
Statistical Working Group / Technical Working Group

POSSIBLE WAYS OF IMPLEMENTING CL_OBS_STATUS CODE LIST

20 OCTOBER 2014

1) Introduction

First of all, it is important to note that the "Observation status" code list has an heterogeneous
character as it mixes concepts which are not always mutually exclusive (e.g. a missing value can
generate a break in time series, an estimated value can be of low reliability). Thus, to cope with the
issue of allocating more than one flag to one statistical value, this code list should ideally be broken
down into various sub-code lists corresponding to the various concepts covered. It was not done so
because it was felt that it would unnecessarily increase the number of (very short) code lists for low
benefits in terms of technical and conceptual orthodoxy.

However, in view of the central importance of this code list, it is essential to provide implementers
with all possible ways of implementing this code list so that they can decide, based on their specific
implementation needs, which option best suits their requirements. These various options are
presented in the sections below, and their pros and contras explicated.

In case implementers are satisfied with one flag per observation value, they are invited to apply the
recommended hierarchy proposed under "2) One flag only per value". In the case of multiple
flagging, although the three options described below are in theory applicable, they should certainly
not be considered equally; indeed, option 3.1 "Duplication approach" is to be considered as the
recommended general solution; in cases where implementers do not think the recommended
general solution is able to be applied, or appropriate to apply, in their particular context, an
acceptable alternative solution called "Decomposition approach" is proposed. The third option,
called "extended single code list approach", is documented here for the sake of completeness but
strongly discouraged.

The SDMX standard allows for the use of zero or more observation level attributes, using any
identifiers. However, SDMX-EDI imposes the mandatory use of the observation level attribute called
OBS_STATUS. In the past, SDMX-EDI has limited itself, for practical reasons, to the use of the
observation level attributes OBS_STATUS, CONF_STATUS, PRE_BREAK_VALUE and COMMENT_OBS,
but SDMX-EDI can handle any number of observation level attributes, as long as OBS_STATUS is
included.

This document is outdated. For the latest version, see the SDMX official website (https://sdmx.org),
section "Guidelines".

 2

For backward compatibility between SDMX-ML and SDMX-EDI, the observation level attribute
OBS_STATUS must be included in every Data Structure Definition (DSD) as mandatory. Without it,
backward compatibility is not possible.

2) One flag only per value

In case implementers want to use only one single flag per value, they should use the hierarchy below
to determine the code to be used. This approach (choice of only one event, namely the most
important one) offers a good compromise between simplicity for the user, completeness of provided
information and presentational easiness of management on the user interface side. The main
drawback of this approach is the loss of information resulting from the use of only one flag when
several flags may apply to a given value.

Example: From now on, value x is compiled on the basis of a methodology diverging from the
previous one (e.g. following an alignment with international standards), which generates a break in
time series. In this case, two flags, namely B (Time series break) and D (Definition differs), should be
used. If only one flag is to be indicated, then use should be made of the hierarchy below to
determine which flag to use. In this case, this would be B since B has precedence over D in the
hierarchy.

Observation status hierarchy Relevant in conjunction with...

numeric values missing values

B / time series break (highest importance) Yes Yes
O / missing value Yes
M / missing value; data cannot exist Yes
L / missing value; data exist but were not collected Yes
H / missing value; holiday or weekend Yes
Q / missing value; suppressed Yes
J / derogation Yes Yes
S / strike and other special events Yes Yes
D / definition differs Yes
I / imputed value Yes
F / forecast value Yes
E / estimated value Yes
P / provisional value Yes
N / not significant Yes
U / low reliability Yes
V / unvalidated value Yes
G / experimental value Yes
A / normal value Yes

 3

3) Multiple flagging

There might be cases however where implementers will want to attach multiple flags to one
statistical value. To cope with this situation, three solutions have been analysed, based on :

(1) a duplication approach;
(2) a decomposition approach;
(3) an extended single code list approach.

Technically the three approaches are possible. However, considering the severe limitations that the
third approach would implicate, only one of the first two approaches will be recommended for use
(as said earlier also with a view to improving harmonisation across implementations).

3.1) Duplication approach (recommended solution)

In this case, the OBS_STATUS concept is duplicated as many times as needed. These duplicated
concepts can be named "OBS_STATUS_1", "OBS_STATUS_2", "OBS_STATUS_3", etc. All these
concepts have to be inserted in the DSD and linked to the CL_OBS_STATUS code list. Only one value
is allowed per code list.

The main advantages of this solution are its simplicity and the fact that it does not require listing the
possible combinations.

Drawbacks are the multiplication of the same concept and the absence of implicit checks which
makes it possible to enter aberrant combinations of codes (e.g. normal value and low reliability).

This approach is the recommended general solution for implementations where multiple flagging is
required.

3.2) Decomposition approach (accepted but not preferred solution)

Here, CL_OBS_STATUS code list is broken down into its basic components, distinguished on the basis
of the different concepts used and their mutually exclusive character. The list of "building blocks"
composing the CL_OBS_STATUS code list as it stands at present could be represented as separate
concepts as follows:

• Concept OBS_STATUS (Observation status) code list CL_OBS_MAIN (A,E,G,H,I,J,M,O,
L,Q,S): these codes can be grouped in one single code list because they are mutually
exclusive: a normal value cannot be estimated nor imputed nor missing; an estimated value
cannot be normal nor imputed nor missing, an imputed value cannot be normal nor
estimated nor missing, etc.

For the other status codes, a single Boolean code list1 can be created to enable / disable a specific
flag:

• Concept OBS_BREAK code list CL_BOOLEAN, with code Y corresponding to flag B (Time
series break);

• Concept OBS_DEF_DIFFERS code list CL_BOOLEAN, with code Y corresponding to flag D
(Definition differs);

1 CL_BOOLEAN with 2 codes: Y (Yes), N (No)

 4

• Concept OBS_FORECAST code list CL_BOOLEAN, with code Y corresponding to flag°F
(Forecast value);

• Concept OBS_PROV code list CL_BOOLEAN, with code Y corresponding to flag
P (Provisional value);

• Concept OBS_SIGNIFICANCE code list CL_BOOLEAN, with code Y corresponding to flag
N (Not significant);

• Concept OBS_VALIDATION code list CL_BOOLEAN, with code Y corresponding to flag
V (Unvalidated value);

• Concept OBS_RELIABILITY code list CL_BOOLEAN, with code Y corresponding to flag
U (Low reliability).

If additional flags are needed, more concepts can be defined accordingly. All these concepts have to
be inserted in the DSD and linked to CL_BOOLEAN.

The main advantage of this proposal is its full compliance with the technical standards and the
content-oriented guidelines which insist on separating concepts which are different in content.
Drawbacks are the multiplication of (very) small code lists and the absence of implicit checks which
makes it possible to enter aberrant combinations of codes (e.g. normal value and low reliability).
Furthermore, any new code will require reconsidering the content of the various sub-code lists.

Although not recommended as the preferred solution, this approach can be implemented in cases
where the general solution cannot be applied, or is not the appropriate solution, in a particular
context.

Comments on the choice of the recommended solution

Both "Decomposition" and "Duplication" options provide acceptable workarounds to the problem of
multiple flagging, and appear to be quite similar in practice. The trade-off in this context was
between orthodoxy and ease of implementation.

Conceptually the "Decomposition" approach is definitely the strongest of the two as it not only
allows separating concepts, but also helps arranging codes into more homogeneous code lists. It also
requires that implementers define pure concepts and name them accordingly.

This document recommends the "Duplication" approach mainly on the practical grounds of ease of
implementation in the current state of development of the technical standard. This means that the
recommended approach could be reconsidered in the future, would the technical standard better
accommodate the decomposed approach.

3.3) Extended single code list approach (strongly discouraged)

The extended version of CL_OBS_STATUS (see below) provides the full list of logically possible
combinations of codes in a specific SDMX implementation.

An advantage of this solution would be that only meaningful combinations of flags are included in
the list. Users would not be able to choose combinations which would not make sense (such as
"missing" and "estimated").

 5

However, there are several drawbacks related to the technical implementation of this solution:
• relative complexity for users to find the right combination of flags
• maintenance burden in case of revision of the code list
• presentational complexity of management on user interface side
• very complex SDMX query message would be needed to query for data according to flags

Thus this approach is not recommended to be used. For completeness the table shows a possible
implementation of this approach:

Code Description

A Normal
B Time series break
BD Time series break, Definition differs
BDE Time series break, Estimated value, Definition differs
etc.
D Definition differs
DE Definition differs, Estimated value
DEP Definition differs, Estimated value, Provisional value
etc.
E Estimated value
EP Estimated value, Provisional value
etc.

If further combinations are needed, these can be created on an ad hoc basis by selecting the
necessary codes from the basic code list and sorting them alphabetically. Inversely, implementers
might wish to reduce the list of possible options, would all options above not be necessary for their
specific needs.

This approach is to be strongly discouraged.

4) Conclusion

From the analysis of the various approaches presented above, it appears clearly that the extended
single code list approach cannot be recommended for use.

Although the two remaining approaches, i.e. the duplication approach and the decomposition
approach , may qualify for being recommended, it is preferable to give precedence to one approach
in order to improve harmonisation across implementations. Considering its relative simplicity in
terms of maintenance, the recommended option is option based on the "duplication approach".

 6

5) Synthetic overview of solutions proposed and suggested recommendations

Colour key

• Recommended solution
• Accepted but not preferred solution
• Strongly discouraged

