCodelist which allow multiple parents and multiple hierarchies is described 865
later. 866
 867
A partial Codelist (where isPartial is set to “true”) is identical to a Codelist and 868
contains the Code and associated names and descriptions, just as in a normal code list. 869
However, its content is a sub set of the full Codelist. The way this works is described in 870
section 3.5.3.1 on ItemScheme. 871
 872

35

4.3.2.2 Definitions 873
Class Feature Description

Codelist Inherits from
ItemScheme

A list from which some
statistical concepts (coded
concepts) take their
values.

Code Inherits from
Item

A language independent
set of letters, numbers or
symbols that represent a
concept whose meaning is
described in a natural
language.

 /hierarchy Associates the parent and
the child codes.

 874

36

4.4 Concept Scheme and Concepts 875

4.4.1 Class Diagram - Inheritance 876
 877

InternationalString

Concept

ConceptScheme

VersionableArtefact
version : String
validFrom : Date
validTo : Date

ItemScheme
isPartial : Boolean

Item

0..*1

+child

0..*

hierarchy

+parent 1

0..*0..*

items

MaintainableArtefact
final : Boolean
isExternalReference : Boolean
serviceURL : URL
structureURL : URI

NameableArtefact
0..1 +description0..1

1 +name1

IdentifiableArtefact
urn : urn
uri : Url
id : String

Figure 16 Class diagram of the Concept Scheme

37

4.4.2 Explanation of the Diagram 878
The ConceptScheme inherits from the ItemScheme and therefore has the following 879
attributes: 880
 881

• id 882

• uri 883

• urn 884

• version 885

• validFrom 886

• validTo 887

• isExternalReference 888

• registryURL 889

• structureURL 890

• repositoryURL 891

• final 892

• isPartial 893

Concept inherits from Item and has the following attributes: 894
 895

• id 896

• uri 897

• urn 898

Through the inheritance from NameableArtefact both ConceptScheme and Concept 899
have the association to InternationalString to support a multi-lingual name, an optional 900
multi-lingual description, and an association to Annotation to support notes (not shown). 901
 902
Through the inheritance from ItemScheme the ConceptScheme comprise one or more 903
Concepts, and the Concept itself can have one or more child Concepts in the (inherited) 904
hierarchy association. Note that a child Concept can have only one parent Concept in 905
this association. 906
 907
A partial ConceptScheme (where isPartial is set to “true”) is identical to a 908
ConceptScheme and contains the Concept and associated names and descriptions, just as 909
in a normal ConceptScheme. However, its content is a sub set of the full ConceptScheme. 910
The way this works is described in section 3.5.3.1 on ItemScheme. 911

38

 912

4.4.3 Class Diagram - Relationship 913

0..*

ConceptScheme

Representation
(from SDMX-Base)

ISOConceptReference
conceptAgency : String
conceptschemeID : String
conceptID : String

Concept

1

0..*

1

/items

0..*

1

+child
0..*

/hierarchy

+parent

1

0..10..1

coreRepresentation

0..1
+ISOConcept

0..1

 914
Figure 17: Relationship class diagram of the Concept Scheme 915

4.4.4 Explanation of the diagram 916

4.4.4.1 Narrative 917
The ConceptScheme can have one or more Concepts. A Concept can have zero or more 918
child Concepts, thus supporting a hierarchy of Concepts. Note that a child Concept can 919
have only one parent Concept in this association. The purpose of the hierarchy is to relate 920
concepts that have a semantic relationship: for example a Reporting_Country and 921
Vis_a_Vis_Country may both have Country as a parent concept, or a CONTACT may have a 922
PRIMARY_CONTACT as a child concept. It is not the purpose of such schemes to define 923
reporting structures: these reporting structures are defined in the 924
MetadataStructureDefinition. 925
 926
The Concept can be associated with a coreRepresentation. The 927
coreRepresentation is the specification of the format and value domain of the Concept 928
when used on a structure like a DataStructureDefinition or a 929
MetadataStructureDefinition, unless the specification of the Representation is 930
overridden in the relevant structure definition. In a hierarchical ConceptScheme the 931

39

Representation is inherited from the parent Concept unless overridden at the level of the 932
child Concept. 933
 934
Note that the ConceptScheme is used as the Representation of the MeasureDimension 935
in a DataStructureDefinition (see 5.3.2). Each Concept in this ConceptScheme is a 936
specific measure, each of which can be given a coreRepresentation. Thus the valid 937
format of the observation for each measure when reported in a data set for the 938
MeasureDimension is specified in the Concept. This allows a different format for each 939
measure. This is covered in more detail in 5.3. 940
 941
The Representation is documented in more detail in the section on the SDMX Base. 942
 943
The Concept may be related to a concept described in terms of the ISO/IEC 11179 standard. 944
The ISOConceptReference identifies this concept and concept scheme in which it is 945
contained. 946

4.4.4.2 Definitions 947
Class Feature Description

ConceptScheme

Inherits from
ItemScheme

The descriptive
information for an
arrangement or division
of concepts into groups
based on characteristics,
which the objects have in
common.

Concept Inherits from
Item

A concept is a unit of
knowledge created by a
unique combination of
characteristics.

 /hierarchy Associates the parent
and the child concept.

 coreRepresentation Associates a
Representation.

 +ISOConcept Association to an ISO
concept reference.

ISOConceptReference The identity of an ISO
concept definition.

 conceptAgency The maintenance agency
of the concept scheme
containing the concept.

 conceptSchemeID The identifier of the
concept scheme.

 conceptID The identifier of the
concept.

 948

40

4.5 Category Scheme 949

4.5.1 Context 950
This package defines the structure that supports the definition of and relationships between 951
categories in a category scheme. It is similar to the package for concept scheme. An example 952
of a category scheme is one which categorises data – sometimes known as a subject matter 953
domain scheme or a data category scheme. Importantly, as will be seen later, the individual 954
nodes in the scheme (the “categories”) can be associated to any set of 955
IdentiableArtefacts in a Categorisation. 956

4.5.2 Class diagram - Inheritance 957

Item

MaintainableArtefact
final : Boolean
isExternalReference : Boolean
serviceURL : URL
structureURL : URI

VersionableArtefact
version : String
validFrom : Date
validTo : Date

IdentifiableArtefact
urn : urn
uri : Url
id : String

ItemScheme
isPartial : Boolean

0..*
1

+child
0..*

hierarchy

+parent 1

0..*0..*

items

Category

CategoryScheme

InternationalString NameableArtefact

0..1 +description0..1

1 +name1

Figure 18 Inheritance Class diagram of the Category Scheme

41

 958

4.5.3 Explanation of the Diagram 959

4.5.3.1 Narrative 960
The categories are modelled as a hierarchical ItemScheme. The CategoryScheme inherits 961
from the ItemScheme and has the following attributes: 962
 963

• id 964

• uri 965

• urn 966

• version 967

• validFrom 968

• validTo 969

• isExternalReference 970

• structureURL 971

• serviceURL 972

• final 973

• isPartial 974

Category inherits from Item and has the following attributes: 975
 976

• id 977

• uri 978

• urn 979

Both CategoryScheme and Category have the association to InternationalString to 980
support a multi-lingual name, an optional multi-lingual description, and an association to 981
Annotation to support notes (not shown on the model). 982
 983
Through the inheritance the CategoryScheme comprise one or more Categorys, and the 984
Category itself can have one or more child Category in the (inherited) hierarchy 985
association. Note that a child Category can have only one parent Category in this 986
association. 987
 988
A partial CategoryScheme (where isPartial is set to “true”) is identical to a 989
CategoryScheme and contains the Category and associated names and descriptions, just 990

42

as in a normal CategoryScheme. However, its content is a sub set of the full 991
CategoryScheme. The way this works is described in section 3.5.3.1 on ItemScheme. 992
 993

4.5.4 Class diagram - Relationship 994

MaintainableArtefact
CategoryScheme

Category
1..*1..*

/items

1 0..*
+parent

1

/hierarchy

+child

0..*

Categorisation

0..* 10..*

+categorisedBy

1

IdentifiableArtefact

0..*

1

0..*

+categorisedArtefact
1

 995
Figure 19: Relationship Class diagram of the Category Scheme 996

The CategoryScheme can have one or more Categorys. The Category is Identifiable and 997
has identity information. A Category can have zero or more child Categorys, thus 998
supporting a hierarchy of Categorys. Any IdentifiableArtefact can be 999
+categorisedBy a Category. This is achieved by means of a Categorisation. Each 1000
Categorisation can associate one IdentifiableArtefact with one Category. 1001
Multiple Categorisations can be used to build a set of IdentifiableArtefacts that 1002
are +categorisedBy the same Category. Note that there is no navigation (i.e. no 1003
embedded reference) to the Categorisation from the Category. From an implementation 1004
perspective this is necessary as Categorisation has no affect on the versioning of either 1005
the Category or the IdentifiableArtefact. 1006

4.5.4.1 Definitions 1007
Class Feature Description

CategoryScheme

Inherits from
ItemScheme

The descriptive
information for an
arrangement or division of
categories into groups
based on characteristics,
which the objects have in
common.

 /items Associates the
categories.

43

Class Feature Description

Category

Inherits from
Item

An item at any level within
a classification, typically
tabulation categories,
sections, subsections,
divisions, subdivisions,
groups, subgroups,
classes and subclasses.

 /hierarchy Associates the parent and
the child Category.

Categorisation Inherits from

MaintainableArtefact

Associates an
IdentifableArtefact with a
Category.

 +categorisedArtefact Associates the
IdentifableArtefact.

 +categorisedBy Associates the Category.

44

4.6 Organisation Scheme 1008

4.6.1 Class Diagram 1009
 1010

MaintainableArtefact

VersionableArtefact

IdentifiableArtefact

NameableArtefact

DataConsumerDataConsumerScheme

0..*0..*

/items {data consumers}

DataProvider

DataProviderScheme 0..*0..*

/items {data providers}

AgencyAgencyScheme

0..*0..*

/items {agencies}

ItemScheme
isPartial : Boolean

Item

0..*
1

+child
0..*
hierarchy

+parent
1

0..*0..*

items

OrganisationUnit

0..*

1

+child
0..*

/hierarchy

+parent

1

OrganisationUnitScheme

0..*0..*

/items

{organisatoin units}

Contact
name : String
organisationUnit : String
telephone : String
responsibility : InternationalString
fax : String
email : String
X400 : String
uri : URL

OrganisationScheme Organisation

1

0..*

1

+contact

0..*

0..*0..*

/items

0..*+child

+parent

/hierarchy

{no hierarchy}{no hierarchy} {no hierarchy}

0..*

Figure 20 The Organisation Scheme class diagram

4.6.2 Explanation of the Diagram 1011

4.6.2.1 Narrative 1012
The OrganisationScheme is abstract. It contains Organisation which is also abstract. 1013
The Organisation can have child Organisation. 1014
 1015
The OrganisationScheme can be one of four types: 1016
 1017

1. AgencyScheme – contains Agency which is restricted to a flat list of agencies (i.e. 1018
there is no hierarchy). Note that the SDMX system of (Maintenance) Agency can be 1019
hierarchic and this is explained in more detail in the separate document “Technical 1020
Notes”. 1021

2. DataProviderScheme – contains DataProvider which is restricted to a flat list of 1022
agencies (i.e. there is no hierarchy). 1023

45

3. DataConsumerScheme – contains DataConsumer which is restricted to a flat list of 1024
agencies (i.e. there is no hierarchy). 1025

4. OrganisationUnitScheme – contains OrganisationUnit which does inherit the 1026
/hierarchy association from Organisation. 1027

 1028
Reference metadata can be attached to the Organisation by means of the metadata 1029
attachment mechanism. This mechanism is explained in the Reference Metadata section of 1030
this document (see section 7). This means that the model does not specify the specific 1031
reference metadata that can be attached to a DataProvider, 1032
DataConsumer,OrganisationUnit or Agency, except for limited Contact information. 1033
 1034
A partial OrganisationScheme (where isPartial is set to “true”) is identical to a 1035
OrganisationScheme and contains the Organisation and associated names and 1036
descriptions, just as in a normal OrganisationScheme However, its content is a sub set of 1037
the full OrganisationScheme. The way this works is described in section 3.5.3.1 on 1038
ItemScheme. 1039
 1040

4.6.2.2 Definitions 1041
Class Feature Description

OrganisationScheme Abstract Class
Inherits from
ItemScheme

Sub classes are:
AgencyScheme
DataProviderScheme
DataConsumerScheme
OrganisationUnitScheme

A maintained collection
of Organisations.

 /items Association to the
Organisations in the
scheme.

Organisation Inherits from
Item

Sub classes are:
Agency
DataProvider
DataConsumer
OrganisationUnit

An organisation is a
unique framework of
authority within which a
person or persons act,
or are designated to act,
towards some purpose.

 +contact Association to the
Contact information.

 /hierarchy Association to child
Organisations.

46

Class Feature Description

Contact An instance of a role of
an individual or an
organization (or
organization part or
organization person) to
whom an information
item(s), a material
object(s) and/or
person(s) can be sent to
or from in a specified
context.

 name The designation of the
Contact person by a
linguistic expression.

 organisationUnit The designation of the
organisational structure
by a linguistic
expression, within which
Contact person works.

 responsibility The function of the
contact person with
respect to the
organisation role for
which this person is the
Contact.

 telephone The telephone number
of the Contact.

 fax The fax number of the
Contact.

 email The Internet e-mail
address of the Contact.

 X400 The X400 address of
the Contact.

 uri The URL address of the
Contact.

AgencyScheme A maintained collection
of Maintenace
Agencies.

 /items Association to the
Maintenance Agency in
the scheme.

DataProviderScheme A maintained collection
of Data Providers.

 /items Association to the Data
Providers in the
scheme.

DataConsumerScheme A maintained collection
of Data Consumers.

47

Class Feature Description

 /items Association to the Data
Consumers in the
scheme.

OrganisationUnitScheme A maintained collection
of Organisation Units.

 /items Association to the
Organisation Units in
the scheme.

Agency Inherits from
Organisation

Responsible agency for
maintaining artefacts
such as statistical
classifications,
glossaries, structural
metadata such as Data
and Metadata Structure
Definitions, Concepts
and Code lists.

DataProvider Inherits from
Organisation

An organisation that
produces data or
reference metadata.

DataConsumer Inherits from
Organisation

An organisation using
data as input for further
processing.

OrganisationUnit Inherits from
Organisation

A designation in the
organisational structure.

 /hierarchy Association to child
Organisation Units

 1042

48

4.7 Reporting Taxonomy 1043

4.7.1 Class Diagram 1044

MaintainableArtefact
final : Boolean
isExternalReference : Boolean
serviceURL : URL
structureURL : URI

ReportingTaxonomy

VersionableArtefact
version : String
validFrom : Date
validTo : Date

ItemScheme
isPartial : Boolean

Item
0..*0..*

items

0..*

1

+child0..*

hierarchy
+parent

1

StructureUsage Structure
10..* 10..*

structure

ReportingCategory

0..*

+flow

0..* 0..*

+structure

0..*

DataStructureDefinition
(from DataStructureDefinition)

DataflowDefinition
(from DataStructureDefinition)

MetadataStructureDefinition
(from Metadata-Structure-Defini tion)

MetadataflowDefinition
(from Metadata-Structure-Defini tion)

IdentifiableArtefact

InternationalString NameableArtefact
0..1 +description0..1

1 +name1

 1045
Figure 21: Class diagram of the Reporting Taxonomy 1046

4.7.2 Explanation of the Diagram 1047

4.7.2.1 Narrative 1048
In some data reporting environments, and in particular those in primary reporting, a report may 1049
comprise a variety of heterogeneous data, each described by a different Structure. Equally, 1050
a specific disseminated or published report may also comprise a variety of heterogeneous 1051
data. The definition of the set of linked sub reports is supported by the ReportingTaxonomy. 1052
 1053
The ReportingTaxonomy is a specialised form of ItemScheme. Each 1054
ReportingCategory of the ReportingTaxonomy can link to one or more 1055

49

StructureUsage which itself can be one of DataflowDefinition, or 1056
MetadataflowDefinition, and one or more Structure, which itself can be one of 1057
DataStructureDefinition or MetadataStructureDefinition. It is expected that 1058
within a specific ReportingTaxonomy each Category that is linked in this way will be linked 1059
to the same class (e.g. all Category in the scheme will link to a DataflowDefinition). 1060
Note that a ReportingCategory can have child ReportingCategory and in this way it is 1061
possible to define a hierarchical ReportingTaxonomy. It is possible in this taxonomy that 1062
some ReportingCategory are defined just to give a reporting structure. For instance: 1063
 1064
Section 1 1065
 1. linked to DatafowDefinition_1 1066
 2 linked to DatafowDefinition_2 1067
Section 2 1068
 1 linked toDatafowDefinition_3 1069
 2 linked to DatafowDefinition_4 1070
 1071
Here, the nodes of Section 1 and Section 2 would not be linked to DataflowDefinition but 1072
the other would be linked to a DataflowDefinition (and hence the 1073
DataStructureDefinition). 1074
 1075
A partial ReportingTaxonomy (where isPartial is set to “true”) is identical to a 1076
ReportingTaxonomy and contains the ReportingCategory and associated names and 1077
descriptions, just as in a normal ReportingTaxonomy However, its content is a sub set of 1078
the full ReportingTaxonomy The way this works is described in section 3.5.3.1 on 1079
ItemScheme. 1080
 1081

4.7.2.2 Definitions 1082
Class Feature Description

ReportingTaxonomy Inherits from
ItemScheme

A scheme which defines
the composition structure
of a data report where
each component can be
described by an
independent Dataflow
Definition or Metdataflow
Definition.

 items Associates the Reporting
Category

ReportingCategory Inherits from
Item

A component that gives
structure to the report and
links to data and
metadata.

 hierarchy Associates child
Reporting Category.

50

Class Feature Description

 +flow Association to the data
and metadata flows that
link to metadata about the
provisioning and related
data and metadata sets,
and the structures that
define them.

 +structure Association to the Data
Structure Definition and
Metadata Structure
Definitions which define
the structural metadata
describing the data and
metadata that are
contained at this part of
the report.

 1083

51

5 Data Structure Definition and Dataset 1084

5.1 Introduction 1085

The DataStructureDefiniton is the class name for a structure definition for data. Some 1086
organisations know this type of definition as a “Key Family” and so the two names are 1087
synonymous. The term Data Structure Definition (also referred to as DSD) is used in this 1088
specification. 1089
 1090
Many of the constructs in this layer of the model inherit from the SDMX Base Layer. Therefore, 1091
it is necessary to study both the inheritance and the relationship diagrams to understand the 1092
functionality of individual packages. In simple sub models these are shown in the same 1093
diagram, but are omitted from the more complex sub models for the sake of clarity. In these 1094
cases, the inheritance diagram below shows the full inheritance tree for the classes concerned 1095
with data structure definitions. 1096
 1097
There are very few additional classes in this sub model other than those shown in the 1098
inheritance diagram below. In other words, the SDMX Base gives most of the structure of this 1099
sub model both in terms of associations and in terms of attributes. The relationship diagrams 1100
shown in this section show clearly when these associations are inherited from the SDMX Base 1101
(see the Appendix “A Short Guide to UML in the SDMX Information Model” to see the 1102
diagrammatic notation used to depict this). 1103
 1104
The actual SDMX Base construct from which the concrete classes inherit depends upon the 1105
requirements of the class for: 1106
 1107

• Annotation - AnnotableArtefact 1108

• Identification - IdentifiableArtefact 1109

• Naming - NameableArtefact 1110

• Versioning – VersionableArtefact 1111

• Maintenance - MaintainableArtefact 1112

52

5.2 Inheritance View 1113

5.2.1 Class Diagram 1114
 1115

ConceptScheme

VersionableArtefact
version : String
validFrom : Date
validTo : Date

MaintainableArtefact
final : Boolean
isExternalReference : Boolean
serviceURL : URL
structureURL : URI

AttributeDescriptor

StructureUsage

MeasureDescriptor

DataflowDefinition DataStructureDefinition

Key

DataSet

GroupKey
(from Data-Set)

ItemScheme

AnnotableArtefact

LocalisedString
label : String
locale : String

Annotation
id : String
title : String
type : String
url : String

0..1 0..*0..1 0..*

InternationalString
(from SDMX-Base)

1

0..*

1

0..*

0..1

0..1

0..1

+text

0..1

NameableArtefact 0..1+description 0..1
1+name 1

IdentifiableArtefact
urn : urn
uri : Url
id : String

Structure

ComponentList

Item

Component

Dimension

DataAttribute PrimaryMeasure

Codelist

SeriesKey
(from Data-Set)

Observation

MeasureDimension

TimeDimension
ReportingYearStartDay

DimensionDescriptor

GroupDimensionDescriptor DimensionComponent

Concept
(from Concept-Scheme)

Figure 22 Class inheritance in the Data Structure Definition and Data Set Packages

53

5.2.2 Explanation of the Diagram 1116

5.2.2.1 Narrative 1117
Those classes in the SDMX metamodel which require annotations inherit from 1118
AnnotableArtefact . These are: 1119
 1120

• IdentifiableArtefact 1121

• DataSet (and therefore StructureSpecificDataSet, GenericDataSet, 1122
GenericTimeSeriesDataSet StructureSpecificTimeSeriesDataSet) 1123

• Key (and therefore SeriesKey and GroupKey) 1124

Those classes in the SDMX metamodel which require annotations and global identity are 1125
derived from IdentifiableArtefact . These are: 1126
 1127

• NameableArtefact 1128

• ComponentList 1129

• Component 1130

Those classes in the SDMX metamodel which require annotations, global identity, multilingual 1131
name and multilingual description are derived from NameableArtefact . These are: 1132
 1133

• VersionableArtefact 1134

• Item 1135

The classes in the SDMX metamodel which require annotations, global identity, multilingual 1136
name and multilingual description, and versioning are derived from VersionableArtefact . 1137
These are: 1138
 1139

• MaintainableArtefact 1140

Abstract classes which represent information that is maintained by Maintenance Agencies all 1141
inherit from MaintainableArtefact, they also inherit all the features of a 1142
VersionableArtefact, and are: 1143
 1144

• StructureUsage 1145

• Structure 1146

• ItemScheme 1147

All the above classes are abstract. The key to understanding the class diagrams presented in 1148
this section are the concrete classes that inherit from these abstract classes. 1149
 1150

54

Those concrete classes in the SDMX Data Structure Definition and Dataset packages of the 1151
metamodel which require to be maintained by Agencies all inherit (via other abstract classes) 1152
from MaintainableArtefact, these are: 1153
 1154

• DataflowDefinition 1155

• DataStructureDefinition 1156

The component structures that are lists of lists, inherit directly from Structure. A 1157
Structure contains several lists of components. The concrete class that inherits from 1158
Structure is: 1159

• DataStructureDefinition 1160

A DataStructureDefinition contains a list of dimensions, a list of measures and a list of 1161
attributes. 1162
 1163
The concrete classes which inherit from ComponentList and are sub components of the 1164
DataStructureDefinition are: 1165
 1166

• DimensionDescriptor – content is Dimension, MeasureDimension and 1167
Time Dimension 1168

• DimensionGroupDescriptor – content is an association to Dimension, 1169
MeasureDimension, TimeDimension 1170

• MeasureDescriptor – content is PrimaryMeasure 1171

• AttributeDescriptor – content is DataAttribute 1172

The classes that inherit from Component are: 1173
 1174

• PrimaryMeasure 1175

• DimensionComponent and thereby its sub classes of Dimension, 1176
MeasureDimension, and TimeDimension 1177

 1178
• DataAttribute 1179

The class that inherit from DataAttribute is: 1180
 1181

• ReportingYearStartDay 1182
 1183
The concrete classes identified above are the majority of the classes required to define the 1184
metamodel for the DataStructureDefinition. The diagrams and explanations in the rest 1185
of this section show how these concrete classes are related in order to support the 1186
functionality required. 1187

55

5.3 Data Structure Definition – Relationship View 1188

5.3.1 Class Diagram 1189

{0..1 MeasureDimension
0..1 TimeDimension}

UsageStatus
mandatory : String
conditional : String

<<enumeration>>

these are
mutually
exclusive

TimeDimensionMeasureDimension

DataflowDefinition

Dimension

MeasureDescriptor

AttributeRelationship

AttributeDescriptor

ReportingYearStartDay

AttachmentConstraint
(from Registry)

DataStructureDefinition

0..*

1

0..*

1

/structure

1

1

1

1

/grouping

10..1 10..1

/grouping
DimensionDescriptor

11

/grouping

GroupDimensionDescriptor
isAttachmentConstraint : Boolean

0..1
+constraint

0..1

0..*0..*

/grouping

PrimaryMeasure
11

/components

DataAttribute
usageStatus : UsageStatus

1
+relatedTo

1

0..*

1

0..*

1

/components

DimensionComponent
order : Integer

1

0..*

1

0..*

/components

0..*

0..*

0..*

0..*

/components

{partial-key}

Concept
0..*+role 0..* 11

/conceptIdentity

11/conceptIdentity
0..* +role0..*

11 /conceptIdentity

{Dimension
MeasureDimension}

{not ReportingYearStartDay}

 1190
 1191

Figure 23 Relationship class diagram of the Data Structure Definition excluding representation

5.3.2 Explanation of the Diagrams 1192

5.3.2.1 Narrative 1193
A DataStructureDefinition defines the Dimensions, MeasureDimension, 1194
TimeDimension, DataAttributes, and PrimaryMeasure, and associated 1195
Representation that comprise the valid structure of data and related attributes that are 1196
contained in a DataSet, which is defined by a DataflowDefinition. 1197
 1198
The DataflowDefinition may also have additional metadata attached that defines 1199
qualitative information and Constraints on the use of the DataStructureDefinition 1200
such as the sub set of Codes used in a Dimension (this is covered later in this document – 1201

56

see “Data Constraints and Provisioning” section 9). Each DataflowDefinition has a 1202
maximum of one DataStructureDefinition specified which defines the structure of any 1203
DataSets to be reported/disseminated. 1204
 1205
There are three types of dimension each having a common association to Concept: 1206
 1207

• Dimension 1208
• MeasureDimension 1209
• TimeDimension 1210

 1211
Note that In the description here DimensionComponent can be oany or all of its sub classes 1212
i.e. Dimension, MeasureDimension, TimeDimension., and the term “DataAttribute” 1213
refers to both DataAttribute and its sub class ReportingYearStartDate. 1214
 1215
The DimensionComponent, DataAttribute, and PrimaryMeasure link to the Concept 1216
that defines its name and semantic (/conceptIdentity association to Concept). The 1217
DataAttribute, Dimension, and MeasureDimension (but not TimeDimension) can 1218
optionally have a +conceptRole association with a Concept that identifies its role in the 1219
DataStructureDefinition. Therefore, the allowable roles of a Concept are maintained 1220
in a ConceptScheme. Examples of roles are: geography, entity, count, unit of measure. The 1221
use of these roles is to enable applications to process the data in a meaningful way (e.g. 1222
relating a dimension value to a mapping vector). It is expected that communities (such as the 1223
official statistics community) will harmonise these roles with their community so that data can 1224
be exchanged and shared in a meaningful way in the community. 1225
 1226
The valid values for a DimensionComponent, PrimaryMeasure, or DataAttribute, 1227
when used in this DataStructureDefinition, are defined by the Representation. This 1228
Representation is taken from the Concept definition (coreRepresentation) unless it is 1229
overridden in this DataStructureDefinition (localRepresentation) – see Figure 23. 1230
Note that for the MeasureDimension the Representation must be a ConceptScheme 1231
and this must always be referenced from the MeasureDimension and cannot therefore be 1232
defaulted to the Representation of the Concept associated by the/conceptIdentity. 1233
Note also that TimeDimension and ReportingYearStartDate are constrained to specific 1234
FacetValueTypes 1235
 1236
There will always be a DimensionDescriptor grouping that identifies all of the Dimension 1237
comprising the full key. Together the Dimensions specify the key of an Observation. 1238
 1239
The DimensionComponent can optionally be grouped by multiple 1240
GroupDimensionDescriptors each of which identifies the group of Dimensions that can 1241
form a partial key. The GroupDimensionDescriptor must be identified 1242
(GroupDimensionDescriptor.id) and this is used in the GroupKey of the DataSet to 1243
declare which DataAttributes are reported at this group level in the DataSet. 1244
 1245
There may be a maximum of one MeasureDimension specified in the 1246
DimensionDescriptor. The purpose of a MeasureDimension is to specify formally the 1247
meaning of the measures (because the PrimaryMeasure typically has a generic meaning 1248
e.g. observation value) and to enable multiple measures to be defined and reported in a 1249
StructureSpecificDataSet. Note that the MeasureDimension references a 1250

57

ConceptScheme as its Representation (see later) whereas a Dimension can have either 1251
an enumerated (Codelist) or non-enumerated (Facet) representation. For a 1252
MeasureDimension the Concepts in the ConceptScheme comprise the list of allowable 1253
measures. This enables the representation for each individual measure (Concept) to be 1254
declared as the coreRepresentation of the Concept, thus overriding the 1255
Representation specified for the PrimaryMeasure for the observation value of this 1256
MeasureDimension Concept. 1257
 1258
There can be a maximum of one TimeDimension specified in the DimensionDescriptor. 1259
The TimeDimension is used to specify the Concept used to convey the time period of the 1260
observation in a data set. The TimeDimension must contain a valid representation of time 1261
and cannot be coded 1262
 1263
The PrimaryMeasure is the observable phenomenon, and, although there can be only one 1264
PrimaryMeasure, for consistency with the ComponentList/Component pattern it is 1265
grouped by a MeasureDescriptor. 1266
 1267
The DataAttribute defines a characteristic of data that are collected or disseminated and is 1268
grouped in the DataStructureDefinition by a single AttributeDescriptor. The 1269
DataAttribute can be specified as being mandatory, or conditional, as defined in 1270
usageStatus. The DataAttribute may play a specific role in the structure and this is 1271
specified by the +role association to the Concept that identifies its role. 1272
 1273
A DataAttribute is specified as being +relatedTo an AttributeRelationship which 1274
defines the constructs to which the DataAttribute is to be reported present in a DataSet. 1275
The DataAttribute can be specified as being related to one of the following artefacts: 1276
 1277

• DataSet (NoSpecifiedRelationship) 1278

• Dimension or set of Dimensions (DimensionRelationship) 1279

• Set of Dimensions specified by a GroupKey (GroupRelationship – this is retained 1280
for compatibility reasons – or +groupKey of the DimensionRelationship) 1281

• Observation (PrimaryMeasureRelationship) 1282

58

NoSpecifiedRelationship PrimaryMeasureRelationship

DataStructureDefinition

AttributeRelationship

AttributeDescriptor

1

0..1

1

0..1

/grouping

DataAttribute

1
+relatedTo

1

1

0..*

1

0..*

/components

ReportingYearStartDay

GroupRelationship

GroupDimensionDescriptor
1

+groupKey

1

DimensionComponentDimensionRelationship

0..*

+groupKey

0..*

1..*

+dimensions

1..*

 1283
Figure 24: Attribute Attachment Defined in the Data Structure Definition 1284

The following table details the possible relationships a DataAttribute may specify. Note 1285
that these relationships are mutually exclusive, and therefore only one of the following is 1286
possible. 1287

Relationship Meaning Location in Data Set at
which the Attribute is
reported

None The value of the attribute
does not vary with the values
of any other Component.

The attribute is reported at
the level of the Dataset
Attribute.

Dimension
(1..n)

The value of the attribute will
vary with the value(s) of the
referenced Dimension(s). In
this case, Group(s) to which
the attribute should be
attached may optionally be
specified.

The attribute is reported at
the lowest level of the
Dimension to which the
Attribute is related,
otherwise at the level of
the Group if Attachment
Group(s) is specified.

59

Relationship Meaning Location in Data Set at
which the Attribute is
reported

Group The value of the Attribute
varies with combination of
values for all of the
Dimensions contained in the
Group. This is added as a
convenience to listing all
Dimensions and the
attachment Group, but should
only be used when the
Attribute value varies based
on all Group Dimension
values.

The attribute is reported at
the level of Group.

Primary
Measure

The value of the Attribute
varies with the observed
value.

The attribute is reported at
the level of Observation.

 1288
 1289

60

FacetType
isSequence : Boolean
minLength : positiveInteger
maxLength : positveInteger
minValue : Decimal
maxValue : Decimal
startValue : Decimal
endValue : String
interval : Double
timeInterval : Duration
decimals : positiveInteger
pattern : String
startTime : Date
endTime : Date

<<enumeration>>
FacetValueType

string
bigInteger
integer
long
short
decimal
float
double
boolean
uri
count
inclusiveValueRange
alpha
alphaNumeric
numeric
exclusiveValueRange
incremental
observationalTimePeriod
standardTimePeriod
basicTimePeriod
gregorianTimePeriod
gregorianYearMonth
gregorianDay
reportingTimePeriod
reportingYear
reportingSemester
reportingTrimester
reportingQuarter
reportingMonth
reportingWeek
reportingDay
dateTime
timesRange
month
monthDay
day
time
duration
keyValues
identifiableReference
dataSetReference

<<enumeration>>

Dimension

PrimaryMeasure

Component
(from SDMX-Base)

Facet
facetType : FacetType
facetValue : String
facetValueType : FacetValueType

Codelist

ItemScheme

MeasureDimension
TimeDimension

ConceptScheme

Representation
0..10..1

localRepresentation

0..*

1

+nonEnumerated
0..*

1

{Dimension
Data Attribute

Primary Measure
TargetObject

Concept

TimeDimension restricted
 to FacetType representing time

ReportingYearStartDate restricted
to a FacetType of MonthDay}

0..1

+enumerated

0..1

{Measure Dimension}

0..1
+enumerated

0..1

{Dimension
Data Attribute

Metadata Attribute
Primary Measure

Concept}

DataAttribute

ReportingYearStartDate

DimensionComponent

Concept

1

0..*

1

0..*

/items

0..10..1

coreRepresentation

 1290
Figure 25: Representation of DSD Components 1291

61

Each of Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, and 1292
DataAttribute can have a Representation specified (using the 1293
localRepresentation association). If this is not specified in the 1294
DataStructureDefinition then the representation specified for Concept 1295
(coreRepresentation) is used. For the MeasureDimension the representation for the 1296
individual measures is specified for the Concept in the ConceptScheme referenced by the 1297
MeasureDimension. 1298
 1299
A DataStructureDefinition can be extended to form a derived 1300
DataStructureDefinition. This is supported in the StructureMap. 1301

5.3.2.2 Definitions 1302
Class Feature Description

StructureUsage See “SDMX Base”.

DataflowDefinition Inherits from

StructureUsage

Abstract concept (i.e. the
structure without any
data) of a flow of data
that providers will
provide for different
reference periods.

 /structure Associates a Dataflow
Definition to the Data
Structure Definition.

DataStructureDefinition A collection of metadata
concepts, their structure
and usage when used to
collect or disseminate
data.

 /grouping An association to a set of
metadata concepts that
have an identified
structural role in a Data
Structure Definition.

Group
DimensionDescriptor

Inherits from
ComponentList

A set metadata concepts
that define a partial key
derived from the
Dimension Descriptor in
a Data Structure
Definition.

+constraint

Identifies an Attachment
Constraint that specifies
the sub set of
Dimension, Measure, or
Attribute values to which
an Attribute can be
attached.

 /components An association to the
Dimension and Measure

62

Class Feature Description

Dimension components
that comprise the group.

DimensionDescriptor Inherits from
ComponentList

An ordered set of
metadata concepts that,
combined, classify a
statistical series, and
whose values, when
combined (the key) in an
instance such as a data
set, uniquely identify a
specific observation.

 /components An association to the
Dimension, Measure
Dimension, and Time
Dimension comprising
the Key Descriptor.

AttributeDescriptor Inherits from
ComponentList

A set metadata concepts
that define the attributes
of a Data Structure
Definition.

 /components An association to a Data
Attribute component.

MeasureDescriptor Inherits from
ComponentList

A metadata concept that
defines the measure of a
Data Structure Definition.

 /components An association to a
measure component.

Dimension Inherits from
Component

A metadata concept used
(most probably together
with other metadata
concepts) to classify a
statistical series, e.g. a
statistical concept
indicating a certain
economic activity or a
geographical reference
area.

 /role Association to the
Concept that specifies
the role that that the
Dimension plays in the
Data Structure Definition.

 /conceptIdentity An association to the
metadata concept which
defines the semantic of
the Dimension.

MeasureDimension Inherits from
Dimension

A statistical concept that
identifies the component
in the key structure that

63

Class Feature Description

has an enumerated list of
measures. This
dimension has, as its
representation the
Concept Scheme that
enumerates the measure
concepts.

TimeDimension Inherits from
Dimension

A metadata concept that
identifies the component
in the key structure that
has the role of “time”.

DataAttribute Inherits from
Component

Sub class

ReportingYear
StartDay

A characteristic of an
object or entity.

 /role Association to the
Concept that specifies
the role that that the Data
Attribute plays in the
Data Structure Definition.

 usageStatus Defines the usage status
which is constrained by
the data type Usage
Status.

 +relatedTo Association to a Attribute
Relationship.

 /conceptIdentity An association to the
Concept which defines
the semantic of the
component.

ReportingYearStartDay

Inherits from
DataAttribute

A specialised Data
Attribute whose value is
used in conjunction with
the predefined reporting
periods in the Time
Dimension. If this is not
present, then by default
all reporting period
values for the Time
Dimension will be
assumed to be based on
a reporting year start day
of January 1.

64

Class Feature Description

PrimaryMeasure Inherits from
Component

The metadata concept
that is the phenomenon
to be measured in a data
set. In a data set the
instance of the measure
is often called the
observation.

 /conceptIdentity An association to the
Concept which carries
the values of the
measures.

AttributeRelationship Abstract Class

Sub classes
NoSpecified
Relationship
PrimaryMeasure
Relationship
GroupRelationship
Dimension
Relationship

Specifies the type of
artefact to which a Data
Attribute can be attached
in a Data Set.

NoSpecifiedRelationship The Data Attribute is not
related to any specific
construct.

PrimaryMeasure
Relationship

 The Data Attribute is
related to the Primary
Measure construct.

GroupRelationship The Data Attribute is
related to a Group
Dimension Descriptor
construct.

 +groupKey An association to the
Group Dimension
Descriptor

DimensionRelationship The Data Attribute is
related to a set of
Dimensions.

 +dimensions Association to the set of
Dimensions to which the
Data Attribute is related.

 +groupKey Association to the Group
Dimension Descriptor
which specifies the set of
Dimensions to which the
Data Attribute is
attached.

 1303

65

The explanation of the classes, attributes, and associations comprising the Representation is 1304
described in the section on the SDMX Base. 1305

5.4 Data Set – Relationship View 1306

5.4.1 Context 1307
A data set comprises the collection of data values and associated metadata that are collected 1308
or disseminated according to a known DataStructureDefinition. 1309

5.4.2 Class Diagram 1310

UncodedAttributeValue
startTime : Date

Annotab leArtefact
(from SDMX-Base)

UncodedKeyValue
startTime : Date

StructureSpecificTimeseriesDataSet

UncodedObserva...
value : String

CodedObservation CodedAttributeValue

CodedKeyValue

Code
(f rom Code-List)

+valueOf +valueOf

+valueOf

Codelist
(f rom Code-List)

1..*

1

1..*

1

/items

ConceptScheme

MeasureKeyValue

GenericDataSet

StructureSpecificDataSet

GenericTimeseriesDataSet

TimeKeyValue
timeValue : observationalTimePeriod

MeasureDimension

TimeDimension

DataStructureDefinition
(f rom DataStructureDef inition)

AttributeDescriptor
(f rom DataStructureDef inition)

1
0..1

1
0..1/grouping

MeasureDescriptor
(f rom DataStructureDef inition)

1

1

1

1

/grouping

DataflowDefinition
(f rom DataStructureDef inition)

DataProvider

DataAttribute
(f rom DataStructureDef inition)

1 0..*1 0..*/components

GroupKey
id

DataStructureDefinition
(f rom DataStructureDef inition)

0..*

1

0..*

1

PrimaryMeasure
(f rom DataStructureDef inition)

11

/components

SeriesKey

ObservationValue

DataSet
reportingBegin : Date
reportingEnd : Date
dataExtractionDate : Date
validFrom : Date
validTo : Date
publicationYear : Date
publicationPeriod : Date
setId : String
action : ActionType

0..1

+describedBy

0..10..1

+publishedBy

0..1

1
+structuredBy

1

AttributeValue
value : String

1

+valueFor

1

0..*
+attachedAttribute

0..*
Observation

+valueFor

{primaryMeasureObservation}

1..*1..*

0..*+attachedAttribute 0..*

11

Key
1..*1..*

0..*+attachedAttribute 0..*

Dimension

KeyValue
1

+observationDimension
1

1..*1..*keyValues

Concept

1

0..*

1

0..*

+valueOf

DimensionDescriptor
(f rom DataStructureDef inition)

11

+describedBy

GroupDimensionDescriptor
(f rom DataStructureDef inition)

0..*

1

0..*

+describedBy

1

0..*0..*

DimensionComponent

1 0..*1 0..*
/components

0..*
0..*

0..*
0..*

/components

{partial-key}

1

+valueFor

1

Figure 26 Class Diagram of the Data Set

66

5.4.3 Explanation of the Diagram 1311

5.4.3.1 Narrative – Data Set 1312
Note that the DataSet must conform to the DataStructureDefinition associated to the 1313
DataflowDefinition for which this DataSet is an “instance of data”. Whilst the model 1314
shows the association to the classes of the DataStructureDefinition, this is for 1315
conceptual purposes to show the link to the DataStructureDefinition. In the actual 1316
DataSet as exchanged there must, of course, be a reference to the 1317
DataStructureDefinition and optionally a DataflowDefinition, but the 1318
DataStructureDefinition is not necessarily exchanged with the data. Therefore, the 1319
DataStructureDefinition classes are shown in the grey areas, as these are not a part of 1320
the DataSet when the DataSet is exchanged. However, the structural metadata in the 1321
DataStructureDefinition can be used by an application to validate the contents of the 1322
DataSet in terms of the valid content of a KeyValue as defined by the Representation in 1323
the DataStructureDefinition. 1324
 1325
An organisation playing the role of DataProvider can be responsible for one or more 1326
DataSet. 1327
 1328
A DataSet can be formatted either as a generic data set (GenericDataSet, 1329
GenericTimeseriesDataSet) or a DataStructureDefinition specific data set 1330
(StructureSpecificDataSet, StructureSpecificTimeseriesDataSet). The 1331
generic data set is structured in exactly the same way no matter which 1332
DataStructureDefinition the DataSet expresses. The structured data set is structured 1333
according to one specific DataStructureDefinition. Depending on the syntax chosen for 1334
the implementation the structured data set should support better validation at the syntax level. 1335
 1336
A DataSet is a collection of a set of Observations that share the same dimensionality, 1337
which is specified by a set of unique components (Dimension, MeasureDimension, 1338
TimeDimension) defined in the DimensionDescriptor of the 1339
DataStructureDefinition, together with associated AttributeValues that define 1340
specific characteristics about the artefact to which it is attached. - DataSet, Observation, 1341
set of Dimensions. It is structured in terms of a SeriesKey to which Observations are 1342
reported. 1343
 1344
The Observation can be the value of the variable being measured for the Concept 1345
associated to the PrimaryMeasure in the MeasureDescriptor of the 1346
DataStructureDefinition. This is true when there is no MeasureDimension that 1347
specifies the precise meaning of each Observation. Each Observation associates an 1348
ObservationValue with a KeyValue (+observationDimension) which is the value for 1349
the “Dimension at the Observation Level”. Any dimension can be specified as being the 1350
“Dimension at the Observation Level”, and this specification is made at the level of the 1351
DataSet (i.e. it must be the same dimension for the entire DataSet). 1352
 1353
If the “Dimension at the Observation Level” is the MeasureDimension it is possible (but not 1354
mandatory) that an Observation can be reported with an explicit identification of one or 1355
more Concept in the ConceptScheme referenced by the MeasureDimension as its 1356
Representation. In other words, the actual Concepts are explicitly stated in the 1357
Observation. 1358

67

 1359
If it is required to specify explicitly that the DataSet is time series then one of 1360
GenericTimeSeriesDataSet or StructureSpecificTimeSeriesDataSet is used and 1361
the KeyValue for the +observationDimension must be a TimeKeyValue. In a 1362
GenericDataSet and a StructureSpecificDataSet it is permissible to have any 1363
dimension as the +observationDimension including the TimeDimension. 1364
 1365
The KeyValue is a value for one of MeasureDimension, TimeDimension, or 1366
Dimension specified in the DataStructureDefinition. If it is a Dimension it can be 1367
coded (CodedKeyValue) or uncoded (UncodedKeyValue). If it is a MeasureDimension 1368
then it is MeasureKeyValue. If it is TimeDimension then it is a TimeKeyValue. The actual 1369
value that the CodedDimensionValue can take must be one of the Codes in the Codelist 1370
specified as the Representation of the Dimension in the DataStructureDefinition. 1371
The actual value that the MeasureDimensionValue can take must be a valid representation 1372
specified for the Concept in the ConceptScheme to which this MeasureDimensionValue 1373
is related (+valueFor). 1374
 1375
The ObservationValue can be coded - this is the CodedObservation – or it can be 1376
uncoded – this is the UncodedObservation. 1377
 1378
The GroupKey is a sub unit of the Key that has the same dimensionality as the SeriesKey, 1379
but defines a subset of the KeyValues of the SeriesKey. Its sub dimension structure is 1380
defined in the GroupDimensionDescriptor of the DataStructureDefinition identified 1381
by the same id as the GroupKey. The id identifies a “type” of group and the purpose of the 1382
GroupKey is to report one or more AttributeValue that are contained at this group level. 1383
The GroupKey is present when the GroupDimensionDescriptor is related to the 1384
GroupRelationship in the DataStructureDefinition. There can be many types of 1385
groups in a DataSet. If the Group is related to the DimensionRelationship in the 1386
DataStructureDefinition then the AttributeValue will be reported with the 1387
appropriate dimension in the SeriesKey or Observation. 1388
 1389
In this way each of DataSet, SeriesKey, GroupKey, and Observation can have zero or 1390
more AttributeValue that defines some metadata about the object to which it is 1391
associated. The allowable Concepts and the objects to which these metadata can be 1392
associated (attached) are defined in the DataStructureDefinition. 1393
 1394
The AttributeValue links to the object type (DataSet, SeriesKey, GroupKey, 1395
Observation,) to which it is associated. 1396
 1397

5.4.3.2 Definitions 1398
Class Feature Description

68

Class Feature Description

DataSet Abstract Class

Sub classes

GenericDataSet
StructureSpecificDataSet
GenericTime
SeriesDataSet
StructureSpecificTime
SeriesDataSet

An organised collection of
data.

 reportingBegin A specific time period in a
known system of time
periods that identifies the
start period of a report.

 reportingEnd A specific time period in a
known system of time
periods that identifies the
end period of a report.

 dataExtractionDate A specific time period that
identifies the date and
time that the data are
extracted from a data
source.

 validFrom Indicates the inclusive
start time indicating the
validity of the information
in the data set.

 validTo Indicates the inclusive
end time indicating the
validity of the information
in the data set.

 publicationYear Specifies the year of
publication of the data or
metadata in terms of
whatever provisioning
agreements might be in
force.

 publicationPeriod Specifies the period of
publication of the data or
metadata in terms of
whatever provisioning
agreements might be in
force.

 setId Provides an identification
of the data set.

 action Defines the action to be
taken by the recipient
system (update, append,
delete)

69

Class Feature Description

 describedBy Associates a data flow
definition and thereby a
Data Structure Definition
to the data set.

 +structuredBy Associates the Data
Structure Definition that
defines the structure of
the Data Set. Note that
the Data Structure
Definition is the same as
that associated (non-
mandatory) to the
Dataflow Definition.

 +publishedBy Associates the Data
Provider that
reports/publishes the
data.

 +attachedAttribute Association to the
Attribute Values relating
to the Data Set

GenericDataSet A data format structure
that is able to contain
data corresponding to any
Data Structure Definition.

StructureSpecific
DataSet

 A data format structure
that contains data
corresponding to one
specific Data Structure
Definition.

GenericTimeseries
DataSet

 A data format structure
that is able to contain
timeseries data
corresponding to any
Data Structure Definition.

StructureSpecific
TimeseriesDataSet

 A data format structure
that contains timeseries
data corresponding to one
specific Data Structure
Definition.

Key Abstract class
Sub classes
SeriesKey
GroupKey

Comprises the cross
product of values of
dimensions that identify
uniquely an Observation.

 keyValues Association to the
individual Key Values that
comprise the Key.

70

Class Feature Description

 +attachedAttribute Association to the
Attribute Values relating
to the Series Key or
Group Key.

KeyValue Abstract class
Sub classes
MeasureKeyValue
TimeKeyValue
CodedKeyValue
UncodedKeyValue

The value of a component
of a key such as the value
of the instance a
Dimension in a Dimension
Descriptor of a Data
Structure Definition.

 +valueFor Association to the key
component in the Data
Structure Definition for
which this Key Value is a
valid representation.

Note that this is
conceptual association as
the key component is
identified explicitly in the
data set.

MeasureKeyValue Inherits from
KeyValue

The value of the Measure
Dimension component of
the key. The value is the
Concept to which this
class is associated.

 +value Association to the
Concept.

Note that this is a
conceptual association
showing that the Concept
must exist in the Concept
Scheme associated with
the Measure Dimension in
the Data Structure
Definition. In the actual
Data Set the value of the
Concept is placed in the
Key Value.

TimeKeyValue Inherits from
KeyValue

The value of the Time
Dimension component of
the key.

CodedKeyValue Inherits from
KeyValue

The value of a coded
component of the key.
The value is the Code to
which this class is
associated.

71

Class Feature Description

 +value Association to the Code.

Note that this is a
conceptual association
showing that the Code
must exist in the Code list
associated with the
Dimension in the Data
Structure Definition. In the
actual Data Set the value
of the Code is placed in
the Key Value.

UnCodedKeyValue Inherits from
KeyValue

The value of an uncoded
component of the key.

 value The value of the key
component.

 startTime This attribute is only used
if the textFormat of the
attribute is of the
Timespan type in the
Data Structure Definition
(in which case the value
field takes a duration).

 +valueFor Associates Dimension,
Measure Dimension, or
Time Dimension to the
Key Value, and thereby to
the Concept that is the
semantic of the
Dimension, or Time
Dimension.

GroupKey

Inherits from
Key

A set of Key Values that
comprise a partial key, of
the same dimensionality
as the Time Series Key
for the purpose of
attaching Data Attributes.

 +describedBy Associates the Group
Dimension Descriptor
defined in the Data
Structure Definition.

SeriesKey Inherits from
Key

Comprises the cross
product of values of all
the Key Values that,
together with the Key
Value of the +observation
Dimension identify
uniquely an Observation.

72

Class Feature Description

 +describedBy Associates the Dimension
Descriptor defined in the
Data Structure Definition.

Observation The value of the observed
phenomenon in the
context of the Key Values
comprising the key.

 +valueFor Associates the Primary
Measure defined in the
Data Structure Definition.

 +attachedAttribute Association to the
Attribute Values relating
to the Observation.

 +observationDimension Association to the Key
Value that holds the value
of the “Dimension at the
Observation Level”.

ObservationValue Abstract class
Sub classes
UncodedObservation
CodedObservation

UncodedObservation Inherits from
ObservationValue

An observation that has a
text value.

 value The value of the Uncoded
Observation.

CodedObservation Inherits from
ObservationValue

An Observation that takes
its value from a code in a
Code list.

 +value Association to the Code
that is the value of the
Observation.

Note that this is a
conceptual association
showing that the Code
must exist in the Code list
associated with the
Primary Measure or the
Concept of the Measure
Dimension in the Data
Structure Definition. In the
actual Data Set the value
of the Code is placed in
the Observation.

73

Class Feature Description

AttributeValue Abstract class

Sub classes
UncodedAttributeValue
CodedAttributeValue

The value of an attribute,
such as the instance of a
Coded Attribute or of an
Uncoded Attribute in a
structure such as a Data
Structure Definition.

 value The value of the attribute.

 +valueFor Association to the Data
Attribute defined in the
Data Structure Definition.
Note that this is
conceptual association as
the Concept is identified
explicitly in the data set.

UncodedAttribute
Value

Inherits from
AttributeValue

An attribute value that has
a text value.

 startTime This attribute is only used
if the textFormat of the
attribute is of the
Timespan type in the
Data Structure Definition
(in which case the value
field takes a duration).

CodedAttribute
Value

Inherits from
AttributeValue

An attribute that takes it
value from a Code in
Code list.

 +value Association to the Code
that is the value of the
Attribute Value.

Note that this is a
conceptual association
showing that the Code
must exist in the Code list
associated with the Data
Attribute in the Data
Structure Definition. In the
actual Data Set the value
of the Code is placed in
the Attribute Value.

 1399

74

6 Cube 1400

6.1 Context 1401
Some statistical systems create views of data based on a “cube” structure. In essence, a cube 1402
is an n-dimensional object where the value of each dimension can be derived from a 1403
hierarchical code list. The utility of such cube systems is that it is possible to “roll up” or “drill 1404
down” each of the hierarchy levels for each of the dimensions to specify the level of granularity 1405
required to give a “view” of the data – some dimensions may be rolled up, others may be 1406
drilled down. Such systems give a dynamic view of the data, with aggregated values for rolled 1407
up dimension positions. For example, the individual countries may be rolled up into an 1408
economic region such as the EU, or a geographical region such as Europe, whilst another 1409
dimension, such as “type of road” may be drilled down to its lower level. The resulting 1410
measure (such as “number of accidents”) would then be an aggregation of the value for each 1411
individual country for the specific type of road. 1412
 1413
Such cube systems rely, not on simple code lists, but on hierarchical code sets (see section 1414
8). 1415

6.2 Support for the Cube in the Information Model 1416
Data reported using a Data Structure Definition structure (where each dimension value, if 1417
coded, is taken from a flat code list) can be described by a cube definition and can be 1418
processed by cube aware systems. The SDMX-IM supports the definition of such cubes in the 1419
following way: 1420
 1421

• The HierachicalCodelist defines the (often complex) hierarchies of codes 1422

• If required, the StructureSet can 1423

o group DataStructureDefinition that describe the cube 1424

o provide a mapping mechanism between the codes in the flat code lists used by 1425
the DataStructureDefinition and a HierarchicalCodelist where 1426
the HierarchicalCodelist uses code lists that are not used in the 1427
DataStructureDefinition 1428

 1429

75

7 Metadata Structure Definition and Metadata Set 1430

7.1 Context 1431
The SDMX metamodel allows metadata: 1432
 1433

1. To be exchanged without the need to embed it within the object that it is describing. 1434
 1435

2. To be stored separately from the object that it describes, yet be linked to it (for 1436
example, an organisation has a metadata repository which supports the dissemination 1437
of metadata resulting from metadata requests generated by systems or services that 1438
have access to the object for which the metadata pertains. This is common in web 1439
dissemination where additional metadata is available for viewing (and eventually 1440
downloading) by clicking on an “information” icon next to the object to which the 1441
metadata is attached). 1442

 1443
3. To be indexed to aid searching (example: a registry service can process a metadata 1444

report and extract structural information that allows it to catalogue the metadata in a 1445
way that will enable users to query for it). 1446

 1447
4. To be reported according to a defined structure. 1448

 1449
In order to achieve this, the following structures are modelled: 1450
 1451

• metadata structure definition which has the following components: 1452

o the object types to which the metadata are to be associated (attached) 1453

o the components that, together, comprise a unique key of the object type to 1454
which the metadata are to be associated 1455

o the reporting structure comprising the metadata attributes that can be attached 1456
to the various object types (these attributes can be structured in a hierarchy), 1457
together with any constraints that may apply (e.g. association to a code list that 1458
contains valid values for the attribute when reported in a metadata set) 1459

• the metadata set, which contains reported metadata 1460

7.2 Inheritance 1461

7.2.1 Introduction 1462
As with the Data Structure Definition Structure, many of the constructs in this layer of the 1463
model inherit from the SDMX Base layer. Therefore, it is necessary to study both the 1464
inheritance and the relationship diagrams to understand the functionality of individual 1465
packages. The diagram below shows the full inheritance tree for the classes concerned with 1466
the MetadataStructureDefinition and the MetadataSet. 1467
 1468
There are very few additional classes in the MetadataStructureDefinition package that 1469
do not themselves inherit from classes in the SDMX Base. In other words, the SDMX Base 1470
gives most of the structure of this sub model both in terms of associations and in terms of 1471

76

attributes. The relationship diagrams shown in this section show clearly when these 1472
associations are inherited from the SDMX Base (see the Appendix “A Short Guide to UML in 1473
the SDMX Information Model” to see the diagrammatic notation used to depict this). It is 1474
important to note that SDMX base structures used for the MetadataStructureDefinition 1475
are the same as those used for the DataStructureDefinition and so, even though the 1476
usage is slightly different, the underlying way of defining a 1477
MetadataStructureDefinition is similar to that used for defining a 1478
DataStructureDefinition. 1479

7.2.2 Class Diagram - Inheritance 1480

ComponentList

VersionableArtefact

MaintainableArtefact

ItemScheme

Item

Component

CodeCategory

CategoryScheme ConceptScheme

Organisation

OrganisationScheme

MetadataAttribute

ReportedAttribute AnnotableArtefact

LocalisedString
label : String
locale : String

Annotation
id : String
title : String
type : String
url : String

0..1 0..*0..1 0..*

InternationalString
(from SDMX-Base)

1

0..*

1

0..*

0..1

0..1

0..1

+text

0..1

NameableArtefact

0..1

+description

0..1

1+name 1

IdentifiableArtefact
urn : urn
uri : Url
id : String

Concept

ReportStructure

MetadataflowDefinition MetadataStructureDefinition

MetadataSet

Codelist

TargetObject
MetadataTarget

ReportPeriodTarget

DimensionDescriptorValuesTarget

IdentifiableObjectTarget

DataSetTarget

ReportingTaxonomy

StructureUsage
Structure

ReportingCategory

 1481
Figure 27: Inheritance class diagram of the Metadata Structure Definition 1482

77

7.2.3 Explanation of the Diagram 1483

7.2.3.1 Narrative 1484
It is important to the understanding of the relationship class diagrams presented in this section 1485
to identify the concrete classes that inherit from the abstract classes. 1486
 1487
The concrete classes in this part of the SDMX metamodel which require to be maintained by 1488
Maintenance Agencies all inherit from MaintainableArtefact. These are: 1489
 1490

• StructureUsage (concrete class is MetadataflowDefinition) 1491

• Structure (concrete class is MetadataStructureDefinition) 1492

These classes also inherit the identity and versioning facets of IdentifiableArtefact, 1493
NameableArtefact, and VersionableArtefact. 1494
 1495
A Structure contains several lists of components. The concrete classes which inherit from 1496
ComponentList and in themselves are sub components of the 1497
MetadataStructureDefinition are: 1498
 1499

• MetadataTarget 1500

• ReportStructure 1501

ComponentList contains Components. The classes that inherit from Component are: 1502
 1503

• Sub Classes of TargetObject 1504

• MetadataAttribute 1505

7.3 Metadata Structure Definition 1506

7.3.1 Introduction 1507
The diagrams and explanations in the rest of this section show how these concrete classes 1508
are related so as to support the functionality required. 1509

7.3.2 Structures Already Described 1510
The MetadataStructureDefinition makes use of the following ItemScheme structures 1511
either as explicit concrete classes in the model, or as possible lists which comprise the value 1512
domain of a TargetObject. 1513
 1514

• CategoryScheme 1515

• ConceptScheme 1516

• Codelist 1517

• OrganisationScheme 1518

• Reporting Taxonomy 1519

78

7.3.3 Class Diagram – Relationship 1520

Facet

DimensionDescriptorValuesTarget

DataSetTarget

ReportPeriodTarget

IdentifiableObjectTarget
objectType : IdentifiableObjectType

ItemScheme

Representation
(from SDMX-Base)

0..*

1

+nonEnumerated
0..*

1

0..1

+enumerated

0..1

MetadataflowDefinition

TargetObject

0..10..1

localRepresentation

MetadataStructureDefinition

0..*

1

0..*

1

/structure

MetadataTarget

1..*1..*

/grouping

1..*1..*

componentsExtendedFacet

Codelist

ReportStructure

1..*

1

1..*

1

/grouping

1..*

+reportFor

1..*

Representation
(from SDMX-Base)

0..*
+nonEnumerated

0..*

{Metadata Attribute}

0..1

+enumerated

0..1

Concept

0..10..1

coreRepresentation

MetadataAttribute
isPresentational : Boolean
minoccurs : Integer
maxOccurs : Integer

0..*
+child

0..*

/hierarchy

+parent

1

1..*

1

1..*

/components

0..10..1

/localRepresentation

11

/conceptIdentity

ConstraintContentTarget
objectType : AttachmentConstraint

 1521
Figure 28: Relationship class diagram of the Metadata Structure Definition 1522

7.3.4 Explanation of the Diagram 1523

7.3.4.1 Narrative 1524
In brief a MetadataStructureDefinition (MSD) defines: 1525
 1526

• The MetadataTarget which defines the components (TargetObject) and their 1527
Representation which are valid for this MetadataStructureDefinition, and 1528
which are the metadata target object of one or more ReportStructure 1529

• The ReportStructures comprising the MetadataAttributes that can be 1530
associated with the object type identified in the referenced MetadataTargets, and 1531
hierarchical structure of the attributes 1532

79

The MetadataTarget comprises one or more TargetObjects. The combination of 1533
TargetObjects identifies a specific object type to which metadata can be attached in a 1534
MetadataSet. 1535
 1536
The TargetObject is one of the following: 1537
 1538

• DimensionDescriptorValuesTarget - this allows the specification of a full or 1539
partial key (as used in a dataset) to be specified in a MetadataSet as the target 1540
object 1541

• IdentifiableObjectTarget – this defines a specific object type, which can be any 1542
IdentifiableArtefact 1543

• DataSetTarget – this specifies that the target object is a DataSet 1544

• ReportPeriodTarget - this specifies that the report period must be present in the 1545
MetadataSet 1546

• ConstraintContentTarget – this specifies that target object is the content of an 1547
AttachmentConstraint i.e. the part of the data set or metadata set identified by the 1548
content of an AttachmentConstraint 1549

The valid content of a TargetObject when reported in a MetadataSet is defined in the 1550
Representation. This can be an enumerated representation (i.e. a reference to one of the 1551
sub clases of ItemScheme – these are Codelist, ConceptScheme, 1552
OrganisationScheme, CategoryScheme, or ReportingTaxonomy) or non-1553
enumerated. 1554
 1555
Thus a single MetadataStructureDefinition can be defined for a discrete set of related 1556
object types. For example, a single definition can be constructed to define the metadata that 1557
can be attached to any part of a Data Structure Definition, or that can be attached to 1558
any artefact concerned with the reporting of quality metadata (such as data provider and 1559
(data) category). The MetadataTarget specifies the identification properties of a specific 1560
object type to which metadata can be attached in a MetadataSet. For example, in a 1561
DataStructureDefinition the MetadataTarget might be a Dimension, and therefore 1562
the TargetObjects are those that uniquely identify a Dimension. This will include both the 1563
DataStructureDefinition and the Dimension (both of these are an 1564
IdentifiableArtefact and will use the IdentitifableObjectTarget) as both 1565
TargetObjects are required in order to identify uniquely a Dimension). 1566
 1567
The ReportStructure comprises a set of MetadataAttributes - these can be defined 1568
as a hierarchy. Each MetadataAttribute identifies a Concept that is reported or 1569
disseminated in a MetadataSet (/conceptIdentity) that uses this 1570
MetadataStructureDefinition. Different MetadataAttributes in the same 1571
ReportStructure can use Concepts from different ConceptSchemes. Note that a 1572
MetadataAttribute does not link to a Concept that defines its role in this 1573
MetadataStructureDefinition (i.e. the MetadataAttribute does not play a role). 1574
 1575

80

The MetadataAttribute can be specified as having multiple occurrences and/or specified 1576
as being mandatory (minOccurs=1 or more) or conditional (minOccurs=0). A hierarchical 1577
ReportStructure can be defined by specifying a hierarchy for a MetadataAttribute. 1578
 1579
The ReportStructure is associated to one or more of the MetadataTargets which 1580
specify to which object the MetadataAttributes specified in the ReportStructure are 1581
attached when reported in a MetadataSet. 1582
 1583
It can be seen from this that the specification of the object types to which a 1584
MetadataAttribute can be attached is indirect: the MetadataAttributes are defined in 1585
a ReportStructure which itself is attached to one or more MetadataTarget and the 1586
actual object is identified by the TargetObjects comprising the MetadataTarget. This 1587
gives a flexible mechanism by which the actual object types need not be defined in concrete 1588
terms in the model, but are defined dynamically in the MetadataStructureDefinition, 1589
in much the same way as the keys to which data observation are “attached” in a 1590
DataStructureDefinition. In this way the MetadataStructureDefinition can be 1591
used to define any set of MetadataAttributes and any set of object types to which they 1592
can be attached. 1593
 1594
Each MetadataAttribute can have a Representation specified (using the 1595
/localRepresentation association). If this is not specified in the 1596
MetadataStructureDefinition then the Representation is taken from that defined 1597
for the Concept (the coreRepresentation association). 1598
 1599
The definition of the various types of Representation can be found in the specification of 1600
the Base constructs. Note that if the Representation is non-enumerated then the 1601
association is to the ExtendedFacet (which allows for xhtml as a FacetValueType). If the 1602
Representation is enumerated then is must use a Codelist. 1603
 1604
The MetadataStructureDefinition is linked to a MetadataflowDefinition. The 1605
MetadataflowDefinition does not have any attributes in addition to those inherited from 1606
the Base classes. 1607
 1608

7.3.4.2 Definitions 1609
Class Feature Description

StructureUsage See “SDMX Base”.

Metadataflow
Definition

Inherits from:
StructureUsage

Abstract concept (i.e. the
structure without any
metadata) of a flow of
metadata that providers
will provide for different
reference periods.

 /structure Associates a Metadata
Structure Definition.

81

Class Feature Description

MetadataStructure
Definition

 A collection of metadata
concepts, their structure
and usage when used to
collect or disseminate
reference metadata.

 /grouping An association to a
Metadata Target or
Report Structure.

MetadataTarget Inherits from

ComponentList

A set of components that
define a key of an object
type to which metadata
may be attached.

 /components Associates the Target
Object components that
define the key of the
Metadata Target.

TargetObject Abstract Class

Sub Classes
DimensionDescriptorValues
Target
IdentifiableObjectTarget
DataSetTarget
ReportPeriodTarget

 /localRepresentation Associates a
Representation to the
Target Object that must
be respected when the
object is identified in a
Metadata Set. This may
be enumerated or non-
enumerated.

DimensionDescriptor
ValuesTarget

Inherits from

TargetObject

The target object is the
key of a data series.

IdentifiableObject
Target

Inherits from

TargetObject

The target object is a
specified object type.

 objectType Identifies the object type.

DataSetTarget

Inherits from

TargetObject

The target object is a
Data Set.

82

Class Feature Description

ReportPeriodTarget Inherits from

TargetObject

The target is a report
period. Note that this does
not describe the use of an
object, but rather serves
as a unique metadata key
for metadata reports.
Metadata reports attached
to a particular object may
vary over time, and this
time identifier component
can be used to
disambiguate the reports,
much like the time
dimension disambiguates
observations in a data
series.

ConstraintTarget

Inherits from

TargetObject

The target object is the
data or reference
metadata that is identified
in the content of an
Attachment Constraint.

ReportStructure Inherits from:

ComponentList

Defines a set of concepts
that comprises the
Metadata Attributes to be
reported.

 /components An association to the
Metadata Attributes
relevant to the Report
Structure.

 +reportFor Associates the Metadata
Targets for which this
Report Structure is used.

MetadataAttribute Identifies a Concept for
which a value may be
reported in a Metadata
Set.

 /hierarchy Association to one or
more child Metadata
Attribute.

 /conceptIdentity An association to the
concept which defines the
semantic of the attribute.

83

Class Feature Description

 isPresentational Indication that the
Metadata Attribute is
present for structural
purposes (i.e. it has child
attributes) and that no
value for this attribute is
expected to be reported in
a Metadata Set using this
Report Structure.

 minOccurs
maxOccurs

Specifies how many
occurrences of the
Metadata Attribute may
be reported at this point in
the Metadata Report.

ConceptUsage The use of a Concept as
Metadata Attribute.

 concept Association to a Concept
in a ConceptScheme.

 /localRepresentation Associates a
Representation that
overrides any core
representation specified
for the Concept itself.

Representation The representation of the
Metadata Attribute.

84

7.4 Metadata Set 1610

7.4.1 Class Diagram 1611

 1612
Figure 29: Relationship Class Diagram of the Metadata Set 1613

sh
ow

s
th

e
lin

k
to

th

e
M

et
ad

at
a

S
tru

ct
ur

e
D

ef
in

iti
on

N
on

E
nu

m
er

at
ed

A
ttr

ib
ut

eV
al

ue

XH
TM

LA
ttr

ib
ut

eV
al

ue
va

lu
e

: S
tri

ng

Te
xt

A
ttr

ib
ut

eV
al

ue
te

xt
 :

In
te

rn
at

io
na

lS
tri

ng

O
th

er
N

on
E

nu
m

er
at

ed
A

ttr
ib

ut
eV

al
ue

va
lu

e
: S

tri
ng

Ta
rg

et
O

bj
ec

tV
al

ue

Ta
rg

et
O

bj
ec

t

1

+v
al

ue
Fo

r1

Ta
rg

et
O

bj
ec

tK
ey

1.
.*

+k
ey

V
al

ue
s

1.
.*

M
et

ad
at

aT
ar

ge
t

(fr
om

 M
et

ad
at

a-
S

tru
ct

ur
e-

D
ef

in
iti

on
)

1

+v
al

ue
Fo

r

1
1.

.*
1.

.*

co
m

po
ne

nt
s

R
ep

or
te

dA
ttr

ib
ut

e

0.
.*

+c
hi

ld
0.

.*
+p

ar
en

t

M
et

ad
at

af
lo

w
D

ef
in

iti
on

(fr
om

 M
et

ad
at

a-
S

tru
ct

ur
e-

D
ef

in
iti

on
)

D
at

aP
ro

vid
er

(fr
om

 S
D

M
X

-B
as

e)

M
et

ad
at

aR
ep

or
t

1.
.*+m

et
ad

at
a

1.
.*

1

+a
tta

ch
es

To 1+t
ar

ge
t

M
et

ad
at

aS
tru

ct
ur

eD
ef

in
iti

on
(fr

om
 M

et
ad

at
a-

S
tru

ct
ur

e-
D

ef
in

iti
on

)
0.

.*

1

0.
.*

1/s
tru

ct
ur

e

1.
.*

1.
.*

/g
ro

up
in

g
M

et
ad

at
aA

ttr
ib

ut
e

(fr
om

 M
et

ad
at

a-
S

tru
ct

ur
e-

D
ef

in
iti

on
)

0.
.*

+c
hi

ld
0.

.*

/h
ie

ra
rc

hy

+p
ar

en
t

+v
al

ue
Fo

r

M
et

ad
at

aS
et

re
po

rti
ng

B
eg

in
 :

D
at

e
re

po
rti

ng
E

nd
 :

D
at

e
va

lid
Fr

om
 :

D
at

e
va

lid
To

 :
D

at
e

pu
bl

ic
at

io
nY

ea
r :

 D
at

e
pu

bl
ic

at
io

nP
er

io
d

: D
at

e
se

tId
 :

S
tri

ng
ac

tio
n

: A
ct

io
nT

yp
e

0.
.1

+d
es

cr
ib

ed
B

y
0.

.1

0.
.1

0.
.*

+p
ub

lis
he

dB
y

0.
.1

0.
.*

1.
.*

1.
.*

1
+s

tru
ct

ur
ed

B
y

1
R

ep
or

tS
tru

ct
ur

e
(fr

om
 M

et
ad

at
a-

S
tru

ct
ur

e-
D

ef
in

iti
on

)

1 1.
.*

1 1.
.*

/c
om

po
ne

nt
s1

+d
es

cr
ib

ed
B

y

1

Id
en

tif
ia

bl
eA

rte
fa

ct
R

ef
id

 :
S

tri
ng

st
ru

ct
ur

eT
yp

e
: I

de
nt

ifi
ab

le
O

bj
ec

tT
yp

e
0.

.1

+c
on

ta
in

ed
O

bj
ec

t

0.
.1

M
ai

nt
ai

na
bl

eA
rte

fa
ct

R
ef

ag
en

cy
ID

 :
S

tri
ng

id
 :

S
tri

ng
ve

rs
io

n
: S

tri
ng

S
tru

ct
ur

eR
ef

st
ru

ct
ur

eT
yp

e
: I

de
nt

ifi
ab

le
O

bj
ec

tT
yp

e

11

Ta
rg

et
Id

en
tif

ia
bl

eO
bj

ec
t

11

D
at

aP
ro

vid
er

R
ef

Ta
rg

et
D

at
aS

et
id

 :
S

tri
ng

11

Ta
rg

et
R

ep
or

tP
er

io
d

re
po

rtP
er

io
d

: S
tri

ng

E
nu

m
er

at
ed

A
ttr

ib
ut

eV
al

ue
va

lu
e

: S
tri

ngC
od

e

+v
al

ue
Fo

r

Ta
rg

et
D

at
aK

ey
va

lu
e

: S
tri

ng

Ti
m

eD
im

en
si

on
V

al
ue

tim
eV

al
ue

 :
ob

se
rv

at
io

na
lT

im
eP

er
io

d
op

er
at

or
 :

S
tri

ng
C

om
po

ne
nt

C
om

po
ne

nt
V

al
ue

va
lu

e
: S

tri
ng0.

.*
0.

.*

0.
.*

0.
.*

1
+v

al
ue

Fo
r

1

85

7.4.2 Explanation of the Diagram 1614

7.4.2.1 Narrative 1615
Note that the MetadataSet must conform to the MetadataStructureDefinition 1616
associated to the MetadataflowDefinition for which this MetadataSet is an “instance 1617
of metadata”. Whilst the model shows the association to the classes of the 1618
MetadataStructureDefinition, this is for conceptual purposes to show the link to the 1619
MetadataStructureDefinition. In the actual MetadataSet as exchanged there must, 1620
of course, be a reference to the MetadataStructureDefinition and the 1621
ReportStructure, and optionally a MetadataflowDefinition, but the 1622
MetadataStructureDefinition is not necessarily exchanged with the metadata. 1623
Therefore, the MetadataStructureDefinition classes are shown in the grey areas, as 1624
these are not a part of the MetadataSet itself. 1625
 1626
An organisation playing the role of DataProvider can be responsible for one or more 1627
MetadataSet. 1628
 1629
A MetadataSet comprises one or more MetadataReport, each of which must be for the 1630
same ReportStructure. It references both a MetadataTarget, defined in the 1631
MetadataStructureDefinition, and contains a TargetObjectKey and 1632
ReportedAttributes. 1633
 1634
The identified ReportStructure specifies which MetadataAttributes are expected as 1635
ReportedAttributes. The identified MetadataTarget specifies the expected content of 1636
the TargetObjectKey i.e. it specifies the information required to identify the object for 1637
which the ReportedAttributes are reported. 1638
 1639
The TargetObjectValue can be one of: 1640
 1641

• TargetDataKey – this can contain: 1642
o a SeriesKey (set of dimension values) 1643
o a SeriesKey plus a value or values (giving time range) for the 1644

TimeDimension (TimeDimensionValue) 1645
o a value of values for the TimeDimension 1646

• TargetIdentifiableObject -this identifies any identifiable object (which includes 1647
both Maintainable and Identifiable objects 1648

• TargetDataSet – this identifies a DataSet 1649
• TargetReportPeriod – this specifies the report period for the Report 1650

 1651
A simple text value for the ReportedAttribute uses the 1652
NonEnumeratedAttributeValue sub class of ReportedAttribute whilst a coded value 1653
uses the EnumeratedAttributeValue sub class. 1654
 1655
The NonEnumeratedAttributeValue can be one of: 1656
 1657

• XHTMLAttributeValue – the content is XHTML 1658
• TextAttributeValue – the content is textual and may contain the text in multiple 1659

languages 1660

86

• OtherNonEnumeratedAttributeValue – the content is a string value that must 1661
conform to the Representation specified for the MetadataAttribute in the 1662
MetadataStructureDefinition for the relevant ReportStructure 1663

 1664
The EnumeratedAttributeValue contains a value for a Code specified as the 1665
Representation for the MetadataAttribute in the MetadataStructureDefinition 1666
for the relevant ReportStructure. 1667

7.4.2.2 Definitions 1668
Class Feature Description

MetadataSet Any organised collection
of metadata.

 reportingBegin A specific time period in a
known system of time
periods that identifies the
start period of a report.

 reportingEnd A specific time period in a
known system of time
periods that identifies the
ebd period of a report.

 dataExtractionDate A specific time period that
identifies the date and
time that the data are
extracted from a data
source.

 validFrom Indicates the inclusive
start time indicating the
validity of the information
in the data set.

 validTo Indicates the inclusive
end time indicating the
validity of the information
in the metadata set.

 publicationYear Specifies the year of
publication of the data or
metadata in terms of
whatever provisioning
agreements might be in
force.

 publicationPeriod Specifies the period of
publication of the data or
metadata in terms of
whatever provisioning
agreements might be in
force.

 setId Provides an identification
of the metadata set.

87

Class Feature Description

 action Defines the action to be
taken by the recipient
system (update, replace,
delete)

 +describedBy Associates a
Metadataflow Definition to
the Metadata Set.

 +structuredBy Associates the Metadata
Structure Definition that
defines the structure of
the Metadata Set. Note
that the Metadata
Structure Definition
is the same as that
associated (non-
mandatory) to the
Metadataflow Definition.

 +publishedBy Associates the Data
Provider that
reports/publishes the
metadata.

 +describedBy Reference to the Report
Structure.

MetadataReport A set of values for
Metadata Attributes
defined in a Report
Structure of a Metadata
Structure Definition.

 +attachesTo Associates the object key
to which metadata is to be
attached.

 +target Associates the Metadata
Target that defines the
target object to which the
metadata are to be
associated.

 +metadata Associates the Reported
Attribute values which are
to be associated with the
object or objects identified
by the Target Object Key.

TargetObjectKey Identifies the key of the
object to which the
metadata are to be
attached.

88

Class Feature Description

 +valueFor Associates the Metadata
Target that identifies the
object type and the
component structure of
the Target Object Key.

Note that this is a
conceptual association
showing the link to the
MSD construct.

 +keyValues Associates the Target
Object Values of the
Target Object Key.

TargetObjectValue Abstract class
Sub classes are

TargetDataKey
TargetIdentifiableObject
TargetDataSet
TargetReportPeriod

The key of an individual
object of the type
specified in the Metadata
Target of the Metadata
Structure Definition.

 +valueFor Associates the Target
Object for which this value
is provided.

Note that this is a
conceptual association
showing the link to the
MSD construct.

TargetDataKey Inherits from
TargetObjectValue

The identification of the
components and the
values that form the data
or metadata key.

ComponentValue Collectively contain the
identification of the
components and the
values that form the data
key.

value The key value.

 +valueFor Associates the
Component for which the
value is declared.

TimeDimensionValue Contains identification of
the Time Dimension and
the value.

TargetIdentifiable
Object

Inherits from
TargetObjectValue

Specifies the identification
of an Identifiable object.

89

Class Feature Description

StructureRef Contains the identification
of an Identifiable object.

 structureType The object type of the
target object.

Maintainable
ArtefactRef

Identifiable
ArtefactRef

 Identification of the target
object by means of its
identifier constructs i.e
agency ID, id, version for
Maintainable Object plus,
for Identifiable Object, the
id.

 +containedObject Association to a contained
object in a hierarchy of
Identifiable Objects such
as a Transition in a
Process Step.

TargetDataSet Inherits from
TargetObjectValue

Contains the identification
of a Data Set

TargetReportPeriod Inherits from
TargetObjectValue

Contains the period
covered by the Metadata
Report.

ReportedAttribute Abstract class
Sub classes are:
NonEnumeratedAttributeValue
EnumeratedAttributeValue

The value for a Metadata
Attribute.

 +valueFor Association to the
Metadata Attribute in the
Metadata Structure
Definition that identifies
the Concept and allowed
Representation for the
Reported Attribute.

Note that this is a
conceptual association
showing the link to the
MSD construct. The
syntax for the Reported
Attribute will state, in
some form, the id of the
Metadata Attribute.

 +child Association to a child
Reported Attribute
consistent with the
hierarchy defined in the
Report Structure for the
Metadata Attribute for
which this child is a
Reported Attribute.

90

Class Feature Description

NonEnumerated
AttributeValue

Inherits from

ReportedAttribute

Sub class:
XHTMLAttributeValue
TextAttributeValue
OtherNonEnumerated
AttributeValue

The content of a Reported
Attribute where this is
textual.

XHTMLAttributeValue This contains XHTML.

 value The string value of the
XHTML.

TextAttributeValue This value of a Reported
Attribute where the
content is human-
readable text.

 text The string value is text.
This can be present in
multiple language
versions.

OtherNonEnumerated
AttributeValue

 The value of a Reported
Attribute where the
content is not of human-
readable text.

 value A text string that is
consistent in format to
that defined in the
Representation of the
Metadata Attribute for
which this is a Reported
Attribute.

EnumeratedAttribute
Value

Inherits from

MetadataAttributeValue

The content of a Reported
Attribute that is taken from
a Code in a Code list.

 value The Code value of the
Reported Attribute.

91

Class Feature Description

 +value Association to a Code in
the Code list specified in
the Representation of the
Metadata Attribute for
which this Reported
Attribute is the value

Note that this shows the
conceptual link to the Item
that is the value. In reality,
the value itself will be
contained in the
Enumerated Attribute
Value.

 1669

92

8 Hierarchical Code List 1670

8.1 Scope 1671

The Codelist described in the section on structural definitions supports a simple hierarchy of 1672
Codes, and restricts any child Code to having just one parent Code. Whilst this structure is 1673
useful for supporting the needs of the DataStructureDefinition and the 1674
MetadataStructureDefinition, it may not sufficient for supporting the more complex 1675
associations between codes that are often found in coding schemes such as a classification 1676
scheme. Often, the Codelist used in a DataStructureDefinition is derived from a 1677
more complex coding scheme. Access to such a coding scheme can aid applications, such as 1678
OLAP applications or data visualisation systems, to give more views of the data than would be 1679
possible with the simple Codelist used in the DataStructureDefinition. 1680
 1681
Note that a hierarchical code list is not necessarily a balanced tree. A balanced tree is where 1682
levels are pre-defined and fixed, (i.e. a level always has the same set of codes, and any code 1683
has a fixed parent and child relationship to other codes). A statistical classification is an 1684
example of a balanced tree, and the support for a balanced hierarchy is a sub set, and special 1685
case, of the hierarchical code list. 1686
 1687
The principal features of the Hierarchical Codelist are: 1688
 1689

1. A child code can have more than one parent. 1690
 1691

2. There can be more than one code that has no parent (i.e. more than one “root node”). 1692
 1693

3. There may be many hierarchies (or “views”) defined, in terms of the associations 1694
between the codes. Each hierarchy serves a particular purpose in the reporting, 1695
analysis, or dissemination of data. 1696

 1697
4. The levels in a hierarchy can be explicitly defined or they can be implicit: (i.e. they 1698

exist only as parent/child relationships in the coding structure). 1699

93

8.2 Inheritance 1700

8.2.1 Class Diagram 1701

MaintainableArtefact

VersionableArtefact

Hierarchical
Codelist

IdentifiableArtefact

NameableArtefact

Hierarchy Level

HierarchicalCode

 1702
Figure 30: Inheritance class diagram for the Hierarchical Codelist 1703

8.2.2 Explanation of the Diagram 1704

8.2.2.1 Narrative 1705
 1706
The HierarchicalCodelist inherits from MaintainableArtefact and thus has 1707
identification, naming, versioning and a maintenance agency. Both Hierarchy and Level 1708
are a NameableArtefact and therefore have an Id, multi-lingual name and multi-lingual 1709
description. A HierachicalCode is an IdentifiableArtefact. 1710
 1711
It is important to understand that the Codes participating in a HierarchicalCodelist are 1712
not themselves contained in the list – they are referenced from the list and are maintained in 1713
one or more Codelists. This is explained in the narrative of the relationship class diagram 1714
below.. 1715

8.2.2.2 Definitions 1716
The definitions of the various classes, attributes, and associations are shown in the 1717
relationship section below. 1718
 1719

94

8.3 Relationship 1720

8.3.1 Class Diagram 1721

Codelist

Code

1

1..*

1

1..*

/items

Hierarchical
Codelist

HierarchicalCode
validFrom : Date
validTo : Date

0..*

0..1

+child

0..*

+parent

0..1

0..*

1

0..*

+code
1

Hierarchy
hasFormalLevels : Boolean

1..*

+hierarchy

1..*

0..*

+codes

0..*

CodingFormat
codingFormat : Facet

Level
0..1

0..*

+level

0..1

0..*

0..1

+level

0..10..1

+child

0..1
+parent

0..*
+codeFormat

0..*

 1722
Figure 31: Relationship class diagram of the Hierarchical Code Scheme 1723

8.3.2 Explanation of the Diagram 1724

8.3.2.1 Narrative 1725
The basic principles of the HierarchicalCodelist are: 1726
 1727

1. The HierarchicalCodelist is a specification of the Codes comprising the scheme 1728
and the specification of the structure of the Codes in the scheme in terms of one or 1729
more Hierarchy. 1730

 1731
2. The Codes in the HierarchicalCodelist are not themselves a part of the scheme, 1732

rather they are references to Codes in one or more external Codelists. 1733
 1734

95

3. Any individual Code may participate in many Hierarchys, in order to give structure to 1735
the HierarchicalCodelist. 1736

 1737
4. The Hierarchy of Codes is specified in HierarchicalCode. This references the 1738

Code and its immediate child HierarchicalCodes. 1739
 1740
A Hierarchy can have formal levels (hasFormalLevels=”true”). However, even if 1741
hasFormalLevels=”false” the Hierarchy can still have one or more Levels associated 1742
in order to document information about the HierarchicalCodes. 1743
 1744
If hasFormalLevels=”false the Hierarchy is “value based” comprising a hierarchy of 1745
codes with no formal Levels. If hasFormalLevels=”true” then the hierarchy is “level 1746
based” where each Level is a formal Level in the HierarchicalCodeList, such as 1747
those present in statistical classifications. In a “level based” hierarchy each 1748
HierarchicalCode is linked to the Level in which it resides (which must be in the same 1749
Hierarchy as the HierarchicalCode). It is expected that all HierarchicalCodes at the 1750
same hierarchic level defined by the +parent/+child association will be linked to the same 1751
Level. Note that the +level association need only be specified if the HierarchicalCode is at a 1752
different hierarchical level ((implied by the HierarchicalCode parent/child association) than the 1753
actual Level in the level hierarchy (implied by the Level parent/child association). 1754
 1755
[Note that organisations wishing to be compliant with accepted models for statistical 1756
classifications should ensure that the Id is the number associated with the Level, where 1757
Levels are numbered consecutively starting with level 1 at the highest Level]. 1758
 1759
The Level may have CodingFormat information defined (e.g. coding type at that level). 1760
 1761

8.3.2.2 Definitions 1762
 1763
Class Feature Description

HierarchicalCode
list

Inherits from:

MaintainableArtefact

An organised collection of
codes that may participate
in many parent/child
relationships with other
Codes in the scheme, as
defined by one or more
Hierarchy of the scheme.

 +hierarchy Association to Hierarchies
of Codes.

Hierarchy Inherits from:

NameableArtefact

A classification structure
arranged in levels of detail
from the broadest to the
most detailed level.

96

Class Feature Description

 hasFormalLevels If “true” this indicates a
hierarchy where the
structure is arranged in
levels of detail from the
broadest to the most
detailed level.

If “false” this indicates a
hierarchy structure where
the items in the hierarchy
have no formal level
structure.

 +codes Association to the top-
level Hierarchical Codes
in the Hierarchy.

 +level Association to the top
Level in the Hierarchy.

Level Inherits from
NameableArtefact

In a “level based”
hierarchy this describes a
group of Codes which are
characterised by
homogeneous coding,
and where the parent of
each Code in the group is
at the same higher level
of the Hierarchy.

In a “value based’
hierarchy this describes
information about the
HierarchicalCodes at the
specified nesting level.

 +codeFormat Association to the Coding
Format.

 +child Association to a child
Level of Level.

CodingFormat Specifies format
information for the codes
at this level in the
hierarchy such as whether
the codes at the level are
alphabetic, numeric or
alphanumeric and the
code length.

HierarchicalCode A hierarchic structure of
code references.

 validFrom Date from which the
construct is valid

97

Class Feature Description

 validTo Date from which construct
is superseded.

 +code Association to the Code
that is used at the specific
point in the hierarchy.

 +child Association to a child
Code in the hierarchy.

 +level

Association to a Level
where levels have been
defined for the Hierarchy.

Code The Code to be used at
this point in the hierarchy.

 /items Association to the Code
list containing the Code.

Codelist The Code list containing
the Code.

 1764

98

9 Structure Set and Mappings 1765

9.1 Scope 1766

A StructureSet allows components in one structure to be mapped to components in 1767
another structure of the same type. In this context the term “structure” is used loosely to 1768
include types of ItemScheme, types of Structure, and types of StructureUsage. The 1769
allowable structures that can be mapped, and the components that can be mapped within 1770
these structures are: 1771
 1772
Structure Type Component type
Codelist Code
Category Scheme Category
Concept Scheme Concept
Organisation Scheme Organisation – this allows mapping any

type of Organisation to any type of
Organisation (e.g. a Data Provider to an
Organisation Unit)

Hierarchical Codelist Hierachical Code to Code or vice-versa
Data Structure Definition Dimension, Measure Dimension, Time

Dimension. Data Attribute, Primary
Measure

Metadata Structure Definition Target Object, Metadata Attribute
Dataflow Definition None
Metadataflow Definition None
 1773
The StructureSet can contain one or more “maps” and can define related structures (via 1774
the association +relatedStructure) which group related DataStructureDefinitions, 1775
MetadataStructureDefinitions, DataflowDefinintions, 1776
MetadataflowDefinintions. 1777

99

9.2 Structure Set 1778

9.2.1 Class Diagram – Inheritance 1779

ComponentMap OrganisationMap

OrganisationSchemeMap

MaintainableArtefact

StructureMap

CategoryMap

CategorySchemeMap

ItemAssociation

ItemSchemeMap

ConceptMap

ConceptSchemeMap

StructureSet

CodeMap

CodelistMap

ReportingCategoryMap

ReportingTaxonomyMap

NameableArtefact

HybridCodeMap

HybridCodelistMap

AnnotableArtefact

 1780
Figure 32: Inheritance Class Diagram of the Structure Set 1781

100

9.2.2 Class Diagram – Relationship 1782
 1783

MaintainableArtefact

ItemSchemeMapHybridCodeListMap

DataStructureDefinition

DataflowDefinition

MetadataStructureDefinition

MetadataflowDefinition

Structure
(from SDMX-Base)

StructureSet
0..1

0..*

0..1

+relatedStructure

0..*

0..*
+itemSchemeMap

0..*0..*0..*

StructureUsage
(from SDMX-Base) 0..*

+relatedStructureUsage

0..*

StructureMap

1

+sourceStructure

1

1

+targetStructure

1

0..*
+map

0..*

1

+sourceStructureUsage

1

1

+targetStructureUsage

1

note that the source
and the target must
be of the same type
e.g. Data Structure
Definition

 1784
Figure 33: Relationship Class diagram of the Structure Set 1785

9.2.3 Explanation of the Diagram 1786

9.2.3.1 Narrative 1787
The StructureSet is a MaintainableArtefact. It can contain: 1788
 1789

1. A set of references to concrete sub-classes of Structure and StructureUsage 1790
(DataStructureDefinition, MetadataStructureDefinition, 1791
DataflowDefinition or MetadataflowDefinition) to indicate that a 1792
relationship exists between them. For example there may be a group of 1793
DataStructureDefinition which, together, form the definition of a cube, each 1794
DataStructureDefinition defining a part of the cube. 1795

2. A set of StructureMaps which define which components of one structure are 1796
equivalent to those in another in a ComponentMap. 1797

3. A set of ItemSchemeMaps which define the mapping between two concrete classes of 1798
ItemScheme, and the mapping of the Items in these schemes, such as the mapping 1799
of Codes in two Codelists.. 1800

4. A set of HybridCodelistMaps which define the mapping between a Codelist and 1801
a HierachicalCodelist. 1802

 1803
The StructureMap references two Structures or StructureUsages. In concrete terms 1804
these references will be to DataStructureDefinitions, 1805
MetadataStructureDefinitions, DataflowDefinitions or 1806
MetadataflowDefinitions. 1807

101

9.2.3.2 Definitions 1808
Class Feature Description

StructureSet Inherits from
MaintainableArtefact

A maintainable collection
of structural maps that link
components together in a
source/target relationship
where there is a semantic
equivalence between the
source and the target
components.

 +relatedStructure Association to a set of
Data Structure Definitions
and Metadata Structure
Definitions.

 +relatedStructureUsage Association to a set of
Dataflow Definition and
Metadataflow Definition.

 +map Association to Structure
Map.

 +itemSchemeMap Association to Item
Scheme Map

StructureMap Inherits from
NameableArtefact

Links a source and target
structure where there is a
semantic equivalence
between the source and
the target structures.

 sourceStructure Association to the source
Structure.

 targetStructure Association to the target
Structure which must be
of the same type as the
source Structure.

 sourceStructureUsage Association to the source
Structure Usage.

 targetStructureUsage Association to the target
Structure Usage which
must be of the same type
as the source Structure
Usage.

102

9.3 Structure Map 1809

9.3.1 Class Diagram 1810

ToTextFormat
textFormat : FacetType
toValueType : ToValueType

ToValueType
name : String
description : String
id : String

<<enumeration>>

RepresentationMapping

Component

SchemeMap

ComponentMap
alias : String
preferredLanguage : String

0..1
+contentMap

0..1

1+source1

1
+target

1

ItemSchemeMap
alias : String

11

StructureMap
isExtension : Boolean
alias : String

1..*

1

+map 1..*

1

StructureSet

0..*
+itemSchemeMap

0..*

0..*+map 0..*

 1811
Figure 34: Class diagram of the Structure Map 1812

9.3.2 Explanation of the Diagram 1813

9.3.2.1 Narrative 1814
The StructureMap contains a set of ComponentMaps, each one indicating equivalence 1815
between Components of the referenced Structure. ComponentMap has a 1816
RepresentationMapping which can be one of the concete classes of ItemSchemeMap 1817

103

(e.g. for a Dimension this would be a CodelistMap) or ToTextFormat which takes values: 1818
id, name, description. This instructs mapping tools to use the id, name or description of a 1819
coded component to determine equivalence with an uncoded component's value. 1820
 1821
An example of a ComponentMap is linking the source Component that is a Dimension in the 1822
source DataStructureDefinition (identified in the StructureMap) to the equivalent 1823
target Component that is a Dimension in the target DataStructureDefinition). 1824
 1825

9.3.2.2 Definitions 1826
Class Feature Description

StructureMap Inherits from
NameableArtefact

Links a source and target
structure where there is a
semantic equivalence
between the source and
the target structures.

 alias An alternate identification
of the map, that allows the
relation of multiple maps
to be expressed by the
sharing of this value.

 +map Association to the
Component Map.

ComponentMap Inherits from
AnnotableArtefact

Links a source and target
Component where there
is a semantic equivalence
between the source and
the target Components.

 alias An alternate identification
of the map, that allows the
relation of multiple maps
to be expressed by the
sharing of this value.

 preferredLanguage Specifies the language to
use for the content of the
To Text Format option of
RepresentationMap

 +source Association to the source
Component.

 +target Association to the target
Component.

 +contentMap Association to the
constructs that map the
content of the
Components – this will be
either one of sub classes
of Item Scheme or a
mapping to text.

104

Class Feature Description

Representation
Mapping

AbstractClass

Sub classes:

SchemeMap
ToTextFormat

Defines the mapping of
the content of the source
Component to the content
of the target Component.

SchemeMap Inherits from

RepresentationMapping

Associates an Item
Scheme Map

ToTextFormat Inherits from

RepresentationMapping

Defines the text format

 textFormat Text format type.

 toValueType Identifies the construct to
be taken from the Item of
the source Component
when mapping the
content of the source
Component to the content
of the target Component.

ToValueType Enumeration of the
construct in the Item.

9.4 Item Scheme Map 1827

9.4.1 Context 1828
The ItemSchemeMap is used to associate the Items in two different ItemSchemes. This is a 1829
generic mechanism that can be used to map Items. Specific models exist for mapping 1830
schemes where there is a semantic equivalence between Items in the ItemScheme. The 1831
model supports the mapping of any two ItemSchemes of the same type. These are: 1832
 1833

• ConceptScheme 1834

• CategoryScheme 1835

• OrganisationScheme 1836

• Codelist 1837

• ReportingTaxonomy 1838

105

9.4.2 Class Diagram 1839

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

0..*0..*items

ItemSchemeMap

11

source

11

target

ItemAssociation

11

source

11

target

0..1 1..*0..1 1..*

ItemAssociation

CategoryScheme

CategorySchemeMap

11

/source

11

/target

CategoryMap

1

0..*

1

0..*

/itemAssociation

Category
11

/target

11

/source

The concrete classes in the
ItemSchemeAssociation
restrict the mapping to
schemes and items of the
same type (e.g. a code list
and its codes must be
mapped to another code list
and its codes)

OrganisationScheme

OrganisationSchemeMap

11

/source

11

/target

OrganisationMap

1

0..*

1

0..*

/itemAssociation

Organisation
11

/source

11

/target

ConceptScheme

ConceptSchemeMap

11

/source

11

/target

ConceptMap

1

0..*

1

0..*

/itemAssociation

Concept
11

/source

11

/target

Codelist

CodelistMap

11

/source

11

/target

Code

CodeMap
0..*0..*

/itemAssociation

11

/source

11

/target

ReportingCategory

ReportingTaxonomy

ReportingCategoryMap

11

/source

11

/target

ReportingTaxonomyMap

11

/target

11

/source

0..*0..*

Whilst these classes are
abstract the agency/id/version
is sufficient to enable the
identification of the scheme
type and so the individual
schemes do not have individual
classes to structure the
mapping.

 1840
Figure 35: Class diagram of the Item Scheme Map 1841

9.4.3 Explanation of the Diagram 1842

9.4.3.1 Narrative 1843
Both the ItemSchemeMap and the ItemAssociation inherit from NameableArtefact. 1844
 1845
Each of ConceptSchemeMap, CategorySchemeMap, CodelistMap and 1846
OrganisationSchemeMap, ReportingTaxonomyMap provides a mechanism for 1847
specifying semantic equivalence between the items (Concept, Category,Code, 1848
Organisation, ReportingCategory) in the scheme. Note that any type of 1849
OrganisationScheme and Organisation can be mapped (e.g. an Agency in an 1850
AgencyScheme can be mapped to an OrganisationUnit in an 1851
OrganisationUnitScheme). 1852

 1853
Each scheme map identifies a +source and +target scheme whose content is to be 1854
mapped. Note that many schemes can be joined together via a set of pair-wise mappings. The 1855
ConceptMap, CategoryMap, CodelistMap, OrganisationMap, and 1856
ReportingTaxonomyMap denotes which Concepts, Categorys, Codes, Organisations, 1857
and ReportingCategorys are semantically equivalent and a shared alias can be specified 1858
to refer to a set of mapped concepts to facilitate querying. 1859

9.4.3.2 Definitions 1860
Class Feature Description

ItemSchemeMap Inherits from Associates two Item
Schemes

106

Class Feature Description

 NameableArtefact

Sub Classes

ConceptSchemeMap
CategorySchemeMap
CodelistMap
OrganisationSchemeMap
ReportingTaxonomyScheme
Map

 source Association to the source
Item Scheme.

 target Association to the target
Item Scheme.

 ItemAssociation Association to the Item
Association.

ItemAssociation Inherits from
AnnotableArtefact

Sub Classes

ConceptMap
CategoryMap
CodeMap
OrganisationMap
ReportingCategoryMap

 source Association to the source
Item.

 target Association to the target
Item.

ConceptSchemeMap Inherits from
ItemSchemeMap

Associates a source and
target Concept Scheme

 /source Association to the source
Concept Scheme.

 /target Association to the target
Concept Scheme.

ConceptMap Inherits from
ItemAssociation

Associates a source and
target Concept.

 /source Association to the source
Concept.

 /target Association to the target
Concept.

CodelistMap Inherits from
ItemSchemeMap

Associates a source and
target Code list.

 /source Association to the source
Code list.

 /target Association to the target
Code list.

107

Class Feature Description

CodeMap Inherits from
ItemAssociation

Associates a source and
target Code.

 /source Association to the source
Code.

 /target Association to the target
Code.

CategorySchemeMap Inherits from
ItemSchemeMap

Associates a source and
target Category Scheme.

 /source Association to the source
Category Scheme.

 /target Association to the target
Category Scheme.

CategoryMap Inherits from
ItemAssociation

Associates a source and
target Category.

 /source Association to the source
Category.

 /target Association to the target
Category.

OrganisationSchemeMap Inherits from
ItemSchemeMap

Associates a source and
target Organisation
Scheme.

 /source Association to the source
Organisation Scheme.

 /target Association to the target
Organisation Scheme.

OrganisationMap Inherits from
ItemAssociation

Associates a source and
target Organisation.

 /source Association to the source
Organisation.

 /target Association to the target
Organisation.

ReportingTaxonomyMap Inherits from
ItemSchemeMap

Associates a source and
target Reporting
Taxonomy.

 /source Association to the source
Reporting Taxonomy.

 /target Association to the target
Reporting Taxonomy.

ReportingCategoryMap Inherits from
ItemAssociation

Associates a source and
target Reporting
Category.

 /source Association to the source
Reporting Category.

 /target Association to the target
Reporting Category.

108

9.5 Hybrid Codelist Map 1861

9.5.1 Class Diagram 1862

SourceHierarchicalCodelist

HierarchicalCodelist
11

TargetHierarchicalCodelist

11Hierarchy HierarchicalCode

SourceHierarchicalCode

HierarchicalCodeReference

1
+hierarchy

1 1
+codeAssociation

1

11

TargetHierarchicalCode

11

TargetCode

Code
11

SourceCode

11

SourceCodelist

Codelist

11

TargetCodelist

11

SourceCodeMap
TargetCodeMap

SourceList TargetList

StructureSet

HybridCodeMap
alias : String

1+source 1 1+target 1

HybridCodelistMap
alias : String

1+source 1 1
+target

1

0..*0..*

1..*
+hybridCodeMap

1..*

 1863
Figure 36: Class diagram of the Hybrid Codelist Map 1864

9.5.2 Explanation of the Diagram 1865

9.5.2.1 Narrative 1866
The HybridCodelistMap maps the content of a Codelist and a 1867
HierachicalCodelist. It contains a mapping of the codes in the two schemes 1868
(HybridCodeMap). The HybridCodeMap maps either a Code or HierachicalCode to a 1869
Code or HierarchicalCode. The HierarchicalCode is identified by a combination of the 1870
Hierarchy and the HierarchicalCode. 1871
 1872

9.5.2.2 Definitions 1873
Class Feature Description

HybridCodelist
Map

Inherits from
NameableArtefact

Associates a Codelist and
a Hierarchical Codelist.

 alias An alternate identification
of the map, that allows
the relation of multiple
maps to be expressed by
the sharing of this value.

 +source Association to the source
List.

 +target Association to the target
List.

109

Class Feature Description

 +hybridCodeMap Association to the set of
Hybrid Code Maps in the
Hybrid Codelist Map.

SourceList Abstract Class

Sub classes
SourceCodelist
SourceHierarchical
Codelist

TargetList Abstract Class

Sub classes
TargetCodelist
TargetHierarchical
Codelist

SourceCodelist Identifies the Codelist
where this is the source
of the map.

TargetCodelist Identifies the Codelist
where this is the target of
the map.

SourceHierarchical
Codelist

 Identifies the Hierarchical
Codelist where this is the
source of the map.

TargetHierarchical
Codelist

 Identifies the Hierarchical
Codelist where this is the
target of the map.

HybridCodeMap Inherits from
AnnotableArtefact

Associates the source
and target codes in
Hybrid Codelist Map.

 +source Associates the Source
Code Map.

 +target Associates the Target
Code Map.

SourceCodeMap Abstract Class

Sub classes
SourceCode
SourceHierarchical
Code

TargetCodeMap Abstract Class

Sub classes
TargetCode
TargetHierarchical
Code

SourceCode Identifies the Code where
this is the source of the
map.

110

Class Feature Description

TargetCode Identifies the Code where
this is the target of the
map.

SourceHierarchical
Code

 Identifies the Hierarchical
Code where this is the
source of the map

TargetHierarchical
Code

 Identifies the Hierarchical
Code where this is the
target of the map.

HierarchicalCode
Reference

 References both the
Hierarchy and the
Hierarchical Code in a
Hierarchical Codelist.

 +hierarchy
+codeAssociation

Associates the
Hierarchical Code in the
Hierarchy of the
Hierarchical Codelist.

 1874

111

10 Constraints 1875

10.1 Scope 1876
The scope of this section is to describe the support in the metamodel for specifying both the 1877
access to and the content of a data source. The information may be stored in a resource such 1878
as a registry for use by applications wishing to locate data and metadata which is available via 1879
the Internet. The Constraint is also used to specify a sub set of a Codelist which may used as 1880
a partial code list which is relevant in the context of the artefact to which the Constraint is 1881
attached e.g. Data Structure Definition, Dataflow, Provision Agreement. 1882
 1883
Note that in this metamodel the term data source refers to both data and metadata sources, 1884
and data provider refers to both data and metadata providers. 1885
 1886
A data source may be a simple file of data or metadata (in SDMX-ML format), or a database or 1887
metadata repository. A data source may contain data for many data or metadataflows (called 1888
DataflowDefinition, and MetadataflowDefinition in the model), and the 1889
mechanisms described in this section allow an organisation to specify precisely the scope of 1890
the content of the data source where this data source is registered (SimpleDataSource, 1891
QueryDataSource). 1892
 1893
The DataflowDefinition and MetadataflowDefinition, themselves may be 1894
specified as containing only a sub set of all the possible keys that could be derived from a 1895
DataStructureDefinition or MetadataStructureDefinition. 1896
 1897
These specifications are called Constraint in this model. 1898

10.2 Inheritance 1899

10.2.1 Class Diagram of Constrainable Artefacts - Inheritance 1900

DataStructureDefinition

ConstrainableArtefact

DataflowDefinition

DataSet

QueryDatasource ProvisionAgreementSimpleDatasource

RestDatasource WebServiceDatasource

MetadataflowDefinition

MetadataStructureDefinition

MetadataSet

DataProvider

0..*

0..1

references

0..*

0..1

references

 1901
Figure 37: Inheritance class diagram of constrainable and provisioning artefacts 1902

10.2.2 Explanation of the Diagram 1903

10.2.2.1 Narrative 1904
Any artefact that is derived from ConstrainableArtefact can have constraints defined. 1905
The artefacts that can have constraint metadata attached are: 1906
 1907

• DataflowDefinition 1908

• ProvisionAgreement 1909

112

• DataProvider – this is restricted to release calendar 1910

• MetadataflowDefinition 1911

• DataStructureDefinition 1912

• MetadataStructureDefinition 1913

• DataSet 1914

• SimpleDataSource – this is a registered data source where the 1915
registration references the actual DataSet or MetadataSet 1916

• QueryDataSource 1917

Note that, because the Constraint can specify a sub set of the component values implied 1918
by a specific Structure (such a specific DataStructureDefinition or specific 1919
MetadataStructureDefinition), the ConstrainableArtefacts must be associated 1920
with a specific Structure. Therefore, whilst the Constraint itself may not be linked directly 1921
to a DataStructureDefinition or MetadataStructureDefinition, the artefact that 1922
it is constraining will be linked to a DataStructureDefinition or 1923
MetadataStructureDefinition. As a Data Provider does not link to any one specific 1924
DSD or MSD the type of information that can be contained in a Constraint linked to a 1925
DataProvider is restricted to Release Calendar. 1926

10.3 Constraints 1927

10.3.1 Relationship Class Diagram – high level view 1928

ConstraintRoleType
allowableContent : String
actualContent : String

<<enumeration>>

MaintainableArtefact

ConstraintRole
role : ConstraintRoleType

DataKeySet
isIncuded : Boolean

Constraint

1..*
+role

1..*

1

0..*

1

+dataContentKeys

0..*

MetdataKeySet
isIncuded : Boolean

0..*
+metadataContentKeys

0..*

AttachmentConstraint

ConstrainableArtefact

0..*

0..*

0..*

0..*

attachment

ReferencePeriod
startDate : Date
endDate : Date

ReleaseCalendar
periodicity : Duration
offset : Duration
tolerance : Duration

CubeRegion
isIncuded : Boolean

ContentConstraint

0..*

0..*

0..*

0..*

content

0..1

1

+availableDates

0..1

1

0..10..1

0..*
+dataContentRegion

0..*

MetadataTargetRegion
isIncluded : Boolean

0..*
+metadataContentRegion

0..*

 1929
Figure 38: Relationship class diagram showing constraint metadata 1930

113

10.3.2 Explanation of the Diagram 1931

10.3.2.1 Narrative 1932
The constraint mechanism allows specific constraints to be attached to a 1933
ConstrainableArtefact. With the exception of ReferencePeriod, and 1934
ReleaseCalendar these constraints specify a sub set of the total set of values or keys that 1935
may be present in any of the ConstrainableArtefacts. 1936
 1937
For instance a DataStructureDefinition specifies, for each Dimension, the list of 1938
allowable code values. However, a specific DataflowDefinition that uses the 1939
DataStructureDefinition may contain only a sub set of the possible range of keys that 1940
is theoretically possible from the DataStructureDefinition definition (the total range of 1941
possibilities is sometimes called the Cartesian product of the dimension values). In addition to 1942
this, a DataProvider that is capable of supplying data according to the 1943
DataflowDefinition has a ProvisionAgreement, and the DataProvider may also 1944
wish to supply constraint information which may further constrain the range of possibilities in 1945
order to describe the data that the provider can supply. It may also be useful to describe the 1946
content of a datasource in terms of the KeySets or CubeRegions contained within it. 1947
 1948
A ConstrainableArtefact can have two types of Constraint: 1949
 1950

1. ContentConstraint – is used solely as a mechanism to specify either the available 1951
set of keys (DataKeySet, MetadataKeySet) or set of component values 1952
(CubeRegion, MetadatTargetRegion) in a DataSource such as a DataSet or a 1953
database (QueryDatasource), or the allowable keys that can be constructed from a 1954
DataStructureDefinition. Multiple such constraints may be present for a 1955
ConstrainableArtefact. For instance, there may be a ContentConstraint 1956
that specifies the values allowed for the ConstrainableArtefact (role is 1957
allowableContent) which can be used for validation or for constructing a partial 1958
code list, whilst another constraint can specify the actual content of a data or 1959
metadata source (role is actualContent). 1960

2. AttachmentConstraint – is used as a mechanism to define slices of the full set of 1961
data and to which metadata can be attached in a Data Set or MetadataSet. These 1962
slices can be defined either as a set of keys (KeySet) or a set of component values 1963
(CubeRegion). There can be many AttachmentConstraints specified for a 1964
specific AttachableArtefact. 1965

 1966
In addition to (DataKeySet, MetadataKeySet, CubeRegion, 1967
MetadataTargetRegion, a Constraint can have a ReferencePeriod defining one of 1968
more date ranges (ValidityPeriod) specifying the time period for which data or metadata 1969
are available in the ConstrainableArtefact and a ReleaseCalendar specifying when 1970
data are released for publication or reporting. 1971
 1972

114

10.3.3 Relationship Class Diagram – Detail 1973

MaintainableArtefact

DataKeySet
isIncuded : Boolean

TimeDimensionValue
timeValue : observationalTimePeriod
operator : String

DataKey
isIncuded : Boolean

1..*+keys 1..*

ComponentValue
value : String

0..*0..*

1..*+keyValue1..*

Component
1

+valueFor

1

Constraint

0..*

1

+dataContentKeys

0..*

1

MetadataKey
isIncuded : Boolean

1..*+keyValue1..*

ComponentListMetdataKeySet
isIncuded : Boolean

0..*

+metadataContentKeys

0..*

1..*
+keys

1..*

11

MetadataTarget

 1974
Figure 39: Constraints - Key Set Constraints 1975

115

Dimension

DataAttribute

Constraint

MetadataAttribute

ReportStructure

TargetObject

MetadataTarget

MemberValue
value : String
cascadeValues : Boolean

MeasureDimensionTimeDimension

ComponentList

ContentConstraint

Component
(from SDMX-Base)

CubeRegion
isIncuded : Boolean

0..*

+dataContentRegion

0..*
MetadataTargetRegion

isIncluded : Boolean 11

0..*
+metadataContentRegion

0..*

SelectionValue

MemberSelection
isIncuded : Boolean

1
+valuesFor

1

0..*

0..1

+member 0..*

0..1

0..*
+member

0..*

0..*0..*

TimeRangeValue

BeforePeriod
isInclusive : Boolean
period : ObservationalTimePeriod

AfterPeriod
isInclusive : Boolean
period : ObservationalTimePeriod

StartPeriod
isInclusive : Boolean
period : ObservationalTimePeriod

EndPeriod
isInclusive : Boolean
period : ObservationalTimePeriod

RangePeriod

1+start 1 1+end 1

DimensionComponent

 1976
Figure 40: Constraints - Cube Region and Metadata Target Region Constraints 1977

10.3.3.1 Explanation of the Diagram 1978
A Constraint is a MaintainableArtefact. 1979
 1980
A Constraint has a choice of two ways of specifying value sub sets: 1981
 1982

1. As a set of keys that can be present in the DataSet (DataKeySet) or MetadataSet 1983
(MetadataKeySet). Each DataKey or MetadataKey specifies a number of 1984
ComponentValues each of which reference a Component (e.g. Dimension, 1985
TargetObject). Each ComponentValue is a value that may be present for a 1986
Component of a structure when contained in a DataSet or MetadataSet. The 1987
MetadataKeySet must also identify the MetadataTarget as there can be many of 1988
each of these in a MetadataStructureDefinition. For the DataKeySet the 1989
equivalent identification is not necessary as there is only one DimensionDescriptor 1990
and one AttributeDescriptor. 1991

2. As a set of CubeRegions or MetadataTaregetRegions each of which defines a 1992
“slice” of the total structure (MemberSelection) in terms of one or more 1993
MemberValues that may be present for a Component of a structure when contained 1994
in a DataSet or MetadataSet. 1995

The difference between (1) and (2) above is that in (1) a complete key is defined whereas in 1996
(2) above the “slice” defines a list of possible values for each of the Components but does 1997
not specify specific key combinations. In addition, in (1) the association between Component 1998

116

and DataKeyValue or MetadataKeyValue is constrained to the components that comprise 1999
the key or identifier, whereas in (2) it can contain other component types (such as attributes). 2000
The value in ComponentValue.value and MemberValue.value must be consistent with 2001
the Representation declared for the Component in the DataStructureDefinition or 2002
MetadataStructureDefinition. Note that in all cases the “operator” on the value is 2003
deemed to be “equals”. Furthermore, it is possible in a MemberValue to specify that child 2004
values (e.g. child codes) are included in the constraint by means of the cascadeValues 2005
attribute. 2006
 2007
It is possible to define for the DataKeySet, DataKey, MetadataKeySet, MetadataKey, 2008
CubeRegion, MetadataTargetRegion, and MemberSelection whether the set is 2009
included (isIncluded = “true”) or excluded (isIncluded = ”false”) from the constraint 2010
definition. This attribute is useful if, for example, only a small sub-set of the possible values 2011
are not included in the set, then this smaller sub-set can be defined and excluded from the 2012
constraint. Note that if the child construct is “included: and the parent construct is “excluded” 2013
then the child construct is included in the list of constructs that are “excluded”. 2014

10.3.3.2 Definitions 2015
Class Feature Description

Constrainable
Artefact

Abstract Class
Sub classes are:

DataflowDefinition
Metadataflow
Definition
ProvisionAgreement
DataProvider
QueryDatasource
SimpleDatasource
DataStructure
Definition
MetadataStructure
Definition

An artefact that can have
Constraints specified.

 content Associates the metadata
that constrains the
content to be found in a
data or metadata source
linked to the
Constrainable Artefact.

 attachment Associates the metadata
that constrains the valid
content of a Constrainable
Artefact to which
metadata may be
attached.

117

Class Feature Description

Constraint Inherits from

MaintainableArtefact

Abstract class. Sub classes
are:

AttachmentConstraint
ContentConstraint

Specifies a sub set of the
definition of the allowable
or actual content of a data
or metadata source that
can be derived from the
Structure that defines
code lists and other valid
content.

 +availableDates Association to the time
period that identifies the
time range for which data
or metadata are available
in the data source.

 +dataContentKeys Association to a sub set of
Data Key Sets (i.e. value
combinations) that can be
derived from the definition
of the structure to which
the Constrainable Artefact
is linked.

 +metadataContentKeys Association to a sub set of
Metdata Key Sets (i.e.
value combinations) that
can be derived from the
definition of the Structure
to which the
Constrainable Artefact is
linke

 +dataContentRegion Association to a sub set of
component values that
can be derived from the
Data Structure Definition
to which the
Constrainable Artefact is
linked.

 +metadataContentRegion Association to a sub set of
component values that
can be derived from the
Metadata Structure
Definition to which the
Constrainable Artefact is
linked.

118

Class Feature Description

ContentConstraint Inherits from
Constraint

Defines a Constraint in
terms of the content that
can be found in data or
metadata sources linked
to the Constrainable
Artefact to which this
constraint is associated.

 +role Association to the role
that the Constraint plays

ConstraintRole Specifies the way the type
of content of a Constraint
in terms of its purpose.

 allowableContent The Constraint contains a
specification of the valid
sub set of the Component
values or keys.

 actualContent The Constraint contains a
specification of the actual
content of a data or
metadata source in terms
of the Component values
or keys in the source.

Attachment
Constraint

Inherits from
Constraint

Defines a Constraint in
terms of the combination
of component values that
may be found in a data
source, and to which a
Constrainable Artefact
may be associated in a
structure definition.

DataKeySet A set of data keys.

 isIncluded Indicates whether the
Data Key Set is included
in the constraint definition
or excluded from the
constraint definition.

 +keys Association to the Data
Keys in the set.

MetadataKeySet A set of metadata keys.

 isIncluded Indicates whether the
Metadata Key Set is
included in the constraint
definition or excluded
from the constraint
definition.

 +keys Association to the
Metadata Keys in the set.

119

Class Feature Description

DataKey The values of a key in a
data set.

 isIncluded Indicates whether the
Data Key is included in
the constraint definition or
excluded from the
constraint definition.

 +keyValue Associates the
Component Values that
comprise the key.

MetadataKey The values of a key in a
metadata set.

 isIncluded Indicates whether the
Metdadata Key is
included in the constraint
definition or excluded
from the constraint
definition.

 +keyValue Associates the
Component Values that
comprise the key.

ComponentValue The identification of and
value of a Component of
the key (e.g. Dimension)

 value The value of Component

 +valueFor Association to the
Component (e.g.
Dimension) in the
Structure to which the
Constrainable Artefact is
linked.

TimeDimensionValue The value of the Time
Dimension component.

 timeValue The value of the time
period.

120

Class Feature Description

 operator Indicates whether the
specified value represents
and exact time or time
period, or whether the
value should be handled
as a range.

A value of greaterThan or
greaterThanOrEqual
indicates that the value is
the beginning of a range
(exclusive or inclusive,
respectively).

A value of lessThan or
lessThanOrEqual
indicates that the value is
the end or a range
(exclusive or inclusive,
respectively).

In the absence of the
opposite bound being
specified for the range,
this bound is to be treated
as infinite (e.g. any time
period after the beginning
of the provided time
period for
greaterThanOrEqual)

CubeRegion A set of Components and
their values that defines a
sub set or “slice” of the
total range of possible
content of a data structure
to which the
Constrainable Artefact is
linked.

 isIncluded Indicates whether the
Cube Region is included
in the constraint definition
or excluded from the
constraint definition.

 +member Associates the set of
Components that define
the sub set of values.

121

Class Feature Description

MetadataTargetRegion A set of Components and
their values that defines a
sub set or “slice” of the
total range of possible
content of a metadata
structure to which the
Constrainable Artefact is
linked.

 isIncluded Indicates whether the
Metadata Target Region
is included in the
constraint definition or
excluded from the
constraint definition.

 +member Associates the set of
Components that define
the sub set of values.

MemberSelection A set of permissible
values for one component
of the axis.

 isIncluded Indicates whether the
Member Selection is
included in the constraint
definition or excluded
from the constraint
definition.

 +valuesFor Association to the
Component in the
Structure to which the
Constrainable Artefact is
linked, which defines the
valid Representation for
the Member Values.

SelectionValue Abstract class. Sub classes
are:
MemberValue
TimeRangeValue

A collection of values for
the Member Selections
that, combined with other
Member Selections,
comprise the value
content of the Cube
Region.

MemberValue Inherits from
SelectionValue

A single value of the set
of values for the Member
Selection.

 value A value of the member.

122

Class Feature Description

 cascadeValues Indicates that the child
nodes of the member are
included in the Member
Selection (e.g. child
codes)

TimeRangeValue Inherits from
SelectionValue

Abstract Class

Concrete Classes

BeforePeriod
AfterPeriod
RangePeriod

A time value or values
that specifies the date or
dates for which the
constrained selection is
valid.

BeforePeriod Inherits from

TimeRangeValue

The period before which
the constrained selection
is valid.

 isInclusive Indication of whether the
date is inclusive in the
period.

AfterPeriod Inherits from

TimeRangeValue

The period after which the
constrained selection is
valid.

 isInclusive Indication of whether the
date is inclusive in the
period.

RangePeriod The start and end periods
in a date range.

 +start Association to the Start
Period.

 +end Association to the End
Period.

StartPeriod Inherits from

TimeRangeValue

The period from which the
constrained selection is
valid.

 isInclusive Indication of whether the
date is inclusive in the
period.

EndPeriod Inherits from

TimeRangeValue

The period to which the
constrained selection is
valid.

 isInclusive Indication of whether the
date is inclusive in the
period.

123

Class Feature Description

ReferencePeriod A set of dates that
constrain the content that
may be found in a data or
metadata set.

 startDate The start date of the
period.

 endDate The end date of the
period.

ReleaseCalendar The schedule of
publication or reporting of
the data or metadata

 periodicity The time period between
the releases of the data or
metadata

 offset Interval between January
1st and the first release of
the data

 tolerance Period after which the
data or metadata may be
deemed late.

124

11 Data Provisioning 2016

11.1 Class Diagram 2017

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

0..*

1

+child
0..*

hierarchy

+parent

1 0..*0..*

items

this is registry
based metadata

SimpleDatasource

DataSet
(from Data-Set)

MetadataSet
(f rom Metadata-Set)

0..*
0..1refere...

0..* 0..1refere...

DataflowDefinition
(f rom DataStructureDef inition)

DataStructureDefinition
(f rom DataStructureDef inition)

0..*

1

0..*

1

/structure

MetadataflowDefinition
(f rom Metadata-Structure-Def inition)

MetadataStructureDefinition
(f rom Metadata-Structure-Def inition)

0..*

1

0..*

1

/structure

Structure
(from SDMX-Base)

StructureUsage
(from SDMX-Base)

1

0..*

1

0..*

structure

Registration
(f rom Registry)

ProvisionAgreement

0..*

1

0..*

1

controlledBy

DataProvider
(f rom SDMX-Base) 0..*1 0..*1

hasAgreement

Versionab leArtefact
(from SDMX-Base)

MaintainableArtefact
(from SDMX-Base)

CategoryScheme
(f rom Category -Scheme)

Category
(f rom Category -Scheme)

1..*1..*

/items

1 0..*

+parent

1

/hierarchy

+child
0..*

Categorisation
(f rom Category -Scheme)

0..*1 0..*

+categorisedBy

1

Identifiab leArtefact
(from SDMX-Base)

0..*

1

0..*

+categorisedArtefact

1
NameableArtefact

(from SDMX-Base)

Datasource
1..*0..1 1..*0..1

0..1

0..1

+source

0..1

0..1

URL
<<datatype>>

1

1

1
+sourceURL

1

WebServicesDatasource
1 1

+WSDLURL

1 1

RESTDatasource SOAPDatasource

 2018
Figure 41: Relationship and inheritance class diagram of data provisioning 2019

125

11.2 Explanation of the Diagram 2020

11.2.1 Narrative 2021
This sub model links many artefacts in the SDMX-IM and is pivotal to an SDMX metadata 2022
registry, as all of the artefacts in this sub model must be accessible to an application that is 2023
responsible for data and metadata registration or for an application that requires access to the 2024
data or metadata. 2025
 2026
Whilst a registry contains all of the metadata depicted on the diagram above, the classes in 2027
the grey shaded area are specific to a registry based scenario where data sources (either 2028
physical data and metadata sets or databases and metadata repositories) are registered. 2029
More details on how these classes are used in a registry scenario can be found in the SDMX 2030
Registry Interface document. (Section 5 of the SDMX Standards). 2031
 2032
A ProvisionAgreement links the artefact that defines how data and metadata are 2033
structured and classified (StructureUsage) to the DataProvider, and, by means of a data 2034
or metadata registration, it references the Datasource (this can be data or metadata), 2035
whether this be an SDMX conformant file on a website (SimpleDatasource) or a database 2036
service capable of supporting an SDMX query and responding with an SDMX conformant 2037
document (QueryDatasource). 2038
 2039
The StructureUsage, which has concrete classes of DataflowDefinition and 2040
MetadataflowDefinition identifies the corresponding DataStructureDefinition or 2041
MetadataStructureDefinition, and, via Categorisation, can link to one or more 2042
Category in a CategoryScheme such as a subject matter domain scheme, by which the 2043
StructureUsage can be classified. This can assist in drilling down from subject matter 2044
domains to find the data or metadata that may be relevant. 2045
 2046
The SimpleDatasource links to the actual DataSet or MetadataSet on a website (this is 2047
shown on the diagram as a dependency called “references”). The sourceURL is obtained 2048
during the registration process of the DataSet or the MetadataSet. Additional information 2049
about the content of the SimpleDatasource is stored in the registry in terms of a 2050
ContentConstraint (see 10.3) for the Registration. 2051
 2052
The QueryDatasource is an abstract class that represents a data source which can 2053
understand an SDMX-ML query (SOAPDatasource) or RESTful query (RESTDatasource) 2054
and respond appropriately. Each of these different Datasources inherit the dataURL from 2055
Datasource, and the QueryDatasource has an additional URL to locate a WSDL or WADL 2056
document to describe how to access it. All other supported protocols are assumed to use the 2057
SimpleDatasource URL. 2058
 2059
The diagram below shows in schematic way the essential navigation through the SDMX 2060
structural artefacts that eventually link to a data or metadata registration. 2061
 2062

126

 2063
Figure 42: Schematic of the linking of structural metadata to data and metadata registration 2064

11.2.2 Definitions 2065
 2066
Class Feature Description

StructureUsage Abstract class:
Sub classes are:

DataflowDefinition
MetadataflowDefinition

This is described in the
Base.

 controlledBy Association to the
Provision Agreements
that comprise the
metadata related to the
provision of data.

DataProvider See Organisation
Scheme.

 hasAgreement Association to the
Provision Agreements for
which the provider
supplies data or
metadata.

127

Class Feature Description

 +source Association to a data or
metadata source which
can process a data or
metadata query.

ProvisionAgreement Links the Data Provider to
the relevant Structure
Usage (e.g. Dataflow
Definition or Metadataflow
Definition) for which the
provider supplies data or
metadata The agreement
may constrain the scope
of the data or metadata
that can be provided, by
means of a Constraint.

 +source Association to a data or
reference metadata
source which can process
a data or metadata query.

Datasource Abstract class:

Sub classes are:

SimpleDatasource

WebServices
Datasource

Identification of the
location or service from
where data or reference
metadata can be
obtained.

 +sourceURL The URL of the data or
reference metadata
source (a file or a web
service).

SimpleDatasource An SDMX-ML data set
accessible as a file at a
URL.

WebServices
Datasource

Abstract class:
Inherits from:

Datasource

Sub classes are:

RESTDatasource

SOAPDatasource

A data or reference
metadata source which
can process a data or
metadata query.

128

Class Feature Description

RESTDatasource A data or reference
metadata source that is
accessible via a RESTful
web services interface.

SOAPDatasource A data or reference
metadata source that
conforms to a SOAP web
service interface.

 +WSDLURL Association to the URL of
the Web Service
Definition Language
(SOAP) or Web Service
Application Language
(REST) profile of the web
service.

Registration This is not detailed here
but is shown as the link
between the SDMX-IM
and the Registry Service
API. It denotes a data or
metadata registration
document.

12 Process 2067

12.1 Introduction 2068
In any system that processes data and reference metadata the system itself is a series of 2069
processes and in each of these processes the data or reference metadata may undergo a 2070
series of transitions. This is particularly true of its path from raw data to published data and 2071
reference metadata. The process model presented here is a generic model that can capture 2072
key information about these stages in both a textual way and also in a more formalised way by 2073
linking to specific identifiable objects, and by identifying software components that are used. 2074

129

12.2 Model – Inheritance and Relationship view 2075

12.2.1 Class Diagram 2076

1

The process step can
reference any identifiable
object as input or output.

MaintainableArtefact

Process

Computation
localId : String
softwarePackage : String
softwareLanguage
softwareVersion : String

Transition
localId : String

InternationalString

+condition

1

ProcessStep

0..*
+step

0..*

0..1
+computation

0..1

0..*+child 0..*+parent
1

+target
10..*

+transition
0..*

+source

ProcessArtefact
localID : String

0..*

+output

0..* 0..*

+input

0..*
IdentifiableArtefact

11

+artefact

AnnotableArtefact

InternationalString
1..*

+description
1..*

 2077
Figure 43: Inheritance and Relationship class diagram of Process and Transitions 2078

12.2.2 Explanation of the Diagram 2079

12.2.2.1 Narrative 2080
The Process is a set of hierarchical ProcessSteps. Each ProcessStep can take zero or 2081
more IdentifiableArtefacts as input and output. Each of the associations to the input 2082
and output IdentifiableArtefacts (ProcessArtefact) can be assigned a localID. 2083
 2084
The computation performed by a ProcessStep is optionally described by a Computation, 2085
which can identify the software used by the ProcessStep and can also be described in 2086
textual form (+description) in multiple language variants. The Transition describes the 2087
execution of ProcessSteps from +source ProcessStep to +target ProcessStep 2088
based on the outcome of a +condition that can be described in multiple language variants. 2089
 2090

12.2.2.2 Definitions 2091
Class Feature Description

130

Class Feature Description

Process Inherits from
Maintainable

A scheme which defines
or documents the
operations performed on
data or metadata in order
to validate data or
metadata to derive new
information according to a
given set of rules.

 +step Associates the Process
Steps.

ProcessStep Inherits from
IdentifiableArtefact

A specific operation,
performed on data or
metadata in order to
validate or to derive new
information according to a
given set of rules.

 +input Association to the
Process Artefact that
identifies the objects
which are input to the
Process Step.

 +output Association to the
Process Artefact that
identifies the objects
which are output from the
Process Step.

 +child Association to child
Processes that combine
to form a part of this
Process.

 +computation Association to one or
more Computations.

 +transition Association to one or
more Transitions.

Computation Describes in textual form
the computations involved
in the process.

 localId Distinguishes between
Computations in the same
Process.

 softwarePackage
softwareLanguage
softwareVersion

Information about the
software that is used to
perform the computation.

 +description Text describing or giving
additional information
about the computation.
This can be in multiple
language variants.

131

Class Feature Description

Transition Inherits from
IdentifiableArtefact

An expression in a textual
or formalised way of the
transformation of data
between two specific
operations (Processes)
performed on the data.

 +target Associates the Process
Step that is the target of
the Transition.

 +condition Associates a textual
description of the
Transition.

ProcessArtefact Identification of an object
that is an input to or an
output from a Process
Step.

 +artefact Association to an
Identifiable Artefact that is
the input to or the output
from the Process Step.

 2092

132

13 Transformations and Expressions 2093

13.1 Scope 2094
The purpose of this package in the model is to be able to track the derivation of data. It is 2095
similar in concept to lineage in data warehousing – i.e. how data are derived. 2096
 2097
The functionality of this part of the model allows the identification and documentation of the 2098
calculations performed (these will normally be automated, program calculations), as well as 2099
defining structures that support a syntax neutral expression “grammar” that can specify the 2100
operations at a granular level such that a program can “read” the metadata and compose the 2101
expression required in whatever computer language is appropriate. 2102
 2103
This part of the model also allows specifying and documenting the coherence rules among 2104
different data, expressing them as calculations (for example, the coherence rule “a + b = c” 2105
can be written as “a + b - c = 0” and checked through the calculation “if((a + b – c) = 0, then 2106
…, else …)”). 2107
 2108
It should be noted that the model represented below is similar in scope and content to the 2109
Expression metamodel in the Common Warehouse Metamodel (CWM) developed by the 2110
Object Management Group (OMG). This specification can be found at: 2111
 2112
http://www.omg.org/cwm 2113
 2114
The Expression metamodel is described in Section 8.5 of Part 1 of the CWM specification. The 2115
class diagram shown below is an interpretation of the CWM Expression metamodel expressed 2116
in the base classes of the SDMX-IM. 2117
 2118

133

13.2 Model - Inheritance View 2119

13.2.1 Class Diagram 2120

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

0..*0..*

items

0..*
1

+child
0..*

hierarchy+parent1

ConstantNode
value : String

TransformationScheme

ExpressionNode

Transformation
expression : String

0..*0..*

/items

1..*

+expressionComponent

1..*

Parameter

OperatorNode

0..*

1

+argument

0..*

+parent

1

/hierarchy

OperatorScheme

Operator

1
+output
1 0..*

+input
0..*

1
+operator

1

0..*0..*

/items

IdentifiableArtefact

ReferenceNode

references

 2121
Figure 44: Inheritance and relationship class diagram of transformation classes 2122

13.2.2 Explanation of the Diagram 2123

13.2.2.1 Narrative 2124
There are three type of ItemScheme relevant to this model. 2125
 2126

1. A TransformationScheme which comprises one or more Transformations. 2127
2. An OperatorScheme which comprises one or more Operators. 2128
3. An ExpressionNodeScheme scheme which contains one or more 2129

ExpressionNodes.. 2130
 2131
The model presented here is a basic framework which can be used for expressions and 2132
transformations, but requires more work on elaborating its integration into the model and its 2133
actual use within the model. This elaboration will be in a future release of the standard. 2134
 2135
The expression concept in the SDMX-IM takes a functional view of expression trees, resulting 2136
in the ability of relatively few expression node types to represent a broad range of 2137
expressions. Every function or traditional mathematical operator that appears in an expression 2138
hierarchy is represented by the +operator role on the association to Operator which in turn 2139
comprises input and output Parameter. For example, the arithmetic plus operation “a + b” 2140
can be thought of as the function “sum(a, b).” The “sum” is the Operator, and “a” and “b” are 2141

134

its Parameters. A parameter is a generic possible input and output of an operator (e.g. base 2142
and exponent are the parameters of the power operator), while an argument is the specific 2143
value that a parameter takes in a specific calculation (e.g. in the Einstein equation “E = MC2”. 2144
the arguments of the “power” operation are “C” (the base) and “2” (the exponent)).The actual 2145
semantics of a particular function or operation are left to specific tool implementations and are 2146
not captured by the SDMX-IM. 2147
 2148
The hierarchical nature of the SDMX-IM representation of expressions is achieved by the 2149
recursive nature of the OperatorNode association. This association allows the sub-2150
hierarchies within an expression to be treated as actual arguments of their parent nodes. 2151
 2152
The model can be used equally to define data derivations and to define integrity checks (e.g. 2153
the Sum of A+B must equal C). 2154
 2155
Although the model defines the data structures that are used to contain a syntax neutral 2156
expression, the model itself does not specify a syntax neutral expression grammar. 2157
Alternatively, the function can be described in a text form either as an unstructured 2158
explanation of the function, or as a more formal language like BNF2. 2159
 2160
The data structures work as follows: 2161
 2162
The actual basic mathematical functions that need to be performed (e.g. sum, multiply, divide, 2163
assign (=), <, > etc.) are defined as Operators an OperatorScheme. For each Operator 2164
the input and output Parameters, are defined in the Parameter class. 2165
 2166
The calculations are defined as Transformations in a TransformationScheme. A 2167
Transformation is a specific calculation and is specified by means of an expression, which 2168
is obtained by applying one or more Operators in the desired order (for example, in the 2169
textual form, using parenthesis) and specifying the actual arguments for the Operators’ 2170
Parameters; the result of the whole expression is assigned (=) to the model item that is the 2171
result of the Transformation (that is “E” in the Einstein equation). A Transformation 2172
operates on existing IdentifiableArtefacts and its result is another 2173
IdentifiableArtefact. A calculated IdentifiableArtefact may be in its turn be an 2174
operand of other Transformations. 2175
 2176
The expression of a Transformation (for example, for the Einstein equation calculus, “E = 2177
M*(C**2)”) may be decomposed in a hierarchy of ExpressionNodes (in the example, “M”, 2178
“C”, “2”, *, **). The ExpressionNode can be a ReferenceNode, a ConstantNode or an 2179
OperatorNode. The ReferenceNode references an identifiable model artefact 2180
(in the example, “M” and “C”). The ConstantNode is by definition a constant value (in the 2181
example “2”). The OperatorNode references an Operator in the OperatorScheme (in the 2182
example *, **). The Transformation has an association to its component 2183
ExpressionNodes. 2184
 2185
The hierarchy of the ExpressionNodes conveys the order in which the operators are applied 2186
in the expression and is obtained by means of the /hierarchy association of the 2187
OperatorNode class, in which the child ExpressionNodes are the arguments of the 2188

2 BNF: Backus Naur Form

135

parent OperatorNode. The child ExpressionNodes must correspond to the formal 2189
parameters of the Operator referenced by the parent OperatorNode in the correct 2190
sequence. The (child) ExpressionNode can be the result of another operation (that is 2191
another OperatorNode) or can be a Constant or can be a reference to an 2192
IdentifiableArtefact (ReferenceNode). All IdentifiableArtefacts in the SDMX-2193
IM have a unique urn comprising the values of the individual objects that identify it. The 2194
structure of this urn is defined in the Registry Specification. An example would be the urn of a 2195
code which comprises the agency:code-list-id.code-id – an actual example is 2196
"urn:sdmx:org.sdmx.infomodel.codelist.Code=TFFS:CL_AREA(1.0).1A". 2197
 2198

13.2.2.2 Definitions 2199
Class Feature Description

Transformation
Scheme

Inherits from
ItemScheme

A scheme which defines
or documents the
transformations required
in order to derive or
validate data from other
data.

Transformation Inherits from
Item

An individual
Transformation.

 +expressionComponent Association to an
Expression Node.

ExpressionNode Abstract class

Sub Classes
ReferenceNode
ConstantNode
OperatorNode

A node in a possible
hierarchy of nodes that
together define or
document an expression.

 /hierarchy Association to child
Expression Nodes

ReferenceNode Inherits from
ExpressionNode

A specific type of
Expression Node that
references a specific
object.

 references Association to the
Identifiable Artefact that is
the referenced object.

ConstantNode Inherits from
ExpressionNode

A specific type of
Expression Node that
contains a constant value.

 value The value of the Constant

OperatorNode Inherits from
ExpressionNode

A specific type of
Expression Node that
references an Operator

 +operator Association to an
Operator that defines the
mathematical operator of
the Operator Node.

136

Class Feature Description

 +arguments Association to
mathematical arguments
of an Operator Node.

OperatorScheme Inherits from
ItemScheme

A scheme which defines
mathematical operators.

Operator Inherits from
Item

The mathematical
operator in an Operator
Scheme.

 +input Association to the input
Parameters of the
Operator

 +output Association to the output
Parameter of the
Operator.

Parameter The input or output of an
Operator.

 2200

137

14 Appendix 1: A Short Guide To UML in the SDMX 2201

Information Model 2202

14.1 Scope 2203
The scope of this document is to give a brief overview of the diagram notation used in UML. 2204
The examples used in this document have been taken from the SDMX UML model. 2205

14.2 Use Cases 2206
In order to develop the data models it is necessary to understand the functions that require to 2207
be supported. These are defined in a use case model. The use case model comprises actors 2208
and use cases and these are defined below. 2209
 2210
The actor can be defined as follows: 2211

“An actor defines a coherent set of roles that users of the system can play when 2212
interacting with it. An actor instance can be played by either an individual or an 2213
external system” 2214

 2215
The actor is depicted as a stick man as shown below. 2216
 2217

Data Publisher

Figure 45 Actor

 2218
The use case can be defined as follows: 2219

“A use case defines a set of use-case instances, where each instance is a sequence of 2220
actions a system performs that yields an observable result of value to a particular 2221
actor” 2222

 2223

Publish Data

Figure 46 Use case

 2224

138

Data Publisher
Publish Data

Figure 47 Actor and use case

 2225

Data Consumer

Metadata
Consumer

Uses Data

Uses Reference Metadata

<<extend>>

Figure 48 Extend use cases

An extend use case is where a use case may be optionally extended by a use case that is 2226
independent of the using use case. The arrow in the association points to he owning use case 2227
of the extension. In the example above the Uses Data use case is optionally extended by the 2228
Uses Metadata use case. 2229

14.3 Classes and Attributes 2230

14.3.1 General 2231
A class is something of interest to the user. The equivalent name in an entity-relationship 2232
model (E-R model) is the entity and the attribute. In fact, if the UML is used purely as a means 2233
of modelling data, then there is little difference between a class and an entity. 2234
 2235

Annotation
name : String
type : String
url : String

Figure 49 Class and its attributes

 2236
Figure 49 shows that a class is represented by a rectangle split into three compartments. The 2237
top compartment is for the class name, the second is for attributes and the last is for 2238
operations. Only the first compartment is mandatory. The name of the class is Annotation, 2239
and it belongs to the package SDMX-Base. It is common to group related artefacts (classes, 2240
use-cases, etc.) together in packages. . Annotation has three “String” attributes – name, 2241

139

type, and url. The full identity of the attribute includes its class e.g. the name attribute is 2242
Annotation.name. 2243
 2244
Note that by convention the class names use UpperCamelCase – the words are 2245
concatenated and the first letter of each word is capitalized. An attribute uses 2246
lowerCamelCase - the first letter of the first (or only) word is not capitalized, the remaining 2247
words have capitalized first letters. 2248

14.3.2 Abstract Class 2249
An abstract class is drawn because it is a useful way of grouping classes, and avoids drawing 2250
a complex diagram with lots of association lines, but where it is not foreseen that the class 2251
serves any other purpose (i.e. it is always implemented as one of its sub classes). In the 2252
diagram in this document an abstract class is depicted with its name in italics, and coloured 2253
white. 2254
 2255

AbstractClass ConcreteClass

Figure 50 Abstract and concrete classes

14.4 Associations 2256

14.4.1 General 2257
In an E-R model these are known as relationships. A UML model can give more meaning to 2258
the associations than can be given in an E-R relationship. Furthermore, the UML notation is 2259
fixed (i.e. there is no variation in the way associations are drawn). In an E-R diagram, there 2260
are many diagramming techniques, and it is the relationship in an E-R diagram that has many 2261
forms, depending on the particular E-R notation used. 2262

14.4.2 Simple Association 2263

DataflowDefinition

DataStructureDefinition

/structure

0..*

1

Figure 51 A simple association

 2264
Here the DataflowDefinition class has an association with the 2265
DataStructureDefinition class. The diagram shows that a DataflowDefinition can 2266
have an association with only one DataStructureDefinition (1) and that a 2267

140

DataStructureDefinition can be linked to many DataflowDefinitions (0..*). The 2268
association is sometimes named to give more semantics. 2269
 2270
In UML it is possible to specify a variety of “multiplicity” rules. The most common ones are: 2271
 2272

• Zero or one (0..1) 2273

• Zero or many (0..*) 2274

• One or many (1..*) 2275

• Many (*) 2276

• Unspecified (blank) 2277

14.4.3 Aggregation 2278

Dimension

GroupDimensionDescriptor
isAttachmentConstraint : Boolean

0..*

0..*

0..*

0..*

 2279
Figure 52: A simple aggregate association 2280

 2281

Process

0..*

ProcessStep

Figure 53 A composition aggregate association

 2282
An association with an aggregation relationship indicates that one class is a subordinate class 2283
(or a part) of another class. In an aggregation relationship. There are two types of aggregation, 2284
a simple aggregation where the child class instance can outlive its parent class, and a 2285
composition aggregation where 2286

141

the child class's instance lifecycle is dependent on the parent class's instance lifecycle. In the 2287
simple aggregation it is usual, in the SDMX Information model, for this association to also be a 2288
reference to the associated class. 2289

14.4.4 Association Names and Association-end (role) Names 2290
It can be useful to name associations as this gives some more semantic meaning to the model 2291
i.e. the purpose of the association. It is possible for two classes to be joined by two (or more) 2292
associations, and in this case it is extremely useful to name the purpose of the association. 2293
Figure 54 shows a simple aggregation between CategoryScheme and Category called 2294
/items (this means it is derived from the association between the super classes – in this case 2295
between the ItemScheme and the Item, and another between Category called /hierarchy. 2296
 2297

Item

0..*

1

+child
0..*

+parent

1

hierarchy

ItemScheme

1..*1..*

items

Figure 54 Association names and end names

Furthermore, it is possible to give role names to the association-ends to give more semantic 2298
meaning – such as parent and child in a tree structure association. The role is shown with “+” 2299
preceding the role name (e.g. in the diagram above the semantic of the association is that a 2300
Item can have zero or one parent Items and zero or many child Item). 2301
 2302
In this model the preference has been to use role names for associations between concrete 2303
classes and association names for associations between abstract classes. The reason for 2304
using an association name is often useful to show a physical association between two sub 2305
classes that inherit the actual association between the super class from which they inherit. 2306
This is possible to show in the UML with association names, but not with role names. This is 2307
covered later in “Derived Association”. 2308
 2309
Note that in general the role name is given at just one end of the association. 2310

14.4.5 Navigability 2311
Associations are, in general, navigable in both directions. For a conceptual data model it is not 2312
necessary to give any more semantic than this. 2313
 2314
However, UML allows a notation to express navigability in one direction only. In this model this 2315
“navigability” feature has been used to represent referencing. In other words, the class at the 2316
navigable end of the association is referenced from the class at the non-navigable end. This is 2317
aligned, in general, with the way this is implemented in the XML schemas. 2318

142

A B

Figure 55 One way association

Here it is possible to navigate from A to B, but there is no implementation support for 2319
navigatation from B to A using this association. 2320

14.4.6 Inheritance 2321
Sometimes it is useful to group common attributes and associations together in a super class. 2322
This is useful if many classes share the same associations with other classes, and have many 2323
(but not necessarily all) attributes in common. Inheritance is shown as a triangle at the super 2324
class. 2325
 2326

Dimension

IdentifiableArtefact
urn : urn
uri : Url
id : String

Component

Figure 56 Inheritance

Here the Dimension is derived from Component which itself is derived from 2327
IdentifiableArtefact. Both Component and IdentifiableArtefact are abstract 2328
superclasses. The Dimension inherits the attributes and associations of all of the the super 2329
classes in the inheritance tree. Note that a super class can be a concrete class (i.e. it exists in 2330
its own right as well as in the context of one of its sub classes), or an abstract class. 2331

14.4.7 Derived association 2332
It is often useful in a relationship diagram to show associations between sub classes that are 2333
derived from the associations of the super classes from which the sub classes inherit. A 2334
derived association is shown by “/” preceding the association name e.g. /name. 2335
 2336

143

Category

CategoryScheme

1..*

/items

1..*

1 0..*

/hierarchy

+parent
1

+child

0..*

Item

0..*

1

+child
0..*

+parent

1

hierarchy

ItemScheme

1..*1..*

items

Figure 57 Derived associations

 2337

	1 Introduction
	1.1 Related Documents
	1.2 Modelling Technique and Diagrammatic Notes
	1.3 Overall Functionality
	1.3.1 Information Model Packages
	1.3.2 Version 1.0
	1.3.3 Version 2.0/2.1

	2 Actors and Use Cases
	2.1 Introduction
	2.2 Use Case Diagrams
	2.2.1 Maintenance of Structural and Provisioning Definitions
	2.2.1.1 Use cases
	2.2.1.2 Explanation of the Diagram
	2.2.1.3 Definitions

	2.2.2 Publishing and Using Data and Reference Metadata
	2.2.2.1 Use Cases
	2.2.2.2 Explanation of the Diagram
	2.2.2.3 Definitions

	3 SDMX Base Package
	3.1 Introduction
	3.2 Base Structures - Identification, Versioning, and Maintenance
	3.2.1 Class Diagram
	3.2.2 Explanation of the Diagram
	3.2.2.1 Narrative
	3.2.2.2 Definitions

	3.3 Basic Inheritance
	3.3.1 Class Diagram– Basic Inheritance from the Base Inheritance Classes
	3.3.2 Explanation of the Diagram
	3.3.2.1 Narrative

	3.4 Data Types
	3.4.1 Class Diagram
	3.4.2 Explanation of the Diagram
	3.4.2.1 Narrative

	3.5 The Item Scheme Pattern
	3.5.1 Context
	3.5.2 Class Diagram
	3.5.3 Explanation of the Diagram
	3.5.3.1 Narratve
	3.5.3.2 Definitions

	3.6 The Structure Pattern
	3.6.1 Context
	3.6.2 Class Diagrams
	3.6.3 Explanation of the Diagrams
	3.6.3.1 Narrative
	3.6.3.2 Definitions
	3.6.3.3 Representation Constructs

	4 Specific Item Schemes
	4.1 Introduction
	4.2 Inheritance View
	4.3 Codelist
	4.3.1 Class Diagram
	4.3.2 Explanation of the Diagram
	4.3.2.1 Narrative
	4.3.2.2 Definitions

	4.4 Concept Scheme and Concepts
	4.4.1 Class Diagram - Inheritance
	4.4.2 Explanation of the Diagram
	4.4.3 Class Diagram - Relationship
	4.4.4 Explanation of the diagram
	4.4.4.1 Narrative
	4.4.4.2 Definitions

	4.5 Category Scheme
	4.5.1 Context
	4.5.2 Class diagram - Inheritance
	4.5.3 Explanation of the Diagram
	4.5.3.1 Narrative

	4.5.4 Class diagram - Relationship
	4.5.4.1 Definitions

	4.6 Organisation Scheme
	4.6.1 Class Diagram
	4.6.2 Explanation of the Diagram
	4.6.2.1 Narrative
	4.6.2.2 Definitions

	4.7 Reporting Taxonomy
	4.7.1 Class Diagram
	4.7.2 Explanation of the Diagram
	4.7.2.1 Narrative
	4.7.2.2 Definitions

	5 Data Structure Definition and Dataset
	5.1 Introduction
	5.2 Inheritance View
	5.2.1 Class Diagram
	5.2.2 Explanation of the Diagram
	5.2.2.1 Narrative

	5.3 Data Structure Definition – Relationship View
	5.3.1 Class Diagram
	5.3.2 Explanation of the Diagrams
	5.3.2.1 Narrative
	5.3.2.2 Definitions

	5.4 Data Set – Relationship View
	5.4.1 Context
	5.4.2 Class Diagram
	5.4.3 Explanation of the Diagram
	5.4.3.1 Narrative – Data Set
	5.4.3.2 Definitions

	6 Cube
	6.1 Context
	6.2 Support for the Cube in the Information Model

	7 Metadata Structure Definition and Metadata Set
	7.1 Context
	7.2 Inheritance
	7.2.1 Introduction
	7.2.2 Class Diagram - Inheritance
	7.2.3 Explanation of the Diagram
	7.2.3.1 Narrative

	7.3 Metadata Structure Definition
	7.3.1 Introduction
	7.3.2 Structures Already Described
	7.3.3 Class Diagram – Relationship
	7.3.4 Explanation of the Diagram
	7.3.4.1 Narrative
	7.3.4.2 Definitions

	7.4 Metadata Set
	7.4.1 Class Diagram
	7.4.2 Explanation of the Diagram
	7.4.2.1 Narrative
	7.4.2.2 Definitions

	8 Hierarchical Code List
	8.1 Scope
	8.2 Inheritance
	8.2.1 Class Diagram
	8.2.2 Explanation of the Diagram
	8.2.2.1 Narrative
	8.2.2.2 Definitions

	8.3 Relationship
	8.3.1 Class Diagram
	8.3.2 Explanation of the Diagram
	8.3.2.1 Narrative
	8.3.2.2 Definitions

	9 Structure Set and Mappings
	9.1 Scope
	9.2 Structure Set
	9.2.1 Class Diagram – Inheritance
	9.2.2 Class Diagram – Relationship
	9.2.3 Explanation of the Diagram
	9.2.3.1 Narrative
	9.2.3.2 Definitions

	9.3 Structure Map
	9.3.1 Class Diagram
	9.3.2 Explanation of the Diagram
	9.3.2.1 Narrative
	9.3.2.2 Definitions

	9.4 Item Scheme Map
	9.4.1 Context
	9.4.2 Class Diagram
	9.4.3 Explanation of the Diagram
	9.4.3.1 Narrative
	9.4.3.2 Definitions

	9.5 Hybrid Codelist Map
	9.5.1 Class Diagram
	9.5.2 Explanation of the Diagram
	9.5.2.1 Narrative
	9.5.2.2 Definitions

	10 Constraints
	10.1 Scope
	10.2 Inheritance
	10.2.1 Class Diagram of Constrainable Artefacts - Inheritance
	10.2.2 Explanation of the Diagram
	10.2.2.1 Narrative

	10.3 Constraints
	10.3.1 Relationship Class Diagram – high level view
	10.3.2 Explanation of the Diagram
	10.3.2.1 Narrative

	10.3.3 Relationship Class Diagram – Detail
	10.3.3.1 Explanation of the Diagram
	10.3.3.2 Definitions

	11 Data Provisioning
	11.1 Class Diagram
	11.2 Explanation of the Diagram
	11.2.1 Narrative
	11.2.2 Definitions

	12 Process
	12.1 Introduction
	12.2 Model – Inheritance and Relationship view
	12.2.1 Class Diagram
	12.2.2 Explanation of the Diagram
	12.2.2.1 Narrative
	12.2.2.2 Definitions

	13 Transformations and Expressions
	13.1 Scope
	13.2 Model - Inheritance View
	13.2.1 Class Diagram
	13.2.2 Explanation of the Diagram
	13.2.2.1 Narrative
	13.2.2.2 Definitions

	14 Appendix 1: A Short Guide To UML in the SDMX Information Model
	14.1 Scope
	14.2 Use Cases
	14.3 Classes and Attributes
	14.3.1 General
	14.3.2 Abstract Class

	14.4 Associations
	14.4.1 General
	14.4.2 Simple Association
	14.4.3 Aggregation
	14.4.4 Association Names and Association-end (role) Names
	14.4.5 Navigability
	14.4.6 Inheritance
	14.4.7 Derived association

