

SDMX STANDARDS PART 5

SDMX REGISTRY SPECIFICATION:
LOGICAL FUNCTIONALITY AND

LOGICAL INTERFACES

VERSION 2.1

July 2011

© SDMX 2011
http://www.sdmx.org/

Table of Contents
1 Introduction ...2

2 Scope and Normative Status..3

3 Scope of the SDMX Registry/Repository ..3

3.1 Objective ...3

3.2 Structural Metadata ...4

3.3 Registration ...5

3.4 Notification...5

3.5 Discovery...5

4 SDMX Registry/Repository Architecture...6

4.1 Architectural Schematic...6

4.2 Structural Metadata Repository...7

4.3 Provisioning Metadata Repository...7

5 Registry Interfaces and Services...8

5.1 Registry Interfaces ..8

5.2 Registry Services ..8

5.2.1 Introduction ..8

5.2.2 Structure Submission and Query Service..8

5.2.3 Structure Query Service ..9

5.2.4 Data and Reference Metadata Registration Service10

5.2.5 Data and Reference Metadata Discovery..11

5.2.6 Subscription and Notification ...11

5.2.7 Registry Behaviour ..12

6 Identification of SDMX Objects ..13

6.1 Identification, Versioning, and Maintenance..13

6.1.1 Identification, Naming, Versioning, and Maintenance Model.......................14

6.2 Unique identification of SDMX objects ..16

6.2.1 Agencies ..16

6.2.2 Universal Resource Name (URN)..18

6.2.3 Table of SDMX-IM Packages and Classes..22

6.2.4 URN Identification components of SDMX objects24

7 Implementation Notes...31

7.1 Structural Definition Metadata ...31

7.1.1 Introduction ..31

7.1.2 Item Scheme, Structure ...32

7.1.3 Structure Usage...33

7.2 Data and Metadata Provisioning ...35

7.2.1 Provisioning Agreement: Basic concepts ..35

7.2.2 Provisioning Agreement Model – pull use case...35

7.3 Data and Metadata Constraints...37

7.3.1 Data and Metadata Constraints: Basic Concepts ..37

7.3.2 Data and Metadata Constraints: Schematic ..38

7.3.3 Data and Metadata Constraints: Model ...39

7.4 Data and Metadata Registration..40

7.4.1 Basic Concepts..40

7.4.2 The Registration Request ..40

7.4.3 Registration Response ..43

7.5 Subscription and Notification Service..43

7.5.1 Subscription Logical Class Diagram ..45

7.5.2 Subscription Information ..46

7.5.3 Wildcard Facility...46

7.5.4 Structural Repository Events ...47

7.5.5 Registration Events..47

7.6 Notification...48

7.6.1 Logical Class Diagram...48

7.6.2 Structural Event Component..48

7.6.3 Registration Event Component..49

1

Corrigendum 1

The following problems with the specification dated April 2011 have been rectified as 2
described below. 3

1. Problem 4

Figure 17 - Logical Class Diagram of Registration of Data and Metadata – 5
shows the Provision Agreement as it was identified in version 2.0, and not as 6
it is identified in version 2.1. 7

Rectification 8

Provision Agreement is a Maintainable Artefact at version 2.1 and so the 9
relationship is shown directly to the Provision Agreement class and not 10
indirectly to the Provision Agreement via a ProvisionAgreementRef class. 11

2. Problem 12

Figure 17 - Logical Class Diagram of Registration of Data and Metadata – 13
shows the Registration class without the indexAttributes attribute. 14

Rectification 15

The attribute indexAttribute attribute is added to the Registration class and a 16
description is of its purpose is given in the table at line 916. 17

3. Problem 18

Lines 437 and 648 of the April 2011 document mention that the fixed id for an 19
AgencyScheme is AGENCY_SCHEME whereas it should be AGENCIES. 20

Rectification 21

The reference to AGENCY_SCHEME is changed to AGENCIES. 22

2

1 Introduction 23
The business vision for SDMX envisages the promotion of a “data sharing” model to 24
facilitate low-cost, high-quality statistical data and metadata exchange. Data sharing 25
reduces the reporting burden of organisations by allowing them to publish data once, 26
and let their counterparties “pull” data and related metadata as required. The 27
scenario is based on: 28
 29

• the availability of an abstract information model capable of supporting time-30
series and cross-sectional data, structural metadata, and reference metadata 31
(SDMX-IM) 32

• standardised XML schemas derived from the model (SDMX-ML) 33
• the use of web-services technology (XML, XSD, WSDL, WADL) 34
 35

Such an architecture needs to be well organised, and the SDMX Registry/Repository 36
(SDMX-RR) is tasked with providing structure, organisation, and maintenance and 37
query interfaces for most of the SDMX components required to support the data-38
sharing vision. 39
 40
However, it is important to emphasis that the SDMX-RR provides support for the 41
submission and retrieval of all SDMX structural metadata and provisioning metadata. 42
Therefore, the Registry not only supports the data sharing scenario, but this 43
metadata is also vital in order to provide support for data and metadata 44
reporting/collection, and dissemination scenarios. 45
 46
Standard formats for the exchange of aggregated statistical data and metadata as 47
prescribed in SDMX v2.1 are envisaged to bring benefits to the statistical community 48
because data reporting and dissemination processes can be made more efficient. 49
 50
As organisations migrate to SDMX enabled systems, many XML (and conventional) 51
artefacts will be produced (e.g. Data Structure, Metadata Structure, Code List and 52
Concept definitions (often collectively called structural metadata), XML schemas 53
generated from data and metadata structure definitions, XSLT style-sheets for 54
transformation and display of data and metadata, terminology references, etc.). The 55
SDMX model supports interoperability, and it is important to be able to discover and 56
share these artefacts between parties in a controlled and organized way. 57
 58
This is the role of the registry. 59
 60
With the fundamental SDMX standards in place, a set of architectural standards are 61
needed to address some of the processes involved in statistical data and metadata 62
exchange, with an emphasis on maintenance, retrieval and sharing of the structural 63
metadata. In addition, the architectural standards support the registration and 64
discovery of data and referential metadata. 65
 66
These architectural standards address the ‘how’ rather than the ‘what’, and are 67
aimed at enabling existing SDMX standards to achieve their mission. The 68
architectural standards address registry services which initially comprise: 69
 70

• structural metadata repository 71
• data and metadata registration 72
• query 73

3

The registry services outlined in this specification are designed to help the SDMX 74
community manage the proliferation of SDMX assets and to support data sharing for 75
reporting and dissemination. 76

2 Scope and Normative Status 77
The scope of this document is to specify the logical interfaces for the SDMX registry 78
in terms of the functions required and the data that may be present in the function 79
call, and the behaviour expected of the registry. 80
 81
In this document, functions and behaviours of the Registry Interfaces are described 82
in four ways: 83
 84

• in text 85
• with tables 86
• with UML diagrams excerpted from the SDMX Information Model (SDMX-IM) 87
• with UML diagrams that are not a part of the SDMX-IM but are included here 88

for clarity and to aid implementations (these diagram are clearly marked as 89
“Logical Class Diagram ...”) 90

 91
Whilst the introductory section contains some information on the role of the registry, it 92
is assumed that the reader is familiar with the uses of a registry in providing shared 93
metadata across a community of counterparties. 94
 95
Note that sections 5 and 6 contain normative rules regarding the Registry Interface 96
and the identification of registry objects. Further, the minimum standard for access to 97
the registry is via a REST interface (HTTP or HTTPS), as described in the 98
appropriate sections. The notification mechanism must support e-mail and 99
HTTP/HTTPS protocols as described. Normative registry interfaces are specified in 100
the SDMX-ML specification (Part 03 of the SDMX Standard). All other sections of this 101
document are informative. 102
 103
Note that although the term “authorised user” is used in this document, the SDMX 104
standards do not define an access control mechanism. Such a mechanism, if 105
required, must be chosen and implemented by the registry software provider. 106

3 Scope of the SDMX Registry/Repository 107

3.1 Objective 108
The objective of the SDMX registry/repository is, in broad terms, to allow 109
organisations to publish statistical data and reference metadata in known formats 110
such that interested third parties can discover these data and interpret them 111
accurately and correctly. The mechanism for doing this is twofold: 112
 113

1. To maintain and publish structural metadata that describes the structure and 114
valid content of data and reference metadata sources such as databases, 115
metadata repositories, data sets, metadata sets. This structural metadata 116
enables software applications to understand and to interpret the data and 117
reference metadata in these sources. 118

2. To enable applications, organisations, and individuals to share and to 119
discover data and reference metadata. This facilitates data and reference 120
metadata dissemination by implementing the data sharing vision of SDMX. 121

4

3.2 Structural Metadata 122
Setting up structural metadata and the exchange context (referred to as “data 123
provisioning”) involves the following steps for maintenance agencies: 124
 125

• agreeing and creating a specification of the structure of the data (called a 126
Data Structure Definition or DSD in this document but also known as “key 127
family”) which defines the dimensions, measures and attributes of a dataset 128
and their valid value set 129

• if required, defining a subset or view of a DSD which allows some restriction 130
of content called a “dataflow definition” 131

• agreeing and creating a specification of the structure of reference metadata 132
(Metadata Structure Definition) which defines the attributes and 133
presentational arrangement of a Metadataset and their valid values and 134
content 135

• if required, defining a subset or view of a MSD which allows some restriction 136
of content called a “metadataflow definition” 137

• defining which subject matter domains (specified as a Category Scheme) are 138
related to the Dataflow and Metadataflow Definitions to enable browsing 139

• defining one or more lists of Data Providers (which includes metadata 140
providers) 141

• defining which Data Providers have agreed to publish a given Dataflow and/or 142
Metadataflow Definition - this is called a Provision Agreement 143

 144

 145
Figure 1: Schematic of the Basic Structural Artifacts in the SDMX-IM 146

5

3.3 Registration 147
Publishing the data and reference metadata involves the following steps for a Data 148
Provider: 149
 150

• making the reference metadata and data available in SDMX-ML conformant 151
data files or databases (which respond to an SDMX-ML query with SDMX-ML 152
data). The data and reference metadata files or databases must be web-153
accessible, and must conform to an agreed Dataflow or Metadataflow 154
Definition (Data Structure Definition or Metadata Structure Definition subset) 155

• registering the existence of published reference metadata and data files or 156
databases with one or more SDMX registries 157

 158

 159
Figure 2: Schematic of Registered Data and Metadata Sources in the SDMX-IM 160

3.4 Notification 161
Notifying interested parties of newly published or re-published data, reference 162
metadata or changes in structural metadata involves: 163
 164

• registry support of a subscription-based notification service which sends an 165
email or notifies an HTTP address announcing all published data that meets 166
the criteria contained in the subscription request 167

3.5 Discovery 168
Discovering published data and reference metadata involves interaction with the 169
registry to fulfil the following logical steps that would be carried out by a user 170

6

interacting with a service that itself interacts with the registry and an SDMX-enabled 171
data or reference metadata resource: 172
 173

• optionally browsing a subject matter domain category scheme to find 174
Dataflow Definitions (and hence Data Structure Definitions) and 175
Metadataflows which structure the type of data and/or reference metadata 176
being sought 177

• build a query, in terms of the selected Data Structure Definition or Metadata 178
Structure Definition, which specifies what data are required and submitting 179
this to a service that can query an SDMX registry which will return a list of 180
(URLs of) data and reference metadata files and databases which satisfy the 181
query 182

• processing the query result set and retrieving data and/or reference metadata 183
from the supplied URLs 184
 185

 186
Figure 3: Schematic of Data and Metadata Discovery and Query in the SDMX-IM 187

4 SDMX Registry/Repository Architecture 188

4.1 Architectural Schematic 189
The architecture of the SDMX registry/repository is derived from the objectives stated 190
above. It is a layered architecture that is founded by a structural metadata repository 191

7

which supports a provisioning metadata repository which supports the registry 192
services. These are all supported by the SDMX-ML schemas. Applications can be 193
built on top of these services which support the reporting, storage, retrieval, and 194
dissemination aspects of the statistical lifecycle as well as the maintenance of the 195
structural metadata required to drive these applications. 196
 197

 198
Figure 4: Schematic of the Registry Content and Services 199

4.2 Structural Metadata Repository 200
The basic layer is that of a structural metadata service which supports the lifecycle of 201
SDMX structural metadata artefacts such as Maintenance Agencies, Data Structure 202
Definitions, Metadata Structure Definitions, Provision Agreements, Processes etc. 203
This layer is supported by the Structure Submission and Query Service. 204

Note that the SDMX-ML Submit Structure Request message supports all of the 205
SDMX structural artefacts. The only structural artefacts that are not supported by the 206
SDMX-ML Submit Structure Request are:: 207
 208

• Registration of data and metadata sources 209
• Subscription and Notification 210

 211
Separate registry-based messages are defined to support these artefacts. 212

4.3 Provisioning Metadata Repository 213
The function of this repository is to support the definition of the structural metadata 214
that describes the various types of data-store which model SDMX-conformant 215
databases or files, and to link to these data sources. These links can be specified for 216
a data provider, for a specific data or metadata flow. In the SDMX model this is called 217
the Provision Agreement. 218
 219
This layer is supported by the Data and Metadata Registration Service. 220

8

5 Registry Interfaces and Services 221

5.1 Registry Interfaces 222
The Registry Interfaces are: 223

• Notify Registry Event 224
• Submit Subscription Request 225
• Submit Subscription Response 226
• Submit Registration Request 227
• Submit Registration Response 228
• Query Registration Request 229
• Query Registration Response 230
• Query Subscription Request 231
• Query Subscription Response 232
• Submit Structure Request 233
• Submit Structure Response 234

 235
The registry interfaces are invoked in one of two ways: 236
 237

1. The interface is the name of the root node of the SDMX-ML document 238
2. The interface is invoked as a child element of the RegistryInterface message 239

where the RegistryInterface is the root node of the SDMX-ML document. 240
 241
In addition to these interfaces the registry must support a mechanism for querying for 242
structural metadata. This is detailed in 5.2.2. 243
 244
All these interactions with the Registry – with the exception of Notify Registry Event – 245
are designed in pairs. The first document – the one which invokes the SDMX-RR 246
interface, is a “Request” document. The message returned by the interface is a 247
“Response” document. 248
 249
It should be noted that all interactions are assumed to be synchronous, with the 250
exception of Notify Registry Event. This document is sent by the SDMX-RR to all 251
subscribers whenever an even occurs to which any users have subscribed. Thus, it 252
does not conform to the request-response pattern, because it is inherently 253
asynchronous. 254

5.2 Registry Services 255

5.2.1 Introduction 256
The services described in this section do not imply that each is implemented as a 257
discrete web service. 258

5.2.2 Structure Submission and Query Service 259
This service must implement the following SDMX-ML Interfaces: 260
 261

• SubmitStructureRequest 262
• SubmitStructureResponse 263

 264
These interfaces allow structural definitions to be created, modified, and removed in 265
a controlled fashion. It also allows the structural metadata artefacts to be queried and 266

9

retrieved either in part or as a whole. In order for the architecture to be scalable, the 267
finest-grained piece of structural metadata that can be processed by the SDMX-RR is 268
a MaintainableArtefact (see next section on the SDMX Information Model). 269
 270

5.2.3 Structure Query Service 271
The registry must support a mechanism for querying for structural metadata. This 272
mechanism can be one or both of the SDMX-ML Query message and the SDMX 273
REST interface for structural metadata (this is defined in Part 7 of the SDMX 274
standards). The registry response to both of these query mechanisms is the SDMX 275
Structure message which has as its root node 276
 277

• Structure 278
 279
The SDMX structural artefacts that may be queried are: 280
 281

• dataflows and metadataflows 282
• data structure definitions and metadata structure definitions 283
• codelists 284
• concept schemes 285
• reporting taxonomies 286
• provision agreements 287
• structure sets 288
• processes 289
• hierarchical code lists 290
• constraints 291
• category schemes 292
• categorisations and categorised objects (examples are categorised dataflows 293

and metadatflows, data structure definitions, metadata structure definitions, 294
provision agreements registered data sources and metadata sources) 295

• organisation schemes (agency scheme, data provider scheme, data 296
consumer scheme, organisation unit scheme) 297

 298
The SDMX query messages that are a part of the SDMX-ML Query message are: 299
 300

• StructuresQuery 301
• DataflowQuery 302
• MetadataflowQuery 303
• DataStructureQuery 304
• MetadataStructureQuery 305
• CategorySchemeQuery 306
• ConceptScheneQuery 307
• CodelistQuery 308
• HiearchicalCodelistQuery 309
• OrganisationSchemeQuery 310
• ReportingTaxonomyQuery 311
• StructureSetQuery 312
• ProcessQuery 313
• CategorisationQuery 314
• ProvisionAgreementQuery 315
• ConstraintQuery 316

10

5.2.4 Data and Reference Metadata Registration Service 317
This service must implement the following SDMX-ML Interfaces: 318
 319

• SubmitRegistrationRequest 320
• SubmitRegistrationResponse 321
• QueryRegistrationRequest 322
• QueryRegistrationResponse 323

 324
The Data and Metadata Registration Service allows SDMX conformant XML files and 325
web-accessible databases containing published data and reference metadata to be 326
registered in the SDMX Registry. The registration process MAY validate the content 327
of the data-sets or metadata-sets, and MAY extract a concise representation of the 328
contents in terms of concept values (e.g. values of the data attribute, dimension, 329
metadata attribute), or entire keys, and storing this as a record in the registry to 330
enable discovery of the original data-set or metadata-set. These are called 331
Constraints in the SDMX-IM. 332
 333
The Data and Metadata Registration Service MAY validate the following, subject to 334
the access control mechanism implemented in the Registry: 335
 336

• that the data provider is allowed to register the data-set or metadata-set 337
• that the content of the data set or metadata set meets the validation 338

constraints. This is dependent upon such constraints being defined in the 339
structural repository and which reference the relevant Dataflow, 340
Metadataflow, Data Provider, Data Structure Definition, Metadata Structure 341
Definition, Provision Agreement 342

• that a queryable data source exists - this would necessitate the registration 343
service querying the service to determine its existence 344

• that a simple data source exists (i.e. a file accessible at a URL) 345
• that the correct Data Structure Definition or Metadata Structure Definition is 346

used by the registered data 347
• that the components (Dimensions, Attributes, Measures, Identifier 348

Components etc.) are consistent with the Data Structure Definition or 349
Metadata Structure Definition 350

• that the valid representations of the concepts to which these components 351
correspond conform to the definition in the Data Structure Definition or 352
Metadata Structure Definition 353
 354

The Registration has an action attribute which takes one of the following values: 355

Action
Attribute Value Behaviour
Append Add this registration to the registry
Replace Replace the existing Registration with this Registration identified by

the id in the Registration of the Submit Registration Request
Delete Delete the existing Registration identified by the id in the

Registration of the Submit Registration Request
 356

The Registration has three Boolean attributes which may be present to determine 357
how an SDMX compliant Dataset or Metadata Set indexing application must index 358

11

the Datasets or Metadata Set upon registration. The indexing application behaviour is 359
as follows: 360
 361
Boolean Attribute Behaviour if Value is “true”
indexTimeSeries A compliant indexing application must index all the time

series keys (for a Dataset registration) or metadata target
values (for a Metadata Set registration)

indexDataSet A compliant indexing application must index the range of
actual (present) values for each dimension of the Dataset (for
a Dataset registration) or the range of actual (present) values
for each Metadata Attribute which takes an enumerated
value.

Note that for data this requires much less storage than full
key indexing, but this method cannot guarantee that a
specific combination of Dimension values (the Key) is
actually present in the Dataset

indexReportingPeriod A compliant indexing application must index the time period
range(s) for which data are present in the Dataset or
Metadata Set

 362

5.2.5 Data and Reference Metadata Discovery 363
The Data and Metadata Discovery Service implements the following Registry 364
Interfaces: 365
 366

• QueryRegistrationRequest 367
• QueryRegistrationResponse 368

 369

5.2.6 Subscription and Notification 370
The Subscription and Notification Service implements the following Registry 371
Interfaces: 372
 373

• SubmitSubscriptionRequest 374
• SubmitSubscriptionResponse 375
• NotifyRegistryEvent 376

 377
The data sharing paradigm relies upon the consumers of data and metadata being 378
able to pull information from data providers’ dissemination systems. For this to work 379
efficiently, a data consumer needs to know when to pull data, i.e. when something 380
has changed in the registry (e.g. a dataset has been updated and re-registered). 381
Additionally, SDMX systems may also want to know if a new Data Structure 382
Definition, Code List or Metadata Structure Definition has been added. The 383
Subscription and Notification Service comprises two parts: subscription management, 384
and notification. 385
 386
Subscription management involves a user submitting a subscription request which 387
contains: 388
 389

12

• a query or constraint expression in terms of a filter which defines the events 390
for which the user is interested (e.g. new data for a specific dataflow, or for a 391
domain category, or changes to a Data Structure Definition). 392

• a list of URIs or end-points to which an XML notification message can be 393
sent. Supported end-point types will be email (mailto:) and HTTP POST (a 394
normal http:// address) 395

• request for a list of submitted subscriptions 396
• deletion of a subscription 397

 398
Notification requires that the structural metadata repository and the provisioning 399
metadata repository monitor any event which is of interest to a user (the object of a 400
subscription request query), and to issue an SDMX-ML notification document to the 401
end-points specified in the relevant subscriptions. 402

5.2.7 Registry Behaviour 403
The following table defines the behaviour of the SDMX Registry for the various 404
Registry Interface messages. 405

Interface Behaviour

All 1) If the action is set to “replace” then the entire
contents of the existing maintainable object in the
Registry MUST be replaced by the object submitted,
unless the final attribute is set to “true” in which case
the only changes that are allowed are to the following
constructs:

• Name – this applies to the Maintainable object
and its contained elements, such a Code in a
Code list.

• Description - this applies to the Maintainable
object and its contained elements, such a Code
in a Code list.

• Annotation - this applies to the Maintainable
object and its contained elements, such a Code
in a Code list.

• validTo

• validFrom

• structureURL

• serviceURL

• uri

• isExternalReference

13

Interface Behaviour

2) Cross referenced structures MUST exist in either the
submitted document (in Structures or Structure
Location) or in the registry to which the request is
submitted.

3) If the action is set to “delete” then the Registry
MUST verify that the object can deleted. In order to
qualify for deletion the object must:

a) Not have the final attribute set to “true”

b) Not be referenced from any other object in the
Registry.

4) The version rules in the SDMX Schema
documentation MUST be obeyed.

5) The specific rules for the elements and attributes
documented in the SDMX Schema MUST be obeyed.

SubmitStructureRequest Structures are submitted at the level of the
Maintainable Artefact and the behaviour in “All” above
is therefore at the level of the Maintainable Artefact.

SubmitProvisioningRequest No additional behaviour.

Submit Registration
Request

If the datasource is a file (simple datasource) then the
file MAY be retrieved and indexed according to the
Boolean attributes set in the Registration.

For a queryable datasource the Registry MAY validate
that the source exists and can accept an SDMX-ML
data query.

 406

6 Identification of SDMX Objects 407

6.1 Identification, Versioning, and Maintenance 408
All major classes of the SDMX Information model inherit from one of: 409
 410

• IdentifiableArtefact - this gives an object the ability to be uniquely identified 411
(see following section on identification), to have a user-defined URI, and to 412
have multi-lingual annotations. 413

• NamableArtefact - this has all of the features of IdentifiableArtefact plus the 414
ability to have a multi-lingual name and description, 415

• VersionableArtefact – this has all of the above features plus a version 416
number and a validity period. 417

14

• MaintainableArtefact – this has all of the above features, and indication as 418
to whether the object is “final” and cannot be changed or deleted, registry and 419
structure URIs, plus an association to the maintenance agency of the object. 420

6.1.1 Identification, Naming, Versioning, and Maintenance Model 421
 422

VersionableArtefact
version : String
validFrom : Date
validTo : Date

MaintainableArtefact
final : Boolean
isExternalReference : Boolean
serviceURL : URL
structureURL : URI

Agency

0..* 10..*

+maintainer

1

AnnotableArtefact

LocalisedString
label : String
locale : String

Annotation
id : String
title : String
type : String
url : String

0..1 0..*0..1 0..*

InternationalString
1 0..*1 0..*

0..1

0..1

0..1

+text

0..1

NameableArtefact

0..1

+description

0..1
1

+name

1

IdentifiableArtefact
urn : urn
uri : Url
id : String

 423
 Figure 5: Class diagram of fundamental artefacts in the SDMX-IM 424

The table below shows the identification and related data attributes to be stored in a 425
registry for objects that are one of: 426
 427

• Annotable 428

• Identifiable 429

• Nameable 430

• Versionable 431

• Maintainable 432

Object Type Data Attributes Status Data type Notes
Annotable AnnotationTitle C string
 AnnotationType C string
 AnnotationURN C string
 AnnotationText in

the form of
C This can have language-

specific variants.

15

Object Type Data Attributes Status Data type Notes
International String

Identifiable all content as for

Annotable plus

 id M string
 uri C string
 urn C string Although the urn is

computable and therefore
may not be submitted or
stored physically, the
Registry must return the
urn for each object, and
must be able to service a
query on an object
referenced solely by its
urn.

Nameable all content as for
Identifiable plus

 Name in the form of
International String

M string This can have language-
specific variants.

 Description in the
form of International
String

C string This can have language-
specific variants.

Versionable All content as for
Identifiable plus

 version C string This is the version
number. If not present the
default is 1.0

 validFrom C Date/time
 validTo C Date/time
Maintainable All content as for

Versionable plus

 final boolean Value of “true” indicates
that this is a final
specification and it cannot
be changed except as a
new version. Note that
providing a “final’ object is
not referenced from
another object then it may
be deleted.

 isExternalReference C boolean Value of “true” indicates
that the actual resource is
held outside of this
registry. The actual
reference is given in the
registry URI or the
structureURI, each of
which must return a valid
SDMX-ML file.

 serviceURL C string The url of the service that

16

Object Type Data Attributes Status Data type Notes
can be queried for this
resource

 structureURL C string The url of the resource.
 (Maintenance)

agencyId
M string The object must be linked

to a maintenance agency.
Table 1: Common Attributes of Object Types 433

6.2 Unique identification of SDMX objects 434

6.2.1 Agencies 435
The Maintenance Agency in SDMX is maintained in an Agency Scheme which itself 436
is a sub class of Organisation Scheme – this is shown in the class diagram below. 437

OrganisationScheme Organisation

0..*0..*

/items
+child

+parent

AgencyAgencyScheme

0..*0..*

/items

{agencies}

{no hierarchy}

 438

Figure 6: Agency Scheme Model 439

The Agency in SDMX is extremely important. The Agency Id system used in SDMX 440
is an n-level structure. The top level of this structure is maintained by SDMX. Any 441
Agency in this top level can declare sub agencies and any sub agency can also 442
declare sub agencies. The Agency Scheme has a fixed id and version and is never 443
declared explicitly in the SDMX object identification mechanism. 444

In order to achieve this SDMX adopts the following rules: 445
 446

1. Agencies are maintained in an Agency Scheme (which is a sub class of 447
Organisation Scheme) 448

2. The agency of the Agency Scheme must also be declared in a (different) 449
Agency Scheme. 450

3. The “top-level” agency is SDMX and maintains the “top-level” Agency 451
Scheme. 452

4. Agencies registered in the top-level scheme can themselves maintain a single 453
Agency Scheme. Agencies in these second-tier schemes can themselves 454
maintain a single Agency Scheme and so on. 455

5. The AgencyScheme cannot be versioned and so take a default version 456
number of 1.0 and cannot be made “final”. 457

6. There can be only one AgencyScheme maintained by any one Agency. It 458
has a fixed Id of AGENCIES. 459

17

7. The /hierarchy of Organisation is not inherited by Maintenance Agency – 460
thus each Agency Scheme is a flat list of Maintenance Agencies. 461

8. The format of the agency identifier is agencyID.agencyID etc. The top-462
level agency in this identification mechanism is the agency registered in the 463
SDMX agency scheme. In other words, SDMX is not a part of the hierarchical 464
ID structure for agencies. However SDMX is, itself, a maintenance agency 465
and is contained in the top-level Agency Scheme. 466

 467
This supports a hierarchical structure of agencyID. 468
 469
An example is shown below. 470

 471
 Figure 7: Example of Hierarchic Structure of Agencies 472

The following organizations maintain an Agency Scheme. 473
 474

• SDMX – contains Agencies AA, BB 475
• AA – contains Agencies CC, DD 476
• BB – contains Agencies CC, DD 477
• DD – Contains Agency EE 478

Each agency is identified by its full hierarchy excluding SDMX. 479
 480
e.g. the id of EE as an agencyID is AA.DD.EE 481
 482
An example of this is shown in the XML snippet below. 483

 484

18

 485
 Figure 8: Example Showing Use of Agency Identifiers 486

 487
Each of these maintenance agencies has an identical Code list with the Id CL_BOP. 488
However, each is uniquely identified by means of the hierarchic agency structure. 489

6.2.2 Universal Resource Name (URN) 490

6.2.2.1 Introduction 491
To provide interoperability between SDMX Registry/Repositories in a distributed 492
network environment, it is important to have a scheme for uniquely identifying (and 493
thus accessing) all first-class (Identifiable) SDMX-IM objects. Most of these unique 494
identifiers are composite (containing maintenance agency, or parent object 495
identifiers), and there is a need to be able to construct a unique reference as a single 496
string. This is achieved by having a globally unique identifier called a universal 497
resource name (URN) which is generated from the actual identification components 498
in the SDMX-RR APIs. In other words, the URN for any Identifiable Artefact is 499
constructed from its component identifiers (agency, Id, version etc.). 500

6.2.2.2 URN Structure 501
Case Rules for URN 502
 503
For the URN, all parts of the string are case sensitive. The Id of any object must be 504
UPPER CASE. Therefore, CRED_ext_Debt is invalid and it should be 505
CRED_EXT_DEBT. 506
 507
The generic structure of the URN is as follows: 508
 509
SDMXprefix.SDMX-IM-package-name.class-name=agency-510
id:maintainedobject-id(maintainedobject-version).*container-511
object-id.object-id 512

* this can repeat and may not be present (see explanation below) 513
 514

19

Note that in the SDMX Information Model there are no concrete Versionable 515
Artefacts that are not a Maintainable Artefact. For this reason the only version 516
information that is allowed is for the maintainable object. 517
 518
The Maintenance agency identifier is separated from the maintainable artefact 519
identifier by a colon ‘:’. All other identifiers in the SDMX URN syntax are separated by 520
a period(.). 521

6.2.2.3 Explanation of the generic structure 522
In the explanation below the actual object that is the target of the URN is called the 523
actual object. 524
 525
SDMXPrefix: urn:sdmx:org. 526
 527
SDMX-IM package name: sdmx.infomodel.package= 528
 529
The packages are: 530
 base 531
 codelist 532
 conceptscheme 533
 datastructure 534
 categoryscheme 535
 registry 536
 metadatastructure 537
 process 538
 mapping 539
 540
maintainable-object-id is the identifier of the maintainable object. This will always 541
be present as all identifiable objects are either a maintainable object or contained in a 542
maintainable object. 543
(maintainable-object-version) is the version of the maintainable object and is 544
enclosed in round brackets (). It will always be present. 545
container-object-id is the identifier of an intermediary object that contains the actual 546
object which the URN is identifying. It is not mandatory as many actual objects do not 547
have an intermediary container object. For instance, a Code is in a maintained object 548
(Code List) and has no intermediary container object, whereas a Metadata Attribute 549
has an intermediary container object (Report Structure) and may have an 550
intermediary container object which is its parent Metadata Attribute. For this reason 551
the container object id may repeat, with each repetition identifying the object at the 552
next-lower level in its hierarchy. Note that if there is only a single containing object in 553
the model then it is NOT included in the URN structure. This applies to Attribute 554
Descriptor, Dimension Descriptor, and Measure Descriptor where there can be only 555
one such object and this object has a fixed id. Therefore, whilst each of these has a 556
URN, the id of the Attribute Descriptor, Dimension Descriptor, and Measure 557
Descriptor is not included when the actual object is a Data Attribute or a 558
Dimension/Measure Dimension/ Time Dimension, or a Measure. 559
 560
Note that although a Code can have a parent Code and a Concept can have a parent 561
Concept these are maintained in a flat structure and therefore do not have a 562
container-object-id. 563
 564
For example the sequence is agency:DSDid(version).DimensionId and not 565
agency:DSDid(version).DimensionDescriptorId.DimensionId. 566

20

 567
object-id is the identifier of the actual object unless the actual object is a 568
maintainable object. If present it is always the last id and is not followed by any other 569
character. 570
 571
Generic Examples of the URN Structure 572
 573
Actual object is a maintainable 574
SDMXPrefix.SDMX-IM package name.classname=agency 575
id:maintained-object-id(version) 576

Actual object is contained in a maintained object with no intermediate containing 577
object 578
 579
SDMXPrefix.SDMX-IM package name.classname=agency 580
id:maintained-object-id(version).object-id 581

Actual object is contained in a maintained object with an intermediate containing 582
object 583
 584
SDMXPrefix.SDMX-IM package name.classname=agency 585
id:maintained-object-id(version).contained-object-id.object-id 586
 587
Actual object is contained in a maintained object with no intermediate containing 588
object but the object type itself is hierarchical 589
 590
In this case the object id may not be unique in itself but only within the context of the 591
hierarchy. In the general syntax of the URN all intermediary objects in the structure 592
(with the exception, of course, of the maintained object) are shown as a contained 593
object. An example here would be a Category in a Category Scheme. The Category 594
is hierarchical and all intermediate Categories are shown as a contained object. The 595
example below shows the generic structure for Category Scheme/Category/Category 596
 597
SDMXPrefix.SDMX-IM package name.classname=agency 598
id:maintained-object-id(version).contained-object-id.object-id 599

Actual object is contained in a maintained object with an intermediate containing 600
object and the object type itself is hierarchical 601
 602
In this case the generic syntax is the same as for the example above as the parent 603
object is regarded as a containing object, even if it is of the same type. An example 604
here is a Metadata Attribute where the contained objects are Report Structure (first 605
contained object id) and Metadata Attribute (subsequent contained object Ids). The 606
example below shows the generic structure for MSD/Report Structure/Metadata 607
Attribute/Metadata Attribute 608
 609
SDMXPrefix.SDMX-IM package name.classname=agency 610
id:maintained-object-id(version).contained-object-id. 611
contained-object-id contained-object-id.object-id 612

21

Concrete Examples of the URN Structure 613
 614
The Data Structure Definition CRED_EXT_DEBT version 1.0 maintained by the top 615
level Agency TFFS would have the URN: 616
 617
urn:sdmx:org.sdmx.infomodel.datastructure.DataStucture=TFFS:CRED_EXT_618
DEBT(1.0) 619

The URN for a code for Argentina maintained by ISO in the code list CL_3166A2 620
version 1.0 would be: 621
 622
urn:sdmx:org.sdmx.infomodel.codelist.Code=ISO:CL_3166A2(1.0).AR 623

The URN for a category (id of 1) which has parent category (id of 2) maintained by 624
SDMX in the category scheme SUBJECT_MATTER_DOMAINS version 1.0 would 625
be: 626
 627
urn:sdmx:org.sdmx.infomodel.categoryscheme.Category=SDMX:SUBJE628
CT_MATTER_DOMAINS(1.0).1.2 629

The URN for a Metadata Attribute maintained by SDMX in the MSD 630
CONTACT_METADATA version 1.0 in the Report Structure CONTACT_REPORT 631
where the hierarchy of the Metadata Attribute is 632
CONTACT_DETAILS/CONTACT_NAME would be: 633
 634
urn:sdmx:org.sdmx.infomodel.metadatastructure.MetadataAttribut635
e=SDMX:CONTACT_METADATA(1.0).CONTACT_REPORT.CONTACT_DETAILS.CO636
NTACT_NAME 637

The TFFS defines ABC as a sub Agency of TFFS then the URN of a Dataflow 638
maintained by ABC and identified as EXTERNAL_DEBT version 1.0 would be: 639
 640
urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=TFFS.ABC:EX641
TERNAL_DEBT(1.0) 642
 643
The SDMX-RR MUST support this globally unique identification scheme. The SDMX-644
RR MUST be able to create the URN from the individual identification attributes 645
submitted and to transform the URN to these identification attributes. The 646
identification attributes are: 647
 648

• Identifiable and Nameable Artefacts: id (in some cases this id may be 649
hierarchic) 650

• Maintainable Artefacts: id, version, agencyId, 651
 652
The SDMX-RR MUST be able to resolve the unique identifier of an SDMX artefact 653
and to produce an SDMX-ML rendering of that artefact if it is located in the Registry. 654

22

6.2.3 Table of SDMX-IM Packages and Classes 655
The table below lists all of the packages in the SDMX-IM together with the concrete 656
classes that are in these packages and whose objects have a URN. 657
 658
Package URN Classname (model classname

where this is different)
base Agency
 OrganisationUnitScheme
 AgencyScheme
 DataProviderScheme
 DataConsumerScheme
 OrganisationUnit
 DataProvider
 DataConsumer

datastructure DataStructure (DataStructureDefinition)
 AttributeDescriptor
 DataAttribute
 GroupDimensionDescriptor
 DimensionDescriptor
 Dimension
 MeasureDimension
 TimeDimension
 MeasureDescriptor
 PrimaryMeasure
 Dataflow (DataflowDefinition)

metadatastructure MetadataTarget
 DimensionDescriptorValueTarget
 IdentifiableObjectTarget
 ReportPeriodTarget
 DataSetTarget
 ReportStructure
 MetadataAttribute
 MetadataStructure

(MetadataStructureDefinition)
 Metadataflow (MetadataflowDefinition)

process Process
 ProcessStep
 Transition

registry ProvisionAgreement
 AttachmentConstraint
 ContentConstraint
 Subscription

mapping StructureMap
 StructureSet
 ComponentMap

23

Package URN Classname (model classname
where this is different)

 ConceptSchemeMap
 OrganisationSchemeMap
 CodelistMap
 CategorySchemeMap
 ReportingTaxonomyMap
 ConceptMap
 OrganisationMap
 CodeMap
 HybridCodelistMap
 CategoryMap
 HybridCodeMap
 ReportingCategoryMap

codelist Codelist
 HierarchicalCodelist
 Hierarchy
 Hierarchy
 Code
 HierarchicalCode
 Level

categoryscheme CategoryScheme
 Category
 Categorisation
 ReportingTaxonomy
 ReportingCategory

conceptscheme ConceptScheme
 Concept

Table 2: SDMX-IM Packages and Contained Classes 659

24

6.2.4 URN Identification components of SDMX objects 660
The table below describes the identification components for all SDMX object types that have identification. Note the actual attributes are all Id, 661
but have been prefixed by their class name or multiple class names to show navigation, e.g. conceptSchemeAgencyId is really the Id attribute 662
of the Agency class that is associated to the ConceptScheme. 663
 664
* indicates that the object is maintainable. 665
 666
Note that for brevity the URN examples omit the prefix. All URNs have the prefix 667
 668
urn:sdmx.org.sdmx.infomodel.{package}.{classname}= 669
 670
SDMX Class Key attribute(s) Example of URN

Agency The URN for an Agency is shown later in this
table. The identification of an Agency in the
URN structure for the maintainable object is by
means of the agencyId. The AgencyScheme is
not identified as SDMX has a mechanism for
identifying an Agency uniquely by its Id. Note
that this Id may be hierarchical.

IMF

Sub agency in the IMF AGENCIES

IMF.SubAgency1

*ConceptScheme conceptSchemeAgencyId:conceptSchemeId(ve
rsion)

SDMX:CROSS_DOMAIN_CONCEPTS(1.0)

Concept conceptSchemeAgencyId:
conceptSchemeId(version).conceptId

SDMX:CROSS_DOMAIN_CONCEPTS(1.0).FREQ

*Codelist codeListAgencyId:codeListId(version) SDMX:CL_FREQ(1.0)

Code codeListAgencyId:codelistId(version).codeId SDMX:CL_FREQ(1.0).Q

25

*Hierarchical
Codelist

hierachicalCodelistAgencyId:
hierarchicalCodelistId(version)

UNESCO:CL_EXP_SOURCE(1.0)

Hierarchy hierachicalcodeListAgencyId:
hierarchicalcodelistId(version).Hierarchy

UNESCO:CL_EXP_SOURCE(1.0).
H-C-GOV

Level hierachicalcodeListAgencyId:
hierarchicalcodelistId(version).Hierarchy.Level

ESTAT:HCL_REGION(1.0).H_1.COUNTRY

HierarchicalCode hierachicalCodeListAgencyId:
hierarchicalcodelistId(version).hierarchy.hierarc
hicalCode

UNESCO:CL_EXP_SOURCE(1.0).
H-C-GOV.GOV_CODE1

*DataStructure dataStructureDefintitionAgencyId:
dataStructureDefintitionId(version)

TFFS:EXT_DEBT(1.0)

Dimension
Descriptor
Measure
Descriptor
Attribute
Descriptor

dataStructureDefinitionAgencyId:
dataStructureDefinitionId(version).
componentListId
where the componentListId is the name of the
class (there is only one occurrence of each in
the Data Structure Definition)

TFFS:EXT_DEBT(1.0).DimensionDescriptor
TFFS:EXT_DEBT(1.0).MeasureDescriptor
TFFS:EXT_DEBT(1.0).AttributeDescriptor

GroupDimension
Descriptor

dataStructureDefinitionAgencyId:
dataStructureDefinitionId(version).
groupDimensionDescriptorId

TFFS:EXT_DEBT(1.0).SIBLING

Dimension dataStructureDefinitionAgencyId:
dataStructureDefinition (version).
dimensionId

TFFS:EXT_DEBT(1.0).FREQ

TimeDimension dataStructureDefinitionAgencyId:
dataStructureDefinition (version).
timeDimensionId

TFFS:EXT_DEBT(1.0).TIME_PERIOD

Measure
Dimension

dataStructureDefinitionAgencyId:
dataStructureDefinition (version).

TFFS:EXT_DEBT(1.0).STOCK_FLOW

26

measureDimensionId

DataAttrribute dataStructureDefinitionAgencyId:
dataStructureDefinition (version).
dataAttributeId

TFFS:EXT_DEBT(1.0).OBS_STATUS

PrimaryMeasure dataStructureDefinitionAgencyId:
dataStructureDefinition (version).
primaryMeasureId

TFFS:EXT_DEBT(1.0).OBS_VALUE

*Category
Scheme

categorySchemeAgencyId:
categorySchemeId(version)

IMF:SDDS(1.0)

Category categorySchemeAgencyId:
categorySchemeId(version).
categoryId.categoryId
categoryId.categoryId
etc.

IMF:SDDS(1.0):
level_1_category.level_2_category …

*Reporting
Taxonomy

reportingTaxonomyAgencyId:
reportingTaxonomyId(version)

 IMF:REP_1(1.0)

ReportingCategory reportingTaxonomyAgencyId:
reportingTaxonomyId(version)
reportingcategoryId.reportingcategoryId

IMF:REP_1(1.0):
level_1_repcategory.level_2_repcategory …

*Categorisation categorisationAgencyId:
categorisationId(version)

IMF:cat001(1.0)

*Organisation
Unit Scheme

organisationUnitSchemeAgencyId:
organisationUnitSchemeId(version)

ECB:ORGANISATIONS(1.0)

Organisation
Unit

organisationUnitSchemeAgencyId:
organisationUnitSchemeId(version).
organisationUnitId

ECB:ORGANISATIONS(1.0).1F

*AgencyScheme agencySchemeAgencyId:
agencySchemeId(version)

ECB:AGENCIES(1.0)

27

Agency agencySchemeAgencyId:
agencySchemeId(version).
agencyId

ECB:AGENCY(1.0).AA

*DataProvider
Scheme

dataProviderSchemeAgencyId:
dataProviderSchemeId(version)

SDMX:DATA_PROVIDERS(1.0)

DataProvider dataProviderSchemeAgencyId:
dataProviderSchemeId(version)
dataProviderId

SDMX:DATA_PROVIDERS(1.0).PROVIDER_1

*DataConsumer
Scheme

dataConsumerSchemeAgencyId:
dataConsumerSchemeId(version)

SDMX:DATA_CONSUMERS(1.0)

Data Consumer dataConsumerSchemeAgencyId:
dataConsumerSchemeId(version)
dataConsumerId

SDMX:DATA_CONSUMERS(1.0).CONSUMER_1

*Metadata
Structure

MSDAgencyId:MSDId(version) IMF:SDDS_MSD(1.0)

MetadataTarget MSDAgencyId:
MSDId(version).metadataTargetId

IMF:SDDS_MSD(1.0).AGENCY

Dimension
DescriptorValues
Target

MSDAgencyId:
MSDId(version).
metadataTargetId.keyDescriptorValueTargetId

IMF:SDDS_MSD(1.0).AGENCY.KEY

Identifiable
ObjectTarget

MSDAgencyId:
MSDId(version).metadataTargetId.identifiable
ObjectTargetId

IMF:SDDS_MSD(1.0).AGENCY.STR-OBJECT

DataSetTarget MSDAgencyId:
MSDId(version).metadataTargetId.dataSet
TargetId

IMF:SDDS_MSD(1.0).AGENCY.D1101

PeportPeriod
Target

MSDAgencyId:
MSDId(version).metadataTargetId.reportPeriod
TargetId

IMF:SDDS_MSD(1.0).AGENCY.REP_PER

28

ReportStructure

MSDAgencyId:
MSDId(version).reportStructureId

IMF:SDDS_MSD(1.0).AGENCY_REPORT

Metadata
Attribute

MSDAgencyId:
MSDId(version).reportStructureId.metadataattri
buteID

IMF:SDDS_MSD(1.0).AGENCY_REPORT.COMPILATION

*Dataflow dataflowAgencyId: dataflowId(version) TFFS:CRED_EXT_DEBT(1.0)

*Provision
Agreement

provisionAgreementAgencyId:provisionAgreem
entId(version)

TFFS:CRED_EXT_DEBT_AB(1.0)

*Content
Constraint

constraintAgencyId:ContentConstraintId(versio
n)

TFFS:CREDITOR_DATA_CONTENT(1.0)

*Attachment
Constraint

constraintAgencyId:
attachmentConstraintId(version)

TFFS:CREDITOR_DATA_ATTACHMENT_CONSTRAINT_ONE(1.0)

*Metadataflow metadataflowAgencyId:
metadataflowId(version)

IMF:SDDS_FLOW(1.0)

*StructureSet structureSetAgencyId:
structureSetId(version)

SDMX:BOP_STRUCTURES(1.0)

StructureMap structureSetAgencyId:
structureSetId(version).
structureMapId

SDMX:BOP_STRUCTURES(1.0).TABLE1_TABLE2

Component
Map

structureSetAgencyId:
structureSetId(version).
structureMapId.
componentMapId

SDMX:BOP_STRUCTURES(1.0).TABLE1_TABLE2.
REFAREA_REPCOUNTRY

CodelistMap structureSetAgencyId:
structureSetId(version).
codelistMapId

SDMX:BOP_STRUCTURES(1.0).CLREFAREA_CLREPCOUNTRY

CodeMap structureSetAgencyId:
structureSetId(version).

SDMX:BOP_STRUCTURES(1.0).CLREFAREA_CLREPCOUNTRY.
DE_GER

29

codeListMapId.
codeMapId

Category
SchemeMap

structureSetAgencyId:
structureSetId(version).
categorySchemeMapId

SDMX:BOP_STRUCTURES(1.0).SDMX_EUROSTAT

CategoryMap structureSetAgencyId:
structureSetId(version).
categorySchemeMapId.
categoryMapId

SDMX:BOP_STRUCTURES(1.0).SDMX_EUROSTAT.TOURISM_M
AP

Organisation
SchemeMap

structureSetAgencyId:
structureSetId(version).
organisationSchemeMapId

SDMX:BOP_STRUCTURES(1.0).DATA_PROVIDER_MAP

Organisation
Map

structureSetAgencyId:
structureSetId(version).
organisationSchemeMapId.
organisationMapId

SDMX:BOP_STRUCTURES(1.0).DATA_PROVIDER_MAP.IMF_1C0

Concept
SchemeMap

structureSetAgencyId:
structureSetId(version).
conceptSchemeMapId

SDMX:BOP_STRUCTURES(1.0).SDMX_OECD

ConceptMap structureSetAgencyId:
structureSetId(version).
conceptSchemeMapId.
conceptMapId

SDMX:BOP_STRUCTURES(1.0).SDMX_OECD.COVERAGE_AVAI
LABILITY

Reporting
TaxonomyMap

structureSetAgencyId:
structureSetId(version).
reportingTaxonomyMapId

SDMX:BOP_STRUCTURES(1.0).TAXMAP

Reporting
CategoryMap

structureSetAgencyId:
structureSetId(version).
reportngCategoryId

SDMX:BOP_STRUCTURES(1.0).TAXMAP.TOPCAT

30

 Table 3: Table of identification components for SDMX Identifiable Artefacts 671

HybridCodelist
Map

structureSetAgencyId:
structureSetId(version).
hybridCodelistMapId.

SDMX:BOP_STRUCTURES(1.0).COUNTRY_HIERARCHYMAP

HybridCodeMap structureSetAgencyId:
structureSetId(version).
hybridCodelistMapId.
hybridCodeMapId

SDMX:BOP_STRUCTURES(1.0).COUNTRY_HIERARCHYMAP.CO
DEMAP1

*Process processAgencyId:
processId{version]

BIS:PROCESS1(1.0)

ProcessStep processAgencyId:
processId(version).
processStepId

BIS:PROCESS1(1.0).STEP1

Transition processAgencyId:
processId(version).
processStepId
transitionId

BIS:PROCESS1(1.0).STEP1.TRANSITION1

Subscription The Subscription is not itself an Identifiable
Artefact and therefore it does not follow the
rules for URN structure, The name of the URN
is registryURN There is no pre-determined
format.

This cannot be generated by a common mechanism as
subscriptions, although maintainable in the sense that they can be
submitted and deleted, are not mandated to be created by a
maintenance agency, and have no versioning mechanism. It is
therefore the responsibility of the target registry to generate a unique
Id for the Subscription, and for the application creating the
subscription to store the registryURN that is returned from the
registry in the subscription response message.

31

7 Implementation Notes 672

7.1 Structural Definition Metadata 673

7.1.1 Introduction 674
The SDMX Registry must have the ability to support agencies in their role of defining 675
and disseminating structural metadata artefacts. These artefacts include data 676
structure definitions, code lists, concepts etc. and are fully defined in the SDMX-IM. 677
An authenticated agency may submit valid structural metadata definitions which must 678
be stored in the registry. Note that the term “structural metadata” refers as a general 679
term to all structural components (Data structure Definitions, Metadata Structure 680
Definitions, Code lists, Concept Schemes, etc.) 681
 682
At a minimum, structural metadata definitions may be submitted to and queried from 683
the registry via an HTTP/HTTPS POST in the form of one of the SDMX-ML registry 684
messages for structural metadata and the SDMX Query message for structure 685
queries. The use of SOAP is also recommended, as described in the SDMX Web 686
Services Guidelines. The message may contain all structural metadata items for the 687
whole registry, structural metadata items for one maintenance agency, or individual 688
structural metadata items. 689
 690
Structural metadata items 691

• may only be modified by the maintenance agency which created them 692
• may only be deleted by the agency which created them 693
• may not be deleted if they are referenced from other constructs in the 694

Registry 695
 696
The level of granularity for the maintenance of SDMX Structural Metadata objects in 697
the registry is the Maintainable Artefact. In other words, any function such as add, 698
modify, delete is at the level of the Maintainable Artefact. For instance, if a Code is 699
added to a Code List, or the Name of a Code is changed, the Registry must replace 700
the existing Code List with the submitted Code List of the same Maintenance 701
Agency, Code List, Id and Version. 702
 703
The following table lists the Maintainable Artefacts. 704
 705

Maintainable Artefacts Content
Abstract Class Concrete Class
Item Scheme Codelist Code
 Concept Scheme Concept
 Category Scheme Category
 Organisation Unit

Scheme
Organisation Unit

 Agency Scheme Agency
 Data Provider Scheme Data Provider
 Data Consumer

Scheme
Data Consumer

 Reporting Taxonomy Reporting Category

Structure Data Structure

Definition
Dimension Descriptor
Group Dimension

32

Maintainable Artefacts Content
Abstract Class Concrete Class

Descriptor
Dimension
Measure Dimension
Time Dimension
Attribute Descriptor
Data Attribute
Measure Descriptor
Primary Measure

 Metadata Structure
Definition

Metadata Target,
Dimension Descriptor
Values Target Identifiable
Object Target
Report Period Target
Data SetTarget
Report Structure
Metadata Attribute

Structure Usage Dataflow Definition
 Metadataflow Definition
None Process Process Step
None Structure Set Component Map

Concept Scheme Map
Codelist Map
Category Scheme Map
Reporting Taxonomy Map
Organisation Scheme Map
Concept Map
Code Map
Category Map
Organisation Map
Reporting Category Map
Hybrid Codelist Map
Hybrid Code Map

None Provision Agreement
None Hierarchical Codelist Hierarchy

Hierarchical Code
Table 4: Table of Maintainable Artefacts for Structural Definition Metadata 706

7.1.2 Item Scheme, Structure 707
The artefacts included in the structural definitions are: 708
 709

• All types of Item Scheme (Codelist, Concept Scheme, Category Scheme, 710
Organisation Scheme - Agency Scheme, Data Provider Scheme, Data 711
Consumer Scheme, Organisation Unit Scheme) 712

• All types of Structure (Data Structure Definition, Metadata Structure 713
Definition) 714

• All types of Structure Usage (Dataflow Definition, Metadataflow Definition) 715

33

7.1.3 Structure Usage 716

7.1.3.1 Structure Usage: Basic Concepts 717
The Structure Usage defines, in its concrete classes of Dataflow Definition and 718
Metadataflow Definition, which flows of data and metadata use which specific 719
Structure, and importantly for the support of data and metadata discovery, the 720
Structure Usage can be linked to one or more Category in one or more Category 721
Scheme using the Categorisation mechanism. This gives the ability for an application 722
to discover data and metadata by “drilling down” the Category Schemes. 723

7.1.3.2 Structure Usage Schematic 724

 725
Figure 9: Schematic of Linking the Data and Metadata Flows to Categories and 726

Structure Definitions 727

34

7.1.3.3 Structure Usage Model 728

Category
(from Category-Scheme)

Structure

StructureUsage

1

0..*

1

0..*

structure

DataflowDefinition

DataStructureDefinition

0..*

1

0..*

1

/structure

MetadataflowDefinition

MetadataStructureDefinition

0..*

1

0..*

1

/structure

VersionableArtefact

MaintainableArtefact

NameableArtefact IdentifiableArtefact

Categorisation
(from Category-Scheme)

0..* 10..*

+categorisedBy

10..*

1

0..*

+categorisedArtefact
1

 729
Figure 10: SDMX-IM of links from Structure Usage to Category 730

In addition to the maintenance of the Dataflow Definition and the Metadataflow 731
Definition the following links must be maintained in the registry: 732
 733

• Dataflow Definition to Data Structure Definition 734

• Metadataflow Definition to Metadata Structure Definition 735

The following links may be created by means of a Categorisation 736

35

• Categorisation to Dataflow Definition and Category 737

• Categorisation to Metadataflow Definition and Category 738

7.2 Data and Metadata Provisioning 739

7.2.1 Provisioning Agreement: Basic concepts 740
Data provisioning defines a framework in which the provision of different types of 741
statistical data and metadata by various data providers can be specified and 742
controlled. This framework is the basis on which the existence of data can be made 743
known to the SDMX-enabled community and hence the basis on which data can 744
subsequently be discovered. Such a framework can be used to regulate the data 745
content to facilitate the building of intelligent applications. It can also be used to 746
facilitate the processing implied by service level agreements, or other provisioning 747
agreements in those scenarios that are based on legal directives. Additionally, quality 748
and timeliness metadata can be supported by this framework which makes it 749
practical to implement information supply chain monitoring. 750
 751
Note that in the SDMX-IM the class “Data Provider” encompasses both data and 752
metadata and the term “data provisioning” here includes both the provisioning of data 753
and metadata. 754
 755
Although the Provision Agreement directly supports the data-sharing “pull” model, it 756
is also useful in “push” exchanges (bilateral and gateway scenarios), or in a 757
dissemination environment. It should be noted, too, that in any exchange scenario, 758
the registry functions as a repository of structural metadata. 759

7.2.2 Provisioning Agreement Model – pull use case 760
An organisation which publishes statistical data or reference metadata and wishes to 761
make it available to an SDMX enabled community is called a Data Provider. In terms 762
of the SDMX Information Model, the Data Provider is maintained in a Data Provider 763
Scheme. 764

36

OrganisationScheme
Organisation

0..*0..*

/items
0..*1

+child
0..*

/hierachy

+parent
1

DataProvider

{no hierarchy}

DataProviderScheme

0..*0..*

/items

{data providers}

ItemScheme Item

0..*0..*

items 0..*

1

+child
0..*

+parent

1

hierarchy

 765
Figure 11: SDMX-IM of the Data Provider 766

 767
Note that the Data Provider does not inherit the hierarchy association. The diagram 768
below shows a logical schematic of the data model classes required to maintain 769
provision agreements 770
 771

 772
Figure 12: Schematic of the Provision Agreement 773

The diagram below is a logical representation of the data required in order to 774
maintain Provision Agreements. 775
 776

37

DataProvider
(from SDMX-Base)

ProvisionAgreement

StructureUsage
(from SDMX-Base)

DataflowDefinition
(from DataStructureDefinition)

MetadataflowDefinition
(from Metadata-Structure-Defini tion)

0..*1

hasAgreement

0..*1 0..*

1

controlledBy

0..*

1

 777
Figure 13: Logical class diagram of the information contained in the Provision 778

Agreement 779

A Provision Agreement is structural metadata. Each Provision Agreement must 780
reference a Data Provider and a Dataflow or Metadataflow Definition. The Data 781
Provider and the Dataflow/Metadataflow Definition must exist already in order to set 782
up a Provision Agreement. 783

7.3 Data and Metadata Constraints 784

7.3.1 Data and Metadata Constraints: Basic Concepts 785
Constraints are, effectively, lists of the valid or actual content of data and metadata. 786
Constraints can be used to specify a sub set of the theoretical content of data set or 787
metadata set which can be derived from the specification of the DSD or MSD. A 788
Constraint can comprise a list of keys or a list of content (usually code values) of a 789
specific component such as a dimension or attribute. 790
 791
Constraints comprise the specification of subsets of key or target values or attribute 792
values that are contained in a Datasource, or is to be provided for a Dataflow or 793
Metadataflow Definition, or directly attached to a Data Structure Definition or 794
Metadata Structure Definition. This is important metadata because, for example, the 795
full range of possibilities which is implied by the Data Structure Definition (e.g. the 796
complete set of valid keys is the Cartesian product of all the values in the code lists 797
for each of the Dimensions) is often more than is actually present in any specific 798
Datasource, or more than is intended to be supplied according to a specific Dataflow 799
Definition. 800
 801
Often a Data Provider will not be able to provide data for all key combinations, either 802
because the combination itself is not meaningful, or simply because the provider 803
does not have the data for that combination. In this case the Data Provider could 804
constrain the Datasource (at the level of the Provision Agreement or the Data 805
Provider) by supplying metadata that defines the key combinations or cube regions 806
that are available. This is done by means of a Constraint. The Content Constraint is 807
also used to define a code list sub set which is used to populate a Partial Code List. 808
 809

38

Furthermore, it is often useful to define subsets or views of the Data Structure 810
Definition which restrict values in some code lists, especially where many such 811
subsets restrict the same Data Structure Definition. Such a view is called a Dataflow 812
Definition, and there can be one or more defined for any Data Structure Definition. 813
 814
Whenever data is published or made available by a Data Provider, it must conform to 815
a Dataflow Definition (and hence to a Data Structure Definition). The Dataflow 816
Definition is thus a means of enabling content based processing. 817
 818
In addition, Constraints can be extremely useful in a data visualisation system, such 819
as dissemination of statistics on a website. In such a system a Cube Region can be 820
used to specify the Dimension codes that actually exist in a datasource (these can be 821
used to build relevant selection tables), and the Key Set can be used to specify the 822
keys that exist in a datasource (these can be used to guide the user to select only 823
those Dimension code values that will return data based on the Dimension values 824
already selected). 825

7.3.2 Data and Metadata Constraints: Schematic 826

 827
Figure 14: Schematic of the Constraint and the Artefacts that can be Constrained 828

 829

39

 830

7.3.3 Data and Metadata Constraints: Model 831

DataProvider

StructureUsage

ConstrainableArtefact

DataflowDefinition

DataStructureDefinition

DataSet

SimpleDatasource MetadataflowDefinition

MetadataStructureDefinition

MetadataSet

VersionableArtefact

MaintainableArtefact

ProvisionAgreement

Structure

ConstrainableRef

Constraint

DataSetRef
dataProviderRef : DataProviderRef
dataSetId : String

NameableArtefact

0..*

0..1

references

0..*

0..1

references

0..*
+constrains

0..*

MaintainableArtefactRef
agencyID : String
id : String
version : String

StructureRef
structureType : IdentifiableObjectType
urn : String

0..10..1

IdentifiableArtefactRef
id : String
structureType : IdentifiableObjectType0..1

+containedObject

0..1

MetadataSetRef
dataProviderRef : DataProviderRef
metadataSetId : String

1

references

1

references

IdentifiableArtefact

references

references

 832
Figure 15: Logical class diagram showing inheritance between and reference to 833

constrainable artifacts 834

The class diagram above shows that DataProvider, DataflowDefinition, 835
MetadataflowDefinition, ProvisionAgreement, DataStructureDefinition, 836
MetadataStructureDefinition, SimpleDatasource and QueryDatasource are all 837
concrete sub-classes of ConstrainableArtefact and can therefore have Constraints 838
specified. Note that the actual Constraint as submitted is associated to the reference 839
classes which inherit from ConstrainableRef: these are used to refer to the classes to 840
which the Constraint applies. 841
 842
The content of the Constraint can be found in the SDMX Information Model 843
document. 844

40

7.4 Data and Metadata Registration 845

7.4.1 Basic Concepts 846
A Data Provider has published a new dataset conforming to an existing Dataflow 847
Definition (and hence Data Structure Definition). This is implemented as either a 848
web-accessible SDMX-ML file, or in a database which has a web-services interface 849
capable of responding to an SDMX-ML Query or RESTful query with an SDMX-ML 850
data stream. 851
 852
The Data Provider wishes to make this new data available to one or more data 853
collectors in a “pull” scenario, or to make the data available to data consumers. To do 854
this, the Data Provider registers the new dataset with one or more SDMX conformant 855
registries that have been configured with structural and provisioning metadata. In 856
other words, the registry “knows” the Data Provider and “knows” what data flows the 857
data provider has agreed to make available. 858
 859
The same mechanism can be used to report or make available a metadata set. 860
 861
SDMX-RR supports dataset and metadata set registration via the Registration 862
Request, which can be created by the Data Provider (giving the Data Provider 863
maximum control). The registry responds to the registration request with a 864
registration response which indicates if the registration was successful. In the event 865
of an error, the error messages are returned as a registry exception within the 866
response. 867

7.4.2 The Registration Request 868

7.4.2.1 Registration Request Schematic 869

 870
 Figure 16: Schematic of the Objects Concerned with Registration 871

 872

41

7.4.2.2 Registration Request Model 873
The following UML diagram shows the composition of the registration request. Each 874
request is made up of one or more Registrations, one per dataset or metadata set to 875
be registered. The Registration can optionally have information which has been 876
extracted from the Registration: 877
 878

• validFrom 879
• validTo 880
• lastUpdated 881

 882
The last updated date is useful during the discovery process to make sure the client 883
knows which data is freshest. 884
 885
The Registration has an action attribute which takes one of the following values: 886
 887
Action Attribute
Value Behaviour
Append Add this Registration to the registry
Replace Replace the existing Registration with identified by the id in the

Registration of the Submit Registration Request
Delete Delete the existing Registration identified by the id in the

Registration of the Submit Registration Request
 888

SimpleDatasource

SOAPDatasource RESTDatasource

WebServicesDatasource

URL
<<datatype>>

1

1

+WSDLURL

1

1

SubmitRegistrationsRequest

Datasource
11

+sourceURL

11

RegistrationRequest
action : ActionType

1..*1..*

ProvisionAgreement

Registration
id : String
lastUpdated : Date
validFrom : Date
validTo : Date
indexTimeSeries : Boolean
indexDataSet : Boolean
indexReportingPeriod : Boolean
indexAttributes : Boolean

1..*

0..1

1..*

0..1

1..*1..*

1

+registrationFor

1

 889
Figure 17: Logical Class Diagram of Registration of Data and Metadata 890

42

The Query Datasource is an abstract class that represents a data source which can 891
understand an SDMX-ML query (SOAPDatasource) or RESTful query 892
(RESTDatasource) and respond appropriately. Each of these different Datasources 893
inherit the dataURL from Datasource, and the QueryDatasource has an additional 894
URL to locate a WSDL or WADL document to describe how to access it. All other 895
supported protocols are assumed to use the Simple Datasource URL. 896
 897
A Simple Datasource is used to reference a physical SDMX-ML file that is available 898
at a URL. 899
 900
The Registration Request has an action attribute which defines whether this is a new 901
(append) or updated (replace) Registration, or that the Registration is to be deleted 902
(delete). The id is only provided for the replace and delete actions, as the Registry 903
will allocate the unique id of the (new) Registration. 904
 905
The Registration includes attributes that state how a Simple Datasource is to be 906
indexed when registered. The Registry registration process must act as follows. 907
 908
Information in the data or metadata set is extracted and placed in one or more 909
Content Constraints (see the Constraints model in the SDMX Information Model – 910
Section 2 of the SDMX Standards). The information to be extracted is indicated by 911
the Boolean values set on the Provision Agreement as shown in the table below. 912
 913
Indexing Required Registration Process Activity
indexTimeSeries Extract all the series keys and create a

KeySet(s) Constraint.
indexDataSet Extract all the codes and other content

of the Key value of the Series Key in a
Data Set and create one or more Cube
Regions containing Member Selections
of Dimension Components of the
Constraints model in the SDMX-IM, and
the associated Selection Value.

indexReportingPeriod This applies only to a registered dataset.
Extract the Reporting Begin and
Reporting End from the Header of the
Message containing the data set, and
create a Reference Period constraint.

indexAttributes Data Set
Extract the content of the Attribute
Values in a Data Set and create one or
more Cube Regions containing Member
Selections of Data Attribute Components
of the Constraints model in the SDMX-
IM, and the associated Selection Value
Metadata Set
Indicate the presence of a Reported
Attribute by creating one or more Cube
Regions containing Member Selections
of Metadata Attribute Components of the
Constraints model in the SDMX-IM. Note
that the content is not stored in the
Selection Value.

43

 914
Constraints that specify the contents of a Query Datasource are submitted to the 915
Registry in a Submit Structure Request. 916
 917
The Registration must reference the Provision Agreement to which it relates. 918

7.4.3 Registration Response 919
After a registration request has been submitted to the registry, a response is returned 920
to the submitter indicating success or failure. Given that a registration request can 921
hold many Registrations, then there must be a registration status for each 922
Registration. The Submit Registration class has a status field which is either set to 923
“Success”, “Warning” or “Failure”. 924
 925
If the registration has succeeded, a Registration will be returned - this holds the 926
Registry-allocated Id of the newly registered Datasource plus a Datasource holding 927
the URL to access the dataset, metadataset, or query service. 928
 929
The Registration Response returns set of registration status (one for each 930
registration submitted) in terms of a Status Message (this is common to all Registry 931
Responses) that indicates success or failure. In the event of registration failure, a set 932
of Message Text are returned, giving the error messages that occurred during 933
registration. It is entirely possible when registering a batch of datasets, that the 934
response will contain some successful and some failed statuses. The logical model 935
for the Registration Response is shown below: 936
 937

Registration

InternationalString

MessageText
errorCode : Integer

1..*
+errorText

1..*

RegistrationResponse

StatusMessage
status : String

0..*0..*

Datasource

RegistrationStatus

1

1..*

1

1..*

11

1..*

0..1

1..*

0..1

11
ProvisionAgreementRef

dataProviderRef : DataProviderRef 11

 938
Figure 18: Logical class diagram showing the registration response 939

7.5 Subscription and Notification Service 940
The contents of the SDMX Registry/Repository will change regularly: new code lists 941
and key families will be published, new datasets and metadata-sets will be 942
registered. To obviate the need for users to repeatedly query the registry to see when 943

44

new information is available, a mechanism is provided to allow users to be notified 944
when these events happen. 945
 946
A user can submit a subscription in the registry that defines which events are of 947
interest, and either an email and/or an HTTP address to which a notification of 948
qualifying events will be delivered. The subscription will be identified in the registry by 949
a URN which is returned to the user when the subscription is created. If the user 950
wants to delete the subscription at a later point, the subscription URN is used as 951
identification. Subscriptions have a validity period expressed as a date range 952
(startDate, endDate) and the registry may delete any expired subscriptions, and will 953
notify the subscriber on expiry. 954
 955
When a registry/repository artefact is modified, any subscriptions which are 956
observing the object are activated, and either an email or HTTP POST is instigated to 957
report details of the changes to the user specified in the subscription. This is called a 958
“notification”. 959
 960

45

7.5.1 Subscription Logical Class Diagram 961
 962

SubmitSubscriptionsRequest

MailToTarget
HTTPTarget

CategoryRef
categorySchemeAgencyId : String
categorySchemeId : String
categorySchemeVersion : String
categoryId : String

MetadataflowRef
metadataflowAgencyId : String
metadataflowId : String
metadataflowVersion : String

MetadataStructureDefinitionRef
metadataStructureAgencyId : String
metadataStructureId : String
metadataStructureVersion : String

DataProvisionAgreementRef
dataflowRef : DataflowRef MetadataProvisionAgreementRef

metadataFlowRef : MetadataflowRef

ProvisionAgreementRef
dataProviderRef : DataProviderR...

DataRegistrationArtefactRef

DataRegistrationSelector

1..*1..* MetadataRegistrationArtefactRef

MetadataRegistrationSelector
1..*1..*

Maintainab leArtefact

CategoryRef
categorySchemeAgencyId : String
categorySchemeId : String
categorySchemeVersion : String
categoryId : String

RegistrationArtefactRef
registrationId : String

MaintainableArtefactRef
agencyID : String
id : String
version : String

references

RegistrationSelector

0..*0..*

StructuralRepositorySelector

0..*0..*

URNValue
urn : URNValue

NotificationTarget
isSOAP : Boolean

ValidityPeriod
startDate : Date
endDate : Date

EventSelector
allEvents : Boolean

0..10..1
0..10..1

OrganisationSubscription
suibscriberAssignedId : String

110..1

+registryURN

0..1

1..*1..*11

11

SubscriptionRequest
action : ActionType

11

1..*1..*

DataProviderRef
dataProviderSchemeAgencyId : String
dataProviderSchemeId : String
dataProviderSchemeVersion : String
dataProviderId : String

DataflowRef
dataflowAgencyId : String
dataflowId : String
dataflowVersion : String

DataStructureRef
dataStructureAgencyId : String
dataStructureId : String
dataStructureVersion : String

 963

Figure 19: Logical Class Diagram of the Subscription 964

46

7.5.2 Subscription Information 965
Regardless of the type of registry/repository events being observed, a subscription 966
always contains: 967
 968

1. A set of URIs describing the end-points to which notifications must be sent if 969
the subscription is activated. The URIs can be either mailto: or http: protocol. 970
In the former case an email notification is sent; in the latter an HTTP POST 971
notification is sent. 972

2. A user-defined identifier which is returned in the response to the subscription 973
request. This helps with asynchronous processing and is NOT stored in the 974
Registry. 975

3. A validity period which defines both when the subscription becomes active 976
and expires. The subscriber may be sent a notification on expiration of the 977
subscription. 978

4. A selector which specifies which type of events are of interest. The set of 979
event types is: 980

 981
Event Type Comment
STRUCTURAL_REPOSITORY_EVENTS Life-cycle changes to Maintainable

Artefacts in the structural metadata
repository.

DATA_REGISTRATION_EVENTS Whenever a published dataset is
registered. This can be either a SDMX-
ML data file or an SDMX conformant
database.

METADATA_REGISTRATION_EVENTS Whenever a published metadataset is
registered. This can be either a SDMX-
ML reference metadata file or an SDMX
conformant database.

ALL_EVENTS All events of the specified EventType

7.5.3 Wildcard Facility 982
Subscription notification supports wildcarded identifier components URNs, which are 983
identiiers which have some or all of their component parts replaced by the wildcard 984
character `%`. Identifier components comprise: 985
 986

• agencyID 987
• id 988
• version 989

 990
Examples of wildcarded identifier components for an identified object type of Codelist 991
are shown below. 992
 993
AgencyID = % 994
Id = % 995
Version = % 996
 997
This subscribes to all Codelists of all versions for all agencies. 998
 999
AgencyID = AGENCY1 1000
Id = CODELIST1 1001
Version = % 1002

47

 1003
This subscribes to all versions of Codelist CODELIST1 maintained by the agency 1004
AGENCY1 1005
 1006
AgencyID = AGENCY1 1007
Id = % 1008
Version = % 1009
 1010
This subscribes to all versions of all Codelist objects maintained by the agency 1011
AGENCY1 1012
 1013
AgencyID = % 1014
Id = CODELIST1 1015
Version = % 1016
 1017
This subscribes to all versions of Codelist CODELIST1 maintained by the agency 1018
AGENCY1 1019
 1020
Note that if the subscription is to the latest version then this can be achieved by the * 1021
character 1022
 1023
i.e. Version = * 1024
 1025
Note that a subscription using the URN mechanism cannot use wildcard characters. 1026

7.5.4 Structural Repository Events 1027
Whenever a maintainable artefact (data structure definition, concept scheme, 1028
codelist, metadata structure definition, category scheme, etc.) is added to, deleted 1029
from, or modified in the structural metadata repository, a structural metadata event is 1030
triggered. Subscriptions may be set up to monitor all such events, or focus on 1031
specific artefacts such as a Data Structure Definition. 1032

7.5.5 Registration Events 1033
Whenever a dataset or metadata-set is registered a registration event is created. A 1034
subscription may be observing all data or metadata registrations, or it may focus on 1035
specific registrations as shown in the table below: 1036
 1037
Selector Comment
DataProvider Any datasets or metadata sets

registered by the specified data provider
will activate the notification.

ProvisionAgreement Any datasets or metadata sets
registered for the provision agreement
will activate the notification.

Dataflow (&Metadataflow) Any datasets or metadata sets
registered for the specified dataflow (or
metadataflow) will activate the
notification.

DataStructureDefinition &
MetadataStructureDefinition

Any datasets or metadata sets
registered for those dataflows (or
metadataflows) that are based on the
specified Data Structure Definition will

48

Selector Comment
activate the notification.

Category Any datasets or metadata sets
registered for those dataflows,
metadataflows, provision agreements
that are categorised by the category.

 1038
The event will also capture the semantic of the registration: deletion or replacement 1039
of an existing registration or a new registration. 1040

7.6 Notification 1041

7.6.1 Logical Class Diagram 1042
 1043

RegistrationURNValue
urn : URNValue

RegistrationId
registrationId : String

RegistrationEventComponent

11

StructuralEventComponent

Notification

EventArtefactId

EventComponent
EventDetails

eventTime : Date
subscriptionURN : URNValue
eventAction : ActionType

11

11

0..10..1

MaintainableArtefact

1..*1..*

 1044
Figure 20: Logical Class Diagram of the Notification 1045

 1046
A notification is an XML document that is sent to a user via email or http POST 1047
whenever a subscription is activated. It is an asynchronous one-way message. 1048
 1049
Regardless of the registry component that caused the event to be triggered, the 1050
following common information is in the message: 1051
 1052

• Date and time that the event occurred 1053
• The URN of the artefact that caused the event 1054
• The URN of the Subscription that produced the notification 1055
• Event Action: Add, Replace, or Delete. 1056

 1057
Additionally, supplementary information may be contained in the notification as 1058
detailed below. 1059

7.6.2 Structural Event Component 1060
The notification will contain the MaintainableArtefact that triggered the event in a form 1061
similar to the SDMX-ML structural message (using elements from that namespace). 1062

49

7.6.3 Registration Event Component 1063
The notification will contain the Registration. 1064
 1065

	1 Introduction
	2 Scope and Normative Status
	3 Scope of the SDMX Registry/Repository
	3.1 Objective
	3.2 Structural Metadata
	3.3 Registration
	3.4 Notification
	3.5 Discovery

	4 SDMX Registry/Repository Architecture
	4.1 Architectural Schematic
	4.2 Structural Metadata Repository
	4.3 Provisioning Metadata Repository

	5 Registry Interfaces and Services
	5.1 Registry Interfaces
	5.2 Registry Services
	5.2.1 Introduction
	5.2.2 Structure Submission and Query Service
	5.2.3 Structure Query Service
	5.2.4 Data and Reference Metadata Registration Service
	5.2.5 Data and Reference Metadata Discovery
	5.2.6 Subscription and Notification
	5.2.7 Registry Behaviour

	6 Identification of SDMX Objects
	6.1 Identification, Versioning, and Maintenance
	6.1.1 Identification, Naming, Versioning, and Maintenance Model

	6.2 Unique identification of SDMX objects
	6.2.1 Agencies
	6.2.2 Universal Resource Name (URN)
	6.2.2.1 Introduction
	6.2.2.2 URN Structure
	6.2.2.3 Explanation of the generic structure

	6.2.3 Table of SDMX-IM Packages and Classes
	6.2.4 URN Identification components of SDMX objects

	7 Implementation Notes
	7.1 Structural Definition Metadata
	7.1.1 Introduction
	7.1.2 Item Scheme, Structure
	7.1.3 Structure Usage
	7.1.3.1 Structure Usage: Basic Concepts
	7.1.3.2 Structure Usage Schematic
	7.1.3.3 Structure Usage Model

	7.2 Data and Metadata Provisioning
	7.2.1 Provisioning Agreement: Basic concepts
	7.2.2 Provisioning Agreement Model – pull use case

	7.3 Data and Metadata Constraints
	7.3.1 Data and Metadata Constraints: Basic Concepts
	7.3.2 Data and Metadata Constraints: Schematic
	7.3.3 Data and Metadata Constraints: Model

	7.4 Data and Metadata Registration
	7.4.1 Basic Concepts
	7.4.2 The Registration Request
	7.4.2.1 Registration Request Schematic
	7.4.2.2 Registration Request Model

	7.4.3 Registration Response

	Subscription and Notification Service
	7.5.1 Subscription Logical Class Diagram
	7.5.2 Subscription Information
	7.5.3 Wildcard Facility
	7.5.4 Structural Repository Events
	7.5.5 Registration Events

	7.6 Notification
	7.6.1 Logical Class Diagram
	7.6.2 Structural Event Component
	7.6.3 Registration Event Component

