
 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

SDMX
GUIDELINES

FOR THE
USE OF WEB SERVICES

(VERSION 2.0)

November 2005

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
© SDMX 2005 43
http://www.sdmx.org/ 44
 45
 46
 47
 48
 49
 50
 51
 52

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

3

1 INTRODUCTION .. 4 53

2 WEB SERVICES AND SDMX-ML.. 4 54

3 EXCHANGE PATTERNS FOR SDMX WEB SERVICES... 6 55

3.1 Data- and Metadata-Oriented Web Service Functions... 6 56

3.2 Registry-Oriented Web Service Functions ... 8 57

4 COMPLIANCE WITH WS-I... 9 58

5 LARGE DATA AND METADATA SETS AND QUERYING .. 9 59

 60

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

4

1 INTRODUCTION 61

Web services represent the coming generation of Internet technologies. They allow 62
computer applications to exchange data directly over the Internet, essentially 63
allowing modular or distributed computing in a more flexible fashion than ever before. 64
In order to allow web services to function, however, many standards are required: for 65
requesting and supplying data; for expressing the enveloping data which is used to 66
package exchanged data; for describing web services to one another, to allow for 67
easy integration into applications that use other web services as data resources. 68
 69
SDMX, with its focus on the exchange of data using Internet technologies, will 70
provide some of these standards as regards statistical data and metadata. Many 71
web-services standards already exist, however, and there is no need to re-invent 72
them for use specifically within the statistical community. Specifically, SOAP (which 73
originally stood for the “Simple Object Access Protocol”) and the Web Services 74
Description Language (WSDL) can be used by SDMX to complement the data and 75
metadata exchange formats they are standardizing. 76
 77
Despite the promise of SOAP and WSDL, it has been discovered that various 78
implementations by vendors were not, in fact, interoperable. It was for this reason 79
that the Web Services - Interoperability (WS-I) initiative was started. This consists of 80
a group of vendors who have all implemented the same web-services standards the 81
same way, and have verified this fact by doing interoperability tests. They publish 82
profiles describing how to use web services standards interoperably. SDMX uses the 83
work of WS-I as appropriate to meet the needs of the statistical community. 84
 85
This document is not normative – it intends to suggest a best practice in using 86
SDMX-ML documents and web services standards for the exchange of statistical 87
data and metadata. In future, it is anticipated that normative standards for the use of 88
web-services technologies may be offered by the SDMX Initiative, based on the 89
guidelines provided here. 90
 91

2 WEB SERVICES AND SDMX-ML 92
Conventional applications and services traditionally expose their functionality through 93
application programming interfaces (APIs). Web services are no different – they 94
provide a public version of the function calls which can be accessed over the web 95
using web-services protocols. In order to make a set of web services interoperate, it 96
is necessary to have a standard abstraction, or model, on which these public 97
functions are based. SDMX benefits from having a common information model, and 98
it is a natural extension to use the SDMX Information Model as the basis for standard 99
web-services function calls. 100
 101
Web services exchange data in an XML format: this is how the data passed between 102
web services is formatted. SDMX-ML, as a standard XML for exchanging data and 103
structural metadata within the statistical realm, provides a useful XML format for the 104
public serialization of web-services data. While there are some techniques for simple 105
web-services data exchanges – remote procedure calls (RPCs) – which are often 106
used, the use of a set of XML exchanges based on a common information model is 107
seen as a better approach for achieving interoperability. 108
 109

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

5

 There are several different document types available within SDMX-ML, and all are 110
potentially important to the creators and users of SDMX web services. 111
 112
1. The "Envelope" Message: This is for use in non-web-services applications, as it 113

is partially redundant with SOAP. All SDMX messages can be used without this 114
wrapper. 115

2. The "Structure" Message: This message describes the concepts, key families, 116
and codelists which define the structure of statistical data. Every SDMX-compliant 117
data set must have a key family structure described for it. This XML description 118
must be available from an SDMX web service when it is asked for. It also 119
contains structural metadata used for the exchange of Reference Metadata. 120

3. The "Generic" Data Message: This is the "generic" way of marking up SDMX 121
data. This schema describes a non-key-family-specific format for exchanging 122
SDMX data, and it is a requirement that every SDMX web service make its data 123
available in at least this form. (Often, the other key-family-specific XML forms for 124
expressing data will also be supported in parallel services). 125

4. The "Compact" Data Message: This is a standard schema format derived from 126
the structure description using a standardized mapping, and many standard tags. 127
It is specific to the structure of a particular key family, and so every key family will 128
have its own "Compact" schema. It is designed to enable the transfer of large 129
data sets, and to permit incremental updates. This is a data format that a web 130
service may wish to provide, depending on the requirements of the data they 131
exchange. 132

5. The "Utility" Data Message: This is probably of less interest to those providing 133
SDMX web services, but may be useful in some domains. Like the "Compact" 134
data message, it is specific to the key-family of the data it is used to mark up. It is 135
derived according to standard mappings from the key-family description. It is 136
designed to provide a typical XML schema for a particular type of statistical data, 137
as used by many common XML editing and presentation tools. Unlike the 138
Compact Message, this data is quite verbose, and requires a complete data set. 139
Consequently, it cannot be used for incremental updates. 140

6. The "Cross-Sectional Data" Message: This message allows for more than a 141
single observation to be supplied with a given observation time value, and further 142
allows some values of the key to be specified at the observation level (instead of 143
at the series level or above, like time-series-related SDMX data formats). This is 144
particularly useful for some statistical data sets. Like the Compact message and 145
the Utility message, it is derived from the structure description according to 146
standard mappings. 147

7. The "Query" Message: This is the message used to invoke an SDMX web 148
service. It is generic across all key families and reference metadata structural 149
defintions, but makes its queries in terms of the values specified for the concepts 150
of a specific structure (as specified in a structure description). It allows users to 151
query for data, concepts, codelists, key families, and metadata structure 152
definitions - these functions should thus all be supported by an SDMX web 153
service (depending on whether support is provided for data queries and/or 154
metadata queries.) 155

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

6

8. The “RegistryInterfaces” Message: All of the Registry Interfaces are sub-156
elements of this SDMX-ML Message type. They are more fully described in the 157
SDMX Registry Specification. 158

9. The “Reference Metadata” Message: This is a message used to report 159
reference metadata concepts, which is generic across all types of reference 160
metadata structural descriptions. 161

10. The “MetadataReport” Message: This is a message used to report reference 162
metadata concepts specific to a particular metadata structure definition. 163

Note that for each data message, a global element is available for use with SOAP 164
envelopes. SDMX web services should not use the <wsdl:types> element, but 165
instead use the <wsdl:import> element to specify the schemas concerned. 166
 167
Note that all SDMX web services are required to support the exchanges which 168
enable querying on key families, codelists, and concepts, and it is recommended that 169
they support at minimum the Generic Data format. This guarantees that at least one 170
data format will exist in common between the data publisher and any user of the web 171
service. In many cases, the more optimized data formats will be more commonly 172
used and requested, as they are optimized for use with the processes commonly 173
associated with that data. Guaranteeing a single, common data format is, however, 174
the basis on which widespread interoperability can be built for future uses of the data. 175
 176

3 EXCHANGE PATTERNS FOR SDMX WEB 177

SERVICES 178
All SDMX web services should be described using WSDL instances, according to the 179
use of WSDL to specify the aspects of this multiple-message exchange which they 180
support. The global element for each XML data and metadata format within SDMX 181
should be specified as the content of the replies to each exchange. The function 182
names for each identified pattern are specified below, along with the type of SDMX-183
ML payload. 184
 185
Because SOAP RPC is not supported, the “parameters” of each function are simply 186
an instance of the appropriate SDMX-ML message type. As noted above, 187
<wsdl:import> should be used to specify the schema for a multiple-message 188
exchange. 189
 190

3.1 Data- and Metadata-Oriented Web Service Functions 191
Because SDMX offers a number of data formats (although it only requires one), and 192
because it concerns itself both with data and with the structural metadata often 193
needed to understand and process that data, the SDMX web service is composed of 194
a set of data exchanges. Thus, the SDMX web service implements a "multiple-195
message exchange pattern" (in WSDL terminology). These exchanges are 196
enumerated below, along with an indication of whether the SDMX web service is 197
required to support them: 198

 199

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

7

1. Obtain Key Family: This is an exchange invoked by the Query Message, for 200
which the return message is a key family description or descriptions, expressed 201
as a Structure Message. Support is recommended if data queries are supported. 202
The function should be called “GetKeyFamily(Query)” with an input Query 203
Message and a response Structure Message carrying a valid instance of the 204
KeyFamilies element. 205

2. Obtain Codelists: This is an exchange invoked by the Query Message, for which 206
the return is a codelist or codelists, expressed as a Structure Message. Support 207
is recommended. The function should be called “GetCodelists(Query)” with an 208
input Query Message and a response Structure Messag carrying a valid instance 209
of the Codelists element. 210

3. Obtain Concepts: This is an exchange invoked by the Query message, for which 211
the response is a concept scheme or concept schemes, expressed as a Structure 212
Message. Support is recommended. The function should be called 213
“GetConcepts(Query)” with an input Query Message and a response Structure 214
Message carrying a valid instance of the Concepts element or ConceptSchemes 215
element. 216

4. Obtain Metadata Structure Definition: This is an exchange invoked by the 217
Query Message, for which the response is a metadata structure definition, 218
expressed as a Structure Message. Support is recommended if metadata queries 219
are supported. The function should be called “GetMetadataStructure(Query)” with 220
an input Query Message and a response Structure Message carrying a valid 221
MetadataStructureDefinitions element. 222

5. Obtain Generic Data: This is an exchange invoked by the Query Message, for 223
which the response is data marked up according to the Generic Data Message. 224
Support is recommended. The function should be called 225
“GetGenericData(Query)”. 226

6. Obtain Compact Data: This is an exchange invoked by the Query Message, for 227
which the response is data marked up according to the Compact Data Message. 228
The function should be called “GetCompactData(Query)”. 229

7. Obtain Utility Data: This is an exchange invoked by the Query Message, for 230
which the response is data marked up according to the Utility Data Message. The 231
function should be called “GetUtilityData(Query)”. 232

8. Obtain Cross-Sectional Data: This is an exchange invoked by the Query 233
Message, for which the response is data marked up according to the Cross-234
Sectional Data Message. The function should be called 235
“GetCrossSectionalData(Query)”. 236

9. Obtain Reference Metadata: This is an exchange invoked by the Query 237
Message, for which the response is reference metadata marked up according to 238
the Reference Metadata Message. The function should be called 239
“GetReferenceMetadata(Query)”. 240

10. Obtain Metadata Report: This is an exchange invoked by the Query Message, 241
for which the response is reference metadata marked up according to the 242

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

8

Metadata Report Message. The function should be called 243
“GetMetadataReport(Query)”. 244

11. Obtain Hierarchical Codelist: This is an exchange invoked by the Query 245
Message, for which the return is a hierarchical codelist or hierarchical codelists, 246
expressed as a Structure Message. Support is optional. The function should be 247
called “GetHierarchicalCodelists(Query)” with an input Query Message and a 248
response Structure Message carrying a valid instance of the 249
HierarchicalCodelists element. 250

12. Obtain Structure Set: This is an exchange invoked by the Query Message, for 251
which the return is a structure set or structure sets, expressed as a Structure 252
Message. Support is optional. The function should be called 253
“GetStructureSets(Query)” with an input Query Message and a response 254
Structure Message carrying a valid instance of the StructureSets element. 255

13. Obtain Reporting Taxonomy: This is an exchange invoked by the Query 256
Message, for which the return is a reporting taxonomy or reporting taxonomies, 257
expressed as a Structure Message. Support is optional. The function should be 258
called “GetReportingTaxonomies(Query)” with an input Query Message and a 259
response Structure Message carrying a valid instance of the 260
ReportingTaxonomies element. 261

14. Obtain Process: This is an exchange invoked by the Query Message, for which 262
the return is a process or processes, expressed as a Structure Message. Support 263
is optional. The function should be called “GetProcesses(Query)” with an input 264
Query Message and a response Structure Message carrying a valid instance of 265
the Processes element. 266

 267

3.2 Registry-Oriented Web Service Functions 268
 269
1. Submit Subscription to SDMX Registry/Repository: This is an exchange 270

invoked by the SubmitSubscriptionRequest message, for which the response is a 271
confirmation in the form of a SubmitSubscriptionResponse message. The 272
function should be called “SubmitSubscription(SubmitSubscriptionRequest)”. 273

 274
2. Submit Registration of Data or Reference Metadata Sets to Registry: This is 275

an exchange invoked by the SubmitRegistrationRequest message, for which the 276
response is a confirmation in the form of a SubmitRegistrationResponse 277
message. The function should be called 278
“SubmitRegistration(SubmitRegistrationRequest)”. 279

 280
3. Query Data or Reference Metadata Registry: This is an exchange invoked by 281

the QueryRegistrationRequest message, for which the response is a confirmation 282
in the form of a QueryRegistrationResponse message. The function should be 283
called “QueryRegistration(QueryRegistrationRequest).” 284

 285
4. Submit Structural Metadata to Repository: This is an exchange invoked by the 286

SubmitStructureRequest message, for which the response is a confirmation in the 287

 STATISTICAL DATA AND METADATA EXCHANGE INITIATIVE

9

form of a SubmitStructureResponse message. The function should be called 288
“SubmitStructure(SubmitStructureRequest).” 289

 290
5. Query Structural Metadata in Repository: This is an exchange invoked by the 291

QueryStructureRequest message, for which the response is a confirmation in the 292
form of a QueryStructureResponse message. The function should be called 293
“QueryStructure(QueryStructureRequest).” 294

 295
6. Submit Provisioning Metadata to Repository: This is an exchange invoked by 296

the SubmitProvisioningRequest message, for which the response is a 297
confirmation in the form of a SubmitProvisioningResponse message. The function 298
should be called “SubmitProvisioning(SubmitProvisioningRequest).” 299

 300
7. Query Provisioning Metadata in Repository: This is an exchange invoked by 301

the QueryProvisioningRequest message, for which the response is a confirmation 302
in the form of a QueryProvisioningResponse message. The function should be 303
called “QueryProvisioning(QueryProvisioningRequest).” 304

4 COMPLIANCE WITH WS-I 305

To ensure interoperability between SDMX web services, compliance with sections of 306
the WS-I Profile 1.1 is recommended for all SDMX web services. The documentation 307
can be found at http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html. The 308
recommended sections are those concerning the use of SOAP and WSDL. UDDI, 309
while useful for advertising the existence of SDMX web services, is not necessarily 310
central to SDMX interoperability. 311

5 LARGE DATA AND METADATA SETS AND 312

QUERYING 313

Because some queries may produce huge numbers of data points or large amounts 314
of reference metadata as a response, it is recommended that an SDMX web service 315
support the use of the “DefaultLimit” field in the SDMXQuery message. If a response 316
will be larger than the suggested default limit in the query, then the response should 317
be truncated. A truncated response is a partial response, but must still be a valid 318
SDMX-ML document. The fact that it is truncated should be indicted with the 319
“Truncated” field in the Header element of the response message. 320
 321
Note that the default limit is to be interpreted as an order-of-magnitude suggestion, 322
and not as a literal limit – it is not always easy to predict exactly what the effects of a 323
truncation will be when the web service must still produce a valid SDMX-ML instance. 324
 325
It is the responsibility of the querying service to adjust the query and re-send it to 326
produce a non-truncated response, if that is what is needed. 327

