SDMX GUIDELINES

GUIDELINES ON THE
VERSIONING OF SDMX ARTEFACTS

VERSION 1.0

15/11/2015

© SDMX 2015
http://www.sdmx.org/

Contents

IO I 01100 (U o o] o ISR 2
2. NUMDEriNg SYStEM AN SYNTAXcc.veirieieeieiieerie ettt sr e s b e saeesn e e e 3
3. Criterion for incrementing the Version NUMDENcoveiiiiieiie e 3
a. Description of backward/forward compatibility...........ccccoeeiiriiiieiie s 3
b. Cost-benefit analysisfor amajor version change...........ccocooeeiieiiecie s 4
Cc. Synthesisbased on the above syntax and CriterioNcceevireeiieiencesere e 4
4. Typesof artefact changes and their versioning impactcccocceeveeiieesee e 4
5. How versioning works for inter-dependent artefacts............ccooveneniiiinesene e 6
a. Impact on parent artefact when child artefact version changes.........ccccceceveeeveeccecvee e 6
b. Addition or removal of referenced artefactS..........ccceveeiiiiciie s 7
6. APPENIX - EXAMPIES .. .oiiiie ettt ettt e e e et e et e e r e e e e e a e e s re e nre e enre e 8

1. Introduction

This document aims at providing guidelines on hawversion SDMX artefacts inspired by
"semantic versioning", i.e. a formal convention for specifying compdtilp between the different
versions of a “versionable” artefact (a SDMX artefdnat has an associated version number). There
are slight differences when compared to semantisim@ing regarding the numbering and the
definition of the criterion triggering the changesiumbering.

A three-component versioning system is proposeth thie third component being optional. The
criterion for deciding which component is impaciedhe severity of the change.

Versioning is central to SDMX because it guarantbesstability of references to SDMX artefacts.
This is of the utmost importance given the somedirsrong dependencies between artefacts,
especially in Data Structure Definitions (DSDs).

The document contains three main recommendations:
e numbering system and syntax;
* types of artefact changes and their versioning afjpa
* how versioning works for inter-dependent artefacts.

The document’s appendix contains examples of sevgpas of changes and their versioning
impact.

2. Numbering system and syntax

The proposed versioning system is based on the iB&nversioning 2.0 specificatidnnamely:
MAJOR. M NOR. PATCH’

However, as the "patch" component will generally lm® used extensively in SDMX, it is proposed
to limit the coding toMAJOR. M NCR as long as no patches are implemented. Concrdtaesy,
means that version number 2.1.0 will be abridge2l 1cas long as no patch is implemented. When a
patch is implemented, the version number then besdil.1. At subsequel®JOR change in the
versioning the®’ATCH component will disappear (2.4 3.0).

The most severe change has always precedence tnrtgpes of changes. For example, if the
MAJOR and M NOR parts of the version number are impacted by chgngaly the MAJOR
component will be impacted. This means that ver8i@al will become 4.0.

When an artefact is published in production for fingt time, the version number of the artefact
should be 1.0.

3. Criterion for incrementing the version number

The criterion for deciding which component is imigacis the severity of the change, i.e. the
possibility of maintaining backward and forward qmatibility between the different versions of an
artefact.

a. Description of backward/forward compatibility

Backward compatibility is defined as: An item (ea.data message) that was produced and
validated with the previous version of an artef@cty. a DSD) can still be successfully validated
using the newest version of the same artefactekample, a data message produced and validated
with a DSD version 1.1 is still valid against thense DSD (same id and Agency) upgraded to
version 1.2.

Forward compatibility is defined as: An item (eagdata message) that is produced and validated
with the new version of an artefact (e.g. a DSD) also be validated using the previous version of
the same artefact. For example, a data messadaqaw and validated with a DSD version 1.1 is
also valid against the same DSD (same id and Agdranying version 1.0 (an earlier version).

Given the syntax specified above, namdifAJOR. M NOR. PATCH, implementers should
increment the:

« MAJOR version when changes are not backward cofvipati
* MINOR version when changes are backward but netdod compatible;

* PATCH version when minor changes (e.g. text claaifons, correction of typos) are both
backward and forward compatible.

! http://www.semver.org
21t should be noted that the SDMX standard spexifie limitation as to the number of componentshi ersioning
system. The option proposed here is thus nothing becommended convention.

3

b. Cost-benefit analysis for a major version change

The cost of imposing a “major” change should beabedéd against the benefit of retaining
backward compatibility, for example by not deleticmdes used in existing data exchanges or by
deleting or replacing codes only through a condegféort of all data exchange partners.

c. Synthesis based on the above syntax and criterion

‘ Change Severity Version Impact Description Example
Major +.0 Neither backwardnhor forward compatibility 12> 20
Minor N. + Backwardbut not forward compatibility 1.0>1.1
Patch N.M.+ Backwardand forward compatibility 1.2>1.21

4. Types of artefact changes and their versioning impact

As a general rule insignificant changes (e.g. t@xtlarifications or typos) will result in an
increment of the patch component of the versiosiygiem (i.e. N.Mk).

CoDE LIsT (CL)

Type of Change Impact Comments

Addition into an existing CL of one or more 3
new codes not having thg Minor : N.+()
CodelList:Code:ParentCode attribute

Data exchanged/disseminated using the old CL chrbeti
exchanged/disseminated using the new CL

Addition of one or more new hierarchies
represented using the
CodelList:Code:ParentCode attribute (not
using the Hierarchical Code List artefact)

3 Data exchanged/disseminated using the old CL clrbst
Minor : N.+() exchanged/disseminated using the new CL as alrgady
existing hierarchies still represent the same aggiens

Addition of one or more new codes into
existing hierarchies represented using thd
CodelList:Code:ParentCode attribute (not
using the Hierarchical Code List artefact)

After the change, the parent code for the changeaarchy
Major : +.0 does not represent the same aggregation any mniarg,| t
resulting in a break in backward compatibility

Data exchanged/disseminated using an old versicathe
Major : +.0 CL can no longer be exchanged/disseminated usingetive
version of the CL

Aggregation, disaggregation, reorganisation
or removal of one or more codes

% The overall impact on compatibility should be @ssel when there are several “minor” version impaanges. For
example, it may be that the effect of adding sdvweeav Code List or HCL codes results in an impliiange in the
meaning of existing Code List or HCL codes whichymat be completely backward compatible, there{depending
on the analysis) the overall version impact mayNsajor +.0".

4

HIERARCHICAL CoODE LIST (HCL)

Type of Change Impact Comments
Addition of new hierarchies in the HCL. | wminor: N+ | Data represented using the old HCL can still beesgmted
Existing hierarchies are unaffected using the new HCL
Addition of codes into existing hierarchies in] The HCL resulting from this change does not repreten
the HCL. Existing hierarchies are thus| Major: +.0 same aggregation any more, thus breaking backyard
affected compatibility
Removal of one or more codes in the HCL o) Data represented using the old HCL can no longel be
removal of one or more codes in thg Major:+.0 represented using the new HCL, thus resultingbneak in
referenced code lists backward compatibility
Addition, modification or removal of one or Major: +.0 The reorganisation of codes within hierarchies fmap
more hierarchical levels significant impact on the code aggregations

CONCEPT SCHEME (CS)

Type of change Impact Comments
Addition of one or more new concepts in an Minor: N.+ Data exchanged/disseminated using the old versidheo
existing CS CS can still be exchanged/disseminated using theGfew
o) Data exchanged/disseminated using the old versidheo
Removal of one or more existing concepts Major: +.0 CS can no longer be exchanged/disseminated usinggethé
version with less concepts

DATA STRUCTURE DEFINITION (DSD)

Type of change Impact Comments

Adding a new dimension has a strong impact because

Addition of a dimension Major : +.0 dimension represents the identifier of a datasktis|
requiring a remodelling of the data as existingicttiral
validation will fail

Addition of a mandatory attribute Major : +.0 If the attribute is mandatory, the situation is S@me as
under point “Addition of a dimension”

Addition of a conditional attribute Minor : N.+ If the attribute is conditional backward compattyilis
maintained

Removal of a dimension or attribute Major : +.0 Whatever the type of component, the change does not
guarantee backward compatibility

For concrete examples, see the Appendix.

5.

This section describes how version changes to-adependent or parent/child artefacts affect each
other. For example, how a Concept Scheme is atfeeten one of the Code Lists that it references
changes version.

How versioning works for inter-dependent artefacts

Some artefacts have references to other artefaat®xample:

» each of a Concept Scheme’s Concepts may refereGodeList;

* aDSD can reference one or more Concept Schemes;

» each of a DSD’s Concepts may reference a Code (Nstte that if a Concept-Code List
reference exists both in a DSD and a Concept Sch#maeConcept-Code List reference in
the DSD overrides the reference in the Concepti8ele

» a Hierarchical Code List references one or moreedasts whose codes are arranged in the
hierarchical structure.

In the text below, the following concepts will bsedl:
» Parent artefact an artefact that contains a reference to anatniefact. For example, a
Concept Scheme is a parent to a Code List thatatences, and the Code List is the child;
» Child artefact: an artefact that is referenced by another arteFar example, a Code List is
a child of a Concept Scheme that contains a reterém it, and the Concept Scheme is the
parent.

It is important to note that a new version of ddlirtefact does not automatically trigger a varsio
update of the parent artefact. A version changbd@arent artefact is made only if the new version
of the child artefact is adopted by the parentfacte

a. Impact on parent artefact when child artefact version changes

The replacement of a reference with a differergnezice has the same impact for every artefact.

ALL ARTEFACTS

Type of change Impact Comments
If a child artefact (e.g. a Code List) has a minersion change, then
the parent artefact (e.g. a Concept Scheme) sh@adchave a mino
Replacement of a child| The child artefact | Version change.
artefact having a different | version change is| |f there are several child artefact version changfes most severg
version, but same id and| replicated in the | inpact is replicated in the parent artefact. Fareple, if two Code
Agency parent artefact Lists have minor changes, and one Code List hasjar miaange at
the same time, the parent Concept Scheme has a w&jsion
change
The parent artefact
Replacement of a referenced version impact | Technically, the child artefact is not consideredbe related to the
chiﬁj artefact havin a depends on the| previous child artefact. It needs to be checkedtidreexchange
9 backward/ forward | contracts can still be guaranteed (backward/forwasthpatibility

different id or Agency

compatibility as shown
in the tables above

principle)

b. Addition or removal of referenced artefacts

CONCEPT SCHEME (CS)

Type of change Impact Comments

The child Code Lists in a Data Structure Definitiave priority over those
referenced in a Concept Scheme. Child Code Listeddd or removeq
from a Concept Scheme do not have a direct impathenlata exchange.
Minor: N.+ Backward/forward compatibility depends on the way €ddsts are
referenced in Data Structure Definitions referegdine concept schem
This needs to be taken into account when creatingmaversion of a DS[
accordingly

Addition or removal of a child
Code List

1%

DATA STRUCTURE DEFINITION (DSD)

Type of change Impact Comments

If same id and Agency, then the child If a child Code List has a minor version changentties
artefact version change is replicated DSD should also have a minor version change.

Addition or removal of inthe parent artefact. If there are several Code List version changes,ntbet

a child Code List If different id or Agency, impact wil | severe impact is replicated in the DSD. For examil
depend on the backward/forward| two Code Lists have minor changes, and one Codéas
compatibility as shown in the tables| a major change at the same time, the parent DSDaljas
above major version change

6. Appendix - Examples

Example 1—Change to a Code List name, for clarification purpses Patch Impact: N.M.+

Id Old Name New Name

CL_ADJUSTMENT Adjustment codes Adjustment code list

Example 2— Change to a Concept name, for clarification purpose Patch impact: N.M+

Id Old name New name

PRODUCT_TO Product classification Product classification (iputput product*product)

Example 3—Change in the substance of codes. Major impact.0

Id Old name New name

CP01115 Other products Pizza and quiche

Example 4- Aggregation, disaggregation or reorganisation of ades. Major impact +.0

AGGREGATION OF EXISTING CODES

Old version New version

2011 Heifers (female bovine that never calved), live

2012Cows, live 2010Heifers and cows, live

Codes2011and2012are fully* removed and replaced with onlsrand new code. In this case there is a many to 1 correspuel
between the codes.

DISAGGREGATION OF EXISTING CODES

Old version New version

1011Pure bred breeding horses, live

1010Live horses 10120ther horses, live

Code1010is fully removed and replaced with twbrand new codes. In this case there is a 1 to m correspaedbatween the
codes.

*i.e. without integration into or combination winother existing code.

REORGANISATION OF EXISTING CODES

Old version

New version

3010Fowls, weighings< 185 g
3020Ducks, , weighingt 185 g
30300ther poultry, weighing: 185 g
3040Fowls, weighing > 185 g
3050Ducks, , weighing > 185 g
30600ther poultry, weighing > 185 g

3025Poultry, weighings 175 g
3045Poultry, weighing > 175 g

Codes301Q 3020 303Q 304Q 3050and3060are fully removed and replaced with two brand medes; furthermore the criterio

for the classification used in the old version hasn changed in the new version (185 g criterigruge175 g criterion), so that it
not possible to exactly aggregate the codes fraottl version to the codes of the new version @.gart 0f3010 goes t03025
another part t80495. In this case there is a m to n correspondentedaa the two sets of codes

[28=]

Example 5 — Changes to hierarchies in a Code Lidtlajor impact: +.0

ADDING A NEW CODE IN AN EXISTING HIERARCHY — CODE LIST

Old version

New version

o 0213 - Beer
o 02131 - Lager beer
0o 02132 - Other alcoholic beer

« 0213 - Beer
0 02131 - Lager beer
0 02132 - Other alcoholic beer
0 02133 - Low and non-alcoholic beer

Code 02133 has been added to hierarchy 0213

Example 6 — Changes to hierarchies in a Hierarchid&ode List. Major impact: +.0

ADDING A NEW CODE IN AN EXISTING HIERARCHY — HIERARCHICA L CODE LIST

Old version

New version

* Al - World (codelist ref. ECB@CL_AREAS@1.0)
0 E1 - Europe (ECB@CL_COUNTRIES@1.0)
= ES - Spain
* FR - France
= GR- Greece
= T - ltaly
o EA4 - Africa
= etc.

« A1=World (codelist ref. ECB@CL_AREAS@1.0)
o E1= Europe (ECB@CL_COUNTRIES@1.0)
= ES = Spain
FR = France
GR = Greece
IT = ltaly
DE= Germany
0 E4= Africa
= etc.

The id of the hierarchical codes are assumed tego@l to those of the code lists referenced. Thie dE has bee

added to hierarchy E1

Example 7.1— Dependencies between artefacts: Concept Scheme dade List. Minor impact: N.+

. . ; q Old New
Id:Artefact Type:Details Change type Version Impact version | version
CL_OBS_STATUS:Code List Addition of a new code X Minor: N. + 1.0 1.1
Adoption of new code X Minor: N. +
CS_TRADE:Concept Scheme: Change type. Replacement of 4 . L
References CL_OBS_STATUS child artefact having a differeny |Ne child versionimpactf 2o 2.1
v1.0 above version, but the same id arjdS replicated in the parent
Agency artefact

Example 7.2— Dependencies between artefacts: Concept Scheme abade List. Major impact: +.0

. . ; q Old New
Id:Artefact Type:Details Change type Version Impact version | version
CL_OBS_STATUS:Code List Removal of code U Major: +.0 1.0 2.0
Adoption of new
CL_OBS_STATUS without U. Major: +.0
CS_TRADE:Concept) o
Scheme:References Change type: Replacement of g The child version impact 2.0 3.0

CL_OBS_STATUS v1.0 above

child artefact having a differen
version, but the same id an

d

is replicated in the paren
artefact.

Agency

Example 7.3—Dependencies between artefacts: Concept Scheme a@ade List. Variable impact (see below)

. . Old New
Id:Artefact Type:Details Change type Version Impact version version
a) Maintenance agency changes frgm
A to B for governance reasong.
Nothing else changes in the code ligt.
b) Maintenance agency changes frgm (25532;28)
CL_XYZ: Code List Ato B and at the same time n New artefact CLXYZ (new
— : codes are added (Agency A) .
maintenance
agency)
¢) Maintenance agency changes frgm
A to B. Since B has different codin
rules, the code list itself changes ps
well.
Case a): Patch: N.M+
There is no impact on 2.0 2.0.1
data exchange
Replacement of a child artefact Case b): Minor: N. +
CS_TRADE: Concept having a different Agency. The impactis the same gs 21
Scheme: References a new minor version of ' '
CL_XYZ (Agency A) CL_XYZ (Agency A) changes to the code list
CL_XYZ (Agency B).
Case ¢) Major: +.0
The impact is the same ds 20 3.0

a new major version of
the code list.

Example 7.4— Dependencies between artefacts: Concept Scheme dn8D. Variable impact (see below)

Id:Artefact Type:Details Change type Version Impact Old version New version
CS_TRADE: Concept Scheme Addition of new Concept N
containing Concepts C1, C2, C3 C4 Minor: N. + 14 15
TRADE: Data Structure Definition: None None 10 10
references Concepts C1 and C2 Concept C3 is not used : :

10

CS_TRADE: Concept Scheme Change of description in

containing Concepts C1, C2, C3 Concept C3 (typo) Patch: N.M.+ 14 141
TRADE: Data Structure Definition: None None 10 10
references Concepts C1 and C2 Concept C3 is not used ' '
CS_TRADE: Concept Scheme _

containing Concepts C1, C2, C3 Removal of Concept C3 Major: +.0 1.4 2.0
TRADE: Data Structure Definition: None None 10 10

references Concepts C1 and C2 concept C3 is not used

Remark: Once a new version of the DSD is needed for soimer seasons (e.g. a change in a code list), @desmmended to updat
all concept references to the newest availableamrecheme if possible: i.e. DSD version 1.1 wdh&h update its concept scher

references from 1.4 to 2.0.

1

he

CS_TRADE: Concept Scheme Change of description in

containing Concepts C1, C2, C3 Concept C2 (typo) Patch: N.M.+ 1.4 L4l

. L Correction should be Patch: N.M.+ 101
TRADE: Dat Sincevefion | akenmoaczount, | o :
P concept C2 is used None 1.0

Remark: Since the change of a typo in a Concept of the Car®elreme does not have a direct impact on the Bs&llf (the link is
by reference), there is strictly speaking no needpdate the DSD. Both DSDs (1.0 and 1.0.1) willchaxactly the same syntax.
However, if maintainers want to highlight the catien for users of the DSD or for some other reab@enDSD is updated anyway;

it should reference the newer Concept Scheme.

11

