

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

1

SDMX
INFORMATION MODEL:

UML CONCEPTUAL DESIGN

(VERSION 2.0)

November 2005

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

2

 1

 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
© SDMX 2005 21
http://www.sdmx.org/ 22
 23

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

3

Contents 24

1 INTRODUCTION.. 8 25

1.1 Related Documents .. 8 26

1.2 Modelling Technique and Diagrammatic Notes.. 8 27

1.3 Overall Functionality ... 10 28

2 ACTORS AND USE CASES .. 12 29

2.1 Actors and Use Cases.. 12 30

2.2 Use Case Diagrams ... 13 31

3 SDMX BASE PACKAGE .. 20 32

3.1 Introduction ... 20 33

3.2 Identification, Versioning, and Maintenance... 21 34

3.3 Data Types ... 24 35

3.4 The Item Scheme Pattern... 26 36

3.5 The Structure Pattern ... 28 37

3.6 Association Pattern... 32 38

3.7 Inheritance.. 34 39

4 SPECIFIC ITEM SCHEMES .. 36 40

4.1 Introduction ... 36 41

4.2 Inheritance View ... 36 42

4.3 Code List... 37 43

4.4 Concept Scheme .. 39 44

4.5 Category Scheme... 44 45

4.6 Object Type Scheme .. 46 46

4.7 Type Scheme.. 48 47

4.8 Organisation Scheme ... 51 48

4.9 Item Scheme Association ... 54 49

5 KEY FAMILY (DATA STRUCTURE DEFINITION) AND DATASET 56 50

5.1 Introduction ... 56 51

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

4

5.2 Inheritance View ... 57 52

5.3 Key Family – Relationship View ... 60 53

5.4 Data Set – Timeseries Relationship View .. 69 54

5.5 Data Set – Cross Sectional Relationship View... 75 55

6 CUBE.. 79 56

6.1 Context ... 79 57

6.2 Support for the Cube in the Information Model .. 79 58

7 METADATA STRUCTURE DEFINITION AND METADATA SET.................................... 80 59

7.1 Context ... 80 60

7.2 Inheritance.. 80 61

7.3 Metadata Structure Definition ... 83 62

7.4 Metadata Set .. 91 63

8 HIERARCHICAL CODE SCHEME... 96 64

8.1 Scope.. 96 65

8.2 Inheritance.. 97 66

8.3 Relationship .. 99 67

9 STRUCTURE SET AND MAPPINGS... 104 68

9.1 Scope.. 104 69

9.2 Structure Set... 104 70

9.3 Structure Map ... 106 71

9.4 Concept Scheme Map and Category Scheme Map... 108 72

10 DATA CONTRAINTS AND PROVISIONING ... 110 73

10.1 Scope ... 110 74

10.2 Inheritance.. 110 75

10.3 Constraints ... 111 76

10.4 Data Provisioning ... 117 77

10.5 Reporting Taxonomy.. 121 78

11 PROCESS AND TRANSITIONS .. 122 79

11.1 Introduction... 122 80

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

5

11.2 Model – Inheritance View... 122 81

11.3 Model – Relationship view ... 123 82

12 TRANSFORMATIONS AND EXPRESSIONS.. 125 83

12.1 Scope ... 125 84

12.2 Model - Inheritance View.. 126 85

12.3 Model - Relationship View.. 127 86

13 APPENDIX 1: A SHORT GUIDE TO UML IN THE SDMX INFORMATION MODEL132 87

13.1 Scope ... 132 88

13.2 Use Cases.. 132 89

13.3 Classes and Attributes ... 133 90

13.4 Associations ... 134 91

13.5 Collaboration Diagram.. 138 92

14 APPENDIX II: KEY FAMILIES – A TUTORIAL .. 140 93

14.1 Introduction... 140 94

14.2 What is a Key Family?.. 140 95

14.3 Grouping Data .. 141 96

14.4 Attachment Levels.. 142 97

14.5 Keys ... 142 98

14.6 Code Lists and Other Representations .. 143 99

14.7 Cross-Sectional Data Structures.. 144 100

 101

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

6

Change History 102

Version 1.0 – initial release September 2004. 103
 104
Version 2.0 – release November 2005 105
 106
Major functional enhancements by addition of new packages: 107
 108

• Metadata Structure Definition 109

• Metadata Set 110

• Hierarchical Code Scheme 111

• Data and Metadata Provisioning 112

• Structure Set and Mappings 113

• Transformations and Expressions 114

• Process and Transitions 115

Re-engineering of some SDMX Base structures to give more functionality: 116
 117

• Item Scheme and Item can have properties – this gives support for complex 118
hierarchical code schemes (where the property can be used to sequence 119
codes in scheme), and Item Scheme mapping tables (where the property can 120
give additional information about the map between the two schemes and the 121
between two Items) 122

• revised Organisation pattern to support maintained schemes of organisations, 123
such as a data provider 124

• modified Component Structure pattern to support identification of roles played 125
by components and the attachment of attributes 126

• change to inheritance to enable more artefacts to be identifiable and 127
versionable 128

Introduction of new types of Item Scheme: 129
 130

• Object Type Scheme to specify object types in support of the Metadata 131
Structure Definition (principally the object types (classes) in this Information 132
Model) 133

• Type Scheme to specify types other than object type 134

• A generic Item Scheme Association to specify the association between Items 135
in two or more Item Schemes, where such associations cannot be described 136
in the Structure Set and Transformation. 137

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

7

The Data Structure Definition is introduced as a synonym for Key Family, though the 138
term Key Family is retained and used in this specification. 139
 140
Modification to Key Family (Data Structure Definition) to 141
 142

• align the cross sectional structures with the functionality of the schema 143

• support key family extension (i.e. to derive and extend a key family from 144
another key family), thus supporting the definition of a related “set” of key 145
families 146

• distinguish between data attributes (which are described in a key family) from 147
metadata attributes (which are described in a metadata structure definition) 148

• attach data attributes to specific identifiable artefacts (formally this was 149
supported by attachable artefact) 150

Domain Category Scheme re-named Category Scheme to better reflect the multiple 151
usage of this type of scheme (e.g. subject matter domain, reporting taxonomy). 152
 153
Concept Scheme enhanced to allow specification of the representation of the 154
Concept. This specification is the default (or core) representation and can be 155
overridden by a construct that uses it (such as a Dimension in a Key Family). 156
 157
Revision of cross sectional data set to reflect the functionality of the version 1.0 158
schema. 159
 160
Revision of Actors and Use Cases to reflect better the functionality supported. 161

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

8

1 INTRODUCTION 162

This document is not normative, but provides a detailed view of the information 163
model on which the normative SDMX specifications are based. Those new to the 164
UML notation or to the concept of key families may wish to read the appendixes in 165
this document as an introductory exercise. 166

1.1 Related Documents 167
This document is one of three documents concerned with the SDMX Information 168
Model. The complete set of documents is: 169
 170
SDMX INFORMATION MODEL: UML CONCEPTUAL DESIGN (this document) 171
 172
This document comprises the complete definition of the information model, with the 173
exception of the registry interfaces. It is intended for technicians wishing to 174
understand the complete scope of the SDMX technical standards in a syntax neutral 175
form. 176
 177
SDMX REGISTRY SPECIFICATION: LOGICAL INTERFACES 178
 179
This document provides the logical specification for the registry interfaces, including 180
subscription/notification, registration/submission of data and metadata, and querying. 181
 182
SDMX IMPLEMENTORS GUIDE 183
 184
This document explains the structures in the model in high level diagrammatic form 185
and maps these diagrams to the class diagrams in the model. In addition it gives 186
worked examples of the structures. It is intended for technicians wishing to gain an 187
overall understanding of the structures of the model in a more informal and less 188
complete form than the UML Conceptual Design. 189

1.2 Modelling Technique and Diagrammatic Notes 190
The modelling technique used for the SDMX Information Model (SDMX-IM) is the 191
Unified Modelling Language (UML). An overview of the constructs of UML that are 192
used in the SDMX-IM can be found in the Appendix “A Short Guide to UML in the 193
SDMX Information Model” 194
 195
UML diagramming allows a class to be shown with or without the compartments for 196
one or both of attributes and operations (sometimes called methods). In this 197
document the operations compartment is not shown as there are no operations. 198
 199

NewClass
attribute

Figure 1 Class with operations suppressed

 200
In some diagrams for some classes the attribute compartment is suppressed even 201
though there may be some attributes. This is deliberate and is done to aid clarity of 202
the diagram. The rules used are: 203
 204

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

9

• The attributes will always be present on the class diagram where the class is 205
defined and its attributes and associations are defined. 206

• On other diagrams, such as inheritance diagrams, the attributes may be 207
suppressed from the class for clarity. 208

 209
NewClass

Figure 2 Class with attributes also suppressed

 210
Note that, in any case, attributes inherited from a super class are not shown in the 211
sub class. 212
 213
The following table structure is used to in the definition of the classes, attributes, and 214
associations. 215
 216
Class Feature Description

ClassName

 attributeName .

 associationName

 +roleName

 217
The content in the “Feature” column comprises or explains one of the following 218
structural features of the class: 219
 220

• Whether it is an abstract class. Abstract classes are shown in italic 221
Courier font 222

• The superclass this class inherits from, if any 223

• The sub classes of this class, if any 224

• Attribute – the attributeName is shown in Courier font 225

• Association – the associationName is shown in Courier font. If the 226
association is derived from the association between super classes then the 227
format is /associationName 228

• Role – the +roleName is shown in Courier font 229

The Description column provides a short definition or explanation of the Class or 230
Feature. UML class names may be used in the description and if so, they are 231
presented in normal font with spaces between words. For example the class 232
CodeList will be written as Code List. 233

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

10

1.3 Overall Functionality 234

1.3.1 Information Model Packages 235
The SDMX Information Model (SDMX-IM) is a conceptual metamodel from which 236
syntax specific implementations are developed. The model is constructed as a set of 237
functional packages which assist in the understanding, re-use and maintenance of 238
the model. 239
 240
In addition to this, in order to aid understanding each package can be considered to 241
be in one of three conceptual layers: 242
 243

• the SDMX Base layer comprises fundamental building blocks which are used 244
by the Structural Definitions layer and the Reporting and Dissemination layer 245

• the Structural Definitions layer comprises the definition of the structural 246
artefacts needed to support data and metadata reporting and dissemination 247

• the Reporting and Dissemination layer comprises the definition of the data 248
and metadata containers used for reporting and dissemination 249

In reality the layers have no implicit or explicit structural function as any package can 250
make use of any construct in another package. 251

1.3.2 Version 1.0 252
In version 1.0 the metamodel supported the requirements for: 253
 254

• Key family definition including (domain) category scheme, (metadata) concept 255
scheme, and code list 256

 257
• Data and related metadata reporting and dissemination 258

The SDMX-IM comprises a number of packages. These packages act as convenient 259
compartments for the various sub models in the SDMX-IM. The diagram below 260
shows the sub models of the SDMX-IM that were included in the version 1.0 261
specification. 262

Identification, Item Scheme, Component Structure, Organisation SDMX
Base

Structural
Definitions

Reporting and
Dissemination

Data
Set

Key
Family

Metadata
Concept
Scheme

Subject
Matter
Domain

Code
List

 263
Figure 3: SDMX Information Model Version 1.0 package structure 264

1.3.3 Version 2.0 265
The version 2.0 model extends the functionality of version 1.0. principally in the area 266
of metadata, but also in various ways to define structures to support data analysis by 267

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

11

systems with knowledge of cube type structures such as OLAP1 systems. The 268
following packages have been added at version 2.0 269
 270

• Metadata structure definition 271

• Metadata set 272

• Hierarchical code scheme 273

• Cube definition 274

• Data and metadata provisioning 275

• Transformations and expressions 276

Furthermore, the synonym Data Structure Definition is assigned to the Key Family as 277
these two terms are used in various communities and they are synonymous. The 278
term Key Family is used in this document. 279

Identification, Item Scheme, Component Structure, Association SDMX
Base

Data
Set

Key
Family

Metadata
Structure
Definition

Structure
Mapping

Concept
Scheme

Category
Scheme

Code
List

Trans-
formations &
Expressions

Hierarchic
Code
Scheme

Metadata
Set

Data &
Metadata

Provisioning

Structural
Definitions

Reporting and
Dissemination

Process

Figure 4 SDMX Information Model Version 2.0 package structure

Additional packages that are specific to a registry based scenario can be found in the 280
Specification of Registry Interfaces. For information these are shown on the diagram 281
below and comprise: 282
 283

• Subscription and Notification 284

• Registration 285

• Discovery 286

Note that the data and metadata required for registry functions are not confined to 287
these three packages, and the registry also makes use of the other packages in the 288
Information Model. 289

1 OLAP: On line analytical processing

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

12

Identification, Item Scheme, Component Structure, Association SDMX
Base

Data
Set

Key
Family

Metadata
Structure
Definition

Structure
Mapping

Concept
Scheme

Category
Scheme

Code
List

Trans-
formations &
Expressions

Hierarchic
Code
Scheme

Metadata
Set

Data &
Metadata

Provisioning

Subscription
&

Notification
Registration Discovery

Structural
Definitions

Reporting and
Dissemination

Process

 290
Figure 5: SDMX Information Model Version 2.0 package structure including the registry 291

2 ACTORS AND USE CASES 292

2.1 Actors and Use Cases 293
In order to develop the data models it is necessary to understand the functions to be 294
supported resulting from the requirements definition. These are defined in a use case 295
model. The use case model comprises actors and use cases and these are defined 296
below. 297
 298
Actor 299
“An actor defines a coherent set of roles that users of the system can play when 300
interacting with it. An actor instance can be played by either an individual or an 301
external system” 302
 303
Use case 304
“A use case defines a set of use-case instances, where each instance is a sequence 305
of actions a system performs that yields an observable result of value to a particular 306
actor” 307
 308
The overall intent of the model is to support data and metadata reporting, 309
dissemination, and exchange in the field of aggregated statistical data and related 310
metadata. In order to achieve this, the model needs to support three fundamental 311
aspects of this process: 312
 313

• Maintenance of structural and provisioning definitions 314

• Data and metadata publishing (reporting), and consuming (using) 315

• Access to data, metadata, and structural and provisioning definitions 316

This document covers the first two aspects, whilst the document on the Registry 317
logical model covers the last aspect. 318

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

13

2.2 Use Case Diagrams 319

2.2.1 Maintenance of Structural and Provisioning Definitions 320

2.2.1.1 Use cases 321
 322

Provisioning Definitions
 Maintenance Agency

Maintain Metadataflow
 Definition

Maintain Dataflow
 Definition

Maintain Cube
Definition

Maintain Data
 Provider

Maintain Provision
Agreement

Maintain Concept
Scheme

Maintain Category
Scheme

Maintain Code
 List

Maintain Hierarchical
 Code Scheme

Maintain Key Family
 (Data Structure Definition)

Maintain Metadata
Structure Definition

Maintain Cube
Structure

Maintain Maintenance
 Agency Scheme

Community
Administrator

Maintenance Agency

Structural Definitions
Maintenance Agency

Maintain Structure Definitions

Maintain Provisioning Definitions

Maintain Reporting
 Taxonomy

Figure 6 Use cases for maintaining data and metadata structural and provisioning
definitions

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

14

2.2.1.2 Explanation of the Diagram 323
In order for applications to publish and consume data and metadata it is necessary 324
for the structure and permitted content of the data and metadata to be defined and 325
made available to the applications, as well as definitions that support the actual 326
process of publishing and consuming. This is the responsibility of a Maintenance 327
Agency. 328
 329
All maintained artefacts are maintained by a Maintenance Agency. For convenience 330
the Maintenance Agency actor is sub divided into two actor roles: 331
 332

• maintaining structural definitions 333

• maintaining provisioning definitions 334

Whilst both these functions may be carried out by the same person, or at least by the 335
same maintaining organization, the purpose of the definitions is different and so the 336
roles have been differentiated: structural definitions define the format and permitted 337
content of data and metadata when reported or disseminated, whilst provisioning 338
definitions support the process of reporting and dissemination (who reports what to 339
whom, and when). 340
 341
In a community based scenario where at least the structural definitions may be 342
shared, it is important that the scheme of maintenance agencies is maintained by a 343
responsible organization (called here the Community Administrator). 344

2.2.1.3 Definitions 345
Actor Use Case Description

Community
Administrator

 Responsible organisation
that administers structural
definitions common to the
community as a whole.

Maintain Maintenance
 Agency Scheme

Creation and maintenance of
the scheme of maintenance
agencies.

Maintenance Agency

 Responsible agency for
maintaining structural
artefacts such as code lists,
concept schemes, key family
structural definitions,
metadata structure
definitions, and data and
metadata provisioning
artefacts such as data

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

15

Actor Use Case Description

providers and dataflow
definitions.

sub roles are:

Structural Definitions
Maintenance Agency

Provisioning Definitions
Maintenance Agency

Structural Definitions
Maintenance Agency

 Responsible for maintaining
structural definitions.

Maintain Structure Definitions

The maintenance of
structural definitions. This
use case has sub class use
cases for each of the
structural artefacts that are
maintained.

Maintain Code
 List

Maintain Concept
Scheme

Maintain Category
Scheme

Maintain Key Family
 (Data Structure Definition)

Maintain Metadata
Structure Definition

Creation and maintenance of
the key family (data structure
definition), metadata
structure definition, and cube
structure, and the supporting
artefacts that they use, such
as code list and concept
scheme.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

16

Actor Use Case Description

Maintain Cube
Structure

Maintain Hierarchical
 Code Scheme

Maintain Reporting
 Taxonomy

Provisioning Definitions
 Maintenance Agency

 Responsible for maintaining
data and metadata
provisioning definitions.

Maintain Provisioning Definitions

The maintenance of
provisioning definitions. This
use case has sub class use
cases for each of the
structural artefacts that are
maintained.

Maintain Data
 Provider

Maintain Dataflow
 Definition

Maintain Metadataflow
 Definition

Creation and maintenance of
the artefacts that support the
definition of data and
metadata provisioning, such
as the list of data providers,
dataflow definitions, cube
definitions, and the provision
agreements that link the data
providers with the dataflow
and metadata flow
definitions.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

17

Actor Use Case Description

Maintain Cube
Definition

Maintain Provision
Agreement

Figure 7: Table of Actors and use Cases for Maintenance of Structural and Provisioning 346
Definitions 347

2.2.2 Publishing and Using Data and Metadata 348

2.2.2.1 Use Cases 349

Publish Reference
Metadata

Metadata
Publisher

Metadata
Consumer

Data and metadata are published and
used according to the specifications
of the structural definitions which
define format and permitted content,
and the provisioning definitions which
define the process of making the data
and metadata available for
consumption

Data Consumer

Uses Metadata

Data Publisher

Uses Data

<<extend>>

Publish Data

data source

metadata source

 350
Figure 8: Actors and use cases for data and metadata publishing and consuming 351

2.2.2.2 Explanation of the Diagram 352
Note that in this diagram “publishing” data and metadata is deemed to be the same 353
as “reporting” data and metadata. In some cases the act of making the data available 354
fulfils both functions. Aggregated data is published and in order for the Data 355
Publisher to do this and in order for consuming applications to process the data and 356
metadata its structure must be known. Furthermore, consuming applications may 357

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

18

also require access to (reference) metadata in order to present this to the Data 358
Consumer so that the data is better understood. As with the data, the reference 359
metadata also needs to be formatted in accordance with a maintained structure. The 360
Data Consumer and Metadata Consumer cannot use the data or metadata unless it 361
is “published” and so there is a “data source” or “metadata source” dependency 362
between the “uses” and “publish” use cases. 363
 364
In any data and metadata publishing and consuming scenario both the publishing 365
and the consuming applications will need access to maintained Provisioning 366
Definitions. These definitions may be as simple as who provides what data and 367
metadata to whom, and when, or it can be more complex with constraints on the data 368
and metadata that can be provided by a particular publisher, and, in a data sharing 369
scenario where data and metadata are “pulled” from data sources, details of the 370
source. 371

2.2.2.3 Definitions 372
Actor Use Case Description

Data Publisher

 Responsible for publishing
data according to a specified
key family (data structure)
definition, and relevant
provisioning definitions.

Publish Data

Publish a data set. This
could mean a physical data
set or it could mean to make
the data available for access
at a data source such as a
database that can process a
query.

Data Consumer

 The user of the data. It may
be a human consumer
accessing via a use
interface, or it could be an
application such as a
statistical production system.

Uses Data

Use data that is formatted
according to the structural
definitions and made
available according to the
provisioning definitions.
Data are often linked to
metadata that may reside in
a different location and be
published and maintained
independently.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

19

Actor Use Case Description

Metadata Publisher

 Responsible for publishing
reference metadata
according to a specified
metadata structure definition,
and relevant provisioning
definitions.

Publish Reference
Metadata

Publish a reference
metadata set. This could
mean a physical metadata
set or it could mean to make
the metadata available for
access at a metadata source
such as a metadata
repository that can process a
query.

Metadata Consumer

 The user of the metadata. It
may be a human consumer
accessing via a use
interface, or it could be an
application such as a
statistical production or
dissemination system.

Uses Metadata

Use metadata that is
formatted according to the
structural definitions and
made available according to
the provisioning definitions.

 373

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

20

3 SDMX BASE PACKAGE 374

3.1 Introduction 375
The constructs in the SDMX Base package comprise the fundamental building blocks 376
that support many of the other structures in the model. For this reason, many of the 377
classes in this package are abstract (i.e. only derived sub-classes can exist in an 378
implementation). 379
 380
The motivation for establishing the SDMX Base package is as follows: 381
 382

• It is accepted “Best Practise” to identify fundamental archetypes occurring in 383
a model 384

• identification of commonly found structures or “patterns” leads to easier 385
understanding 386

• identification of patterns encourages re-use 387

Each of the class diagrams in this section views classes from the SDMX Base 388
package from a different perspective. There are detailed views of specific patterns, 389
plus overviews showing inheritance between classes, and relationships amongst 390
classes. 391
 392

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

21

3.2 Identification, Versioning, and Maintenance 393

3.2.1 Class Diagram 394
 395

VersionableArtefact
version : String
validFrom : Date
validTo : Date

MaintenanceAgencyMaintainableArtefact
final : Boolean 10..*

+maintainer

10..*

AnnotableArtefact

LocalisedString
label : String
locale : String

Annotation
name : String
type : String
url : String0..1 0..*0..1 0..*

IdentifiableArtefact
id : String
uri : String
urn : String

InternationalString

1

0..*

1

0..*

0..1

0..1

0..1

0..1

0..1 0..10..1

+description

0..1

0..1
0..1

0..1
+name 0..1

Figure 9 SDMX Identification, maintenance and versioning

 396

3.2.2 Explanation of the Diagram 397

3.2.2.1 Narrative 398
This group of classes forms the nucleus of the administration facets of SDMX 399
objects. They provide features which are reusable by derived classes to support 400
horizontal functionality such as identity, versioning etc. 401
 402
All classes derived from the abstract class AnnotableArtefact may have 403
Annotations (or notes): this supports the need to add notes to all SDMX-ML 404
elements. The Annotation is used to convey extra information to describe any SDMX 405
construct. This information may be in the form of a URL reference and / or a 406
multilingual text (represented by the association to InternationalString). 407
 408

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

22

The IdentifiableArtefact is an abstract class that comprises the basic 409
attributes needed fir identification. Concrete classes based on 410
IdentifiableArtefact all inherit the ability to be uniquely identified. They also 411
inherit the ability to carry annotations. In addition, the +description and +name 412
roles support multilingual descriptions and names for all objects based on 413
IdentifiableArtefact. The InternationalString supports the 414
representation of a description in multiple locales (locale is similar to language but 415
includes geographic variations such as Canadian French, US English etc.). The 416
LocalisedString supports the representation of a description in one locale. 417
 418
VersionableArtefact is an abstract class which inherits from 419
IdentifiableArtefact and adds versioning ability to all classes derived from it. 420
 421
MaintainableArtefact further adds the ability for derived classes to be 422
maintained via its association to MaintenanceAgency. It is possible to define 423
whether the artefact is draft or final with the final attribute. 424
 425
The inheritance chain from AnnotableArtefact through to 426
MaintainableArtefact allows SDMX classes to inherit the features they need, 427
from simple annotation, through identity, to versioning and maintenance. 428
 429

3.2.2.2 Definitions 430
Class Feature Description

AnnotableArtefact Direct sub classes are:
IdentifiableArtef
act

Objects of classes derived
from this can have attached
annotations.

Annotation Additional descriptive
information attached to an
object.

 name A name used to identify an
annotation.

 type Specifies how the annotation
is to be processed.

 url A link to external descriptive
text.

 +text An International String
provides the multilingual text
content of the annotation via
this role.

IdentifiableArtefact Superclass is
AnnotableArtefact

Direct sub classes are:
VersionableArtefact

Provides identity to all
derived classes. It also
provides annotations to
derived classes because it is
a subclass of Annotable
Artefact.

 id The unique identifier of the
object.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

23

Class Feature Description

 uri Universal resource identifier
that may or may not be
resolvable.

 urn Universal resource name –
this is for use in registries: all
registered objects have a
urn.

 +description A multi-lingual description is
provided by this role via the
International String class.

 +name A multi-lingual name is
provided by this role via the
International String class

VersionableArtefact Superclass is
IdentifiableArtefact
Direct sub classes are:
MaintainableArtefact

Provides versioning
information for all derived
objects.

 version A version string following an
agreed convention

 validFrom Date from which the version
is valid

 validTo Date from which version is
superceded

InternationalString The International String is a
collection of Localised
Strings and supports the
representation of a
description in multiple
locales.

LocalisedString The Localised String
supports the representation
of a description in one locale
(locale is similar to language
but includes geographic
variations such as Canadian
French, US English etc.).

 label Label of the string.

 locale The geographic locale of the
string e.g French, Canadian
French.

MaintainableArtefact Inherits from
VersionableArtefact
Derived classes:
StructureUsage
Structure
ItemScheme

An abstract class to group
together primary structural
metadata artefacts that are
maintained by a
MaintenanceAgency.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

24

Class Feature Description

 final Defines whether a
maintained artefact is draft
or final.

 +maintainer Derived classes will be
maintained by the
MaintenanceAgency
specified by this role.

MaintenanceAgency See section on
“Organisations”

 431

3.3 Data Types 432

3.3.1 Class Diagram 433
 434

UsageStatus
<<enumeration>>

mandatory : String
optional : String
conditional : String

ConceptRoleType
<<enumeration>>

frequency : String
count : String
measureType : String
nonObsTime : String
identity : String
time : String
primaryMeasure : String
entity : String

DataType
<<enumeration>>

string : String
bigInteger : String
integer : String
long : String
short : String
decimal : String
float : String
double : String
boolean : String
dateTime : String
time : String
date : String
year : String
month : String
day : String
monthDay : String
yearMonth : String
duration : String
timeSpan : String
uri : String
count : String
inclusiveValueRange : String
exclusiveValueRange : String
increment : String
observationalTimePeriod : String
base64Binary : String

ContactRoleType
<<enumeration>>

maintainer : String
disseminator : String
collector : String
reporter : String
other : String

FacetType
<<enumeration>>

isSequence : Boolean
isInclusive : Boolean
minLength : Integer
maxLength : Integer
minValue : String
maxValue : String
startValue : String
endValue : String
increment : Double
timeInterval : Duration
decimals : Integer
pattern : String
enumeration : ItemScheme

3.3.2 Explanation of the Diagram 435

3.3.2.1 Narrative 436
The UsageStatus enumeration is used as a data type on an attribute where the 437
value of the attribute in an instance of the class must take one of the values in the 438
UsageStatus (i.e. mandatory, optional, or conditional). 439
 440
The AttributeValueType enumeration is used as a data type on an attribute 441
value to indicate its format. 442
 443

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

25

The ConceptRoleType enumeration is used as a data type on a role attribute to 444
indicate the role that a component plays in a key family (data structure definition). 445
This role is in addition to any formal structural layering of the model such as 446
Dimension, Measure, and DataAttibute. The description of the various roles 447
can be found in the section on KeyFamily (section 5). 448
 449
The DataType enumeration is used to specify the valid format of the content of a 450
Concept when specified for use on a Component on a Structure (such as a 451
Dimension in a KeyFamily). The description of the various types can be found in 452
the section on Concept Scheme (section 4.4). 453
 454
The FacetType enumeration is used to give context to a specific facetValue. The 455
use of this and the description of the various types can be found in the section on 456
Concept Scheme (section 4.4). 457

3.3.2.2 Definitions 458
Class Feature Description

UsageStatus Lists the possible values that
an attribute can take when it
is assigned the data type of
Usage Status.

 mandatory The usage is mandatory.

 optional The usage is optional.

 conditional The usage is mandatory
when certain conditions are
satisfied.

ConceptRoleType Lists the possible formats
that an attribute value can
take when it is assigned as a
data type for the attribute
(e.g. in Concept Role).

The semantic meaning of the
role types in the enumeration
are defined with the structure
in which they are used (e.g.
Key Family).

DataType Lists the possible formats
that an attribute value can
take when it is assigned as a
data type for the attribute
(e.g. type).

The semantic meaning of the
data types in the
enumeration are defined with
the structure in which they
are used (e.g. Concept
Scheme).

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

26

Class Feature Description

FacetType Lists the possible formats
that an attribute value can
take when it is assigned as a
data type for the attribute
(e.g. facetType).

The semantic meaning of the
data types in the
enumeration are defined with
the structure in which they
are used (e.g. Concept
Scheme).

3.4 The Item Scheme Pattern 459

3.4.1 Context 460
The Item Scheme is a basic architectural pattern that allows the creation of list 461
schemes for use in simple taxonomies, for example. 462
 463
The ItemScheme is the basis for CategoryScheme, CodeList, ConceptScheme, 464
and CodeSet. 465
 466

3.4.2 Class Diagram 467

DataType
<<enumeration>>

string : String
bigInteger : String
integer : String
long : String
short : String
decimal : String
float : String
double : String
boolean : String
dateTime : String
time : String
date : String
year : String
month : String
day : String
monthDay : String
yearMonth : String
duration : String
timeSpan : String
uri : String
count : String
inclusiveValueRange : String
exclusiveValueRange : String
increment : String
observationalTimePeriod : String
base64Binary : String

MaintainableArtefact

VersionableArtefact
version : String
validFrom : Date
validTo : Date

IdentifiableArtefact
id : String
uri : String
urn : String

Property
name : String
type : DataType
value : String

ItemScheme

0..*

0..1

0..*

0..1

properties

Item
0..*

1

+child
0..*

hierarchy

+parent

1

0..*

0..1

0..*

0..1

properties

0..1

1..*

0..1

1..*

items

Figure 10 The Item Scheme pattern

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

27

3.4.3 Explanation of the Diagram 468

3.4.3.1 Narrative 469
The ItemScheme is an abstract class which defines a set of Item (this class is also 470
abstract). Its main purpose is to define a mechanism which can be used to create 471
taxonomies which can classify other parts of the SDMX Information Model. It is 472
derived from MaintainableArtefact which gives it the ability to be annotated, 473
have identity, versioning and be associated with a MaintenanceAgency. An 474
example of concrete classes are CategoryScheme and associated Category. 475
 476
Item inherits from VerionableArtefact which gives it the ability to be annotated, 477
have identity, versioning, and therefore has id, uri and urn attributes, a name and a 478
description in the form of an InternationalString. Unlike the parent 479
ItemScheme, and Item itself is not a MaintainableArtefact and therefore 480
cannot have an independent MaintenanceAgency (i.e. it implicitly has the same 481
agency as the ItemScheme). 482
 483
The Item can be hierarchic and so one Item can have child Items. The restriction 484
of the hierarchic association is that a child Item can have only parent Item. 485
 486
The ItemScheme, and the Item, can all have optional Property which gives the 487
ability to add extensible properties. The explanation of the various DataTypes can be 488
found in the section on Concept Scheme (section 4.4). 489

3.4.3.2 Definitions 490
Class Feature Description

ItemScheme

Inherits from:
MaintainableArtefact

Direct sub classes are:
CategoryScheme
ConceptScheme
CodeList
OrganisationScheme
ItemSchemeAssociation

The descriptive information
for an arrangement or
division of objects into
groups based on
characteristics, which the
objects have in common.

 property Association to an Item
Property.

Item

Inherits from:
IdentifiableArtefact
Direct sub classes are
Category
Concept
Code
Association

The Item is an item of
content in an Item Scheme.
This may be a node in a
taxonomy or ontology, a
code in a code list etc.

 hierarchy This allows an Item
optionally to have one or
more child Items.

 property Association to an Item
Property.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

28

Class Feature Description

Property The specification of a value
whose semantic is
identified by its name.

 name The name of the property.

 type Specifies the data type for
the Attribute Property. The
types are an enumerated
list in the Data Type
enumeration..

 value The value of the property.

3.5 The Structure Pattern 491

3.5.1 Context 492
The Structure is a basic architectural pattern which allows the specification of 493
complex tabular structures which are often found in statistical data (such as key 494
family, cube, and metadata structure definitions). A Structure is a set of ordered lists. 495
A pattern to underpin this tabular structure has been developed, so that 496
commonalities between these structure definitions can be supported by common 497
software and common syntax structures. 498
 499

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

29

3.5.2 Class Diagram 500
 501

UncodedArtefact

IdentifiableArtefactAttribute
usageStatus : UsageStatus

attachesTo

StructureUsage

CodedArtefact

Structure

0..*

0..*

0..*

0..*

structure

ItemScheme
1

0..*

1

0..*

codelist

ComponentList

1..*

1

1..*

1

grouping

Item

0..1

1..*

0..1

1..*

items

Representation

Component
1..*1 1..*1

components

1

0..*

1

0..*

conceptIdentity

0..10..1

conceptRole

0..10..1
localRepresentation

Type
type : DataType

0..10..1

localType

Figure 11 The Structure pattern

3.5.3 Explanation of the Diagram 502

3.5.3.1 Narrative 503
The Structure is an abstract class which contains a set of one or more 504
ComponentList(s) (this class is also abstract). An example of a concrete 505
ComponentStructure is KeyFamily. The ComponentList(s) are embedded 506
within the Structure, and this is indicated by the solid diamond on the grouping 507
association. 508
 509
The ComponentList is a list of one or more Component(s). The ComponentList 510
has several concrete descriptor classes based on it: KeyDescriptor, 511
GroupKeyDescriptor, MeasureDescriptor, and AttributeDescriptor 512

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

30

of the KeyFamily are examples. In the case of a KeyDescriptor acting as a 513
ComponentList, its Component(s) would be Dimension(s). 514
 515
Each Component takes its semantic (and possibly also its representation) from an 516
Item in an ItemScheme, such as a Concept in a ConceptScheme. Furthermore, a 517
Component may be defined as having one or more roles in the structure, and this is 518
identified by the +conceptRole association to an Item in an ItemScheme that 519
defines roles. The Component may also have a Type specified localType, this 520
allows a concrete class, such as Dimension, to specify a data type that is local to 521
the Structure in which it is contained (for Dimension this will be KeyFamily), 522
and thus overrides any Type specified for the Item which contains its 523
conceptIdentity (in the case of a Dimension this would be a Concept). 524
 525
A specific sub class of Component is the Attribute. Attributes are used in 526
specific Structures (such as a KeyFamily) and are specified as being 527
“attachable” to specific components in the model. This is supported by the 528
association “attachesTo” which links to an IdentifiableArtefact. This 529
association is constrained in the concrete models that use this structure pattern in 530
order to specify the actual model components to which the attribute can be attached. 531
 532
The Structure may be used by one or more StructureUsage. An example of 533
this in terms of concrete classes is that a DataflowDefinition (sub class of 534
StructureUsage) may use a particular KeyFamily (sub class of Structure), 535
and similar constructs apply for the MetadataflowDefinition (link to 536
MetadataStructureDefinition) and the CubeDefinition (link to 537
CubeStructure). 538
 539
Finally, the pattern contains CodedArtefact and UncodedArtefact. The model 540
distinguishes between two fundamental “representations” for components in a 541
structure. The CodedArtefact associates an ItemScheme (usually a CodeList) 542
that defines its valid content, whilst an UncodedArtefact does not have a link to a 543
formal list that specifies valid content. However, an UncodedArtefact may have a 544
specific non coded representation other than text. The valid representations are 545
described in the section 4.4 (Concept Scheme). 546

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

31

3.5.3.2 Definitions 547
Class Feature Description

StructureUsage

Inherits from:
MaintainableArtefact

Direct sub classes are:
DataflowDefinition
(see Figure 22)

MetadataflowDefinition
(see Figure 22)

An artefact whose
components are described
by a Structure. In concrete
terms (sub-classes) an
example would be a
Dataflow Definition which is
linked to a given structure –
in this case the Key Family.

 structure An association to a
Structure specifying the
structure of the artefact.

Structure Inherits from:
MaintainableArtefact

Direct sub classes are:
KeyFamily
MetadataStructure
Definition

Abstract specification of a
list of lists to define a
complex tabular structure. A
concrete example of this
would be statistical
concepts, code lists, and
their organisation in a data
or metadata structure
definition, defined by a
centre institution, usually for
the exchange of statistical
information with its
partners.

 grouping A composite association to
one or more component
lists.

ComponentList Inherits from:
IdentifiableArtefact

Direct sub classes are:
KeyDescriptor
GroupKeyDescriptor
MeasureDescriptor
AttributeDescriptor
TargetIdentifier
PartialTarget
Identifier
ConceptDescriptor

An abstract definition of a
list of components. A
concrete example is a key
descriptor which defines the
list of dimensions that make
up a key for a key family.

 components An aggregate association to
one or more components
which make up the list.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

32

Class Feature Description

Component Inherits from:
IdentifiableArtefact

Direct sub classes are:
Measure
Attribute
Dimension
IdentifierComponent

A component is an abstract
super class used to define
qualitative and quantitative
data and metadata items
that belong to a Component
List and hence a Structure.
Component is refined
through its sub-classes.

Attribute Inherits from:
Component

Direct sub classes are:
UncodedDataAttribute
CodedDataAttribute
MetadataAttribute

An abstract class used to
provide qualitative
information.

 usageStatus Defines the usage status
which is constrained by the
data type Usage Status.

UncodedArtefact Direct sub classes are:
UncodedDataAttribute
UncodedMetadata
Attribute
UncodedMeasure

An uncoded artefact is an
abstract class used to
define qualitative,
quantitative or free text
values which are not drawn
from a maintained value
set.

CodedArtefact Direct sub classes are:
Dimension
CodedDataAttribute
CodedMeasure
IdentifierComponent
CodedMetadata
Attribute

A coded artefact is an
abstract class used to
define qualitative values
which are drawn from a
maintained value set.

 codelist An association to an Item
Scheme which allows sub-
classes to define the code
list from which this
component takes its values.

3.6 Association Pattern 548

3.6.1 Context 549
The Structure is a basic architectural pattern which allows the specification of 550
complex tabular structures which are often found in statistical data (such as key 551
family, 552

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

33

3.6.2 Class Diagram 553

VersionableArtefact

MaintainableArtefact

IdentifiableArtefact

ItemScheme

Association
alias : String

0..*

1

0..*

+source
1

source

0..*

1

0..*

+target
1

target

Item

0..*

1

+child
0..*

hierarchy

+parent

10..1 1..*0..1 1..*
items

0..1

+associationType

0..1

 554
Figure 12: Class diagram of the Association Pattern 555

3.6.3 Explanation of the Diagram 556

3.6.3.1 Narrative 557
The Association Pattern permits associations between any two 558
IdentifiableArtefacts. The association has a coded type specified by an Item 559
in an ItemScheme. The Association is a VersionableArtefact, allowing 560
associations between objects to evolve over time. The Association is also an 561
Item, thus it can contain child Associations. This is useful for expressing 562
mapping between lists and hierarchies. For example, an Association may map two 563
CodeLists together and a set of children Associations would map the individual 564
Codes. A more elaborate hierarchy would be to map all components in a KeyFamily, 565
including the CodeLists and Codes used by the components. Schematically this 566
would be: 567
 568
KeyFamily [Dimension, DataAttribute, Measure] CodeList Code. 569
 570
The specific use of this pattern is described in Structure Set (section 9). 571
 572
The alias attribute is used to specify a neutral name which can refer to multiple 573
pair-wise mappings thus facilitating querying across a set of mapped artefacts. 574

3.6.3.2 Definitions 575
Class Feature Description

Association Inherits from
Item

Links two Identifiable
Artefacts in a source
and target association.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

34

Class Feature Description

 +source Association to the
source Identifiable
Artefact.

 +target Association to the target
Identifiable Artefact.

 +associationType Association to an Item
that specifies the role of
the link between the
source and target
Identifiable Artefact.

 alias Specifies a neutral
name which can refer to
multiple pair-wise
mappings of Identifiable
Artefacts.

3.7 Inheritance 576

3.7.1 Class Diagram 577
 578

AttributeItem

ComponentComponentList

StructureStructureUsage

VersionableArtefact
version : String
validFrom : Date
validTo : Date

MaintainableArtefact
final : Boolean

MaintenanceAgency

OrganisationRoleOrganisation UncodedArtefact

DataProvider DataConsumer

AnnotableArtefact

LocalisedString
label : String
locale : String

Annotation
name : String
type : String
url : String0..1 0..*0..1 0..*

IdentifiableArtefact
id : String
uri : String
urn : String

InternationalString
1 0..*1 0..*

0..1

0..1

0..1

0..1

0..1 0..10..1
+description

0..1

0..1 0..10..1
+name

0..1

ItemScheme

CodedArtefact

Figure 13 Inheritance within the base structures

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

35

3.7.2 Explanation of the Diagram 579

3.7.2.1 Narrative 580
The diagram above shows the inheritance within the base structures. Many of the 581
concrete classes are introduced and defined in the specific package to which they 582
relate: principally the Data Structure Definition and the Metadata Structure Definition. 583
 584
Note that neither CodedArtefact nor UncodedArtefact inherit from any of the 585
base classes and in themselves they have no identification. It will be seen later that 586
the concrete classes that inherit from these classes also inherit from a class which 587
does have identification (e.g. in the case of a data attribute this is 588
CodedDataAttribute). 589

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

36

4 SPECIFIC ITEM SCHEMES 590

4.1 Introduction 591
The structures that are an arrangement of objects into hierarchies or lists based on 592
characteristics, and which are maintained as a group inherit from ItemScheme. 593
These concrete classes are: 594
 595

• CodeList 596

• ConceptScheme 597

• CategoryScheme 598

• ObjectTypeScheme 599

• OrganisationScheme 600

• ItemSchemeAssociation 601

• TransformationScheme 602

The TransformationScheme is described in the section on Transformations and 603
Expressions (section 12). This section describes the remaining specialisations of the 604
ItemScheme. 605

4.2 Inheritance View 606
The inheritance and relationship views are shown together in each of the diagrams 607
below. 608

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

37

4.3 Code List 609

4.3.1 Class Diagram 610
 611

VersionableArtefact
(from SDMX-Base)

version : String
validFrom : Date
validTo : Date

MaintenanceAgency
(from SDMX-Base)

MaintainableArtefact
(from SDMX-Base)

1 0..*

+maintainer

1 0..*

IdentifiableArtefact
(from SDMX-Base)

id : String
uri : String
urn : String

InternationalString
(from SDMX-Base)

0..1
0..1

0..1

+description
0..1

0..10..1 0..1
+name
0..1

CodeList
codeValueLength : Integer

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

0..1

1..*

0..1

1..*

items

0..*

1

+child

0..*hierarchy

+parent

1
Hierarchy Code

0..10..1

hierarchyView

Figure 14 Class diagram of the Code List

 612

4.3.2 Explanation of the Diagram 613

4.3.2.1 Narrative 614
The CodeList inherits from the ItemScheme and the Code inherits from the Item 615
and both therefore have the following attributes: 616
 617

• id 618

• uri 619

• urn 620

• version 621

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

38

• validFrom 622

• validTo 623

They also have the association to InternationalString to support a multi-lingual 624
name, an optional multi-lingual description, and an association to Annotation to 625
support notes (not shown). 626
 627
Through the inheritance the CodeList comprise one or more Codes, and the Code 628
itself can have one or more child Codes in the hierarchy association . Note that a 629
child Code can have only one parent Code in this association. A more complex 630
CodeSet which allow multiple parents and multiple hierarchies is described later. A 631
more complex HierachicalCodeScheme which allow multiple parents and multiple 632
hierarchies is described later. In the HierachicalCodeScheme the Code is 633
referenced from the HierarchicalCodeScheme, but there may be a requirement 634
to link from the Code to the Hierarchy in a HierarchicalCodeScheme (such a 635
link will support code mappings – see section 9).and this is supported via the 636
hierarchyView association. 637

4.3.2.2 Definitions 638
Class Feature Description

CodeList Inherits from
ItemScheme

A list from which some
statistical concepts (coded
concepts) take their
values. In this model the
coded concepts are the
sub classes of the Coded
Artefact.

 codeValueLength The length of a code (i.e.
identifier) in the code list.

 /items Associates the codes.

 /

Code Inherits from
Item

A language independent
set of letters, numbers or
symbols that represent a
concept whose meaning is
described in a natural
language.

 hierarchy Associates the parent and
the child codes.

 hierachyView Associates a Hierarchy

 639
 640

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

39

4.4 Concept Scheme 641

4.4.1 Inheritance Class Diagram 642
 643

Concept

ConceptScheme

VersionableArtefact
(from SDMX-Base)

version : String
validFrom : Date
validTo : Date

MaintenanceAgency
(from SDMX-Base)

MaintainableArtefact
(from SDMX-Base)

1 0..*

+maintainer

1 0..*

IdentifiableArtefact
(from SDMX-Base)

id : String
uri : String
urn : String

InternationalString
(from SDMX-Base)

0..10..1 0..1

+description

0..1

0..10..1 0..1

+name

0..1

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

0..*

1

+child
0..*

hierarchy

+parent

1

0..1

1..*

0..1

1..*

items

Figure 15 Class diagram of the Concept Scheme

4.4.2 Explanation of the Diagram 644
The ConceptScheme inherits from the ItemScheme and the Concept inherits from 645
the Item, and therefore both have the following attributes: 646
 647

• id 648

• uri 649

• urn 650

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

40

• version 651

• validFrom 652

• validTo 653

Both also have the association to InternationalString to support a multi-lingual 654
name, an optional multi-lingual description, and an association to Annotation to 655
support notes (not shown). 656

4.4.3 Relationship class Diagram 657

FacetType
<<enumeration>>

isSequence : Boolean
isInclusive : Boolean
minLength : Integer
maxLength : Integer
minValue : String
maxValue : String
startValue : String
endValue : String
increment : Double
timeInterval : Duration
decimals : Integer
pattern : String
enumeration : ItemScheme

ConceptScheme

Facet
facetType : FacetType
facetValue : String

Concept

1

1..*

1

1..*

/items

0..*

1

+child
0..*

/hierarchy

+parent

1 Representation
0..10..1

coreRepresentation

0..*

1

0..*

1

Type
type : DataType0..10..1

coreType

0..1

0..*

+defaultRepresentation
0..1

0..*

DataType
<<enumeration>>

string : String
bigInteger : String
integer : String
long : String
short : String
decimal : String
float : String
double : String
boolean : String
dateTime : String
time : String
date : String
year : String
month : String
day : String
monthDay : String
yearMonth : String
duration : String
timeSpan : String
uri : String
count : String
inclusiveValueRange : String
exclusiveValueRange : String
increment : String
observationalTimePeriod : String
base64Binary : String

 658
Figure 16: Relationship class diagram of the Concept Scheme 659

4.4.4 Explanation of the diagram 660

4.4.4.1 Narrative 661
The ConceptScheme can have one or more Concept. A Concept can have zero or 662
more child Concept, thus supporting a hierarchy of Concepts. Note that a child 663
Concept can have only one parent Concept in this association. The purpose of the 664
hierarchy is to relate concepts that have a semantic relationship: for example a 665
Reporting_Country and Vis_a_Vis_Country may both have Country as a parent 666
concept, or a CONTACT may have a PRIMARY_CONTACT as a child concept. It is 667
not the purpose of such schemes to define reporting structures: these reporting 668
structures are defined in the KeyFamily or the MetadataStructureDefinition. 669
 670
The Concept can be defined as conforming to a specified Type such as string, 671
numeric etc. which is its coreType and it may also have a specified 672

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

41

Representation which is the coreRepresentation i.e. the coreType and 673
coreRepresentation is the specification of the format and value domain of the 674
Concept when used on a structure like a KeyFamily or a 675
MetadataStructureDefinition unless the specification of the Type or 676
Representation is overridden in the relevant structure definition. In a hierarchical 677
ConceptScheme the Type and Representation are inherited from the parent 678
Concept unless overridden at the level of the child Concept. 679
 680
Note that whilst the Representation is dependent upon the value of the 681
Type.DataType (this is the association with the role defaultRepresentation) 682
this is not shown as mandatory on the model, for reasons of compatibility with 683
version 1.0, which does not support all the Representations. 684
 685
Note that whilst the Representation is dependent upon the value of the 686
Type.DataType (this is the association with the role defaultRepresentation) 687
this is not shown as mandatory on the model, for reasons of compatibility with 688
version 1.0, which does not support all the Representations. 689
 690
The majority of SDMX data types are compatible with those found in XML Schema, 691
and have equivalents in most current implementation platforms: 692
 693
SDMX Data

Type
XML Schema Data

Type
.NET Framework

Type
Java Data Type

String xsd:string System.String java.lang.String
BigInteger xsd:integer System.Decimal java.math.BigInteger
Integer xsd:int System.Int32 int
Long xsd.long System.Int64 long
Short xsd:short System.Int16 short
Decimal xsd:decimal System.Decimal java.math.BigDecimal
Float xsd:float System.Single float
Double xsd:double System.Double double
Boolean xsd:boolean System.Boolean boolean
DateTime xsd:dateTime System.DateTime javax.xml.datatype.X

MLGregorianCalendar
Time xsd:time System.DateTime javax.xml.datatype.X

MLGregorianCalendar
Date xsd:date System.DateTime javax.xml.datatype.X

MLGregorianCalendar
Year, Month,
Day,
MonthDay,
YearMonth

xsd:g* System.DateTime javax.xml.datatype.X
MLGregorianCalendar

Duration xsd:duration System.TimeSpan javax.xml.datatype.D
uration

Base64Binary xsd:base64Binary System.Byte[] byte[]
URI xsd:anyURI System.Uri Java.net.URI or

java.lang.String
 694
There are also a number of SDMX data types which do not have these direct 695
correspondences, often because they are composite representations: 696
 697

• Timespan (start DateTime + Duration) 698
• ObservationalTimePeriod (a union type of Date, Time, DateTime, and a set of 699

codes for common periods – see Implementor’s Guide). 700

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

42

 701
As stated previously, the value domain of a Type is expressed by a 702
Representation. The Representation is composed of Facets, each of which 703
conveys characteristic information related to the definition of a value domain. Often a 704
set of Facet(s) are needed to convey the required semantic. For example, a 705
sequence is defined by a minimum of two Facets: one to define the start value, and 706
one to define the increment. Semantically legal combinations of Facets depend 707
upon the Type that they restrict, but are selected from the following table of 708
facetTypes. 709
 710

 711

Facet Type Explanation
isSequence If true, the Representation is an incremental sequence of

integer values (value range) or date/time values (time range).
The facets startValue, and interval or timeInterval must also
be specified for a sequence.

isInclusive If true, valid values for the Representation lie within the given
value/time range, otherwise outside the value/time range.

minLength Specifies the minimum number of characters for a value.
maxLength Specifies the maximum number of characters for a value.
minValue Specifies the minimum numeric value.
maxValue Specifies the maximum numeric value.
startValue Specifies the starting value for a sequence (time or value

range).
endValue Specifies the end value for a sequence (time or value range).
increment Used to specify the incremental steps of a value range.

Starting from startValue, and incrementing by increment until
endValue is reached. The sequence then begins again from
startValue. If no endValue is specified, the sequence
continues indefinitely.

timeInterval Used to specify the incremental steps (periods) of a time
range. Starting from startValue, and incrementing by
timeInterval until endValue is reached. The sequence then
begins again from startValue. If no endValue is specified, the
sequence continues indefinitely.

decimals The Representation has a specified number of decimals.
pattern The Representation is a regular expression (see XSD spec)

which is expressed as a string.
enumeration The Representation is an enumeration of Items in specific

scheme of Items, such as an identified Code List.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

43

 712

4.4.4.2 Definitions 713
Class Feature Description

ConceptScheme

Inherits from
ItemScheme

The descriptive
information for an
arrangement or division
of concepts into groups
based on characteristics,
which the objects have in
common.

 /items Associates the concept.

Concept Inherits from
Item

A concept is a unit of
knowledge created by a
unique combination of
characteristics.

 /hierarchy Associates the parent
and the child concept.

 coreType Associates a data Type.

 coreRepresentation Associates a
Representation.

Type type Specifies, as a
mnemonic, the valid
format of the content that
can be reported such as
Alpha, Num, Time.

Representation Abstract class
Sub classes:

ItemScheme
DataRange
NumericRange
Pattern

Specifies the content of
the Concept when
reported in a Data Set or
a Metadata Set.

DateRange A data range and
periodicity of the dates in
the range.

 startDate The start date of the date
range.

 endDate The end date of the date
range.

 periodicity The time periodicity by
which a set of dates can
be implied by
incrementing by the
periodicity from the start
date up to the end date.

NumericRange A numeric range and the
increment of the numbers

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

44

Class Feature Description

in the range.
 maxValue The maximum value in

the range.
 minValue The minimum value in the

range
 increment The increment by which a

set of values can be
implied by incrementing
from the start or minimum
value.

Pattern A representation that is in
the form of a pattern that
can be expressed as an
expression.

 regularExpression An expression that
defines the format of data
or metadata content.

Sequence A sequence of whole
numbers.

 startValue The start value in a
sequence of values

 increment The increment by which a
set of values can be
implied by incrementing
from the start or minimum
value.

4.5 Category Scheme 714

4.5.1 Context 715
This package defines the structure that supports the definition of and relationships 716
between categories in a category scheme. It is similar to the package for concept 717
scheme. An example of a category scheme is one which categorises data – 718
sometimes known as a subject matter domain scheme or a data category scheme. 719
Another example is a reporting taxonomy scheme which defines the conceptual 720
structure of a reporting scheme which has, at its leaves, many individual “sets” of 721
data each described by a specific structure definition (this is the type of report that is 722
typically found in primary reporting). Importantly, as will be seen later, the individual 723
nodes in the scheme (the “categories”) can be associated to actual dataflows which 724
in turn links to the definition of the structure of the dataflow (i.e. KeyFamily). 725

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

45

4.5.2 Class diagram 726

CategoryScheme

Category

VersionableArtefact
(from SDMX-Base)

version : String
validFrom : Date
validTo : Date

MaintenanceAgency
(from SDMX-Base)

MaintainableArtefact
(from SDMX-Base)1 0..*

+maintainer

1 0..*

IdentifiableArtefact
(from SDMX-Base)

id : String
uri : String
urn : String

InternationalString
(from SDMX-Base)

0..10..1 0..1

+description

0..1

0..10..1 0..1

+name

0..1

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

0..*

1

+child
0..*hierarchy

+parent
1

0..1

1..*

0..1

1..*

items

Figure 17 Class diagram of the Category Scheme

 727

4.5.3 Explanation of the Diagram 728

4.5.3.1 Narrative 729
The categories are modelled as a hierarchical ItemScheme. The CategoryScheme 730
inherits from the ItemScheme and the Category inherits from the Item, and 731
therefore both have the following attributes: 732
 733

• id 734

• uri 735

• urn 736

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

46

• version 737

• validFrom 738

• validTo 739

Both also have the association to InternationalString to support a multi-lingual 740
name, an optional multi-lingual description, and an association to Annotation to 741
support notes (not shown on the model). 742
 743
The CategoryScheme can have one or more Category. A Category can have 744
zero or more child Category, thus supporting a hierarchy of Categorys. Note that 745
a child Category can have only one parent Category in this association. A more 746
complex CodeSet which allow multiple parents and multiple hierarchies is modelled 747
later. 748

4.5.3.2 Definitions 749
Class Feature Description

CategoryScheme

Inherits from
ItemScheme

The descriptive
information for an
arrangement or division of
categories into groups
based on characteristics,
which the objects have in
common.

 /items Associates the category.

Category

Inherits from
Item

An item at any level within
a classification, typically
tabulation categories,
sections, subsections,
divisions, subdivisions,
groups, subgroups,
classes and subclasses.

 hierarchy Associates the parent and
the child Category.

4.6 Object Type Scheme 750

4.6.1 Context 751
It may be necessary in an SDMX document to identify an object type that is in the 752
SDMX model. An example of such a document is a Metadata Structure Definition 753
which specifies the attachment of metadata to a Dataflow, or a Key Family, or a Code 754
List etc. It is necessary in such a definition to identify the object type and this must be 755
taken from a valid “list” of object types. The ObjectTypeScheme is such a list. 756

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

47

4.6.2 Class Diagram 757

VersionableArtefact
version : String
validFrom : Date
validTo : Date

ItemScheme

Item

0..1

1..*

0..1

1..*

items

0..*

1

+child
0..*

hierarchy

+parent

1IdentifiableObjectType

ObjectTypeScheme

MaintenanceAgency MaintainableArtefact

1 0..*

+maintainer

1 0..*

IdentifiableArtefact
id : String
uri : String
urn : String

InternationalString

0..10..1 0..1

+description

0..1

0..10..1 0..1

+name
0..1

 758
Figure 18: Class diagram of the Object Type Scheme 759

4.6.3 Explanation of the diagram 760

4.6.3.1 Narrative 761
The object types are modelled as an ItemScheme. The ObjectTypeScheme 762
inherits from the ItemScheme and the IdentifiableObjectType inherits from 763
the Item, and therefore both have the following attributes: 764
 765

• id 766

• uri 767

• urn 768

• version 769

• validFrom 770

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

48

• validTo 771

Both also have the association to InternationalString to support a multi-lingual 772
name, an optional multi-lingual description, and an association to Annotation to 773
support notes (not shown on the model). 774
 775
The ObjectTypeScheme can have one or more IdentifiableObjectType. 776

4.6.3.2 Definitions 777
Class Feature Description

ObjectTypeScheme Inherits from
ItemScheme

A collection of identifiable
object types (also known
as classes or entitities)
that may be contained in
a data model or other
artefact defining or
describing object types.

 /items Associates the identifiable
object type.

IdentifiableObject
Type

Inherits from
Item

Description of a set of
objects that share the
same attributes,
operations, methods,
relationships, and
semantics, and which has
identity so that an
instance of the object
type (i.e. an individual
object) may be
referenced.

4.7 Type Scheme 778

4.7.1 Context 779
This is a scheme of types such as data types. It is used to associate a type with 780
another artefact such an ExpressionNode where the type defines the expected 781
data type of the result of the expression defined in the ExpressionNode. (see 782
TRANSFORMATIONS AND EXPRESSIONS). 783

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

49

4.7.2 Class Diagram 784

VersionableArtefact
version : String
validFrom : Date
validTo : Date

ItemScheme

Item

0..1

1..*

0..1

1..*

items

0..*

1

+child
0..*

hierarchy

+parent

1

ItemAssociation

1
+source

1

/source

1
+target

1

/target

MaintenanceAgency MaintainableArtefact

1 0..*

+maintainer

1 0..*

IdentifiableArtefact
id : String
uri : String
urn : String

InternationalString

0..10..1 0..1

+description

0..1

0..10..1 0..1

+name
0..1

Type
type : DataType

TypeScheme

 785
Figure 19: Class diagram of the Type Scheme 786

4.7.3 Explanation of the Diagram 787

4.7.3.1 Narrative 788
The types are modelled as an ItemScheme. The TypeScheme inherits from the 789
ItemScheme and the Type inherits from the Item, and therefore both have the 790
following attributes: 791
 792

• id 793

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

50

• uri 794

• urn 795

• version 796

• validFrom 797

• validTo 798

Both also have the association to InternationalString to support a multi-lingual 799
name, an optional multi-lingual description, and an association to Annotation to 800
support notes (not shown on the model). 801
 802
The TypeScheme can have one or more Types. 803

4.7.3.2 Definitions 804
Class Feature Description

TypeScheme Inherits from
ItemScheme

A collection of items that
define the valid format of
data so that such data
can be processed by a
computer system.

 /items Association to the Types
in the scheme.

Type Inherits from
Item

Specifies a data format
such that it can be
processed accordingly in
a computer system, such
as numeric or string.

 type Identification of the type.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

51

4.8 Organisation Scheme 805

4.8.1 Class Diagram 806
 807

0..*

DataConsumerDataProvider

MaintainableArtefact

MaintenanceAgency

0..*

1

0..*

+maintainer

1

VersionableArtefact

Item

ItemScheme

IdentifiableArtefact

OrganisationRole

Organisation

1

0..*

+organisation1

+role

0..*
1

0..*

/hierarchy

1

OrganisationScheme

0..*
/items

0..*
/items

Contact
name : String
department : String
role : String
telephone : String
fax : String
email : String

0..* 10..* 1

contact

0..*

0..*

Figure 20 The Organisation class diagram

 808

4.8.2 Explanation of the Diagram 809

4.8.2.1 Narrative 810
The Organisation inherits from Item and so has identity and version information, 811
and is maintained in an OrganisationScheme (which itself is a sub class of 812
ItemScheme). An Organisation can play a number of OrganisationRole. 813
Three roles are identified at present: DataProvider; DataConsumer; 814
MaintenanceAgency.. The classes that are associated with these roles are defined 815
in the package(s) where they are relevant. Note that the role DataProvider and 816
DataConsumer also embrace the activity of metadata provision and consumption. 817
 818
The model allows the OrganisationScheme to be navigated by one or both of 819
Organisation and OrganisationRole. However, whilst an Organisation can 820
play many OrganisationRoles it is recommended that any one 821

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

52

OrganisationScheme contains just one OrganisationRole (i.e. one of 822
DataProvider, DataConsumer, or MaintenanceAgency). 823
 824
Metadata can be attached to the OrganisationRole by means of the metadata 825
attachment mechanism. This mechanism is explained in the Reference Metadata 826
section of this document (see section 7). This means that the model does not specify 827
the specific metadata that can be attached to a DataProvider or 828
MaintenanceAgency, such as contact information, as this can be provided 829
dynamically using the metadata attachment mechanism. 830
 831
A limited set of Contact information can be attached at the level of the 832
OrganisationScheme. If more contact information is required this can be achieved 833
via Reference Metadata. 834
 835
The MaintenanceAgency can maintain a variety of MaintainableArtefact. 836
The MaintainableArtefact is an abstract class and the concrete classes are 837
shown at the beginning of the relevant sections in which they are described. 838

4.8.2.2 Definitions 839
Class Feature Description

OrganisationScheme Inherits from
ItemScheme

A maintained collection
of Organisations.

 contact Association to the
Contact information foe
the scheme.

 /items Association to the
Organisations in the
scheme.

 /items Association to the
Organisation Roles in
the scheme.

Contact An instance of a role of
an individual or an
organization (or
organization part or
organization person) to
whom an information
item(s), a material
object(s) and/or
person(s) can be sent to
or from in a specified
context.

 name The designation of the
Contact person by a
linguistic expression.

 department The designation of the
organisational structure
by a linguistic
expression, within which
Contact person works.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

53

Class Feature Description

 role The responsibility of the
Contact person with
respect to the object for
which this person is the
Contact.

 telephone The telephone number
of the Contact.

 fax The fax number of the
Contact.

 email The Internet e-mail
address of the Contact.

Organisation Inherits from
Item

An organisation is a
unique framework of
authority within which a
person or persons act,
or are designated to act,
towards some purpose.

 /hierarchy Association between
two Organisations in a
parent/child relationship.

 +role Association to the
Organisation Role

OrganisationRole Inherits from
Item

The function or activities
of an organisation, in
statistical processes
such as collection,
processing and
dissemination”

 +organisation Association to the
Organisation.

MaintenanceAgency Inherits from
OrganisationRole

Responsible agency for
maintaining artefacts
such as statistical
classifications,
glossaries, key family
structural definitions,
and metadata structure
definitions.

DataProvider Inherits from
OrganisationRole

An organisation that
produces data or
reference metadata.

DataConsumer Inherits from
OrganisationRole

An organisation using
data as input for further
processing.

MaintainableArtefact See section on
Identification,
versioning, and
maintenance.

 +Maintainer An association to the
maintenance agency.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

54

 840

4.9 Item Scheme Association 841

4.9.1 Context 842
The ItemSchemeAssociation is used to associate the Items in two different 843
ItemSchemes. This is a generic mechanism that can be used to map Items. 844
Specific models exist for mapping schemes where there is a semantic equivalence 845
between Items in the ItemScheme. The models exist for: 846
 847

• CodeList 848

• ConceptScheme 849

• CategoryScheme 850

These can be found in section 9 - STRUCTURE SET AND MAPPINGS. 851

4.9.2 Class Diagram 852

Association

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

0..1
+associationType

0..1
0..1

1..*

0..1

1..*items

ItemAssociation

1
+source

1

/source

1
+target

1

/target

ItemSchemeAssociation

1

+sourceScheme

1 1

+targetScheme

1

0..1 0..*0..1 0..*

0..1
+associationType

0..1

Property

0..1

0..*

0..1

0..*
/properties

0..1

0..*

0..1

0..*

/properties

 853
Figure 21: Class diagram of the Item Scheme Association 854

4.9.3 Explanation of the Diagram 855

4.9.3.1 Narrative 856
The ItemSchemeAssociation inherits from ItemScheme and the 857
ItemAssociation inherits form Item and therefore both in inherit the ability to have 858
associated Property – thus allowing for the definition of additional metadata that can 859
be attached to an ItemSchemeAssociation and ItemAssociation. The 860
associationType defines the role of the ItemSchemeAssociation and 861
ItemAssociation. Note that the Item associated by the associationType is 862
not in the same ItemScheme as the Items related by the ItemAssociation – it is 863
in a specific scheme (code list) of role types. 864
 865

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

55

4.9.3.2 Definitions 866
Class Feature Description

ItemSchemeAssociation

Inherits from
ItemScheme

Associates two Item
Schemes in a way
defined by the association
role.

 /source Associates the source
Item Scheme.

 /target Associates the target Item
Scheme.

 /items Associates the Item
Associations that each
link to a source and a
target Item.

 +associationType This is a link to an Item in
a “role” Item Scheme that
defines the role of the
Item Scheme Association.

 /properties Associates Property to
the Item Scheme
Association

ItemAssociation Inherits from
Item

 /source Associates the source
Item.

 /target Associates the target
Item.

 +associationType This is a link to an Item in
a “role” Item Scheme that
defines the role of the
Item Association.

 /properties Associates Property to
the Item Association

 867

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

56

5 KEY FAMILY (DATA STRUCTURE DEFINITION) AND 868

DATASET 869

5.1 Introduction 870
The KeyFamily is the class name for a structure definition for data. Many 871
organisations know this type of definition a “Data Structure Definition” and so the two 872
names are synonymous. The term Key Family is used in this specification. 873
 874
Many of the constructs in this layer of the model inherit from the SDMX Base layer. 875
Therefore, it is necessary to study both the inheritance and the relationship diagrams 876
to understand the functionality of individual packages. In simple sub models these 877
are shown in the same diagram, but are omitted from the more complex sub models 878
for the sake of clarity. In these cases, the diagram below shows the full inheritance 879
tree for the classes concerned with data structure definitions. 880
 881
There are very few additional classes in this sub model other than those shown in the 882
inheritance diagram below. In other words, the SDMX Base gives most of the 883
structure of this sub model both in terms of associations and in terms of attributes. 884
The relationship diagrams shown in this section show clearly when these 885
associations are inherited from the SDMX Base (see the Appendix “A Short Guide to 886
UML in the SDMX Information Model” to see the diagrammatic notation used to 887
depict this). 888
 889
The actual SDMX Base construct from which the concrete classes inherit depends 890
upon the requirements of the class for: 891
 892

• Annotation - AnnotableArtefact 893

• Identification - IdentifiableArtefact 894

• Versioning – VersionableArtefact 895

• Maintenance - MaintainableArtefact 896

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

57

5.2 Inheritance View 897

5.2.1 Class Diagram 898
 899

CategoryScheme
(from Category-Scheme)

ConceptScheme
(from Concept-Scheme)

Item

Component
(from SDMX-Ba...

ComponentList
(from SDMX-Base)

Structure
(from SDMX-Base)

VersionableArtefact
version : String
validFrom : Date
validTo : Date

MaintainableArtefact
final : Boolean

MaintenanceAgency
(from SDMX-Base)

Dimension

GroupKeyDescriptor

UncodedMeasure

KeyFamily

OrganisationRole
(from SDMX-Base)

Organisation
(from SDMX-Base)

ItemScheme

CodedArtefact
(from SDMX-Base)

UncodedArtefact

CodedD...UncodedData
Attribute

AnnotableArtefact
(from SDMX-Base)

LocalisedString
label : String
locale : String

Annotation
name : String
type : String
url : String0..1 0..*0..1 0..*

IdentifiableArtefact
id : String
uri : String
urn : String

InternationalString
(from SDMX-Base)

1 0..*1 0..*

0..1

0..1

0..1

0..1

0..1 0..10..1
+description

0..1

0..1 0..10..1
+name

0..1

Attribute
(from SDMX-Base)

DataConsumer
(from SDMX-Base)

CodedMeasure

CodeList
(from Code-List)

MeasureType
Dimension

Code
(from Code-Li...

XSMeasure

UncodedXSMeasure

CodedXSMeasure

XSMeasure

AttributeDescriptor

DataAttributeMeasure

MeasureDescriptor

Measure

Concept
(from Concept-Scheme)

DataProvider
(from SDMX-Base)

DataSet
(from Data-Set)

KeyDescriptor

DataflowDefinition

XSDataSet
(from Data-Set)

Category
(from Category-Scheme)

StructureUsage
(from SDMX-Base)

Figure 22 Class inheritance in the Key Family and Data Set packages

5.2.2 Explanation of the Diagram 900

5.2.2.1 Narrative 901
Those classes in the SDMX metamodel which require annotations inherit from 902
AnnotableArtefact . These are: 903
 904

• IdentifiableArtefact 905

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

58

Those classes in the SDMX metamodel which require annotations, global identity, 906
multilingual name and multilingual description are derived from 907
IdentifiableArtefact . These are: 908
 909

• VersionableArtefact 910

The classes in the SDMX metamodel which requires annotations, global identity, 911
multilingual name and multilingual description, and versioning are derived from 912
VersionableArtefact . These are: 913
 914

• MaintainableArtefact 915

• Item 916

Abstract classes which represent information that is maintained by Maintenance 917
Agencies all inherit from MaintainableArtefact, they also inherit all the features 918
of a VersionableArtefact, and are: 919
 920

• StructureUsage 921

• Structure 922

• ItemScheme 923

All the above classes are abstract. What is of importance to understanding the class 924
diagrams presented in this section are the concrete classes that inherit from these 925
abstract classes. 926
 927
Those concrete classes in the SDMX Key Family and Dataset packages of the 928
metamodel which require to be maintained by Maintenance Agencies all inherit (via 929
other abstract classes) from MaintainableArtefact, these are: 930
 931

• DataflowDefinition 932

• KeyFamily 933

The component structures that are lists of lists, inherit directly from Structure. A 934
Structure contains several lists of components (e.g. a KeyFamily contains a list 935
of dimensions, a list of measures and a list of attributes). For key family (data 936
structure) definitions the one concrete (structure) class for data structure definitions 937
is: 938
 939

• KeyFamily 940

The concrete classes which inherit from ComponentList and are sub components 941
of the KeyFamily are: 942
 943

• KeyDescriptor 944

• GroupKeyDescriptor 945

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

59

• MeasureDescriptor 946

• AttributeDescriptor 947

The classes that inherit from Component (i.e. these are the concrete components of 948
the classes above) are: 949
 950

• Measure 951

• Dimension 952

• Attribute 953

The Attribute has a further abstract class of: 954
 955

• DataAttribute 956

The concrete classes which inherit from the abstract classes Measure and 957
DataAttribute are: 958
 959

• CodedMeasure 960

• UncodedMeasure 961

• CodedDataAttribute 962

• UncodedDataAttribute 963

Furthermore, the artefacts that are not coded (UncodedDataAttribute and 964
UncodedMeasure) inherit from the UncodedArtefact, and those that are coded 965
(CodedDataAttribute and CodedMeasure) inherit from CodedArtefact. The 966
differences between a CodedArtefact and an UncodedArtefact (as detailed 967
earlier in the explanation of the base structures) are: 968
 969

• A CodedArtefact has an association to an ItemScheme which, in the 970
context of the KeyFamily is its sub class CodeList 971

• The UncodedArtefact has no such association but has additional attributes 972
to describe its format and type 973

Cross sectional measures are sub classes of the time series measures and of a 974
common abstract class XSMeasure 975
 976

• UncodedXSMeasure inherits from UncodedMeasure and XSMeasure 977

• CodedMeasure inherits from CodedMeasure and XSMeasure 978

Finally, the MeasureTypeDimension is sub class of Dimension as it has specific 979
associations in addition to those for the Dimension itself (see the relationship 980
diagram below). With the exception of MeasureTypeDimension the specific roles 981

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

60

played by Dimensions are supported by an association to a role and are not 982
depicted as sub classes. 983
 984
The concrete classes identified above are all of the classes required to define the 985
metamodel for the KeyFamily. The diagrams and explanations in the rest of this 986
section show how these concrete classes are related so as to support the 987
functionality required. 988

5.3 Key Family – Relationship View 989

5.3.1 Class Diagram 990
 991

0..*

0..*

UncodedData
Attribute

CodedData
Attribute

MeasureType
DimensionCode

(from Code-List)

XSMeasure

1

0..n

1

0..n

11

Category
(from Category-Scheme)

StructureUsage
(from SDMX-Base)

0..*0..* 0..*0..* classify

DataSet
(from Data-Set)

DataflowDefinitiondefines
10..*

MeasureDescriptor

AttributeDescriptor KeyFamily
0..n1 0..n

extension

1

0..*

1

0..*

1

/structure

1

1

1

1

/grouping

10..1 10..1

/grouping

Measure
1..*1..*

/components

DataAttribute

0..*

1

0..*

1

/components

GroupKeyDescriptor
isAttachmentConstraint : Boolean111 0..*1 0..*

/grouping

KeyDescriptor

1

1

1

1

/grouping

Concept
(from Concept-Scheme)

0..*

1

0..*

1

/conceptIdentity

0..* 10..* 1
/conceptIdentity

ConceptRole
role : ConceptRoleType 0..*

0..*
0..*

0..*
role

0..*

0..*

0..*

0..*
Dimension

0..*

0..*

/components

{ordered, partial-key}

1

1..*

1

1..*

/components

{ordered, full-key}

0..*
1

0..*
1

/conceptIdentity

0..*

0..*

0..*

0..*

role

ConceptRoleType
<<enumeration>>

frequency : String
count : String
measureType : String
nonObsTime : String
identity : String
time : String
primaryMeasure : String
entity : String

IdentifiableArtefact
(from SDMX-Base)

/attachesTo

{Measure
DataSet

XSDataSet
KeyDescriptor

GroupKeyDescriptor}

Attribute
(from SDMX-Base)

usageStatus : UsageStatus

UsageStatus
<<enumeration>>

mandatory : String
optional : String
conditional : String

Figure 23 Relationship class diagram of the Key Family excluding representation

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

61

FacetType
<<enumeration>>

isSequence : Boolean
isInclusive : Boolean
minLength : Integer
maxLength : Integer
minValue : String
maxValue : String
startValue : String
endValue : String
increment : Double
timeInterval : Duration
decimals : Integer
pattern : String
enumeration : ItemScheme

Attribute

Facet
facetType : FacetType
facetValue : String

Concept

Dimension

0..*

1

0..*

1

/conceptIdentity

DataAttribute

1

0..*

1

0..*

/conceptIdentity

Measure

1

0..*

1

0..*

/conceptIdentity

Component

Representation

0..10..1

coreRepresentation

0..10..1
/localRepresentation

0..10..1

/localRepresentation

0..10..1

/localRepresentation

0..10..1
localRepresentation

1

0..*

1

0..*

Type

0..10..1

coreType

0..10..1 /localType

0..10..1 /localType

0..10..1 /localType

0..10..1 localType

+defaultRepresentation

DataType
<<enumeration>>

string : String
bigInteger : String
integer : String
long : String
short : String
decimal : String
float : String
double : String
boolean : String
dateTime : String
time : String
date : String
year : String
month : String
day : String
monthDay : String
yearMonth : String
duration : String
timeSpan : String
uri : String
count : String
inclusiveValueRange : String
exclusiveValueRange : String
increment : String
observationalTimePeriod : String
base64Binary : String

Figure 24 Relationship class diagram of the Key Family representation

5.3.2 Explanation of the Diagrams 992

5.3.2.1 Narrative 993
A KeyFamily defines the Dimensions, DataAttributes, Measures, and 994
associated Representation that comprise the valid structure of data and related 995
metadata that are contained in a DataSet, which is defined by a 996
DataflowDefinition. 997
 998
The DataflowDefinition associates a KeyFamily with one or more Category 999
(possibly from different CategorySchemes) via the parent class of 1000
DataflowDefinition - StructureUsage. This gives a system the ability to 1001
state which DataSets are to be reported/disseminated for a given Category, and 1002
which DataSets can be reported using the KeyFamily definition. The 1003
DataflowDefinition may also have additional metadata attached that defines 1004
qualitative information and constraints on the use of the KeyFamily such as the sub 1005
set of Codes used in a Dimension (this is covered later in this document – see 1006
“Data Constraints and Provisioning” section 9). Each DataflowDefinition must 1007
have one KeyFamily specified which defines the structure of any DataSets to be 1008
reported/disseminated. 1009
 1010
Dimension, DataAttribute, and Measure each link to the Concept that defines 1011
its name and semantic. The valid values for a Dimension, Measure, or 1012
DataAttribute, when used in this KeyFamily, are defined by the 1013
Representation. This Representation is taken from the Concept definition 1014

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

62

(coreRepresentation) unless it is overridden in this KeyFamily 1015
(localRepresentation). 1016
 1017
The Dimension can be grouped in two ways: 1018
 1019

1. There will always be a KeyDescriptor grouping that identifies all of the 1020
Dimensions comprising the full key. 1021

 1022
2. Optionally there may be multiple GroupKeyDescriptors each of which 1023

identifies the group of Dimensions that can form a partial key. The 1024
GroupKeyDescriptor must be identified (GroupKeyDescriptor.id) and 1025
is used in the GroupKey of the DataSet to group sets of full keys to which a 1026
DataAttribute can be attached. 1027

 1028
The Measure is the observable phenomenon and the set of Measures in the 1029
KeyFamily is grouped by a single MeasureDescriptor. A Measure can be 1030
coded (CodedMeasure) or un-coded (UncodedMeasure) - these concrete sub 1031
classes of Measure are not shown on the diagram. 1032
 1033
The DataAttribute defines a characteristic of data that are collected or 1034
disseminated and is grouped in the KeyFamily by a single 1035
AttributeDescriptor. The DataAttribute can be specified as being 1036
mandatory, conditional, or optional (as defined in usageStatus – inherited from the 1037
parent Attribute class). 1038
 1039
The DataAttribute is an abstract class and is either a CodedDataAttribute or 1040
an UncodedDataAttribute. 1041
 1042
A DataAttribute is specified as being “attachable to” a part of the structure of the 1043
KeyFamily. The DataAttribute can be specified as being attachable to a 1044
constrained set of IdentifiableArtefacts. The constrained set is as follows: 1045
 1046

• Measure 1047

• DataSet 1048

• XSDataSet 1049

• KeyDescriptor 1050

• GroupKeyDescriptor 1051

It is possible to specify that a DataAttribute is attached to a sub set of the series 1052
keys or sub set of the possible values that a component can take (such as a 1053
Dimension). This is specified by declaring in the GroupKeyDescriptor that there 1054
is an AttachmentConstraint (isAttachmentConstraint) that specifies this 1055
sub set. The Id of the AttachmentConstraint is the same as the Id of the 1056
GroupKeyDescriptor. AttachmentContraints are described in section 10.3. If 1057
there is an AttachmentConstraint then the GroupKeyDescriptor does not 1058

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

63

specify any Dimensions, as the dimensionality of the constraint is defined in the 1059
AttachmentConstraint. 1060
 1061
The valid structures for a KeyFamily definition to which a DataAttribute can be 1062
specified as being attachable, and actual structure in the DataSet to which the 1063
AttributeValue is attached are: 1064
 1065

• DataSet and XSDataSet – AttributeValue attached to DataSet or 1066
XSDataSet 1067

• GroupKeyDescriptor (identified in addition by the 1068
GroupKeyDescriptor.id) - AttributeValue attached to GroupKey, 1069
Group, Section 1070

• KeyDescriptor – AttributeValue attached to TimeSeriesKey 1071

• Measure - AttributeValue attached to Observation or 1072
XSObservation 1073

If there is a requirement to attach metadata to other KeyFamily artefacts such as 1074
Dimension, or even the KeyFamily itself, or to slices of the data cube for which no 1075
AttachmentConstraint was specified in the KeyFamily itself, then these can be 1076
specified in the Metadata Structure Definition, which is explained later. 1077
 1078
The Concepts used for each of Dimension, Measure, and DataAttribute can 1079
play a specific role in the KeyFamily, and the association to the ConceptRole 1080
supports this. The roles are constrained to those in the datatype ConceptRoleType 1081
and each component type is constrained by the roles it can play as shown in the 1082
table below. 1083
 1084
Role Description Valid for

component type
Role be
played by
multiple
components

frequency identifies the Concept
that plays the role of
frequency

Dimension
DataAttribute

No

count identifies the Concept
that plays the role of an
identifier where the
identifier is taken from a
known system of counts

Dimension
DataAttribute

Yes

measureType identifies the Concept
that plays the role of
identifying a type of
measure

Dimension Yes

entity identifies the Concept
that plays the role of the
subject to whom the data
refers (e.g. the reporting
agent for primary

Dimension
DataAttribute

No

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

64

Role Description Valid for
component type

Role be
played by
multiple
components

reporting, the country for
secondary reporting)

time identifies the Concept
that specifies the time of
the observation of the
primaryMeasure

Dimension No

nonObsTime identifies the Concept
that plays the role of a
date/time identifier in the
KeyFamily which is not
related to the time of the
observation

Dimension
DataAttribute

Yes

primaryMeasure identifies the Concept
that plays the role of the
observation in a time
series

Measure No

identity identifies the Concept
that plays the role of an
identifier which is taken
from a known scheme of
identifiers.

Dimension
DataAttribute

Yes

 1085
Each of Dimension, Measure, and DataAttribute can have a Type and 1086
Representation specified (using the localType and localRepresentation 1087
associations). If this is not specified in the KeyFamily definition then the Type and 1088
Representation is taken from that defined for the Concept (the coreType and 1089
coreRepresentation associations). Whilst the class diagram in Figure 24 looks 1090
complex it is effectively portraying: 1091
 1092

1. The Concept has an association to Representation 1093
(coreRepresentation) and to Type (coreType) 1094

2. The Component has an association to Representation 1095
(localRepresentation) and to Type (localType). 1096

3. The Dimension, DataAttribute, and Measure all inherit from 1097
Component and therefore inherit the localRepresentation and 1098
localType associations – shown on the diagram as an inherited 1099
associations (/localRepresentation, /localType) 1100

 1101
The definition of the various types of Facet and the Type can be found in section 1102
4.4. 1103
 1104
The MeasureTypeDimension associates the CodeList whose Codes will become 1105
the XSMeasures in a cross sectional key family, and supports the transformation of a 1106
cross sectional data set to a time series data set and also vice versa: the Concepts 1107
that are the XSMeasures in a cross sectional key family are the Codes in the 1108
CodeList associated to the MeasureTypeDimension. Each XSMeasure has a 1109

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

65

uni-directional association to a MeasureTypeDimension and to a Code. This Code 1110
is contained in the CodeList associated to the MeasureTypeDimension. There 1111
can be more than one MeasureTypeDimension in a KeyFamily. 1112
 1113
Furthermore, the CodeList attached to each of CodedDataAttribute that define 1114
the measurement characteristics (such as unit of measure) of each of the 1115
XSMeasures in a cross sectional data set are concatenated into a single CodeList 1116
that define the measurement characteristics of the relevant Measure in the 1117
equivalent time series. 1118
 1119
For example, if there are three XSMeasure Concepts called Weight, Value, and 1120
Volume then when transformed into a time series the XSMeasure Concepts 1121
become an additional Dimension (MeasureTypeDimension) with three values in 1122
the associated CodeList (weight, value, volume). The (now) single Measure in the 1123
time series may have a Unit_Of_Measure CodedAttribute which is associated to 1124
a CodeList: this CodeList must have all of the values of the three CodeList 1125
used for the three XSMeasures. 1126
 1127
A KeyFamily definition can be extended to form a derived KeyFamily. The 1128
extension of a KeyFamily is limited to: 1129
 1130

• The addition of Dimensions, DataAttributes, and Measures 1131

• The specification of additional of GroupDescriptors 1132

• The change of usageStatus for a DataAttribute 1133

• The change of CodeList used for a Dimension or DataAttribute 1134

• The change of a DataAttribute from CodedDataAttribute to 1135
UncodedDataAttribute or vice-versa 1136

5.3.2.2 Definitions 1137
Class Feature Description

StructureUsage See “SDMX Base”.

 classify Associates one or more
Categories in one or
more schemes that
define data
categorisation in terms of
data to be reported or
data to be disseminated.

Category See “Category Scheme”.

DataflowDefinition Inherits from

StructureUsage

Abstract concept (i.e. the
structure without any
data) of a flow of data
that providers will
provide for different

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

66

Class Feature Description

reference periods.
 structure Associates a data flow

definition to the Key
Family.

KeyFamily A collection of metadata
concepts, their structure
and usage when used to
collect or disseminate
data.

 /grouping An association to a set of
metadata concepts that
have an identified
structural role in a Key
Family.

 classify Associates the Category
by which this Dataflow is
classified.

GroupKeyDescriptor Inherits from
ComponentList

A set metadata concepts
that define a partial key
derived from the Key
Descriptor in a Key
Family.

 isAttachment
Constraint

Specifies whether there
is an Attachment
Constraint that specifies
the sub set of
Dimension, Measure, or
Attribute values to which
an Attribute can be
attached.

 /components An association to a
component in a set of
components.

KeyDescriptor Inherits from
ComponentList

An ordered set of
metadata concepts that,
combined, classify a
statistical series, such as
a time series, and whose
values, when combined
(the key) in an instance
such as a data set,
uniquely identify a
specific series.

 /components An association to a
component in a set of
components.

AttributeDescriptor Inherits from A set metadata concepts
that define the attributes

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

67

Class Feature Description

ComponentList of a key family.

 /components An association to a
component in a set of
components.

MeasureDescriptor Inherits from
ComponentList

A set metadata concepts
that define the measures
of a key family.

 /components An association to a
component in a set of
components.

Dimension Inherits from
Component

Sub classes
MeasureTypeDimension

A statistical concept
used (most probably
together with other
statistical concepts) to
identify a statistical
series, such as a time
series, e.g. a statistical
concept indicating a
certain economic activity
or a geographical
reference area.

 /conceptIdentity An association to the
metadata concept which
defines the semantic of
the component.

 /localType Associates a Type (data
type) that overrides any
core type specified for
the Concept itself.

 /localRepresentat
ion

Associates a
Representation that
overrides any core
representation specified
for the Concept itself.

MeasureTypeDimension Inherits from
Dimension

A metadata concept
used to refer to and
identify a dimension in a
time series that defines
the concepts for the
Measure when cross
sectional data is
represented in a time
series.

DataAttribute Abstract class
Sub classes:
CodedDataAttribute
UncodedDataAttribute

A characteristic of an
object or entity.

 /localType Associates a Type (data

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

68

Class Feature Description

type) that overrides any
core type specified for
the Concept itself.

 /localRepresentat
ion

Associates a
Representation that
overrides any core
representation specified
for the Concept itself.

UncodedDataAttribute Inherits from
DataAttribute
CodedArtefact

A characteristic of an
object or entity that has a
free text representation.

CodedDataAttribute Inherits from
DataAttribute
UncodedArtefact

A characteristic of an
object or entity that takes
its values from a code
list.

Measure Inherits from
Component

Sub classes:
CodedMeasure
UncodedMeasure

The concept that is the
phenomenon to be
measured in a time
series data set. In a data
set the instance of the
measure is often called
the observation.

 /localType Associates a Type (data
type) that overrides any
core type specified for
the Concept itself.

 /localRepresentat
ion

Associates a
Representation that
overrides any core
representation specified
for the Concept itself.

CodedMeasure Inherits from
Measure

Sub classes:
CodedXSMeasure

A time series Measure
that is coded.

UncodedMeasure Inherits from
Measure

Sub classes:
UncodedXSMeasure

A time series Measure
that is un-coded.

CodedXSMeasure Inherits from
CodedMeasure
XSMeasure

A cross sectional
Measure that is coded.

UncodedMeasure Inherits from
Measure

A cross sectional
Measure that is un-
coded.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

69

Class Feature Description

XSMeasure

XSMeasure The phenomenon to be
measured in a cross
sectional data set.

ConceptRole Specifies the role that a
concept plays when it is
used in a component of
a structure, such as a
Dimension in a Key
Family.

 role Identifies the specific
role.

5.4 Data Set – Timeseries Relationship View 1138

5.4.1 Context 1139
A data set comprises the collection of data values and associated metadata that are 1140
collected or disseminated according to a known key family definition. 1141

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

70

5.4.2 Class Diagram 1142

Measure
(from Key-Family)

MeasureDescriptor
(f rom Key -Family)

1..*1..*
/components

AttributeDescriptor
(f rom Key -Family)

DataAttribute
(from Key-Family)

1 0..*1 0..*/components

UncodedObservation
value : String

UncodedMeasure
(f rom Key -Family)

valueFor

Observation

TimePeriod
timeValue : String

11

DataProvider
(f rom SDMX-Base)

GroupKey
id

TimeseriesKey
1..*1..*

groups

1..*1..*

DataSet
reportingPeriod : String
dataExtractionDate : String

1..*

1

1..*

1

GroupKeyDescriptor
(f rom Key -Family)

0..*

1

0..*

1

valueFor

KeyDescriptor
(f rom Key -Family)

1

0..*

1

0..*

valueFor

Key
1..*1..*

KeyValue
value : String

1..*1..*keyValues

Dimension
(f rom Key -Family)

1..*

0..*

1..*

0..*

/components
{ordered, partial-key}

1 1..*1 1..*
/components

{ordered, full-key}

0..*

1

0..*

1

valueFor

UncodedAttributeValue
value : String

UncodedD...
(f rom Key -Family)

0..*

1

0..*

1

valueFor

CodedMeasure
(f rom Key -Family)

CodeList
(f rom Code-List)

CodedObservation

valueFor

CodedData
Attribute

(f rom Key -Family)

Code
(f rom Code-List)

1..*

1

1..*

1

/items

+value

CodedAttributeValue

1

0..*

1

0..*
valueFor

+value

AttachableArtefact

AttributeValue

1

0..*

1

0..*

attachesTo

DataSet
0..*0..*

KeyFamily
(f rom Key -Family)

1

1

1

1

/grouping

1

0..1

1

0..1/grouping

ProvisionAgreement
(f rom Registry)0..*1 0..*1

hasAgreement KeyFamily
(f rom Key -Family) 11

1
1

0..*

1

0..*/grouping

1

1

1

1

/grouping

DataflowDefinition
(f rom Key -Family)

0..* 10..* 1/controlledBy

0..* 10..* 1

/structure

defines
1

0..*

Figure 25 Class diagram of the time series Data Set

5.4.3 Explanation of the Diagram 1143

5.4.3.1 Narrative 1144
Note that the DataSet must conform to the KeyFamily definition associated to the 1145
DataflowDefinition for which this DataSet is an “instance of data”. Whilst the 1146
model shows the association to the classes of the KeyFamily, this is for conceptual 1147
purposes to show the link to the KeyFamily. In the actual DataSet as exchanged 1148
there must, of course, be a reference to the DataflowDefinition, but the 1149
KeyFamily definition is not necessarily exchanged with the data. Therefore, the 1150
KeyFamily classes are shown in the grey areas, as these are not a part of the 1151
DataSet itself. 1152
 1153

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

71

An organisation in the role of DataProvider can be responsible for one or more 1154
DataSet. The DataProvider may have a DataflowAgreement that links to the 1155
DataflowDefinition for which this DataSet is being provided. 1156
DataflowAgreement and DataflowDefinition are described later in the 1157
section on Data Provision. 1158
 1159
A timeseries DataSet is a collection of a set of Observations that share the same 1160
dimensionality, which is specified by a set of unique Dimension defined in the 1161
KeyDescriptor of the KeyFamily, together with associated AttributeValues 1162
that define specific characteristics about the Observation, Key, or DataSet. 1163
 1164
For timeseries each unique combination of KeyValue (TimeseriesKey) combined 1165
with a TimePeriod, identifies precisely one Observation. 1166
 1167
The Observation is the value of the variable being measured for the Concept 1168
associated to the Measure in the MeasureDescriptor of the KeyFamily. The 1169
Observation can relate to CodedMeasure – this is the CodedObservation – or 1170
to an UncodedMeasure – this is the UncodedObservation. 1171
 1172
The GroupKey is a sub unit of the Key that has the same dimensionality as the 1173
TimeseriesKey, but defines a subset of the KeyValues of the TimeseriesKey. 1174
Its sub dimension structure is defined in the GroupKeyDescriptor of the 1175
KeyFamily identified by the same id as the GroupKey. The id identifies a “type” of 1176
group and the purpose of the GroupKey is to identify a set of individual 1177
TimeseriesKey so that one or more AttributeValue can be attached at this 1178
group level. There can be many types of groups in a DataSet. 1179
 1180
Each of DataSet, TimeseriesKey, GroupKey, and Observation can have 1181
zero or more AttributeValue that defines some metadata about the object to 1182
which it is associated. The allowable Concepts and the objects to which these 1183
metadata can be associated (attached) are defined in the KeyFamily. The link to 1184
the object in the DataSet is shown by the association to AttachableArtefact. 1185
The diagram below shows the object types to which the AttributeValue can be 1186
attached. 1187
 1188

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

72

AttachableArtefact

ObservationKeyDataSet

TimeseriesKey GroupKey UncodedObservationCodedObservation

 1189
Figure 26: Attribute Value attachment for a time series data set 1190

The AttributeValue therefore links to the object type (DataSet, 1191
TimeseriesKey, GroupKey, CodedObservation, UncodedObservation) 1192
and the actual object as identified by its key (e.g. the DataSet, KeyValues of the 1193
TimeseriesKey or GroupKey, or Observation (TimeseriesKey plus 1194
TimePeriod). 1195

5.4.3.2 Definitions 1196
Class Feature Description

DataSet An organised collection of
data.

 reportingPeriod A specific time period in a
known system of time
periods that identifies the
period of a report.

 dataExtractionDate A specific time period that
identifies the date and
time that the data are
extracted from a data
source.

 describedBy Associates a data flow
definition and thereby a
Key Family to the data
set.

Key Abstract class
Sub classes
TimeseriesKey
GroupKey

Comprises the cross
product of values of
dimensions that identify
uniquely a statistical
series such as a time
series.

 keyValues Associates the individual
Key Values that comprise
the Key.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

73

Class Feature Description

KeyValue The value of a component
of a key such as the value
of the instance a
Dimension in a
multidimensional
structure, like the Key
Descriptor of a Key
Family.

 value The value of the key
component.

 valueFor Associates a dimension to
the Key Value, and
thereby to the Concept
that is the semantic of the
Dimension.

GroupKey

Inherits from
Key

A set of Key Values that
comprise a partial key, of
the same dimensionality
as the Time Series Key,
and which group together
a set of series keys (i.e.
the scope of the
Timeseries Keys
identified by the Group
Key is defined using the
same Dimensions as the
Timeseries Key).

 valueFor Associates the group key
descriptor defined in the
key family.

 groups Associates a set of Time
Series Keys.

TimeseriesKey Inherits from
Key

Comprises the cross
product of values of all
the dimensions that
identify uniquely a time
series.

TimePeriod A specific time period in a
known system of time
periods.

 timeValue The value of a time
period.

Observation Abstract class

Sub classes
UncodedObservation
CodedObservation

The value, at a particular
period, of a particular
variable.

UncodedObservation Inherits from
Observation

An observation that has a
text value.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

74

Class Feature Description

 value The text value of the
observation.

 valueFor Associates the uncoded
measure defined in the
Key Family.

CodedObservation Inherits from
Observation

An Observation that takes
it value from a code in
Code List.

 valueFor Associates the Coded
Measure defined in the
Key Family.

 +value Association to the Code
that is the value of the
Observation.

AttributeValue Abstract class

Sub classes
UncodedAttributeValue
CodedAttributeValue

The value of an attribute,
such as the instance of a
Coded Attribute or of an
Uncoded Attribute in a
structure such as a Key
Family.

 attachesTo Associates the attribute to
the object to which it is
attached.

AttachableArtefact The object to which the
attribute value is
attached.

UncodedAttributeValue Inherits from
AttributeValue

An attribute value that has
a text value.

 value The text value of the
attribute.

 valueFor Associates the Coded
Data Attribute defined in
the Key Family.

CodedAttributeValue Inherits from
AttributeValue

An attribute that takes it
value from a Code in
Code List.

 valueFor Associates the Uncoded
Data Attribute defined in
the Key Family.

 +value Association to the Code
that is the value of the
Observation.

 1197

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

75

5.5 Data Set – Cross Sectional Relationship View 1198

5.5.1 Class Diagram 1199

KeyValue
value : String

XSComponent
0..n0..n

CodeList
(from Code-List)

Code
(from Code-List)

MeasureType
Dimension

(from Key-Family)

/codelist

XSMeasure
(from Key-Family)

11

0..n

1

0..n

1

Dimension
(from Key-Family)

XSObservation
groupKeyId : String
value : String

11

valueFor

Section
groupKeyId : String 1..n1..n

KeyFamily
(from Key-Family)

Group
groupKeyId : String 1..n1..n

DataflowDefinition
(from Key-Family)

0..*

1

0..*

1

/structure

XSDataSet
reportingPeriod : String
dataExtractionDate : String 1..n1..n

11

valueFor

DataAttribute
(from Key-Family)

AttributeValue

valueFor

AttachableArtefact

0..*

1

0..*

1
attachesTo

GroupKeyDescriptor
(from Key-Family)

1..*

0..*

1..*

0..*

/components

{ordered, partial-key}

valueFor

1

0..*

1

0..*

/grouping

valueFor

11

valueFor

Figure 27 Class diagram of the cross sectional Data Set

 1200

5.5.2 Explanation of the Diagram 1201

5.5.2.1 Narrative 1202
The cross sectional data set – XSDataSet - differs from the timeseries DataSet in 1203
the following ways: 1204
 1205

1. There is no “full key” specified and so there is no concept of a “cross sectional 1206
key” as there is the concept of a timeseries key in the time series data set: 1207
cross sectional data are by their nature identified by one or more partial keys 1208
which together comprise the “full key”. 1209

 1210
2. The meaning of “group” is therefore different from the timeseries: in a 1211

timeseries the GroupKey serves to group individual timeseries so that 1212
common attributes can be attached. The role of the Group in the cross 1213
sectional data set is twofold: it describes a partial key (which must be 1214
combined with the keys in the subordinate components in order to fully 1215
identify the observation); and it is a structure to which attributes can be 1216
attached. 1217

 1218

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

76

3. The Dimension values (KeyValue) can be expressed in one of the three 1219
levels in the structure: GroupKey, Section, and XSObservation. 1220
Therefore, partial keys can be declared at each of these levels which, 1221
together, make up the full key. 1222

 1223
4. Similarly, AttributeValues can be associated at any of the three levels, 1224

plus the level of the XSDataSet itself. 1225
 1226

5. If time is present in the XSDataSet then it is expressed at the level of the 1227
Group. 1228

 1229
Note that the KeyFamily definition does not need to prescribe that a particular 1230
Dimension or Attribute is reported at a particular level: indeed it is the nature of 1231
many cross sectional series to leave this aspect dynamic. The minimal pre-requisites 1232
in the KeyFamily definition to support the cross sectional data set are: 1233
 1234

• to declare a GroupKeyDescriptor that contains all of the Dimensions 1235

• to make all of the MetadataAttributes attachable at this group level. 1236

Clearly, the KeyFamily definition can be more prescriptive and define the precise 1237
contents of for each of Group, Section, and XSObservation by declaring many 1238
GroupKeyDescriptors, each one individually identified by the 1239
GroupKeyDescriptor.id. 1240
 1241
The identity of the XSObservation is taken from a Code in the CodeList used by 1242
the MeasureTypeDimension in the KeyFamily definition. There can be many 1243
XSObservation in a Section, each one containing the reported value for one of 1244
the Codes (note that each can also identify KeyValues and AttributeValues as 1245
mentioned above). 1246
 1247
The association to the KeyFamily constructs is shown by the classes in the grey 1248
box. As with the timeseries DataSet, there will be a reference to the 1249
DataFlowDefinition in the XSDataSet. 1250

5.5.2.2 Definitions 1251
Class Feature Description

XSComponent Abstract class
Sub classes are:

DataSet
Group
Section
XSObservation

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

77

Class Feature Description

KeyValue The value of a component
of a key such as the value
of the instance a
Dimension in a
multidimensional
structure, like the Key
Descriptor of a Key
Family.

XSDataSet An organised collection of
cross sectional data

Group Inherits from
XSComponent

A set of key values that
comprise a partial key, of
the same dimensionality
as the full key, and which
group together a set of
sections (ie, the scope of
the Section grouped by
the Group is defined using
a partial set of the same
Dimensions as defined in
the full key).

 valueFor Associates the
GroupKeyDescriptor that
defines the partial key.

Section Inherits from
XSComponent

A set of key values that
comprise a partial key, of
the same dimensionality
as the full key, and which
group together a set of
cross sectional
obervations (ie, the scope
of the XSObservation
grouped by the Section is
defined using a partial set
of the same Dimensions
as defined in the full key).

 valueFor Associates the
GroupKeyDescriptor
that defines the partial
key.

XSObservation Inherits from
XSComponent

An observation in a cross
sectional data set that
optionally defines a set of
key values that comprise
a partial key, of the same
dimensionality as the full
key.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

78

Class Feature Description

 valueFor (XSMeasure) Associates the
XSMeasure that is the
concept of the
observation.

 valueFor
(GroupKeyDescriptor)

Associates the
GroupKeyDescriptor that
defines the partial key

 1252

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

79

6 CUBE 1253

6.1 Context 1254
Some statistical systems create views of data based on a “cube” structure. In 1255
essence, a cube is an n-dimensional object where the value of each dimension can 1256
be derived from a hierarchical code list. The utility of such cube systems is that it is 1257
possible to “roll up” or “drill down” each of the hierarchy levels for each of the 1258
dimensions to specify the level of granularity required to give a “view” of the data – 1259
some dimensions may be rolled up, others may be drilled down. Such systems give a 1260
dynamic view of the data, with aggregated values for rolled up dimension positions. 1261
For example, the individual countries may be rolled up into an economic region such 1262
as the EU, or a geographical region such as Europe, whilst another dimension, such 1263
as “type of road” may be drilled down to its lower level. The resulting measure (such 1264
as “number of accidents”) would then be an aggregation of the value for each 1265
individual country for the specific type of road. 1266
 1267
Such cube systems rely, not on simple code lists, but on hierarchical code sets (see 1268
section 8). 1269

6.2 Support for the Cube in the Information Model 1270
Data reported using a key family structure (where each dimension value, if coded, is 1271
taken from a flat code list) can be described by a cube definition and can be 1272
processed by cube aware systems. The SDMX-IM supports the definition of such 1273
cubes in the following way: 1274
 1275

• The HierachicalCodeScheme defines the (often complex) hierarchies of 1276
codes 1277

• The StructureSet 1278

o groups KeyFamily that describe the cube 1279

o provides a mapping mechanism between the codes in the flat code 1280
lists used by the KeyFamily and a HierarchicalCodeScheme 1281

 1282

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

80

7 METADATA STRUCTURE DEFINITION AND 1283

METADATA SET 1284

7.1 Context 1285
The SDMX metamodel allows metadata: 1286
 1287

1. To be exchanged without the need to embed it within the object that it is 1288
describing. 1289

 1290
2. To be stored separately from the object that it describes, yet be linked to it 1291

(for example, an organisation has a metadata repository which supports the 1292
dissemination of metadata resulting from metadata requests generated by 1293
systems or services that have access to the object for which the metadata 1294
pertains). 1295

 1296
3. To be indexed to aid searching (example: a registry service can process a 1297

metadata report and extract structural information that allows it to catalogue 1298
the metadata in a way that will enable users to query for it). 1299

 1300
4. To be reported according to a defined structure. 1301

 1302
In order to achieve this, the following structures are modelled 1303
 1304

• metadata structure definition which has the following components: 1305

o the object types to which the metadata are to be associated (attached) 1306

o the components that, together, comprise a unique key of the object 1307
type 1308

o the reporting structure comprising the metadata attributes that can be 1309
attached to the various object types (these attributes can be structure 1310
din a hierarchy), together with any constraints that may apply (e.g. 1311
association to a code list that contains valid values for the attribute 1312
when reported in a metadata set) 1313

• the metadata set, which contains reported metadata 1314

7.2 Inheritance 1315

7.2.1 Introduction 1316
As with the Structure Definitions, many of the constructs in this layer of the model 1317
inherit from the SDMX Base layer. Therefore, it is necessary to study both the 1318
inheritance and the relationship diagrams to understand the functionality of individual 1319
packages. The diagram below shows the full inheritance tree for the classes 1320
concerned with the MetadataStructureDefinition and the MetadataSet. The 1321
diagram does not include the classes already described but which are used in the 1322
reference metadata models (see 8.3.2). 1323
 1324

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

81

There are very few additional classes in the MetadataStructureDefinition 1325
package that do not themselves inherit from classes in the SDMX base. In other 1326
words, the SDMX Base gives most of the structure of this sub model both in terms of 1327
associations and in terms of attributes. The relationship diagrams shown in this 1328
section show clearly when these associations are inherited from the SDMX Base 1329
(see the Appendix “A Short Guide to UML in the SDMX Information Model” to see the 1330
diagrammatic notation used to depict this). It is important to note that SDMX base 1331
structures used for the MetadataStructureDefinition are the same as those 1332
used for the KeyFamily and so, even though the usage is slightly different, the 1333
underlying way of defining a MetadataStructureDefinition is similar to that 1334
used for defining a KeyFamily. 1335
 1336
The actual SDMX Base construct from which the concrete classes inherit depends 1337
upon the requirements of the class for: 1338
 1339

• Annotation - AnnotableArtefact 1340

• Identification - IdentifiableArtefact 1341

• Versioning – VersionableArtefact 1342

• Maintenance - MaintainableArtefact 1343

• Ability to have additional dynamically defined metadata attached - 1344
AttachableArtefact 1345

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

82

7.2.2 Inheritance Class Diagram 1346

PartialTargetIdentifier

Item

Component
(from SDMX-Base)

ComponentList
(from SDMX-Base)

Structure
(from SDMX-Base)

StructureUsage
(from SDMX-Base)

VersionableArtefact
version : String
validFrom : Date
validTo : Date

MetadataflowDefinition MetadataStructureDefinition

ReportStructure

MaintenanceAgency
(from SDMX-Base)

MaintainableArtefact
(from SDMX-Base)

10..*

+maintainer

10..*

CodedArtefact
(from SDMX-Base)

UncodedArtefact

MetadataAttribute

AnnotableArtefact
(from SDMX-Base)

LocalisedString
label : String
locale : String

Annotation
name : String
type : String
url : String0..1 0..*0..1 0..*

IdentifiableArtefact
id : String
uri : String
urn : String

InternationalString
(from SDMX-Base)

1 0..*1 0..*

0..1

0..1

0..1

0..1

0..1 0..10..1

+description
0..1

0..1 0..10..1
+name

0..1

Attribute
(from SDMX-Base)

TargetIdentifier

ItemScheme

IdentifierComponent
CodedMetadataAttribute

UncodedMetadataAttribute

 1347
Figure 28: Class inheritance in the Metadata Structure Definition and Metadata Set 1348

packages 1349

7.2.3 Explanation of the Diagram 1350

7.2.3.1 Narrative 1351
It is important to the understanding of the relationship class diagrams presented in 1352
this section to identify the concrete classes that inherit from the abstract classes. 1353
 1354
The concrete classes in this part of the SDMX metamodel which require to be 1355
maintained by Maintenance Agencies all inherit from MaintainableArtefact, 1356
these are: 1357
 1358

• StructureUsage (concrete class is MetadataflowDefinition) 1359

• Structure (concrete class is MetadataStructureDefinition) 1360

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

83

These classes also inherit the identity and versioning facets of 1361
IdentifiableArtefact and VersionableArtefact. 1362
 1363
A Structure contains several lists of components. The concrete classes which 1364
inherit from ComponentList and in themselves are sub components of the 1365
MetadataStructureDefinition are: 1366
 1367

• TargetIdentifier 1368

• PartialTargetIdentifier 1369

• ReportStructure 1370

ComponentList contains Components. The classes that inherit from Component 1371
are: 1372
 1373

• IdentifierComponent 1374

• MetadataAttribute 1375

The class which inherits from the abstract class Attribute that is relevant to the 1376
reference metadata and metadata set models is: 1377
 1378

• MetadataAttribute 1379

The MetadataAttribute is an abstract class and has two concrete sub classes: 1380
 1381

• CodedMetadataAttribute 1382

• UncodedMetadataAttribute 1383

 1384
In addition to the inheritance from MetadataAttribute the 1385
CodedMetadataAttribute inherits from CodedArtefact and the 1386
UncodedMetadataAttribute inherits from UncodedArtefact. 1387

7.3 Metadata Structure Definition 1388

7.3.1 Introduction 1389
With just one exception, the concrete classes identified above are all of the classes 1390
required to define the metamodel for metadata structure definitions. The diagrams 1391
and explanations in the rest of this section show how these concrete classes are 1392
related so as to support the functionality required. The exception is the 1393
AttributeProperty which does not inherit from any of the SDMX Base classes. 1394

7.3.2 Structures Already Described 1395
The MetadataStructureDefinition makes use of the following ItemScheme 1396
structures either as explicit concrete classes in the model, or as possible lists which 1397
comprise the value domain of an IdentifierComponent. 1398
 1399

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

84

• CategoryScheme 1400

• ConceptScheme 1401

• CodeList 1402

• OrganisationScheme 1403

7.3.3 Class Diagram 1404

UncodedArtefact
(from SDMX-Base)

CodedArtefact
(from SDMX-Base)

UncodedMetadata
Attribute

CodedMetadata
Attribute

Category
(from Category-Scheme)

StructureUsage
(from SDMX-Base)

0..*

0..*

0..*

0..*

classify

ObjectTypeScheme
(from SDMX-Base)

ItemScheme
(from SDMX-Base)

IdentifiableObjectType
(from SDMX-Base)

1..*

1

1..*

1

/items

MetadataflowDefinition

FullTargetIdentifier

PartialTargetIdentifierMetadataStructureDefinition

0..*

1

0..*

1

/structure

1

1

1

1

/grouping

0..*

1

0..*

1 /grouping

AttributeProperty
name : String
type : DataType

IdentifiableArtefact
id : String
uri : String
urn : String ReportStructure

1

1

1

1
/grouping

Concept
(from Concept-Scheme)

IdentifierComponent

0..1

0..*

0..1

0..* codelist

11

targetClass

1

1..*

1

1..*

components

0..*

1..*

0..*

1..*

components

MetadataAttribute

10..* 10..*

properties

/attachesTo

{FullTargetIdentifier or
PartialTargetIdentifier}

/conceptIdentity

1..*

1

1..*

1

/components

0..*+child 0..*

hierarchy

+parent

Representation
(from SDMX-Base)

0..10..1

coreRepresentation

0..10..1
localRepresentation

Type
type : DataType

0..10..1

localType

0..10..1

coreType

0..10..1

localType

DataType
<<enumeration>>

string : String
bigInteger : String
integer : String
long : String
short : String
decimal : String
float : String
double : String
boolean : String
dateTime : String
time : String
date : String
year : String
month : String
day : String
monthDay : String
yearMonth : String
duration : String
timeSpan : String
uri : String
count : String
inclusiveValueRange : String
exclusiveValueRange : String
increment : String
observationalTimePeriod : String
base64Binary : String

1405
Figure 29: Relationship class diagram of the Metadata Structure Definition 1406

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

85

7.3.4 Explanation of the Diagram 1407

7.3.4.1 Narrative 1408
In brief a MetadataStructureDefinition defines: 1409
 1410

• The object type to which metadata can be associated 1411
(IdentfiableArtefactType). 1412

• The components (IdentifierComponent) comprising the object identifier 1413
of the target object (FullTargetidentifier and 1414
PartialTargetIdentifier). 1415

• The ReportStructure comprising the MetadataAttributes that can be 1416
associated with the object type, and hierarchical structure of the attributes 1417

The FullTargetIdentifier comprises on or more IdentifierComponents 1418
which, together comprise the scope of the MetadataStructureDefinition in 1419
terms of the object types that can be identified using this definition. Each 1420
IdentifierComponent must be associated to a IdentifiableArtefactType 1421
which itself may be taken from maintained scheme of ObjectTypes. In the context 1422
of this information model the ObjectTypes will be any class or group of classes (as 1423
defined by the IdentifierComponents) in the model that have identity, as it is 1424
instances of these object types or groups of object types to which metadata can be 1425
attached in a MetadataSet. 1426
 1427
Instances of IdentifierComponents (i.e. the actual 1428
IdentifierComponentValue defined in a MetadataSet) are maintained in an 1429
ItemScheme (or, more precisely, a concrete artefact derived from ItemScheme 1430
such as a CodeList, ConceptScheme, CategoryScheme, or 1431
OrganisationScheme). For instance if the targetClass of the 1432
IdentifierComponent is a DataProvider then the specialisation of (i.e. type of) 1433
ItemScheme will be an OrganisationScheme containing a list of 1434
DataProviders. Normally, such an ItemScheme can be specified in the 1435
MetadataStructureDefinition. However, there will be cases where this is not 1436
possible. An example of this where the IdentifierComponent is a Dimension in 1437
a KeyFamily – as individual Dimensions can use Concepts from different 1438
ConceptSchemes it is necessary for an application to read the KeyFamily 1439
definition in order to validate that a correct Concept is referenced in the 1440
IdentifierComponentValue of the MetadataSet. 1441
 1442
The PartialTargetIdentifier identifies a sub set of the 1443
IdentifierComponents of the FullTargetIdentifier. The purpose here is to 1444
ensure that a single MetadataStructureDefinition can be defined for a 1445
discrete set of related object types: thus, for example, a single definition can be 1446
constructed to define the metadata that can be attached to any part of a key family, 1447
or that can be attached to any artefact concerned with the reporting of quality 1448
metadata (such as data provider and (data)category). The 1449
FullTargetIdentifier will identify all the relevant object types that are in the 1450
scope of the definition, whilst the PartialTargetIdentifier will identify a sub 1451
set of these object types which form the “key” of targetClass of the 1452

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

86

PartialTargetIdentifier. For example, in a key family the targetClass 1453
might be a dimension, and therefore the IdentifierComponents are those that 1454
uniquely identify a dimension (which, incidentally, are the key family, and the 1455
concept). 1456
 1457
The ReportStructure comprises a set of MetadataAttributes that can be defined 1458
as a hierarchy. Each MetadataAttribute identifies a Concept that is reported or 1459
disseminated in a MetadataSet that uses this MetadataStructureDefinition. 1460
The Concept must be a valid Concept maintained in a ConceptScheme. It is not 1461
mandatory that all MetadataAttributes are linked to Concepts from the same 1462
ConceptScheme. 1463
 1464
The MetadataAttribute can be specified as being mandatory, conditional, or 1465
optional (assignmentStatus – inherited from Attribute). 1466
 1467
The MetadataAttribute is an abstract class and is either a 1468
CodedMetadataAttribute or an UncodedMetadataAttribute. A 1469
CodedMetadataAttribute is associated to the CodeList that contains the set of 1470
valid values that can be reported for the CodedMetadataAttribute in a 1471
MetadataSet. 1472
 1473
It is possible to define a sub structure of the MetadataAttribute by use of the 1474
AttributeProperty. 1475
 1476
The AttributeProperty allows the MetadataAttribute to have identifiable 1477
text (such as a URL). However, there is no support for sequencing and applications 1478
must know how to integrate the value of the property sent in a MetadataSet with 1479
any value sent in the body of the UncodedMetadataAttribute or 1480
CodedMetadataAttribute. 1481
 1482
Each MetadataAttribute can be specified as being attachable to one or more 1483
IdentifiableArtefact. The diagram below shows the classes that inherit from 1484
IdentifiableArtefact in the context of reference metadata. 1485
 1486

ComponentList
(from SDMX-Base)

FullTargetIdentifier PartialTargetIdentifier

 1487
Figure 30: Metadata Attribute attachment definition 1488

 1489
It can be seen from this that the specification of the object types to which a 1490
MetadataAttribute can be attached is indirect: the MetadataAttribute is 1491
attached to one or more of FullTargetIdentifier or 1492
PartialTargetIdentifier and the actual object is identified by the 1493
targetClass to which the FullTargetIdentifier or 1494

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

87

PartialTargetIdentifier is associated. This gives a flexible mechanism by 1495
which the actual object types need not be defined in concrete terms in the model, but 1496
are defined dynamically in the MetadataStructureDefinition, in much the 1497
same way as the keys to which data observation are “attached” in a KeyFamily 1498
definition. In this way the MetadataStructureDefinition can be used to define 1499
any set of MetadataAttributes and any set of object types to which they can be 1500
attached. 1501
 1502
Each MetadataAttribute can have a Type and Representation specified 1503
(using the localType and localRepresentation associations). If this is not 1504
specified in the MetadataStructureDefinition then the Type and 1505
Representation is taken from that defined for the Concept (the coreType and 1506
coreRepresentation associations). 1507
 1508
The definition of the various types of of Representation and the Type can be 1509
found in section 4.4. 1510
 1511
The MetadataStructureDefinition is linked to a 1512
MetadataflowDefinition. The MetadataflowDefinition does not have any 1513
specific attributes but can have additional metadata attached using the reference 1514
metadata mechanism itself. 1515
 1516
Of importance is the fact that the MetadataflowDefinition associates a 1517
MetadataStructureDefinition with one or more Category (possibly from 1518
different CategorySchemes). This gives a system the ability to state which 1519
MetadatataSets are to be reported/disseminated for a given Category, and 1520
which MetadataSets can be reported using the 1521
MetadataStructureDefinition. 1522
 1523

7.3.4.2 Definitions 1524
Class Feature Description

StructureUsage See “SDMX Base”.

 classify Associates one or more
Categories in one or more
schemes that define
metadata data
categorisation in terms of
metadata to be reported
or disseminated.

Category See “Category Scheme”.

Metadataflow
Definition

Inherits from:
StructureUsage

Abstract concept (i.e. the
structure without any
metadata) of a flow of
metadata that providers
will provide for different
reference periods.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

88

Class Feature Description

 /structure Associates a Metadata
Structure Definition.

MetadataStructure
Definition

 A collection of metadata
concepts, their structure
and usage when used to
collect or disseminate
reference metadata.

 /grouping An association to a set of
metadata concepts that
have an identified
structural role in a
Metadata Structure
Definition.

FullTarget
Identifier

Inherits from

ComponentList

A set components that
define the key of an object
type to which metadata
may be attached.

 /components Associates the Identifier
Components that define
the key.

 targetClass An association to the
Identifiable Object Type
that the Target Identifier
identifies.

PartialTarget
Identifier

Inherits from

ComponentList

A set components that
define a key of an object
type to which metadata
may be attached, and
which is a partial key of
the object identified in the
Full Target Identifier.

 /components Associates the Identifier
Components that defines
the partial key

 targetClass An association to the
Identifiable Object Type
that the Partial Target
Identifier identifies.

IdentifierComponent A Concept used to refer to
and identify a part of an
identifier in a Metadata
Structure Definition.

 targetClass An association to the
Identifiable Object Type
that the Identifier
Component identifies.

 codelist Associates an Item
Scheme such as a Code
List, Concept Scheme,
and Category Scheme.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

89

Class Feature Description

ItemScheme Sub classes:

CodeList
ConceptScheme
CategoryScheme
OrganisationScheme

The list of values that
defines the value domain
of the Identifier
Component.

ConceptDescriptor Inherits from:

ComponentList

A set metadata concepts
that define the metadata
attributes of a Metadata
Structure Definition

 /components An association to the
Metadata Attributes
relevant to the Metadata
Structure Definition.

MetadataAttribute Abstract class
Sub classes are:

CodedMetadataAttribute
UncodedMetadataAttribute

The value of an attribute,
such as the instance of a
coded or uncoded
attribute in a Metadata
Structure Definition.

 /conceptIdentity An association to the
metadata concept which
defines the semantic of
the attribute.

 properties Allows one or more
Attribute Property to be
defined as a sub structure
of the MetadataAttribute.

 /localType Associates a Type (data
type) that overrides any
core type specified for the
Concept itself.

 /localRepresentation Associates a
Representation that
overrides any core
representation specified
for the Concept itself.

Concept Inherits from:
Item

The metadata concept
which defines the
semantic of the Metadata
Attribute in the Metadata
Structure Definition

AttributeProperty A specific characteristic of
a structure identified by its
name and type.

 name The name of the Attribute
Property

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

90

Class Feature Description

 type Specifies the data type for
the Attribute Property.
The types are an
enumerated list in the
Data Type enumeration.

Identifiable
Artefact

 Specifies to which
artefacts the Metadata
Attribute can be attached.
This is constrained to the
Full Target Identifier or
the Partial Target
Identifier.

CodedMetadata
Attribute

Inherits from

MetadataAttribute

CodedArtefact

A Metadata Attribute that
takes its values from a
code list.

 /codelist Associates a Code List.

UncodedAttribute Inherits from

MetadataAttribute

UncodedArtefact

A metadata attribute
whose content is
uncoded.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

91

7.4 Metadata Set 1525

7.4.1 Class Diagram 1526

 1527
Figure 31: The Metadata Set 1528

U
nc

od
ed

M
et

ad
at

aA
ttr

ib
ut

e
(fr

om
 M

et
ad

at
a-

S
tru

ct
ur

e-
D

ef
in

iti
on

)

U
nc

od
ed

A
ttr

ib
ut

eV
al

ue
va

lu
e

: S
tri

ng

va
lu

eF
or

A
tta

ch
m

en
tK

ey

sh
ow

s
th

e
lin

k
to

th

e
M

et
ad

at
a

S
tru

ct
ur

e
D

ef
in

iti
on

A
tta

ch
ab

le
A

rte
fa

ct

M
et

ad
at

aS
et

1.
.*

1.
.*

at
ta

ch
m

en
t

M
et

ad
at

aA
ttr

ib
ut

eV
al

ue

1.
.*

0.
.*

1.
.*

at
ta

ch
es

To
1.

.*
1.

.*

m
et

ad
at

a

M
et

ad
at

af
lo

w
D

ef
in

iti
on

(fr
om

 M
et

ad
at

a-
S

tru
ct

ur
e-

D
ef

in
iti

on
)

11
in

st
an

ce
O

f Fu
llT

ar
ge

tId
en

tif
ie

r
(fr

om
 M

et
ad

at
a-

S
tru

ct
ur

e-
...

)
P

ar
tia

lT
ar

ge
tId

en
tif

ie
r

(fr
om

 M
et

ad
at

a-
S

tru
ct

ur
e-

D
ef

in
iti

on
)

A
ttr

ib
ut

eP
ro

pe
rty

V
al

ue
va

lu
e

: S
tri

ng
0.

.n
1

0.
.n

1

pr
op

er
tie

s

M
et

ad
at

aS
tru

ct
ur

eD
ef

in
iti

on
(fr

om
 M

et
ad

at
a-

S
tru

ct
ur

e-
D

ef
in

iti
on

)

0.
.*

1
0.

.*
1

/s
tru

ct
ur

e

1

1

1

1

/g
ro

up
in

g
1

0.
.*

1

0.
.*

/g
ro

up
in

g

A
ttr

ib
ut

eP
ro

pe
rty

(fr
om

 S
D

M
X

-B
as

e)

11 va
lu

eF
or

R
ep

or
tS

tru
ct

ur
e

(fr
om

 M
et

ad
at

a-
S

tru
ct

ur
...

)

1

1

1

1

/g
ro

up
in

g

M
et

ad
at

aA
ttr

ib
ut

e
(fr

om
 M

et
ad

at
a-

S
tru

ct
ur

e-
D

ef
in

iti
on

)

1

0.
.*

1

0.
.*

pr
op

er
tie

s

1 1.
.*1 1.
.*

/c
om

po
ne

nt
s

C
od

ed
M

et
ad

at
aA

ttr
ib

ut
e

(fr
om

 M
et

ad
at

a-
S

tru
ct

ur
e-

D
ef

in
iti

on
) C
od

ed
A

ttr
ib

ut
eV

al
ue

va
lu

eF
or

C
od

eL
is

t
(fr

om
 C

od
e-

Li
st

)

C
od

e
(fr

om
 C

od
e-

Li
st

)

+v
al

ue1 1.
.*1 1.
.*

/it
em

s

0.
.*

P
ar

tia
lT

ar
ge

tK
ey

0.
.*1 0.
.*1

va
lu

eF
or

Fu
llT

ar
ge

tK
ey

0.
.*

1

0.
.*

1

va
lu

eF
or

Id
en

tif
ie

rC
om

po
ne

nt
(fr

om
 M

et
ad

at
a-

S
tru

ct
ur

e-
D

e.
..)

1

1.
.*

1

1.
.*

co
m

po
ne

nt
s

{o
rd

er
ed

, f
ul

l-k
ey

}
0.

.*
1.

.*
0.

.*
1.

.*

co
m

po
ne

nt
s

{p
ar

tia
l-k

ey
}

Id
en

tif
ie

rC
om

po
ne

nt
V

al
ue

1.
.*

1.
.*

ke
yV

al
ue

s

1.
.*

1.
.*

ke
yV

al
ue

s

va
lu

eF
or

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

92

7.4.2 Explanation of the Diagram 1529

7.4.2.1 Narrative 1530
The classes in the shaded boxes on the class diagram comprise the classes in the 1531
MetadataStructureDefinition. They are included in this diagram to show the 1532
link between the contents of the MetadataSet and the structures in the 1533
MetadataStructureDefinition. Depending on implementation architectures, it 1534
is possible to include just a reference to the MetadataflowDefinition in an 1535
instance of the MetadataSet (as the MetadataflowDefinition uses just one 1536
MetadataStructureDefinition). 1537
 1538
A MetadataSet comprises a set of MetadataAttributeValues that give 1539
additional meaning to the object identified by the FullTargetKey or 1540
PartialTargetKey. The component structure of the key is specified in the 1541
FullTargetIdentifier or PartialTargetIdentifier defined in the 1542
MetadataStructureDefinition. 1543
 1544
The set of IdentifierComponentValue for the TargetIdentifier is defined in 1545
the TargetKey, and for the PartialTargetIdentifier these are defined in the 1546
PartialTargetKey. 1547
 1548
The MetadataSet contains MetadataAttributeValues, each of which is 1549
associated to (attached to) an AttachableArtefact. The AttachmentKey is a 1550
specialisation of AttachableArtefact which has, as concrete classes, the 1551
FullargetKey and the PatialTargetKey. Therefore a 1552
MetadataAttributeValue can be attached to one or both of the 1553
FullTargetKey and PartialTargetKey. A simple text value for the attribute 1554
uses the UncodedAttributeValue sub class of MetadataAttributeValue 1555
whilst a coded value uses the CodedAttributeValue sub class. 1556
 1557
The metadata reported for a MetadataAttributeValue may additionally have one 1558
or more AttributePropertyValues, if the AttributeProperty has been 1559
specified as being allowed for the MetadataAttribute in the 1560
MetadataStructureDefinition. 1561

7.4.2.2 Definitions 1562
Class Feature Description

MetadataSet Any organised collection
of metadata.

 effectiveDate The date on which all the
metadata in the metadata
set is effective.

 instanceOf Associates the
MetadataflowDefinition for
which this Metadata Set is
an instance.

 attachmentKey Associates the object
keys to which metadata is
to be attached.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

93

Class Feature Description

 metadata Associates the Metadata
Attribute Values which are
to be associated with the
object or objects identified
by a key.

AttachableArtefact Abstract class

Sub class:
AttachmentKey

Links to the object to
which the metadata are to
be attached.

AttachmentKey Abstract class

Sub classes are:
TargetKey
PartialTargetKey

Identifies the key of the
object to which the
metadata are to be
attached.

FullTargetKey Inherits from

AttachmentKey

The key of an individual
object of the type
specified in the Full
Target Identifier of the
Metadata Structure
Definition.

 keyValues Associates the identifier
component values of the
Target Identifier.

 valueFor Associates the target
identifier that identifies the
object type and the
component structure of
the key.

PartialTargetKey Inherits from

AttachmentKey

The key of an individual
object of the type
specified in the Partial
Target Identifier of the
Metadata Structure
Definition.

 valueFor Associates the Partial
Target Identifier that
identifies the object type
and the component
structure of the Partial
Target Key.

 keyValues Associates the Identifier
Component values of the
Target Identifier.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

94

Class Feature Description

IdentifierComponent
Value

 The value of an individual
component of the Target
Identifier or Partial Target
Identifier. The
concatenation of the
identifier values
comprises the key of an
individual object.

MetadataAttribute
Value

Abstract class
Sub classes are:
UncodedAttributeValue
CodedAttributeValue

The value for a Metadata
Attribute

 valueFor Association to the
Metadata Attribute in the
Metadata Structure
Definition that identifies
the Concept, Code List,
properties, and data type
of the attribute.

 properties Association to one or
more Property Values.

 attachesTo Association to the
attachable artefact (i.e.
the Target Key or Partial
Target Key) to which the
Metadata Attribute Value
pertains.

AttributeProperty
Value

 The value of a property
which gives additional
metadata for the
Metadata Attribute Value.

 value The content of the
property metadata.

 valueFor Association to the
Property for the Metadata
Attribute in the Metadata
Structure Definition that
identifies the name and
type of the property value.

UncodedAttribute
Value

Inherits from

MetadataAttributeValue

Sub class:
XMLAttributeValue

The text content of an
attribute.

CodedAttributeValue Inherits from

MetadataAttributeValue

The coded content of an
attribute.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

95

Class Feature Description

 +value Association to a Code in
the Code List that is the
value of the attribute.

 1563

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

96

8 HIERARCHICAL CODE SCHEME 1564

8.1 Scope 1565
The CodeList described in the section on structural definitions supports a simple 1566
hierarchy of Codes, and restricts any child Code to having just one parent Code. 1567
Whilst this structure is useful for supporting the needs of the KeyFamily and the 1568
MetadataStructureDefinition, it is not sufficient for supporting the more 1569
complex associations between codes that are often found in coding schemes such as 1570
a classification scheme. Often, the CodeList used in a KeyFamily is derived from 1571
a more complex coding scheme. Access to such a coding scheme can aid 1572
applications, such as OLAP applications, to give more views of the data than would 1573
be possible with the simple CodeList used in the KeyFamily. 1574
 1575
Note that a hierarchical code list is not necessarily a balanced tree. A balanced tree 1576
is where levels are pre-defined and fixed, (i.e. a level always has the same set of 1577
codes, and any code has a fixed parent and child relationship to other codes). A 1578
statistical classification is an example of a balanced tree, and the support for a 1579
balanced hierarchy is a sub set, and special case, of the hierarchical code list. 1580
 1581
The principle features of the Hierarchical Code Scheme are: 1582
 1583

1. A child code can have more than one parent. 1584
 1585

2. There can be more than one code that has no parent (i.e. more than one “root 1586
node”). 1587

 1588
3. There may be many hierarchies (or “views”) defined, in terms of the 1589

associations between the codes. Each hierarchy serves a particular purpose 1590
in the reporting, analysis, or dissemination of data. 1591

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

97

8.2 Inheritance 1592

8.2.1 Class Diagram 1593

MaintainableArtefact
(from SDMX-Base)

VersionableArtefact
version : String
validFrom : Date
validTo : Date

Note that the
Association to
TargetItem is limited
to "parent"

Hierarchy

ItemScheme HierarchicalCode
Scheme

Level

CodeAssociation

Code

1
+target

11

+source

1 1

+associationType

1

{parent}

CodeMap
(from Mapping)

IdentifiableArtefact
id : String
uri : String
urn : String

Item
(from SDMX-Base)

0..1

1..*

0..1

1..*

items

Association
(from SDMX-Base)

+associationType

0..10..1

/source

/target

 1594
Figure 32: Inheritance class diagram for the Code Set 1595

8.2.2 Explanation of the Diagram 1596

8.2.2.1 Narrative 1597
[General note: The constraints on the inherited associations (e.g. between 1598
CodeAssociation and Code) are shown in the context of the functionality of the 1599
HierarchicalCodeScheme. This does not mean that other association roles 1600
cannot be placed on a Code participating in a HierarchicalCodeScheme (such as 1601
may be defined in a CodeMap – see section 9. The class diagram merely restricts or 1602
constrains the associations to that usage required to support the functionality of the 1603
HierarchicalCodeScheme.] 1604
 1605
The HierarchicalCodeScheme inherits from ItemScheme and is therefore a 1606
MaintainableArtefact with identification, versioning and a maintenance agency. 1607
The CodeAssociation inherits from CodeMap (see section 9) and is therefore a 1608
VersionableArtefact. Hierarchy inherits directly from 1609
VersionableArtefact. These two therefore have identity and versioning. The 1610
Level is an IdentifiableArtefact and therefore has an Id, multi-lingual name 1611
and multi-lingual description. 1612
 1613
It is important to understand that the Codes participating in a 1614
HierarchicalCodeScheme are not themselves contained in the scheme – they are 1615
referenced from the scheme and are maintained in one or more CodeLists. This is 1616
explained in the explanation of the relationship class diagram below. 1617

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

98

The associations between CodeAssociation and Code are inherited from the 1618
associations between CodeMap and Code. However, the derived associations are 1619
constrained further as follows: 1620
 1621

• The association defining the relationship between the source and target 1622
codes is restricted to the “parent” relationship (i.e. the target Code is the 1623
parent) 1624

Note that the Code associated by the associationType is not in the same 1625
CodeList as either the source or target code – it is in a specific CodeList of role 1626
types. 1627

8.2.2.2 Definitions 1628
The definitions of the various classes, attributes, and associations are shown in the 1629
relationship section below. 1630
 1631

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

99

8.3 Relationship 1632

8.3.1 Class Diagram 1633

The codes may be
in variety of code
lists.

LevelBasedHierarchy

Hierarchy

CodeList

ValueBasedHierarchy

Level
codingType : String
codeLength : Integer

1..*

1

1..*

1

levels

HierarchicalCode
Scheme

1..*

1

1..*

1

hierarchies

Code

0..10..*

+root

0..10..*

1

1..*

1

1..*

/items

CodeComposition

1..*

0..*

1..*

0..*

valueStructure
1..*

0..*

1..*

0..*

levelStructure

0..*

1

0..*

1

groups

Property CodeAssociation

1
+target

1 1+source1
1

+associationType
1

{parent}

1

1..*

1

1..*
associations

0..* 10..* 1

/properties

/source/target

 1634
Figure 33: Relationship class diagram of the Hierarchical Code Scheme 1635

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

100

8.3.2 Explanation of the Diagram 1636

8.3.2.1 Narrative 1637
The associations and navigability of the associations in the 1638
HierarchicalCodeScheme is constrained in such a way so as to ensure a 1639
consistent common implementation of the HierarchicalCodeScheme in terms of 1640
basic functionality. Of key importance are: 1641
 1642

1. The HierarchicalCodeScheme is a specification of the Codes comprising 1643
the scheme and the specification of the structure of the Codes in the scheme 1644
in terms of one or more Hierarchy. 1645

 1646
2. The Codes in the HierarchicalCodeScheme are not themselves a part of 1647

the scheme, rather they are references to Codes in one or more external 1648
CodeLists. 1649

 1650
3. These Codes may participate in one or more Hierarchy, and one or more 1651

CodeComposition in order to give structure to the 1652
HierarchicalCodeScheme. 1653

 1654
4. The association between any two codes is specified in a CodeAssociation. 1655

The association is limited to identifying a Code and its parent Code. 1656
 1657

5. The parent Code is the same for all CodeAssociations comprising a 1658
CodeComposition. 1659

 1660
Relationships 1661
 1662
Relationships between the codes are defined in the CodeComposition, which itself 1663
comprises a number of CodeAssociations. The CodeAssociation links a Code 1664
(source) to a parent Code (target). The constraint is that the parent code in 1665
each of the CodeAssociations of the CodeComposition must be the same 1666
Code. The CodeAssociation can have one or more Property which allow the 1667
definition of properties, e.g. a sequence number or the relative weight of a (child) 1668
Code in respect to its parent’s decomposition. 1669
 1670
A Code can participate in one or more CodeAssociation, playing the role of 1671
source (child) or target (parent). A Code can play both roles but in different 1672
CodeAssociation linked to different CodeCompositions. 1673
 1674
Hierarchies 1675
 1676
It is possible to define formal hierarchies of Codes, and a 1677
HierarchicalCodeScheme may have more than one such Hierarchy. Each 1678
Hierarchy can identify the root Code. There are two types of Hierarchy – value 1679
based and level based. 1680
 1681
A ValueBasedHierarchy comprises a set of CodeComposition (any 1682
combination is allowable in principle). 1683
 1684

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

101

A LevelBasedHierarchy supports the need where formal levels need to be 1685
defined. Each Level comprises a set of CodeComposition. The constraint of a 1686
LevelBasedHierarchy is that each Code in a Level has one and only one parent 1687
in the superior Level. Note that statistical classifications are often structured as a 1688
LevelBasedHierarchy. 1689
 1690
The Level inherits from IdentifiableArtefact and therefore has an Id, multi-1691
lingual name, multi-lingual description, and Annotation. 1692
 1693
[Note that organisations wishing to be compliant with accepted models for statistical 1694
classifications should ensure that the Id is the number associated with the Level, 1695
where Levels are numbered consecutively starting with level 1 at the highest 1696
Level]. 1697
 1698
The ItemProperty allows one or more optional properties to be defined for the 1699
CodeAssociation. In the context of the HierarchicalCodeScheme, a property 1700
could be the sequence in which the source code participates in the 1701
CodeComposition. 1702

8.3.2.2 Definitions 1703
 1704
Class Feature Description

HierarchicalCode
Scheme

Inherits from:

ItemScheme

An organised collection of
codes that may participate
in many parent/child
relationships with other
Codes in the scheme, as
defined by one or more
Hierarchy of the scheme.

 groups Association to groupings
of Codes.

 hierarchies Association to Hierarchies
of Codes.

CodeComposition A group of Codes where
all Codes in the group
have an association with
the same parent Code.

 associations Association to an
association of two Codes.

CodeAssociation Inherits from

CodeSet

An association between
two Codes.

 +source Association to the source
Code

 +target Association to the target
Code.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

102

Class Feature Description

 +associationType The role of the
association between
source and target Code.
This is constrained to
“parent” (i.e. the target
Code is the parent Code).

Code The source or target Code

 /items Association to the Code
List containing the Code.

CodeList The Code List containing
te Code.

Hierarchy Abstract class
Sub classes are:

LevelBasedHierarchy

ValueBasedHierarchy

A classification structure
arranged in levels of detail
from the broadest to the
most detailed level.

 +root Association to the top
level code in the
hierarchy.

LevelbasedHierarchy Inherits from

Hierarchy

A hierarchy structure
where the structure is
arranged in levels of detail
from the broadest to the
most detailed level. Each
level is defined in terms of
the categories at the next
lower level of the
hierarchy.

 levels Association to the levels
in the hierarchy.

Level A group of Codes which
are characterised by
homogeneous coding,
and where the parent of
each Code in the group is
at the same higher level
of the Hierarchy.

 codingType Indicates whether the
codes at the level are
alphabetical, numerical or
alphanumerical

 codeLength Number of characters
which the codes at this
level have.

 levelStructure Association to the code
groups comprising the
level.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

103

Class Feature Description

ValueBasedHierarchy Inherits from

Hierarchy

A hierarchy structure
where the items in the
hierarchy have no formal
level structure.

 valueStructure Association to the code
groups comprising the
Hierarchy.

 1705

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

104

9 STRUCTURE SET AND MAPPINGS 1706

9.1 Scope 1707
A StructureSet allows components in one structure to be mapped to components 1708
in another structure of the same type. In this context the term “structure” is used 1709
loosely to include types of ItemScheme, types of Structure, and types of 1710
StructureUsage. The allowable structures that can be mapped, and the 1711
components that can be mapped within these structures are: 1712
 1713
Structure Type Component type
Code List Code
Category Scheme Category
Concept Scheme Concept
Data Structure Definition (Key Family) Dimension, Data Attribute, Measure
Metadata Structure Definition Identifier Component, Metadata Attribute
Dataflow Definition Data Structure Definition (Key Family)
Metadataflow Definition Metadata Structure Definition
 1714
The StructureSet can contain one or more “maps” and can define a hierarchy of 1715
maps which effectively group relevant sub component maps. An example of this is: 1716
 1717
Dataflow Definition Data Structure Definition [Dimension, Data Attribute, 1718
Measure] Code List Code. 1719

9.2 Structure Set 1720

9.2.1 Class Diagram 1721

MaintainableArtefact

StructureUsage
(from SDMX-Base)

Structure
(from SDMX-Base)

Restricts specification of
related artefacts to:
StructureDefinition,
MetadataStructureDefinition,
Dataflow or Metadataflow

StructureMap CodeListMap

MaintainableArtefact
(from SDMX-Base)

CategorySchemeMap ConceptSchemeMap

StructureSet

0..1

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1 0..*0..1
+relatedStructure

0..*
{Structure or

StructureUsage }

0..*

0..1

0..*

0..1

0..*

0..1

0..*

0..1

structureMaps
codeListMaps

categorySchemeMaps
conceptSchemeMaps

 1722
Figure 34: Class diagram of the Structure Set 1723

9.2.2 Explanation of the Diagram 1724

9.2.2.1 Narrative 1725
The StructureSet is a MaintainableArtefact. It can contain: 1726
 1727

1. A set of references to concrete sub-classes of Structure and 1728
StructureUsage (KeyFamily, MetadataStructureDefinition, 1729
DataflowDefinition or MetadataflowDefinition) to indicate that a 1730
semantic relationship exist between them. For example there may be group of 1731
KeyFamily which, together, form the definition of a cube, each KeyFamily 1732
defining a part of the cube. 1733

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

105

2. A set of StructureMaps which define which components of one structure 1734
are equivalent to those in another. 1735

3. A set of CodeListMaps which define how Codes are mapped between 1736
CodeLists or Hierarchy. 1737

4. A set of CategorySchemeMaps which define how Categorys are mapped 1738
between CategorySchemes. 1739

5. A set of ConceptSchemeMaps which define how Conceptss are mapped 1740
between ConceptSchemes. 1741

9.2.2.2 Definitions 1742
Class Feature Description

StructureSet A maintainable collection
of structural maps that link
components together in a
source/target relationship
where there is a semantic
equivalence between the
source and the target
components.

 +relatedStructure Association to one of:
Key Family (Data
Structure Definition);
Metadata Structure
Definition; Dataflow
Definition; Metadataflow
Definition.

 structureMaps Association to Structure
Maps.

 codeListMaps Association Code List
Maps.

 categorySchemeMaps Association to a Category
Scheme Map.

 conceptSchemeMaps Association to Concept
Scheme Maps.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

106

9.3 Structure Map 1743

9.3.1 Class Diagram 1744

CodeMap

Structure
(from SDMX-Base)

Restricts specification of
source and target to:
StructureDefinition,
MetadataStructureDefinition,
Dataflow or Metadataflow

CodeList
(from Code-List)

StructureUsage
(from SDMX-Base)

Hierarchy
(from Code-List)

MaintainableArtefact
(from SDMX-Base)

MaintainableArtefact
(from SDMX-Base)

Code
(from Code-List)

StructureMap

+source

/source

+target

/target

+source
/source

+target
/target

ComponentMap
toTextFormat : String1 0..*1 0..*

/hierarchy

VersionableArtefact
(from SDMX-Base)

CodeListMap

0..*1 0..*1

/hierarchy
0..10..1

/hierarchy

+source

/source
+target
/target

Restricts specification of source and
target to: CodeList and Hierarchy
(within a HierarchicalCodeScheme)

Property
(from SDMX-Base)

Association
alias : String

Item
(from SDMX-Base) 0..*

1
+child

0..*

+parent

1
hierarchy

0..10..* 0..10..*

properties

0..1
+associationType

0..1

Component
(from SDMX-Ba...

+source

/source

+target

/target

 1745
Figure 35: Class diagram of the Structure Map 1746

9.3.2 Explanation of the Diagram 1747

9.3.2.1 Narrative 1748
The StructureMap references two Structures or StructureUsages. In 1749
concrete terms these references will be to DataStructureDefinitions, 1750
MetadataStructureDefinitions, DataflowDefinitions or 1751
MetadataflowDefinitions. The StructureMap contains a set of 1752
ComponentMaps, each one indicating equivalence between Components of the 1753
referenced Structure or StructureUsage. ComponentMap has the attribute 1754
toTextFormat which takes values: id, name, description. This instructs 1755
mapping tools to use the id, name or description of a coded component to determine 1756
equivalence with an uncoded component's value. For each indicated Component 1757
equivalence (this is effectively Concept equivalence), a CodeListMap may be 1758
defined. 1759
 1760
An example of a ComponentMap is linking the source Component that is a 1761
Dimension in the source KeyFamily (identified in the StructureMap) to the 1762
equivalent target Component that is a Dimension in the target KeyFamily). 1763
 1764
The CodeListMap references two CodeLists or Hierarchy (within a 1765
HierarchicalCodeScheme). The CodeListMap contains a set of CodeMaps, 1766

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

107

each one indicating equivalence between Codes of the referenced CodeLists. 1767
Again, the alias attribute can provide a name for all equivalent codes in multiple “pair-1768
wise-joined” CodeLists to facilitate querying. The CodeListMap can either be 1769
hierachically linked to the ComponentMap or it can be specified independent of a 1770
ComponentMap. 1771
 1772
Each of the maps inherits from Association and therefore inherits the association 1773
to Property, thus allowing additional properties to be defined for the map. 1774

9.3.2.2 Definitions 1775
Class Feature Description

StructureMap Inherits from
Association

Links a source and target
structure where there is a
semantic equivalence
between the source and
the target structures.

 +source Association to the source
structure.

 +target Association to the target
structure.

 /hierarchy Association to the
Component Maps.

ComponentMap Links a source and target
Component where there
is a semantic equivalence
between the source and
the target Components.

 +source Association to the source
Component.

 +target Association to the target
Component.

 /hierarchy Association to the Code
List Maps.

CodeListMap Links a source Code List
or Hierarchy to a target
Code List or Hierarchy
where there is a semantic
equivalence between the
source and the target
Code List or Hierarchy.

 +source Association to the source
Code List or Hierarchy.

 +target Association to the target
Code List or Hierarchy.

 /hierarchy Association to the Code
Maps.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

108

Class Feature Description

CodeMap Links a source and target
Code where there is a
semantic equivalence
between the source and
the target Codes.

 +source Association to the source
Code.

 +target Association to the target
Code.

9.4 Concept Scheme Map and Category Scheme Map 1776

9.4.1 Class Diagram 1777

0..1

Concept
(from Concept-Scheme)

ConceptScheme
(from Concept-Scheme)

ConceptMap

+source

/source

+target

/target

ConceptSchemeMap

+source

/source

+target

/target

0..*1 0..*1

/hierarchy

Category
(from Category-Scheme)

CategoryMap

+target

/target

+source

/source

CategoryScheme
(from Category-Scheme)

CategorySchemeMap
0..*1 0..*1

/hierarchy

+source

/source

+target

/target

Association
alias : String

Property
(from SDMX-Base)

Item
(from SDMX-Base)

0..*
1

+child

0..*

+parent
1

hierarchy

0..10..*0..*

properties

 1778
Figure 36: Class diagram of the Concept Scheme Map and Category Scheme Map 1779

9.4.2 Explanation of the Diagram 1780

9.4.2.1 Narrative 1781
The ConceptSchemeMap provides a mechanism for specifying semantic 1782
equivalence between Concepts. It identifies two ConceptSchemes whose 1783
Concepts are to be mapped. Note that many schemes can be joined together via a 1784
set of pair-wise mappings. The ConceptMap denotes which Concepts are 1785
semantically equivalent and an alias can be specified to refer to a set of mapped 1786
concepts to facilitate querying. 1787
 1788
The CategorySchemeMap is analogous to the ConceptSchemeMap, except that its 1789
use is targeted towards expressing semantic equivalence in CategorySchemes 1790
such as a subject-matter domain scheme. 1791

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

109

9.4.2.2 Definitions 1792
Class Feature Description

ConceptSchemeMap Links a source and target
Concept Scheme where
there is a semantic
equivalence between the
source and the target
schemes.

 +source Association to the source
Concept Scheme.

 +target Association to the target
Concept Scheme.

 /hierarchy Association to the
Concept Maps.

Concept Map Links a source and target
Concept where there is a
semantic equivalence
between the source and
the target Concepts.

 +source Association to the source
Concept.

 +target Association to the target
Concept.

CategorySchemeMap Links a source and target
Category Scheme where
there is a semantic
equivalence between the
source and the target
schemes.

 +source Association to the source
Category Scheme.

 +target Association to the target
Category Scheme.

 /hierarchy Association to the
Category Maps.

Concept Map Links a source and target
Category where there is a
semantic equivalence
between the source and
the target Category.

 +source Association to the source
Category.

 +target Association to the target
Category

 1793

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

110

10 DATA CONTRAINTS AND PROVISIONING 1794

10.1 Scope 1795
The scope of this section is to describe the support in the metamodel for specifying 1796
both the access to and the content of a data source. The information may be stored 1797
in a resource such as a registry for use by applications wishing to locate data and 1798
metadata which is available via the Internet. 1799
 1800
Note that in this metamodel the term data source refers to both data and metadata 1801
sources, and data provider refers to both data and metadata providers. 1802
 1803
A data source may be a simple file of data or metadata (in SDMX-ML format), or a 1804
database or metadata repository. A data source may contain data for many data or 1805
metadataflows (called DataflowDefinition, CubeDefinition, and 1806
MetadataflowDefinition in the model), and the mechanisms described in this 1807
section allow the DataProvider to specify precisely the scope of the content of the 1808
data source. 1809
 1810
The DataflowDefinition, MetadataflowDefinition, and 1811
CubeDefinition themselves may be specified as containing only a sub set of all 1812
the possible keys that could be derived from a KeyFamily, 1813
MetadataStructureDefinition, or CubeStructure. A DataProvider may 1814
further constrain this set of keys by describing the sub set that is available in the data 1815
or metadata source. These specifications are called Constraint in this model. 1816

10.2 Inheritance 1817

10.2.1 Inheritance Class Diagram of Constrainable and Data Provisioning Artefacts 1818

ConstrainableArtefact

IdentifiableArtefact
(from SDMX-Base)

id : String
uri : String
urn : String

VersionableArtefact
(from SDMX-Base)

version : String
validFrom : Date
validTo : Date

MaintainableArtefact
(from SDMX-Base)

DataflowDefinition
(from Key-Family)

DataProvider
(from SDMX-Base)

OrganisationRole
(from SDMX-Base)

StructureUsage
(from SDMX-Base)

MetadataflowDefinition
(from Metadata-Structure-Defini tion)

CubeDefinition
(from Cube-Structure)

Constraint

ProvisionAgreementReportingTaxonomy

 1819
Figure 37: Inheritance class diagram of constrainable and provisioning artefacts 1820

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

111

10.2.2 Explanation of the Diagram 1821

10.2.2.1 Narrative 1822
Any artefact that is derived from ConstrainableArtefact can have constraints 1823
defined. The artefacts that can have constraint metadata attached are: 1824
 1825

• DataflowDefinition 1826

• ProvisionAgreement 1827

• DataProvider 1828

• MetadataflowDefinition 1829

• CubeDefinition 1830

10.3 Constraints 1831

10.3.1 Relationship class diagram of constraint metadata 1832

AttachmentConstraint ContentConstraint

ConstrainableArtefact

0..*

0..*

0..*

0..*

0..1

0..*

0..1

0..*

MemberValue
value : String

Component
(from SDMX-Base)

KeyValue
value : String11

structureComponent
{Dimension or IdentifierComponent}

ValidityPeriod
startDate : Date
endDate : Date

MemberSelection
isIncuded : Boolean

1..*1..*
values

11

structureComponent

Key

1..*

1

1..*

1

values

ReferencePeriod

1..*

1

1..*

1
dateRange

CubeRegion
isIncuded : Boolean

1..*

0..1

1..*

0..1

members

KeySet
isIncuded : Boolean

1..*

1

1..*

1

keys

Constraint

0..11 0..11 availableDates

0..*

1

0..*

1

permittedContentRegion

0..*

1

0..*

1

permittedContentKeys

ReleaseCalendar
periodicity : Duration
offset : Duration
tolerance : Duration

1

0..1

1

0..1
calendar

attachment
content

 1833
Figure 38: Relationship class diagram showing constraint metadata 1834

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

112

10.3.2 Explanation of the Diagram 1835

10.3.2.1 Narrative 1836
The constraint mechanism allows specific constraints to be attached to a 1837
ConstrainableArtefact. With the exception of ReleaseCalendar, these 1838
constraints specify a sub set of the total set of values or keys that may be present in 1839
a DataSet or MetadataSet. The total set of values are those that can be inferred 1840
from the relevant structure definition (KeyFamily, 1841
MetadataStructureDefinition, and CubeStructure). 1842
 1843
For instance a KeyFamily specifies, for each Dimension, the list of allowable code 1844
values. However, a specific DataflowDefinition that uses the KeyFamily may 1845
contain only a sub set of the possible range of keys that is theoretically possible from 1846
the KeyFamily definition (the total range of possibilities is sometimes called the 1847
cartesian product of the dimension values). In addition to this, a DataProvider that 1848
is capable of supplying data according to the DataflowDefinition has a 1849
ProvisionAgreement, and the DataProvider may also wish to supply constraint 1850
metadata which may further constrain the range of possibilities in order to describe 1851
the data that the provider can supply. 1852
 1853
A ConstrainableArtefact can have two types of Constraint: 1854
 1855

1. ContentConstraint – is used solely as a mechanism to specify either the 1856
available set of keys (KeySet) or set component values (CubeRegion) in a 1857
DataSource such as a DataSet or a database (QueryDatasource). Only 1858
one such constraint may be present for a ConstrainableArtefact. 1859

2. AttachmentConstraint – is used as a mechanism to define slices of the 1860
full set of data and to which other object types in the model (such as a 1861
CubeComponent – see Error! Reference source not found.) may be 1862
attached. These slices can be defined either as a set of keys (KeySet) or a 1863
set component values (CubeRegion). There can be many 1864
AttachmentConstraints specified for a specific AttachableArtefact. 1865

A Constraint is an IdentifiableArtefact and can therefore be associated 1866
with one or more AttachableArtefacts. However, because the Constraint can 1867
specify a sub set of the component values implied a specific Structure (such a 1868
specific KeyFamily or specific CubeStructure) then all of the 1869
AttachableArtefacts must be associated with the same specific Structure. 1870
 1871
A Constraint has a choice of two ways of specifying value sub sets: 1872
 1873

1. As a set of keys (KeySet) that can be present in the DataSet or 1874
MetadataSet. The KeySet specifies a number of Keys in terms of their 1875
KeyValues. Each KeyValue is a value that may be present for a 1876
Component (specifically a Dimension or IdentifierComponent) of a 1877
structure when contained in a DataSet or MetadataSet. 1878

2. As a set of CubeRegions each of which defines a “slice” of the total structure 1879
in terms of one or more values that may be present for a Component (which 1880

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

113

can be any type of Component) of a structure when contained in a DataSet 1881
or MetadataSet. 1882

The difference between (1) and (2) above is that in (1) a complete key is defined 1883
whereas in (2) above a CubeRegion defines a list of possible values for each of the 1884
Components but does not specify specific key combinations. In addition, in (1) the 1885
association between Component and KeyValue is constrained to the components 1886
that comprise the key or identifier, whereas in (2) it can contain other component 1887
types (such as attributes). The value in KeyValue.value and 1888
MemberValue.value must be consistent with the Representation declared for 1889
the Component in the KeyFamily or the MetadataStructureDefinition linked 1890
to the DataflowDefintion or MetadataflowDefinition. Note that in all 1891
cases the “operator” on the value is deemed to be “equals”. 1892
 1893
It is possible to define for the KeySet, CubeRegion, and MemberSelection 1894
whether the set is included (isIncluded = “true”) or excluded 1895
(isIncluded=”false”) from the constraint definition. This attribute is useful if, for 1896
example, only a small sub-set of the possible values are not included in the set, then 1897
this smaller sub-set can be defined and excluded from the constraint. 1898
 1899
In addition to KeySets or CubeRegions, a Constraint can have: 1900
 1901

• a ReferencePeriod defining one of more date ranges (ValidityPeriod) 1902
specifying the time periods for which data or metadata are available 1903

• a ReleaseCalendar that specifies the periodicity of the release of data or 1904
metadata 1905

The ReleaseCalendar defines the planned release schedule in terms of periodicity 1906
and gives sufficient information to enable the calculation of a release schedule. The 1907
offset is calculated from the normal start date of the period as defined by ISO 8601 1908
i.e. all periods start on the first relevant day on or after 1 January so a quarterly 1909
periodicity will have start periods of 1 January, 1 April, 1 July, and 1 October, and a 1910
weekly periodicity will start on the week that has first Thursday of the year. 1911

10.3.2.2 Definitions 1912
Class Feature Description

Constrainable
Artefact

Abstract Class
Sub classes are:

DataflowDefinition
Metadataflow
Definition
CubeDefinition
ProvisionAgreement
DataProvider

An artefact that can have
Constraints specified.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

114

Class Feature Description

 content Associates the metadata
that constrains the
content to be found in a
data or metadata source
linked to the
Constrainable Artefact.

 attachment Associates the metadata
that constrains the valid
content of a data or
metadata set to which a
Constrainable Artefact
(such as Cube Item with
the role “attribute”) may
be attached.

Constraint Abstract class. Sub classes
are:

AttachmentConstraint
ContentConstraint

Specifies a sub set of the
definition of the allowable
content of a data or
metadata set in terms of
the content or, for data
only, in terms of the set of
key combinations to which
specific attributes (as
defined by the Structure)
may be attached.

 availableDates Association to the set of
time periods that identify
the time ranges for which
data are available in the
data source.

 permittedContentKeys Association to a sub set of
Keys (i.e. value
combinations) that can be
derived from the definition
of the Structure to which
the Constrainable Artefact
is linked.

 permittedContent
Region

Association to a sub set of
component values that
can be derived from the
definition of the Structure
to which the
Constrainable Artefact is
linked.

 calendar Association to a release
calendar that defines
dates on which the
artefact is to be made
available.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

115

Class Feature Description

ContentConstraint Inherits from
Constraint

Defines a Constraint in
terms of the content that
can be found in data or
metadata sets linked to
the Constrainable Artefact
to which this constraint is
associated.

Attachment
Constraint

Inherits from
Constraint

Defines a Constraint in
terms of the combination
of component values that
may be found in a data
set, and to which a
Constrainable Artefact
may be associated in a
structure definition.

KeySet A set of keys.

 isIncluded Indicates whether the Key
Set is included in the
constraint definition or
excluded from the
constraint definition.

 keys Association to the keys.

Key The set of Key Values
comprising the Key.

 values Associates the Key
Values.

KeyValue The value of a
Component comprising a
part of the Key.

 structureComponent Association to the
Component in the
Structure to which the
Constrainable Artefact is
linked, which defines the
valid Representation for
the Key Value.

Component See 3.5.3.2

CubeRegion A set of Components and
their values that defines a
sub set or “slice” of the
total range of possible
content of the Structure to
which the Constrainable
Artefact is linked.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

116

Class Feature Description

 isIncluded Indicates whether the
Cube Region is included
in the constraint definition
or excluded from the
constraint definition.

 members Associates the set of
Components that define
the sub set of values.

MemberSelection A set of permissible
values for one component
of the axis.

 isIncluded Indicates whether the
Member Selection is
included in the constraint
definition or excluded
from the constraint
definition.

 structureComponent Association to the
Component in the
Structure to which the
Constrainable Artefact is
linked, which defines the
valid Representation for
the Member Values.

MemberValue The value of one
Component of a Member
Set.

 value The value of the
Component.

ReleaseCalendar Defines the release
schedule in terms of
periodicity and timeliness.

 periodicity The periodicity of the
releases in terms of a
known list of time
periodicities (e.g. monthly,
quarterly)

 offset The offset in days from
the normal start of the
time period.

 tolerance The number of days
tolerance by which the
release may be before or
after the expected date.

ReferencePeriod A set of dates that
constrain the content that
may be found in a data or
metadata set.

 dateRange Association to Validity
Periods.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

117

Class Feature Description

ValidityPeriod A time period that defines
a valid period.

 startDate The start date of the
period.

 endDate The end date of the
period.

10.4 Data Provisioning 1913

10.4.1 Class Diagram 1914

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

0..*

1

+child
0..*

hierarchy

+parent

1

1

1..*

1

1..*

items

this is registry based
metadata

SimpleDatasource

DataSet
(f rom Data-Set)

MetadataSet
(f rom Metadata-Set)

RestDatasource

references
0..* 0..1

references
0..*

0..1

Registration
(f rom Registry)

Datasource

0..1

0..1

0..1

0..1

URL
<<datatype>>

1

1

1

+dataURL

1

WebServiceDatasource

1

1

+WSDLURL

1

1

ReportingTaxonomy
(f rom Registry)

DataflowDefinition
(f rom Key -Family)

KeyFamily
(f rom Key -Family)

0..*

1

0..*

1

/structure

QueryDatasource

DataProvider
(f rom SDMX-Base)

0..1

0..1

0..1

0..1

source

MetadataflowDefinition
(f rom Metadata-Structure-Def inition)

MetadataStructureDefinition
(f rom Metadata-Structure-Def inition)

0..*

1

0..*

1

/structure

Structure
(from SDMX-Base)

Provis ionAgreement
indexTimeSeries : Boolean = false
indexDataSet : Boolean = false
indexReportingPeriod : Boolean = false

0..1

0..1

0..1

0..1

source

0..*1 0..*1

hasAgreement

CategoryScheme
(f rom Category -Scheme)

StructureUsage
(from SDMX-Base)

0..*

0..*

0..*

0..*
structure

0..*

1

0..*

1

controlledBy

Category
(f rom Category -Scheme)

1..*1..*

/items

0..*

0..*

0..*

0..*

classify

1

0..*

+parent

1

/hierarchy+child
0..*

 1915
Figure 39: Relationship and inheritance class diagram of data provisioning 1916

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

118

10.4.2 Explanation of the Diagram 1917

10.4.2.1 Narrative 1918
This sub model links many artefacts in the SDMX-IM and is pivotal to an SDMX 1919
metadata registry, as all of the artefacts in this sub model must be accessible to an 1920
application that is responsible for data and metadata registration or for an application 1921
that requires access to the data or metadata. 1922
 1923
Whilst a registry can contain all of the metadata depicted on the diagram above, the 1924
classes in the grey shaded area are specific to a registry based scenario where data 1925
sources (either physical data and metadata sets or databases and metafdata 1926
repositories) are registered. More details on how these classes are used in a registry 1927
scenario can be found in the SDMX Registry Interface document. 1928
 1929
A ProvisionAgreement links all the artefacts that define how data and metadata 1930
are structured and classified (StructureUsage) to the DataProvider, and it links 1931
to the Datasource, whether this be an SDMX conformant file on a website 1932
(SimpleDatasource) or a database service capable of supporting and SDMX 1933
query and responding with an SDMX conformant document (QueryDatasource). 1934
 1935
The StructureUsage, which has concrete classes of DataflowDefinition, 1936
MetadataflowDefinition, and CubeDefinition identifies the corresponding 1937
KeyFamily, MetadataStructureDefinition, or CubeStructure, and it links 1938
to one or more Category in a CategoryScheme such as a subject matter domain 1939
scheme, by which the StructureUsage can be classified (for instance, to assist in 1940
drilling down from subject matter domains to find the data or metatata that may be 1941
relevant). 1942
 1943
The ReportingTaxonomy allows an organisation to define a reporting scheme that 1944
defines many individual parcels of data, each structured differently, and combnines 1945
then in a reporting set. The ReportingTaxonomy itself has no detailed 1946
Structure, rather it has a high level structure defined in a CategoryScheme. 1947
Such schemes are common in primary reporting and this is described later (see 1948
10.5). 1949
 1950
The SimpleDatasource links to the actual DataSet or MetadataSet on a 1951
website (this is shown on the diagram as a dependency called “references”). The 1952
sourceURL is obtained during the registration process of the DataSet or the 1953
MetadataSet. The metadata about the content of the SimpleDatasource is stored 1954
in the registry in terms of a ContentConstraint (see 10.3) for the 1955
Registration. 1956
 1957
The QueryDatasource links to the database or metadata repository that contains 1958
the data or metadata. The sourceURL is obtained during the registration process of 1959
the QueryDatasource. The metadata about the content of the QueryDatasource 1960
is stored in the registry in terms of a ContentConstraint (see 10.3) for the 1961
ProvisionAgreement or, in some cases, for the DataProvider. This later case 1962
is expected to be rare because even if the actual database is the same for all 1963
ProvisionAgreements for a DataProvider, it is probable that a specific 1964
ContentConstraint for the ProvisionAgreement gives more clarity to an 1965

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

119

application querying the registry about the relevance of the data source to fulfilling 1966
the specific scope of the query. 1967
 1968
There are two types of QueryDatasource, the RestDatasource which is invoked 1969
using an HTTP “get”, and a WebServiceDatasource which conforms to a web 1970
service definition language (WSDL) profile that is available from the wsdURL. 1971

10.4.2.2 Definitions 1972
 1973
Class Feature Description

StructureUsage Abstract class:
Sub classes are:

DataflowDefinition
MetadataflowDefinition
CubeDefinition
ReportingTaxonomy

See 3.5.3.2

 controlledBy Association to the
Provision Agreements
that comprise the
metadata related to the
provision of data.

DataProvider See 4.8.2.2.

 hasAgreement Association to the
Provision Agreements for
which the provider
supplies data or
metadata.

 source Association to a data or
metadata source which
can process a data or
metadata query.

ProvisionAgreement Links the data provider to
the relevant Structure
Usage (e.g. Dataflow
Definition or Metadataflow
Definition) for which the
provider supplies data or
metadata The agreement
may constrain the scope
of the data or metadata
that can be provided.

 source Association to a data or
metadata source which
can process a data or
metadata query.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

120

Class Feature Description

Datasource Abstract class:
Sub classes are:

QueryDatasource

SimpleDatasource

Identification of the
location or service from
where data or metadata
can be obtained.

 sourceURL The URL of the data or
metadata source.

QueryDatasource Abstract class:
Inherits from:

Datasource

Sub classes are:

RestDatasource

WebServiceDatasource

A data or metadata
source which can process
a data or metadata query.

RestDatasource A data source that is
accessible via a Rest
interface.

WebService
Datasource

 A data source that
conforms to a web service
interface.

 wsdlURL The URL of the web
service definition
language profile of the
web service.

Registration This is not detailed here
but is shown as the link
between the SDMX-IM
and the Registry Service
API. It denotes a data or
metadata registration
document.

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

121

10.5 Reporting Taxonomy 1974

10.5.1 Class Diagram 1975

DataflowDefinition
(from Key-Family)

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

ReportingTaxonomy
(from Category-Scheme)

MetadataflowDefinition
(from Metadata-Structure-Defini tion)

CategoryScheme
(from Category-Scheme)

Category
(from Category-Scheme)

0..*

1

+child
0..*

hierarchy

+parent

1

0..1

1..*

0..1

1..*

items

1..*1..*

/items

1

0..*

+parent

1

/hierarchy
+child

0..*

StructureUsage
(from SDMX-Base)

0..*

0..*

0..*

0..*

classify

 1976
Figure 40: Class diagram of the Reporting Taxonomy 1977

10.5.2 Explanation of the Diagram 1978

10.5.2.1 Narrative 1979
In some data reporting environments, and in particular those in primary reporting, the 1980
report may comprise a variety of heterogeneous data, each described by a different 1981
Structure. The definition of the set of linked sub reports is supported by the 1982
ReportingTaxonomy. 1983
 1984
The ReportingTaxonomy is a specialised form of CategoryScheme. Each 1985
Category of the ReportingTaxonomy can link to a StructureUsage which itself 1986
can be one of DataflowDefinition, or MetadataflowDefinition. It is 1987
expected that within a specific ReportingTaxonomy each Category that is linked 1988
in this way will be linked to the same class (e.g. all Category in the scheme will link 1989
to a DataflowDefinition). Note that a Category can have child Category and 1990
in this way it is possible to define a hierarchical ReportingTaxonomy. It is possible 1991
in this taxonomy that some Category are defined just to give a reporting structure. 1992
For instance: 1993
 1994
Section 1 1995
 DatafowDefinition_1 1996
 DatafowDefinition_2 1997
Section 2 1998
 DatafowDefinition_3 1999
 DatafowDefinition_4 2000
 2001

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

122

Here, the nodes of Section 1 and Section 2 would not be linked to 2002
DataflowDefinition but the other would be linked to a DataflowDefinition 2003
(and hence the KeyFamily). 2004

10.5.2.2 Definitions 2005
Class Feature Description

ReportingTaxonomy A scheme which defines
the composition structure
of a data report where
each component can be
described by an
independent Dataflow
Definition.

11 PROCESS AND TRANSITIONS 2006

11.1 Introduction 2007
In any system that processes data and metadata the system itself is a series of 2008
processes and in each of these processes the data or metadata may undergo a 2009
series of transitions. This is particularly true of its path from raw data to published 2010
data and metadata. The process model presented here is a generic model that can 2011
capture key information about these stages in both a textual way and also in a more 2012
formalised way by use of expressions, possibly linked to specific identifiable objects. 2013

11.2 Model – Inheritance View 2014

11.2.1 Class Diagram 2015

Process

ItemScheme

Association

Item

0..1 1..*0..1 1..*

items

Transition

ExpressionNodeProcessStep

2016
Figure 41: Inheritance class diagram of Process and Transitions 2017

11.2.2 Explanation of the Diagram 2018

11.2.2.1 Narrative 2019
Process is an ItemScheme, ProcessStep is an Item, thus a Process is a tree 2020
of ProcessSteps. This implies that any ProcessStep can comprise an arbitrary 2021
number of sub-ProcessSteps. Transition is an Association between 2022

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

123

ProcessSteps. ExpressionNode is also an Item, and is used both to describe 2023
the computations contained in the ProcessStep and to define navigation from 2024
Process to Process. 2025
 2026
Definitions of these classes can be found below in the relationship view. 2027

11.3 Model – Relationship view 2028

11.3.1 Class Diagram 2029

ItemScheme Item

0..*
1

+child0..*

hierarchy

+parent
1

0..1 1..*0..1 1..*

items

Association

0..1
+associationType
0..1

IdentifiableArtefact

ProcessStep

0..*
+output

0..*0..*
+input

0..*

The process step can take
any identifiable object as input
or output. The most likely
objects would be Dataflow,
MetadataFlow, CodeList and
Hierarchy

Process
0..*1 0..*1

/items
Transition11 /target

11 /source 0..*11 0..*

contains

ExpressionNode
0..1

+condition
0..1

0..10..1
+computation

TransformationScheme

1

1..*

1

1..*

/items

2030
Figure 42: Relationship class diagram of Process and Transitions 2031

11.3.2 Explanation of the Diagram 2032

11.3.2.1 Narrative 2033
The Process is a scheme of hierarchical ProcessSteps. Each ProcessStep can 2034
take zero or more IdentifiableArtefacts as input and output. Practically 2035
speaking, these are most likely to be DataflowDefinitions, Hierarchy and 2036
CodeLists - but could be anything in the model. The computation performed by a 2037
ProcessStep is optionally described by an ExpressionNode, which can represent 2038
an arbitrary expression involving any identifiable model objects. The ProcessStep 2039
could also be described textually in multiple languages. The Transition controls 2040
the execution of ProcessSteps from source ProcessStep to target ProcessStep 2041
based on the evaluation of a condition defined in ExpressionNode. The Transition 2042
can be used for looping and conditional execution of ProcessSteps. 2043
 2044
The section on TRANSFORMATIONS AND EXPRESSIONS explains the structure of 2045
the ExpressionNode and TransformationScheme. 2046
 2047

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

124

The operation performed on data in order to derive new information according to a 2048
given set of rules 2049

11.3.2.2 Definitions 2050
Class Feature Description

Process Inherits from
ItemScheme

A scheme which defines
or documents the
operations performed on
data in order to validate
data or to derive new
information according to a
given set of rules.

 /items Associates the Process
Steps.

 contains Associates the
Transitions.

ProcessStep A specific operation,
performed on data in
order to validate or to
derive new information
according to a given set of
rules.

 +input Associates the Identifiable
Artefacts that are inputs to
the Process Step.

 +output Associates the Identifiable
Artefacts that are output
of the Process Step.

Transition An expression in a textual
or formalised way of the
transformation of data
between two specific
operations performed on
the data.

 /source Associates the Process
Step that is the source of
the Transition.

 /target Associates the Process
Step that is the target of
the Transition.

 +condition Associates an Expression
Node.

 2051

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

125

12 TRANSFORMATIONS AND EXPRESSIONS 2052

12.1 Scope 2053
This purpose of this package in the model is to be able to track the derivation of data. 2054
It is similar in concept to lineage in data warehousing – i.e. how data is acquired or 2055
derived. 2056
 2057
The functionality of this part of the model allows the identification and documentation 2058
of the functions performed (these will normally be automated, program functions), as 2059
well as defining structures that support a syntax neutral expression “grammar” that 2060
can specify the functions at a granular level such that a program can “read” the 2061
metadata and compose the function required in whatever computer language is 2062
appropriate. 2063
 2064
It should be noted that the model represented above is similar in scope and content 2065
to the Expression metamodel in the Common Warehouse Metamodel (CWM) 2066
developed by the Object Management Group (OMG). This specification can be found 2067
at: 2068
 2069
http://www.omg.org/cwm 2070
 2071
The Expression metamodel is described in Section 8.5 of Part 1 of the CWM 2072
specification. The class diagram shown below is an interpretation of the CWM 2073
Expression metamodel expressed in the base classes of the SDMX-IM. 2074
 2075

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

126

12.2 Model - Inheritance View 2076

12.2.1 Class Diagram 2077

1

1..*

ItemScheme
(from SDMX-Base)

Type
type : String

Item
(from SDMX-Base)

ExpressionNode

Transformation
Scheme

OperatorScheme

OperandOperator

TypeScheme

1

1..*

items

0..* 1+child0..*

hierarchy

+parent1

 2078
Figure 43: Inheritance class diagram of transformation classes 2079

12.2.2 Explanation of the Diagram 2080

12.2.2.1 Narrative 2081
There are three type of ItemScheme relevant to this model. 2082
 2083

1. A TransformationScheme which comprises one or more 2084
ExpressionNodes. 2085

2. An OperatorScheme which comprises one or more Operators whose 2086
Operands are child Items of the Operator. 2087

3. A Type scheme which contains, as Types, the expected representation of the 2088
result of the expression. 2089

 2090

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

127

12.3 Model - Relationship View 2091

12.3.1 Class Diagram 2092

IdentifiableArtefact
(from SDMX-Base)

ReferenceNode ConstantNode
value : String

references

Transformation
Scheme

ExpressionNode

0..*

+argument

0..*

/hierarchy

+parent

1..*

1

1..*

1

/items

OperatorScheme

Operand

Operator
0..1

+operator

0..1

0..*0..*

/hierarchy

1..*

1

1..*

1

/items

TypeSchemeType
type : String

1

0..*

1

0..*

expressionType

1..* 111..*

 2093
Figure 44: Relationship class diagram of expressions 2094

12.3.2 Explanation of the Diagram 2095

12.3.2.1 Narrative 2096
The model presented here is a basic framework which can be used for expressions 2097
and transformations, but requires more work on elaborating its integration into the 2098
model and its actual use within the model. This elaboration will be in a future release 2099
of the standard, and may require harmonisation on contents of the 2100
OperatorScheme and TypeScheme. 2101
 2102
The expression concept in the SDMX-IM takes a functional view of expression trees, 2103
resulting in the ability of relatively few expression types to represent a broad range of 2104
expressions. Every function or traditional mathematical operator and operand that 2105
appears in an expression hierarchy is represented by the +operator role on the 2106
association to Operator (which has as child items the Operands). For example, the 2107
arithmetic plus operation “a + b” can be thought of as the function “sum(a, b).” The 2108
“sum” is the Operator, and a and b are the Operands. The actual semantics of a 2109
particular function or operation are left to specific tool implementations and are not 2110
captured by the SDMX-IM. 2111
 2112
The hierarchical nature of the SDMX-IM representation of expressions is achieved by 2113
the recursive nature of the ExpressionNode association. This association allows 2114

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

128

the sub-hierarchies within an expression to be treated as actual parameters of their 2115
parent nodes. 2116
 2117
The model can be used equally to define data derivations and to define integrity 2118
checks (e.g. the Sum of A+B must equal C). 2119
 2120
The expected format of the result of the expression (i.e. representation) is supported 2121
by the association to a Type defined in a scheme of types. 2122
 2123
Although the model defines the data structures that are used to contain a syntax 2124
neutral expression, the model itself does not specify a syntax neutral expression 2125
grammar. Alternatively, the function can be described in a text form either as an 2126
unstructured explanation of the function, or as a more formal language like BNF2. A 2127
textual definition or description is supported because the ExpressionNode is a 2128
VersionableArtefact (as it inherits from Item), and thus can have multilingual 2129
descriptions. 2130
 2131
The data structures work as follows: 2132
 2133
The actual mathematical functions that need to be performed (e.g. sum, multiply, 2134
divide, assign (=, <, >) etc.) and their formal parameters are defined in an 2135
OperatorScheme which comprises one or more Operators each of which is a 2136
mathematical operator whose Operands are child Items of the Operator and 2137
which, together with the Operator define the contents of an expression. 2138
 2139
The expressions are defined in a hierarchic TransformationScheme comprising 2140
ExpressionNodes. 2141
 2142
The ExpressionNode references an Operator in the OperatorScheme. The 2143
number of child Operands that the Operator has defines the number and ordering 2144
of formal parameters that the Operator takes. When an ExpressionNode refers to 2145
an Operator, it must define child ExpressionNodes corresponding to each of the 2146
formal parameters of the Operands in the correct sequence. The formal parameters 2147
and corresponding arguments may be aggregate constructs such as a multi-2148
dimensional key definition which will have the implied semantic of a 2149
KeyDescriptor (of KeyFamily). 2150
 2151
The (child) ExpressionNode can have further ExpressionNodes defined 2152
(recursive), each of which can be a Constant or can be a reference to an 2153
IdentifiableArtefact (ReferenceNode), or another ExpressionNode. All 2154
IdentifiableArtefacts in the SDMX-IM have a unique urn comprising the 2155
values of the individual objects that identify it. The structure of this urn is defined in 2156
the Registry Specification. An example would be the urn of a code which comprises 2157
the agency:code-list-id.code-id – an actual example is 2158
"urn:sdmx:org.sdmx.infomodel.codelist.Code=TFFS:CL_AREA.1A"). 2159
 2160

2 BNF: Backus Naur Form

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

129

Note that it is possible using the ReferenceNode to identify a complete key of a 2161
measure value (by referencing a specific KeySet specified in a Constraint (see 2162
later)). 2163
 2164
By way of example, the following instance diagram shows one representation of an 2165
SDMX-IM expression tree for the well-known Einstein equation E = mc2. To better 2166
understand how the equation is mapped into the expression tree, the formula can be 2167
rewritten in a functional notation as: 2168
 2169
Assign(E, Multiply(m, Power(c, 2))) 2170
 2171
This functional form of the equation is then mapped into a set of ExpressionNode 2172
instances as shown in the following figure. 2173
 2174

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

130

 : ExpressionNode Assign :
Operator

leftSide :
Operand

rightSide :
Operand

E : ExpressionNode

m : ExpressionNode

 : ExpressionNode Multiply :
Operator

multiplicand :
Operand

multiplier :
Operand

 : ExpressionNode Power :
Operator

base :
Operand

exponent :
Operand

c : ExpressionNode

 : ConstantNode value = 2

operator

operator

operator

 2175
Figure 45: Collaboration diagram showing the expression E=mc2 2176

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

131

12.3.2.2 Definitions 2177
Class Feature Description

Transformation
Scheme

Inherits from
ItemScheme

A scheme which defines
or documents the
transformations required
in order to derive or
validate data from other
data.

OperatorScheme Inherits from
ItemScheme

A scheme which defines
mathematical operators
and operands.

ExpressionNode Inherits from
Item

A node in a hierarchy of
nodes that together define
or document an
expression.

 expressionType Association to a Type
which identifies the
expected format of the
result of the expression.

 +operator Association to an
Operator and its child
Operands that define the
mathematical operator of
the Expression Node.

 +arguments The mathematical
arguments of an
Expression Node.

Constant Inherits from
ExpressionNode

A specific type of
Expression Node that
contains a constant value.

ReferenceNode Inherits from
ExpressionNode

A specific type of
Expression Node that
references a specific
object.

 references Association to the
Identifiable Artefact that is
the referenced object.

Operator The mathematical
operator in an Operator
Scheme.

 /hierarchy Association to the
Operands of the Operator.

Operand The mathematical
operand in an Operator
Scheme.

 2178

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

132

13 APPENDIX 1: A SHORT GUIDE TO UML IN THE 2179

SDMX INFORMATION MODEL 2180

13.1 Scope 2181
The scope of this document is to give a brief overview of the diagram notation used 2182
in UML. The examples used in this document have been taken from the SDMX UML 2183
model. 2184

13.2 Use Cases 2185
In order to develop the data models it is necessary to understand the functions that 2186
require to be supported. These are defined in a use case model. The use case model 2187
comprises actors and use cases and these are defined below. 2188
 2189
The actor can be defined as follows: 2190

“An actor defines a coherent set of roles that users of the system can play 2191
when interacting with it. An actor instance can be played by either an 2192
individual or an external system” 2193

 2194
The actor is depicted as a stick man as shown below. 2195
 2196

Data Publisher

Figure 46 Actor

 2197
The use case can be defined as follows: 2198

“A use case defines a set of use-case instances, where each instance is a 2199
sequence of actions a system performs that yields an observable result of 2200
value to a particular actor” 2201

 2202

Publish Data

Figure 47 Use case

 2203

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

133

Data Publisher
Publish Data

Figure 48 Actor and use case

 2204

Data Consumer

Metadata Consumer
Uses Metadata

Uses Data

<<extend>>

Figure 49 Extend use cases

An extend use case is where a use case may be optionally extended by a use case 2205
that is independent of the using use case. The arrow in the association points to he 2206
owning use case of the extension. In the example above the Uses Data use case is 2207
optionally extended by the Uses Metadata use case. 2208

13.3 Classes and Attributes 2209

13.3.1 General 2210
A class is something of interest to the user. The equivalent name in an entity-2211
relationship model (E-R model) is the entity and the attribute. In fact, if the UML is 2212
used purely as a means of modelling data, then there is little difference between a 2213
class and an entity. 2214
 2215

Annotation
(from SDMX-Base)

name : String
type : String
url : String

Figure 50 Class and its attributes

 2216
Figure 50 shows that a class is represented by a rectangle split into three 2217
compartments. The top compartment is for the class name, the second is for 2218
attributes and the last is for operations. Only the first compartment is mandatory. The 2219

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

134

name of the class is Annotation, and it belongs to the package SDMX-Base. It is 2220
common to group related artefacts (classes, use-cases, etc.) together in packages. . 2221
Annotation has three “String” attributes – name, type, and url. The full identity 2222
of the attribute includes its class e.g. the name attribute is Annotation.name. 2223
 2224
Note that by convention the class names use UpperCamelCase – the words are 2225
concatenated and the first letter of each word is capitalized. An attribute uses 2226
lowerCamelCase - the first letter of the first (or only) word is not capitalized, the 2227
remaining words have capitalized first letters. 2228

13.3.2 Abstract Class 2229
An abstract class is drawn because it is a useful way of grouping classes, and avoids 2230
drawing a complex diagram with lots of association lines, but where it is not foreseen 2231
that the class serves any other purpose (i.e. it is always implemented as one of its 2232
sub classes). In the diagram in this document an abstract class is depicted with its 2233
name in italics, and coloured white. 2234
 2235

AbstractClass ConcreteClass

Figure 51 Abstract and concrete classes

 2236

13.4 Associations 2237

13.4.1 General 2238
In an E-R model these are known as relationships. A UML model can give more 2239
meaning to the associations than can be given in an E-R relationship. Furthermore, 2240
the UML notation is fixed (i.e. there is no variation in the way associations are 2241
drawn). In an E-R diagram, there are many diagramming techniques, and it is the 2242
relationship in an E-R diagram that has many forms, depending on the particular E-R 2243
notation used. 2244
 2245

13.4.2 Simple Association 2246

Concept
(f rom Concept-Scheme)

Dimension

1 0..*

Figure 52 A simple association

 2247
Here the Dimension class has an association with the Concept class. The diagram 2248
shows that a Dimension can have an association with only one Concept (1) and 2249
that a Concept can be linked to many Dimensions (0..*). The association is 2250
sometimes named to give more semantics. 2251
 2252
In UML it is possible to specify a variety of “multiplicity” rules. The most common 2253
ones are: 2254

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

135

• Zero or one (0..1) 2255

• Zero or many (0..*) 2256

 2257
• One or many (1..*) 2258

 2259
• Many (*) 2260

 2261
• Unspecified (blank) 2262

 2263

13.4.3 Aggregation 2264
Simple Aggregation 2265
 2266

Item

ItemScheme

1

1..*

1

1..*

items

Figure 53 A simple aggregate association

 2267
An association with an aggregation relationship indicates that one class is a 2268
subordinate class (or a part) of another class. In an aggregation relationship, the 2269
child class instance can outlive its parent class. To represent an aggregation 2270
relationship, draw a solid line from the parent class to the subordinate class, and 2271
draw an unfilled diamond shape on the parent class's association end. Figure 53 2272
shows an example of an aggregation relationship between an ItemScheme and an 2273
Item. 2274
 2275
Composition aggregation 2276
The composition aggregation relationship is just another form of the aggregation 2277
relationship, but the child class's instance lifecycle is dependent on the parent class's 2278
instance lifecycle. In Figure 54, which shows a composition relationship between a 2279
ComponentStructure class and a ComponentList class, notice that the 2280
composition relationship is drawn like the aggregation relationship, but this time the 2281
diamond shape is filled. 2282
 2283

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

136

ComponentList

ComponentStructure

1..*

1

1..*

1

grouping

Figure 54 An aggregate association by composition

 2284

13.4.4 Association Names and Association-end (role) Names 2285
It can be useful to name associations as this gives some more semantic meaning to 2286
the model i.e. the purpose of the association. It is possible for two classes to be 2287
joined by two (or more) associations, and in this case it is extremely useful to name 2288
the purpose of the association. Figure 55 shows a simple aggregation between 2289
CategoryScheme and Category called /items (this means it is derived from the 2290
association between the super classes – in this case between the ItemScheme and 2291
the Item, and another between Category called /hierarchy. 2292
 2293

/items

CategoryScheme

Category
1..*1..*

1
0..*

+parent
1

+child

0..*

/hierarchy

Figure 55 Association names and end names

 2294
Furthermore, it is possible to give role names to the association-ends to give more 2295
semantic meaning – such as parent and child in a tree structure association. The role 2296
is shown with “+” preceding the role name (e.g. in the diagram above the semantic of 2297

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

137

the association is that a Category can have zero or one parent Category and zero 2298
or many child Category). 2299

13.4.5 Navigability 2300
Associations are navigable in both directions. For a data model it is not necessary to 2301
give any more semantic than this. However, if there is an intent to implement the 2302
model in a database or message structure, it can be useful to identify when the 2303
association is not navigable (i.e. there is no intention or necessity to implement a 2304
navigation in a particular direction). 2305
 2306

A B

Figure 56 One way association

 2307
Here it is possible to navigate from A to B, but there is no need (e.g. no functional 2308
need) to navigate from B to A using this association. 2309
 2310

13.4.6 Inheritance 2311
Sometimes it is useful to group common attributes and associations together in a 2312
super class. This is useful if many classes share the same associations with other 2313
classes, and have many (but not necessarily all) attributes in common. Inheritance is 2314
shown as a triangle at the super class. 2315
 2316

IdentifiableArtefact
id : String
name : String
uri : String
uuid : String

Organisation

Figure 57 Inheritance

 2317
Here the Organisation is derived from IdentifiableArtefact, which is an 2318
abstract superclass. This class inherits the attributes and associations of the super 2319
class. Such a super class can be a concrete class (i.e. it actually exists), or an 2320
abstract class. 2321

13.4.7 Derived association 2322
It is often useful in a relationship diagram to show associations between sub classes 2323
that are derived from the associations of the super classes from which the sub 2324
classes inherit. A derived association is shown by “/” preceding the association name 2325
e.g. /name. 2326
 2327

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

138

Component

ComponentStructure KeyFamily

Measure

MeasureDesciptor

1

1

1

1

/grouping

1

1..*

1

1..*

/components

ComponentList

1..*

1

1..*

1

grouping

1

1..*

1

1..*

components

UncodedComponent

uncoded

Figure 58 Derived associations

 2328
Note that the multiplicity at the association ends can be made more restrictive in the 2329
derived association. In the example above the grouping association is 1..* whereas 2330
the /grouping association is 1. 2331

13.5 Collaboration Diagram 2332
A collaboration diagram shows an example of an instance of the classes (an instance 2333
of a class is called an object). An instance of a class is class with a unique name. 2334
 2335

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

139

IMF :
Organisation

 : MaintenanceAgency

BOP_CF :
ConceptFamily

SDDS :
MetadataConceptScheme

Figure 59 Collaboration diagram

 2336
Here there is an object of the Organisation class called IMF. In its role as 2337
MaintenanceAgency the IMF maintains a MetadataConceptScheme called 2338
SDDS and ConceptFamily called BOP_CF. 2339
 2340
Sometimes it is not useful to give a name to an object. Here the object is still an 2341
instance of the class (e.g. MaintenanceAgency) but there is no name – so it means 2342
“any” or “it does not matter which name”. 2343
 2344
Objects are joined together using an object link. 2345

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

140

14 APPENDIX II: KEY FAMILIES – A TUTORIAL 2346

14.1 Introduction 2347
This document is intended to explain "key families" to those who are completely 2348
unfamiliar with the concept. Key families are an important part of the SDMX family of 2349
standards for exchanging statistical data, and they are modelled and explained in 2350
much greater detail in other documents. However, those documents are not written to 2351
explain the basics, and will make difficult reading for those new to the idea. This 2352
document provides a basic tutorial, to help provide the basic level of understanding 2353
needed to make sense of the SDMX standards. 2354

14.2 What is a Key Family? 2355
In order to answer this question, we need to look at statistical data. Statistical data is 2356
represented with numbers, such as: 2357
 2358
17369 2359
 2360
If you are presented with a number - as above - you will have no idea of what it 2361
actually represents. You know that it is a piece of statistical data, and therefore is a 2362
measurement of some phenomenon - also known as an "observation" - but you can't 2363
tell from the number alone what it is a measurement of. A number of questions come 2364
immediately to mind: 2365
 2366
- What is the subject of the measurement? 2367
- What units does it measure in? 2368
- What country or geographical region, if any, does it apply to? 2369
- When was the measurement made? 2370
 2371
The list of questions is potentially endless. Behind each of these questions is a 2372
particular idea, or "concept", which is used to describe the data. In our questions 2373
above, these descriptor concepts are Subject, Unit of measure, Country, and Time. If 2374
I tell you the answers to these questions, the data will begin to make sense: 2375
 2376
- the Subject is "total population" 2377
- the Unit of measure is "thousands of people" 2378
- the Country is "Country ABC" 2379
- the Time is "1 January 2001" 2380
 2381
This is a simplified and fictional example, but it does demonstrate how we can begin 2382
to make sense of statistical data with a set of descriptor concepts. We now know that 2383
our number represents the fact that the total population of Country ABC on 1 2384
January, 2001, was 17,369,000. 2385
 2386
The simplest explanation of a key family is that it is a set of descriptor concepts, 2387
associated with a set of data, which allow us to understand what that data means. 2388
There is more to it, however. 2389
 2390

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

141

14.3 Grouping Data 2391
Numbers are often grouped together in various ways, to serve as useful packages of 2392
information. One very common approach is to have a set of observations - known as 2393
a "series", or a "time series" - made over time. This allows us to see trends in the 2394
phenomenon being measured. Thus, if I measure the total population in Country ABC 2395
on 1 January of every year, I can see whether the population is growing or declining. 2396
A time series always has a "frequency". This is a descriptor concept which describes 2397
the intervals of time between observations. Usually, this is a regular interval, so that 2398
the frequency can be expressed as "annual" or "monthly" or "weekly". Sometimes, 2399
the intervals are irregular. Notice that a single observation does not have a frequency 2400
- only series of observations have frequencies. Frequency is an example of a 2401
descriptor concept which only applies to series of data. 2402
 2403
There are other, higher-level groupings of data as well. A number of series are often 2404
grouped together into a "Group". Traditionally, the Group was known as a "Sibling 2405
Group", and it contained a set of Series which were identical except that they were 2406
measured with different frequencies. Thus, a given phenomenon would be measured 2407
as daily, monthly, and annually, and these Series, taken together, would be a "Sibling 2408
Group". 2409
 2410
It is possible to have Groups which have variable values for descriptor concepts 2411
other than frequency, however: if I want to express the US daily exchange rate for all 2412
of the world's currencies over the past year, I have a different kind of group. All of the 2413
"frequency" descriptors would be the same - "daily" - but the descriptor concept 2414
which gives the "foreign currency" would be different for each series. 2415
 2416
There is also a higher level of package known as a "Data Set". This represents a set 2417
of data that may be made up of several Groups. Typically, it is maintained and 2418
published by an agency, so that it becomes a known source of statistical data. 2419
 2420
A basic structure is emerging: We have Observations, grouped into Series, which are 2421
grouped into Groups, which are grouped into Data Sets. 2422
 2423
Note: It should be mentioned that there is another way of packaging Observations, 2424
which we call "cross-sectional" data. In cross-sectional data, a large number of 2425
related Observations are presented for a single point or period in time. This 2426
organization of data is very similar to Time Series data in the way a set of descriptor 2427
concepts can be associated with it. A Key Family can be used to describe both cross-2428
sectional and time series data. For the purposes of this part of the tutorial, however, 2429
we will focus on time series data. Once we have described the Key Family for time 2430
series data, we will go back and see how cross-sectional data are structured. 2431
 2432
 2433
What is a key family? (Answer #1) 2434
A key family is a way of associating a set of descriptor concepts with a specific set of 2435
statistical data, as well as a technique for packaging or structuring that set of data 2436
into groups and sub-groups. This is only one way of understanding the structure and 2437
meaning of statistical data, but it provides us with a solid, generic model. 2438
 2439
 2440

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

142

14.4 Attachment Levels 2441
Some descriptor concepts are not meaningful at the Observation level, but only at a 2442
higher level. The example we saw earlier was frequency, which means nothing for a 2443
single Observation, but has meaning when applied to a Series of Observations. This 2444
is because it represents the interval of time between Observations. Time, on the 2445
other hand, is meaningful at the Observation level - every Observation is associated 2446
with a specific point or period in Time. Key families provide information about the 2447
level at which a particular descriptor concept is attached: at the Observation level, 2448
the Series level, the Group level, or the Data Set level. This is known as the 2449
"attachment level" of the descriptor concept. 2450
 2451
If we think about Groups, particularly, we can see how this works. Within a group, 2452
some descriptor concepts have values that are the same for all Series within the 2453
Group, while other descriptor concepts are changeable. For the Group described 2454
above, of all US exchange rates measured daily for all of the world's currencies, the 2455
descriptor concepts of Subject ("US exchange rate") and Frequency ("daily") will be 2456
the same for all members of the Group. The descriptor concept "Foreign Currency", 2457
however, will change for each Series within the group: there will be a Series for 2458
"Swiss Francs," a Series for the "Euro," a Series for "New Zealand dollars," etc. 2459
 2460
The rule is that descriptor concepts are “attached” to the grouping level where they 2461
become variable. Thus, if, within a single set of data, all the contents of a Series 2462
share a single value for a descriptor concept, then that descriptor concept should be 2463
attached at the Series level. This rule also assumes that the chosen level is the 2464
highest structural level where all sub-groups will share the same value. (While it is 2465
true that all Series in a Group where the country is “Switzerland” share a single 2466
value, if every Group in the Data Set would always also have the value “Switzerland” 2467
for country, then the attachment level should be the Data Set, not the Group.) 2468
 2469
Attachment levels of descriptor concepts are always at least at the level where the 2470
concept is meaningful: thus, you cannot attach the descriptor concept frequency at 2471
the Observation level, because as a concept it only operates at the level of Series 2472
(that is, with multiple Observations made over time). 2473

14.5 Keys 2474
A "key family" is so called because of the term "key". "Key" refers to the values for 2475
the descriptor concepts which describe and identify a particular set of data. Let's take 2476
a simple example: 2477
 2478
I have a set of statistical data which uses the following descriptor concepts: 2479
- Time 2480
- Frequency 2481
- Topic 2482
- Country 2483
Time is always attached at the Observation level - the value for Time is the time at 2484
which the Observation was made. Time - because it is a concept connected to all 2485
statistical data - does not form part of the key. The other descriptor concepts - 2486
frequency, topic, and country - are all attached at the series level. For any given 2487
Series of Observations, they will all have a single value. 2488
 2489

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

143

If we have a Series of data which is the monthly measurement of the total population 2490
of Country ABC, we will have a key made up of the following values for each 2491
descriptor concept: 2492
 2493
Frequency = "monthly" 2494
Topic = "total population" 2495
Country = "Country ABC" 2496
 2497
This set of values - "Monthly - total population - Country ABC" is the "key" for this 2498
data Series: it identifies what the data is. 2499
 2500
Keys are most often associated with data at the Series level, but they also exist at 2501
other levels. For example, we could enlarge our example to be a Group including the 2502
monthly total population data for all of the countries in the world. At the Group level, 2503
Frequency would have a value of "monthly", and Topic would have a value of "total 2504
population", but we would not specify the Country descriptor concept, because it 2505
would change from Series to Series. The key for the Group is known as a "Group 2506
Key" - it identifies what the Group is, rather than identifying the Series. (In order to 2507
completely understand the Group, of course, we also need to know which descriptor 2508
concepts are changeable - in this case, Country.) 2509
 2510
The key values are attached at the Series level, and are given in a fixed sequence. 2511
Frequency is the first descriptor concept, and the other concepts are assigned an 2512
order for that particular data set. This makes it much easier to share and understand 2513
statistical data. 2514
 2515
If you look back to our initial use of this example, you will notice that we have not 2516
been discussing the "Unit of measure" descriptor concept. This is because the "key" 2517
only contains values for those descriptor concepts which identify the data. If we have 2518
the measurements made in thousands or in millions, the data are the same - they 2519
can be derived from one another by simply multiplying the numbers in the data by the 2520
appropriate conversion factor. 2521
 2522
This points out a major distinction between the two types of descriptor concepts: the 2523
ones which both identify and describe the data are called "dimensions", and those 2524
which are purely descriptive are called "attributes". Only "dimensions" - that is, the 2525
descriptor concepts which also identify the data - are used in the "key", because the 2526
"key" is fundamentally a way of identifying a set of data. 2527

14.6 Code Lists and Other Representations 2528
In order to be able to exchange and understand data, a key family tells us what the 2529
possible values for each dimension are. This list of possible values is known as a 2530
"code list." Each value on that list is given a language-independent abbreviation - a 2531
"code" - and a language-specific description. This helps us avoid problems of 2532
translation in describing our data: the code can be translated into descriptions in any 2533
language without having to change the code associated with the data itself. 2534
Wherever possible, the values for code lists are taken from international standards, 2535
such as those provided by ISO for countries and currencies. 2536
 2537
As stated, dimensions are always represented with codes. Attributes are sometimes 2538
represented with codes, but sometimes represented by numeric or free-text values. 2539

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

144

This is allowed because the attributes do not serve an identification function, but 2540
merely describe the data. 2541
 2542
 2543
What is a key family? (Answer #2) 2544
We now have a more sophisticated understanding of a what a key family does: it 2545
specifies a set of concepts which describe and identify a set of data. It tells us which 2546
concepts are dimensions (identification and description), and which are attributes 2547
(just description), and it gives us an attachment level for each of these concepts, 2548
based on the packaging structure (Data Set, Group, Series, Observation). It also tells 2549
us which code lists provide possible values for the dimensions, and gives us the 2550
possible values for the attributes, either as code lists or as numeric or free text fields. 2551
 2552

14.7 Cross-Sectional Data Structures 2553
Given the explanation of Key Families thus far, we understand that a Key Family 2554
associates descriptor concepts with data, some of which also serve to identify the 2555
data – the “dimension” concepts which make up the Key. 2556
 2557
Cross-sectional data structures do not apply a different set of concepts to the data: 2558
the same concepts still apply in describing and identifying the data. It attaches the 2559
concepts to the data differently, to create a different presentation of the data. 2560
 2561
If we go back to our earlier example, we had the following concepts: 2562
- Time 2563
- Frequency 2564
- Topic 2565
- Country 2566
 2567
If we want to take a set of data which is described and identified by this set of 2568
concepts, and present it in a cross-sectional fashion, we would not change these 2569
concepts – we would merely change the way in which they are represented – that is, 2570
attached – to the data structure. 2571
 2572
Take, as an example, the total population of each country in the world on January 1, 2573
2001 as a set of data. In our earlier example, we measured the population of Country 2574
ABC over a period of years – that is, over time. Time was the concept we used to 2575
organize our data in a sequence of observations. 2576
 2577
If we organize our data to reflect only a single point in time – in this case, January 1, 2578
2001 – then organizing our data over time makes less sense. It is still a possible way 2579
to structure the data, but we may wish to view it as a cross-section. 2580
 2581
Think about the term “cross-section” – it can be understood to mean a group of 2582
parallel series over time, from which a section is taken, across time. Thus, a cross-2583
section is created. 2584
 2585
In our example, it is easy to see how this applies: instead of organizing our data over 2586
time – that is, using the time concept - we are choosing to organize it over the 2587
Country concept. Thus, instead of having a single value for Frequency, Topic, and 2588
Country for all Observations in our series, with a Time value associated with each 2589
Observation, we will have a Country value associated with each Observation, and a 2590

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

145

single value for Frequency, Topic, and Time. Instead of calling the group of 2591
Observations a “Series”, we now use the term “Section”. 2592
 2593
In our earlier example, we had a key which existed mostly at the Series level: 2594
Frequency = "monthly" 2595
Topic = "total population" 2596
Country = "Country ABC" 2597
 2598
Time – our remaining concept, was associated with the Observations, with a different 2599
value for each one. Thus, we could have a Series which looks like this: 2600
January 1, 2001 – 17369 2601
February 1, 2001 – 17370 2602
March 1, 2001 – 17405 2603
 2604
For our cross-sectional presentation, we would have most of our key at the Section 2605
level (or, potentially, at a higher level of grouping): 2606
Frequency = "monthly" 2607
Topic = "total population" 2608
Time = "January 1, 2001" 2609
 2610
With each Observation, we now have a Country value, instead of a Time value: 2611
Country ABC = “17369” 2612
Country XYZ = “24982” 2613
Country HIJ = “37260” 2614
 2615
In this cross-sectional presentation of our data set, we have chosen to present each 2616
Observation paired with a Country value, taken from our Codelist of values for the 2617
concept Country. Other dimensions could as easily produce a cross-sectional view, 2618
by attaching their values at The Observation level, instead of the values for Country, 2619
as in our example. 2620
 2621
Because the concepts themselves do not change, but only the way in which they are 2622
attached to the data structure, a single key family can be used to describe both time-2623
series and cross-sectional presentations. 2624
 2625
In the version 1.0 SDMX standards, formats are capable of presenting cross-2626
sectional data for any single dimension concept, as well as presenting the data as a 2627
time series. It is up to the key family creator to select which non-Time concept, used 2628
as a dimension, will serve to organize a cross-sectional presentation. In future 2629
versions, it is possible that more complete support for the possible cross-sectional 2630
views for a key family will be provided. 2631

