
 

 
 

   
 
 

 

 

SDMX STANDARDS: SECTION 2 

 

 

 

INFORMATION MODEL: 

UML CONCEPTUAL DESIGN 

 

VERSION 2.1 

Revision 2.0 

 
 
 

 

 

 

 

 

 

 

July 2020 

 



 

 
 

   
 
 

 

 

 

Revision History 

Revision Date Contents 

 April 2011 Initial release 

1.0 July 2011 Rectification of problems of the specifications dated April 2011 

2.0 July 2020 Section 13 completely reformulated for the adoption of the  
Validation and Transformation Language (VTL) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© SDMX 2020 
http://www.sdmx.org/ 

 

http://www.sdmx.org/


 

 
 

   
 
 

 

Contents 

1 Introduction........................................................................................................................................ 1 

1.1 Related Documents 1 

1.2 Modelling Technique and Diagrammatic Notes 1 

1.3 Overall Functionality 2 

1.3.1 Information Model Packages ................................................................................................ 2 

1.3.2 Version 1.0 ............................................................................................................................ 3 

1.3.3 Version 2.0/2.1 ...................................................................................................................... 3 

2 Actors and Use Cases ...................................................................................................................... 5 

2.1 Introduction 5 

2.2 Use Case Diagrams 6 

2.2.1 Maintenance of Structural and Provisioning Definitions ....................................................... 6 

2.2.2 Publishing and Using Data and Reference Metadata ......................................................... 10 

3 SDMX Base Package ....................................................................................................................... 13 

3.1 Introduction 13 

3.2 Base Structures - Identification, Versioning, and Maintenance 14 

3.2.1 Class Diagram .................................................................................................................... 14 

3.2.2 Explanation of the Diagram................................................................................................. 14 

3.3 Basic Inheritance 18 

3.3.1 Class Diagram– Basic Inheritance from the Base Inheritance Classes ............................. 18 

3.3.2 Explanation of the Diagram................................................................................................. 19 

3.4 Data Types 19 

3.4.1 Class Diagram .................................................................................................................... 19 

3.4.2 Explanation of the Diagram................................................................................................. 20 

3.5 The Item Scheme Pattern 21 

3.5.1 Context ................................................................................................................................ 21 

3.5.2 Class Diagram .................................................................................................................... 21 

3.5.3 Explanation of the Diagram................................................................................................. 22 



 

 
 

   
 
 

 

3.6 The Structure Pattern 23 

3.6.1 Context ................................................................................................................................ 23 

3.6.2 Class Diagrams ................................................................................................................... 24 

3.6.3 Explanation of the Diagrams ............................................................................................... 26 

4 Specific Item Schemes ................................................................................................................... 31 

4.1 Introduction 31 

4.2 Inheritance View 32 

4.3 Codelist 33 

4.3.1 Class Diagram .................................................................................................................... 33 

4.3.2 Explanation of the Diagram................................................................................................. 34 

4.4 Concept Scheme and Concepts 36 

4.4.1 Class Diagram - Inheritance ............................................................................................... 36 

4.4.2 Explanation of the Diagram................................................................................................. 37 

4.4.3 Class Diagram - Relationship ............................................................................................. 38 

4.4.4 Explanation of the diagram ................................................................................................. 38 

4.5 Category Scheme 40 

4.5.1 Context ................................................................................................................................ 40 

4.5.2 Class diagram - Inheritance ................................................................................................ 40 

4.5.3 Explanation of the Diagram................................................................................................. 41 

4.5.4 Class diagram - Relationship .............................................................................................. 42 

4.6 Organisation Scheme 44 

4.6.1 Class Diagram .................................................................................................................... 44 

4.6.2 Explanation of the Diagram................................................................................................. 44 

4.7 Reporting Taxonomy 48 

4.7.1 Class Diagram .................................................................................................................... 48 

4.7.2 Explanation of the Diagram................................................................................................. 48 

5 Data Structure Definition and Dataset .......................................................................................... 51 

5.1 Introduction 51 



 

 
 

   
 
 

 

5.2 Inheritance View 52 

5.2.1 Class Diagram .................................................................................................................... 52 

5.2.2 Explanation of the Diagram................................................................................................. 53 

5.3 Data Structure Definition – Relationship View 55 

5.3.1 Class Diagram .................................................................................................................... 55 

5.3.2 Explanation of the Diagrams ............................................................................................... 55 

5.4 Data Set – Relationship View 65 

5.4.1 Context ................................................................................................................................ 65 

5.4.2 Class Diagram .................................................................................................................... 65 

5.4.3 Explanation of the Diagram................................................................................................. 66 

6 Cube .................................................................................................................................................. 74 

6.1 Context 74 

6.2 Support for the Cube in the Information Model 74 

7 Metadata Structure Definition and Metadata Set ......................................................................... 75 

7.1 Context 75 

7.2 Inheritance 75 

7.2.1 Introduction ......................................................................................................................... 75 

7.2.2 Class Diagram - Inheritance ............................................................................................... 76 

7.2.3 Explanation of the Diagram................................................................................................. 77 

7.3 Metadata Structure Definition 77 

7.3.1 Introduction ......................................................................................................................... 77 

7.3.2 Structures Already Described ............................................................................................. 77 

7.3.3 Class Diagram – Relationship ............................................................................................ 78 

7.3.4 Explanation of the Diagram................................................................................................. 78 

7.4 Metadata Set 84 

7.4.1 Class Diagram .................................................................................................................... 84 

7.4.2 Explanation of the Diagram................................................................................................. 85 

8 Hierarchical Code List .................................................................................................................... 92 



 

 
 

   
 
 

 

8.1 Scope 92 

8.2 Inheritance 93 

8.2.1 Class Diagram .................................................................................................................... 93 

8.2.2 Explanation of the Diagram................................................................................................. 93 

8.3 Relationship 94 

8.3.1 Class Diagram .................................................................................................................... 94 

8.3.2 Explanation of the Diagram................................................................................................. 94 

9 Structure Set and Mappings ........................................................................................................... 98 

9.1 Scope 98 

9.2 Structure Set 99 

9.2.1 Class Diagram – Inheritance............................................................................................... 99 

9.2.2 Class Diagram – Relationship .......................................................................................... 100 

9.2.3 Explanation of the Diagram............................................................................................... 100 

9.3 Structure Map 102 

9.3.1 Class Diagram .................................................................................................................. 102 

9.3.2 Explanation of the Diagram............................................................................................... 102 

9.4 Item Scheme Map 104 

9.4.1 Context .............................................................................................................................. 104 

9.4.2 Class Diagram .................................................................................................................. 105 

9.4.3 Explanation of the Diagram............................................................................................... 105 

9.5 Hybrid Codelist Map 108 

9.5.1 Class Diagram .................................................................................................................. 108 

9.5.2 Explanation of the Diagram............................................................................................... 108 

10 Constraints..................................................................................................................................... 111 

10.1 Scope 111 

10.2 Inheritance 111 

10.2.1 Class Diagram of Constrainable Artefacts - Inheritance ................................................... 111 

10.2.2 Explanation of the Diagram............................................................................................... 111 



 

 
 

   
 
 

 

10.3 Constraints 112 

10.3.1 Relationship Class Diagram – high level view .................................................................. 112 

10.3.2 Explanation of the Diagram............................................................................................... 113 

10.3.3 Relationship Class Diagram – Detail ................................................................................ 114 

11 Data Provisioning .......................................................................................................................... 124 

11.1 Class Diagram 124 

11.2 Explanation of the Diagram 125 

11.2.1 Narrative............................................................................................................................ 125 

11.2.2 Definitions ......................................................................................................................... 126 

12 Process ........................................................................................................................................... 128 

12.1 Introduction 128 

12.2 Model – Inheritance and Relationship view 129 

12.2.1 Class Diagram .................................................................................................................. 129 

12.2.2 Explanation of the Diagram............................................................................................... 129 

13 Validation and Transformation Language .................................................................................. 132 

13.1 Introduction 132 

13.2 Model - Inheritance view 133 

13.2.1 Class Diagram .................................................................................................................. 133 

13.2.2 Explanation of the Diagram............................................................................................... 133 

13.3 Model - Relationship View 135 

13.3.1 Class Diagram .................................................................................................................. 135 

13.3.2 Explanation of the Diagram............................................................................................... 136 

14 Appendix 1: A Short Guide To UML in the SDMX Information Model ...................................... 148 

14.1 Scope 148 

14.2 Use Cases 148 

14.3 Classes and Attributes 149 

14.3.1 General ............................................................................................................................. 149 

14.3.2 Abstract Class ................................................................................................................... 150 



 

 
 

   
 
 

 

14.4 Associations 150 

14.4.1 General ............................................................................................................................. 150 

14.4.2 Simple Association ............................................................................................................ 150 

14.4.3 Aggregation ....................................................................................................................... 151 

14.4.4 Association Names and Association-end (role) Names ................................................... 152 

14.4.5 Navigability ........................................................................................................................ 152 

14.4.6 Inheritance ........................................................................................................................ 153 

14.4.7 Derived association ........................................................................................................... 153 

 



 

 
 

   
 
 

 

 

Corrigendum 

The following problems with the specification dated April 2011 have been rectified as 
described below. 

1. Problem 

Figure 35 - Class diagram of the Item Scheme Map – shows the ItemSchemeMap with 
an alias attribute. This attribute is not supported in the schemas. 

Rectification 

The attribute alias is removed from the ItemSchemeMap class and also from the table 
in section 9.4.3.2. 

2. Problem 

The Time Dimension and Measure Dimension in the Figure 40 - Constraints - Cube 
Region and Metadata Target Region Constraints – are shown as inheriting from 
Dimension, but in Figure 23 - Relationship class diagram of the Data Structure 
Definition excluding representation – they, and Dimension itself, inherit from 
DimensionComponent 

Rectification 

Dimension, TimeDimension, and MeasureDimension all inhetit from 
DimensionComponent and Figure 40 is changed to reflect this.  

3. Problem 

The class SelectionValue is shown as a class in Figure 40 - Constraints - Cube Region 
and Metadata Target Region Constraints – but it is not described in the table at 
10.3.3.2. 

Rectification 

The class SelectionValue is added to the the table at 10.3.3.2. 

 

Adoption of the Validation and Transformation Language in 2020 

The package 13 “Transformations and Expressions” of the specification dated July 2011 
envisaged the adoption of a language aimed at specifying algorithms for the derivation of the 
data and presented a basic framework requiring however further elaboration for its actual use.  
Following the adoption of the Validation and Transformation Language (VTL) version 2.0 and 
its application to SDMX 2.1, the package 13 is completely reformulated, renamed as 
“Validation and Transformation Language” and implemented also in the other Sections of the 
SDMX standards for actual use. 

 



 

 
 

   
 
 

 

Change History 1 

Version 1.0 – initial release September 2004. 2 

 3 

Version 2.0 – release November 2005 4 

 5 

Major functional enhancements by addition of new packages: 6 

 7 

 Metadata Structure Definition 8 

 Metadata Set 9 

 Hierarchical Code Scheme 10 

 Data and Metadata Provisioning 11 

 Structure Set and Mappings 12 

 Transformations and Expressions 13 

 Process and Transitions 14 

Re-engineering of some SDMX Base structures to give more functionality: 15 

 16 

 Item Scheme and Item can have properties – this gives support for complex 17 

hierarchical code schemes (where the property can be used to sequence codes in 18 

scheme), and Item Scheme mapping tables (where the property can give additional 19 

information about the map between the two schemes and the between two Items) 20 

 revised Organisation pattern to support maintained schemes of organisations, such as 21 

a data provider 22 

 modified Component Structure pattern to support identification of roles played by 23 

components and the attachment of attributes 24 

 change to inheritance to enable more artefacts to be identifiable and versionable 25 

Introduction of new types of Item Scheme: 26 

 27 

 Object Type Scheme to specify object types in support of the Metadata Structure 28 

Definition (principally the object types (classes) in this Information Model)  29 

 Type Scheme to specify types other than object type 30 

 A generic Item Scheme Association to specify the association between Items in two or 31 

more Item Schemes, where such associations cannot be described in the Structure Set 32 

and Transformation.  33 

The Data Structure Definition is introduced as a synonym for Key Family though the term Key 34 

Family is retained and used in this specification. 35 

 36 



 

 
 

   
 
 

 

Modification to Data Structure Definition (DSD) to  37 

 38 

 align the cross sectional structures with the functionality of the schema 39 

 support Data Structure Definition extension (i.e. to derive and extend a Data Structure 40 

Definition from another Data Structure Definition), thus supporting the definition of a 41 

related “set” of key families 42 

 distinguish between data attributes (which are described in a Data Structure Definition) 43 

from metadata attributes (which are described in a metadata structure definition) 44 

 attach data attributes to specific identifiable artefacts (formally this was supported by 45 

attachable artefact) 46 

Domain Category Scheme re-named Category Scheme to better reflect the multiple usage of 47 

this type of scheme (e.g. subject matter domain, reporting taxonomy). 48 

 49 

Concept Scheme enhanced to allow specification of the representation of the Concept. This 50 

specification is the default (or core) representation and can be overridden by a construct that 51 

uses it (such as a Dimension in a Data Structure Definition). 52 

 53 

Revision of cross sectional data set to reflect the functionality of the version 1.0 schema. 54 

 55 

Revision of Actors and Use Cases to reflect better the functionality supported. 56 

 57 

Version 2.1 – release April 2011 58 

 59 

The purpose of this revision is threefold: 60 

 61 

 To introduce requested changes to functionality  62 

 To align the model and syntax implementations more closely (note, however, that the 63 

model remains syntax neutral) 64 

 To correct errors in version 2.0 65 

 66 

SDMX Base 67 

Basic inheritance and patterns 68 

 69 

1. The following attributes are added to Maintainable: 70 

 71 

i) isExternalReference 72 

ii) structure URL 73 

iii) serviceURL 74 

 75 

2.  Added Nameable Artefact and moved the Name and Description associations from 76 

Identifiable Artefact to Nameable Artefact.  This allows an artefact to be identified (with 77 

id and urn) without the need to specify a Name. 78 

 79 

3. Removed any inheritance from Versionable Artefact with the exception of Maintainable 80 

Artefact – this means that only Maintainable objects can be versioned, and objects 81 

contained in a maintainable object cannot be independently versioned. 82 

 83 



 

 
 

   
 
 

 

4. Renamed MaintenanceAgency to Agency 0 this is its name in the schema and the 84 

URN. 85 

 86 

5. Removed abstract class Association as a subclass of Item (as these association types 87 

are not maintained in Item Schemes). Specific associations are modelled explicitly 88 

(e.g. Categorisation, ItemScheme, Item). 89 

 90 

6. Added ActionType to data types. 91 

 92 

7. Removed Coded Artefact and Uncoded Artefact and all subclasses (e.g. Coded Data 93 

Attribute and Uncoded Data Attribute) as the “Representation” is more complex than 94 

just a distinction between coded and uncoded. 95 

 96 

8. Added Representation to the Component. Removed association to Type. 97 

 98 

9. Removed concept role association (to Item) as roles are identified by a relationship to 99 

a Concept.  100 

 101 

10. Removed abstract class Attribute as both Data Attribute and Metadata Attribute have 102 

different properties. Data Attribute and Metadata Attribute inherit directly from 103 

Component. 104 

 105 

11. isPartial attribute added to Item Scheme to support partial Item Schemes (e.g. partial 106 

Code list). 107 

 108 

Representation 109 

 110 

1. Removed interval and enumeration from Facet. 111 

2. added facetValueType to Facet. 112 

3. Re-named DataType to facetValueType. 113 

4. Added observationalTimePeriod, inclusiveValueRange and exclusiveValueRange to 114 

facetValueType. 115 

5. Added ExtendedFacetType as a sub class of FacetType. This includes Xhtml as a 116 

facet type to support this as an allowed representation for a Metadata Attribute 117 

 118 

Organisations 119 

1. Organisation Role is removed and replaced with specific Organisation Schemes of 120 

Agency, Data Provider, Data Consumer, Organisation Unit.  121 

 122 

Mapping (Structure Maps) 123 

 124 

Updated Item Scheme Association as follows: 125 

 126 

1. Renamed to Item Scheme Map to reflect better the sub classes and relate better to the 127 

naming in the schema. 128 

 129 

2. Removed inheritance of Item Scheme Map from Item Scheme, and inherited directly 130 

from Nameable Artefact. 131 

 132 

3. Item Association inherits from Identifiable Artefact. 133 

  134 

4. Removed Property from the model as this is not supported in the schema. 135 



 

 
 

   
 
 

 

 136 

5. Removed association type between Item Scheme Map and Item, and Association and 137 

Item. 138 

 139 

6. Removed Association from the model. 140 

 141 

7. Made Item Association a sub class of Identifiable, was a sub class Item. 142 

 143 

8. Removed association to Property from both Item Scheme Map and Item. 144 

 145 

9. Added attribute alias to both Item Scheme Association and Item Association. 146 

 147 

10. Made Item Scheme Map and Item Association abstract. 148 

 149 

11. Added sub-classes to Item Scheme Map – there is a subclass for each type of Item 150 

Scheme Association (e.g. Code list Map). 151 

 152 

12. Added mapping between Reporting Taxonomy as this is an Item Scheme and can be 153 

mapped in the same way as other Item Schemes. 154 

 155 

13. Added Hybrid Code list Map and Hybrid Code Map to support code mappings between 156 

a Code list and a Hierarchical Code list. 157 

 158 

Mapping: Structure Map 159 

 160 

1. This is a new diagram. Essentially removed inherited /hierarchy association between 161 

the various maps, as these no longer inherit from Item, and replaced the associations 162 

to the abstract Maintainable and Versionable Artefact classes with the actual concrete 163 

classes. 164 

 165 

2. Removed associations between Code list Map, Category Scheme Map, and Concept 166 

Scheme Map and made this association to Item Scheme Map. 167 

 168 

3. Removed hierarchy of Structure Map. 169 

 170 

Concept 171 

 172 

1. Added association to Representation. 173 

 174 

Data Structure Definition 175 

 176 

1. Added Measure Dimension to support structure-specific renderings of the DSD. The 177 

Measure Dimension is associated to a Concept Scheme that specifies the individual 178 

measures that are valid. 179 

 180 

2. The three types of “Dimension”, - Dimension, Measure Dimension, Time Dimension – 181 

have a super class – Dimension Component 182 

 183 

3. Added association to a Concept that defines the role that the component (Dimension, 184 

Data Attribute, Measure Dimension) plays in the DSD. This replaces the Boolean 185 

attributes on the components. 186 

 187 



 

 
 

   
 
 

 

4. Added Primary Measure and removed this as role of Measure. 188 

 189 

5. Deleted the derived Data Structure Definition association from Data Structure 190 

Definition to itself as this is not supported directly in DSD. 191 

 192 

6. Deleted attribute GroupKeyDescriptor.isAttachmentConstraint and replaced with an 193 

association to an Attachment Constraint. 194 

 195 

7. Replaced association from Data Attribute to Attachable Artefact with association to 196 

Attribute Relationship. 197 

 198 

8. Added a set of classes to support Attribute Relationship. 199 

 200 

9. Renamed KeyDescriptor to DimensionDescriptor to better reflect its purpose. 201 

 202 

10. Renamed GroupKeyDescriptor to GroupDimensionDescriptor to better reflect its 203 

purpose. 204 

 205 

Code list 206 

 207 

1. CodeList classname changed to Codelist. 208 

 209 

2. Removed codevalueLength from Codelist as this is supported by Facet. 210 

 211 

3. Removed hierarchyView association between Code and Hierarchy as this association 212 

is not implemented. 213 

 214 

Metadata Structure Definition(MSD) 215 

 216 

1. Full Target Identifier, Partial Target Identifier, and Identifier Component are replaced by 217 

Metadata Target and Target Object. Essentially this eliminates one level of 218 

specification and reference in the MSD, and so makes the MSD more intuitive and 219 

easier to specify and to understand. 220 

 221 

2. Re-named Identifiable Object Type to Identifiable Object Target and moved to the MSD 222 

package. 223 

 224 

3. Added sub classes to Target Object as these are the actual types of object to which 225 

metadata can be attached. These are Identifiable Object Target (allows reporting of 226 

metadata to any identifiable object), Key Descriptor Values Target (allows reporting of 227 

metadata for a data series key,  Data Set Target (allows reporting of metadata to a 228 

data set), and Reporting Period Target (allows the metadata set to specify a reporting 229 

period). 230 

 231 

4. Allowed Target Object can have any type of Representation, this was restricted in 232 

version 2.0 to an enumerated representation in the model (but not in the schemas).  233 

 234 

5. Removed Object Type Scheme (as users cannot maintain their own list of object 235 

types), and replaced with an enumeration of Identifiable Objects. 236 

 237 

6. Removed association between Metadata Attribute and Identifiable Artefact and 238 

replaced this with an association between Report Structure and Metadata Target, and 239 



 

 
 

   
 
 

 

allowed one Report Structure to reference more than on Metadata Target. This 240 

allowing a single Report Structure to be defined for many object types. 241 

 242 

7. Added the ability to specify that a Metadata Attribute can be repeated in a Metadata 243 

Set and that a Metadata Attribute can be specified as “presentational” meaning that it 244 

is present for structural and presentational purposes, and will not have content in a 245 

Metadata Set. 246 

 247 

8. The  Representation of a Metadata Attribute uses Extended Facet (to support Xhtml). 248 

 249 

Metadata Set 250 

 251 

1. Added link to Data Provider - 0..1 but note that for metadata set registration this will be 252 

1. 253 

 254 

2. Removed Attribute Property as the underlying Property class has been removed. 255 

 256 

3. One Metadata Set is restricted to reporting metadata for a single Report Structure. 257 

 258 

4. The Metadata Report classes are re-structured and re-named to be consistent with the 259 

renaming and restructuring of the MSD. 260 

 261 

5. Metadata Attribute Value is renamed Reported Attribute to be consistent with the 262 

schemas. 263 

 264 

6. Deleted XML attribute and Contact Details from the inheritance diagram. 265 

 266 

Category Scheme 267 

1. Added Categorisation. Category no longer has a direct association to Dataflow and 268 

Metadataflow. 269 

 270 

2. Changed Reporting Taxonomy inheritance from Category Scheme to Maintainable 271 

Artefact. 272 

 273 

3. Added Reporting Category and associated this to Structure Usage. 274 

 275 

Data Set 276 

 277 

1. Removed the association to Provision Agreement from the diagram. 278 

 279 

2. Added association to Data Structure Definition.  This association was implied via the 280 

dataflow but this is optional in the implementation whereas the association to the Data 281 

Structure Definition is mandatory. 282 

 283 

3. Added attributes to Data Set. 284 

 285 

4. There is a single, unified, model of the Data Set which supports four types of data set: 286 

 287 

 Generic Data Set – for reporting any type of data series, including time series 288 

and what is sometimes known as “cross sectional data”. In this data set, the 289 

value of any one dimension (including the Time Dimension) can be reported 290 



 

 
 

   
 
 

 

with the observation (this must be for the same dimension for the entire data 291 

set) 292 

 293 

 Structure-specific Data Set – for reporting a data series that is specific to a 294 

DSD 295 

 296 

 Generic Time Series Data Set – this is identical to the Generic Data Set except 297 

it must contain only time series, which means that a value for the Time 298 

Dimension is reported with the Observation 299 

 300 

 Structure-specific Time Series Data Set - this is identical to the Structure-301 

specific Data Set except it must contain only time series, which means that a 302 

value for the Time Dimension is reported with the Observation. 303 

 304 

5. Removed Data Set as a sub class of Identifiable – but note that Data Set has a “setId” 305 

attribute. 306 

 307 

6. Added coded and uncoded variants of Key Value, Observation, and Attribute Value in 308 

order to show the relationship between the coded values in the data set and the 309 

Codelist in the Data Structure Definition.  310 

 311 

7. Made Key Value abstract with sub classes for coded, uncoded, measure 312 

(MeasureKeyValue)  ads time(TimeKeyValue) The Measure Key Value is associated to 313 

a Concept as it must take its identify from a Concept. 314 

 315 

XSDataSet 316 

1. This is removed and replaced with the single, unified data set model.  317 

 318 

Constraint 319 

 320 

1. Constraint is made Maintainable (was Identifiable). 321 

 322 

2. Added artefacts that better support and distinguish (from data) the constraints for 323 

metadata.  324 

 325 

3. Added Constraint Role to specify the purpose of the Constraint. The values are 326 

allowable content (for validation of sub set code code lists), and actual content (to 327 

specify the content of a data or metadata source). 328 

 329 

Process 330 

1. Removed inheritance from Item Scheme and Item: Process inherits directly from 331 

Maintainable and Process Step from Identifiable. 332 

 333 

2. Removed specialisation association between Transition and Association. 334 

 335 

3. Removed Transition Scheme - transitions are explicitly specified and not maintained as 336 

Items in a Item Scheme. 337 

 338 

4. Removed Expression and replaced with Computation. 339 

 340 

5. Transition is associated to Process Step and not Process itself. Therefore the source 341 

association to Process Step is removed. 342 



 

 
 

   
 
 

 

 343 

6. Removed Expressions as these are not implemented in the schemas. But note that the 344 

Transformations and Expressions model is retained, though it is not implemented in 345 

the schemas. 346 

 347 

Hierarchical Codelist 348 

 349 

1. Renamed HierarchicalCodeList to HierarchicalCodelist. 350 

2. This is re-modelled to reflect more accurately the way this is implemented: this is as an 351 

actual hierarchy rather than a set of relational associations from which the hierarchy 352 

can be derived.  353 

 354 

3. Code Association is re-named Hierarchical Code and the association type association 355 

to Code is removed (as these association types are not maintained in an Item 356 

Scheme). 357 

 358 

4. Hierarchical Code is made an aggregate of Hierarchy, and not of Hierarchical Codelist.  359 

 360 

5. Removed root node in the Hierarchy – there can be many top-level codes in 361 

Hierarchical Code. 362 

 363 

6. Added reference association between Hierarchical Code and Level to indicate the 364 

Level if the Hierarchy is a level based hierarchy. 365 

 366 

Provisioning and Registration 367 

1. Data Provider and Provision Agreement have an association to Datasource (was 368 

Query Datasource), as the association is to any of Query Datasource and Simple 369 

Datasource. 370 

 371 

2. Provision Agreement is made Maintainable and indexing attributes moved to 372 

Registration 373 

 374 

3. Registration has a registry assigned Id and indexing attributes. 375 

 376 

Version 2.1 (Revision 2.0) – release July 2020 377 

 378 

The package 13, previously named “Expressions and Transformations” is completely 379 

reformulated, renamed as “Validation and Transformation Language” and implemented also in 380 

the other Sections of the SDMX standards for actual use.   381 

 382 

The Item Scheme Pattern is amended to include the additional Item Schemes added in the 383 

Validation and Transformation Language. 384 

 385 



 

 
 

   
 
 

1 

1 Introduction 386 

This document is not normative, but provides a detailed view of the information model on 387 

which the normative SDMX specifications are based. Those new to the UML notation or to the 388 

concept of Data Structure Definitions may wish to read the appendixes in this document as an 389 

introductory exercise. 390 

1.1 Related Documents 391 

This document is one of two documents concerned with the SDMX Information Model. The 392 

complete set of documents is: 393 

 394 

SDMX SECTION 02 INFORMATION MODEL: UML CONCEPTUAL DESIGN (this document) 395 

 396 

This document comprises the complete definition of the information model, with the exception 397 

of the registry interfaces. It is intended for technicians wishing to understand the complete 398 

scope of the SDMX technical standards in a syntax neutral form. 399 

 400 

SDMX SECTION 05 REGISTRY SPECIFICATION: LOGICAL INTERFACES 401 

 402 

This document provides the logical specification for the registry interfaces, including 403 

subscription/notification, registration/submission of data and metadata, and querying. 404 

1.2 Modelling Technique and Diagrammatic Notes 405 

The modelling technique used for the SDMX Information Model (SDMX-IM) is the Unified 406 

Modelling Language (UML). An overview of the constructs of UML that are used in the SDMX-407 

IM can be found in the Appendix “A Short Guide to UML in the SDMX Information Model” 408 

 409 

UML diagramming allows a class to be shown with or without the compartments for one or 410 

both of attributes and operations (sometimes called methods). In this document the operations 411 

compartment is not shown as there are no operations. 412 

 413 

ExtendedFacet

facetType : ExtendedFacetType

facetValue : String

facetValueType : ExtendedFacetType
 

Figure 1 Class with operations suppressed 

 414 

In some diagrams for some classes the attribute compartment is suppressed even though 415 

there may be some attributes. This is deliberate and is done to aid clarity of the diagram. The 416 

method used is: 417 

 418 

 The attributes will always be present on the class diagram where the class is defined 419 

and its attributes and associations are defined.  420 

 On other diagrams, such as inheritance diagrams, the attributes may be suppressed 421 

from the class for clarity. 422 

 423 



 

 
 

   
 
 

2 

ExtendedFacet

 

Figure 2 Class with attributes also suppressed 

 424 

Note that, in any case, attributes inherited from a super class are not shown in the sub class. 425 

 426 

The following table structure is used in the definition of the classes, attributes, and 427 

associations. 428 

 429 

Class Feature Description 

ClassName   

 attributeName . 

 associationName  

 +roleName  

 430 

The content in the “Feature” column comprises or explains one of the following structural 431 

features of the class: 432 

 433 

 Whether it is an abstract class. Abstract classes are shown in italic Courier font 434 

 The superclass this class inherits from, if any 435 

 The sub classes of this class, if any 436 

 Attribute – the attributeName is shown in Courier font 437 

 Association – the associationName is shown in Courier font. If the association is 438 

derived from the association between super classes then the format is 439 

/associationName 440 

 Role – the +roleName is shown in Courier font 441 

The Description column provides a short definition or explanation of the Class or Feature. 442 

UML class names may be used in the description and if so, they are presented in normal font 443 

with spaces between words. For example the class ConceptScheme will be written as 444 

Concept Scheme. 445 

1.3 Overall Functionality 446 

1.3.1 Information Model Packages 447 

The SDMX Information Model (SDMX-IM) is a conceptual metamodel from which syntax 448 

specific implementations are developed. The model is constructed as a set of functional 449 

packages which assist in the understanding, re-use and maintenance of the model. 450 

 451 



 

 
 

   
 
 

3 

In addition to this, in order to aid understanding each package can be considered to be in one 452 

of three conceptual layers:  453 

 454 

 the SDMX Base layer comprises fundamental building blocks which are used by the 455 

Structural Definitions layer and the Reporting and Dissemination layer 456 

 the Structural Definitions layer comprises the definition of the structural artefacts 457 

needed to support data and metadata reporting and dissemination 458 

 the Reporting and Dissemination layer comprises the definition of the data and 459 

metadata containers used for reporting and dissemination 460 

In reality the layers have no implicit or explicit structural function as any package can make 461 

use of any construct in another package. 462 

1.3.2 Version 1.0 463 

In version 1.0 the metamodel supported the requirements for: 464 

 465 

 Data Structure Definition definition including (domain) category scheme, (metadata) 466 

concept scheme, and code list 467 

 468 

 Data and related metadata reporting and dissemination 469 

The SDMX-IM comprises a number of packages. These packages act as convenient 470 

compartments for the various sub models in the SDMX-IM. The diagram below shows the sub 471 

models of the SDMX-IM that were included in the version 1.0 specification. 472 

 473 
Figure 3: SDMX Information Model Version 1.0 package structure 474 

1.3.3 Version 2.0/2.1 475 

The version 2.0/2.1 model extends the functionality of version 1.0. principally in the area of 476 

metadata, but also in various ways to define structures to support data analysis by systems 477 

with knowledge of cube type structures such as OLAP1 systems. The following major 478 

constructs have been added at version 2.0/2.1 479 

 480 

 Metadata structure definition 481 

 Metadata set 482 

                                                      

1 OLAP: On line analytical processing 



 

 
 

   
 
 

4 

 Hierarchical Codelist 483 

 Data and Metadata Provisioning 484 

 Process 485 

 Mapping 486 

 Constraints 487 

 Constructs supporting the Registry 488 

Furthermore, the term Data Structure Definition replaces the term Key Family: as both of these 489 

terms are used in various communities they are synonymous. The term Data Structure 490 

Definition is used in the model and this document. 491 

 

Figure 4 SDMX Information Model Version 2.0/2.1 package structure 

Additional constructs that are specific to a registry based scenario can be found in the 492 

Specification of Registry Interfaces. For information these are shown on the diagram below 493 

and comprise: 494 

 495 

 Subscription and Notification 496 

 Registration 497 

 Discovery 498 

Note that the data and metadata required for registry functions are not confined to the registry, 499 

and the registry also makes use of the other packages in the Information Model. 500 

 501 
Figure 5: SDMX Information Model Version 2.0/2.1 package structure including the registry 502 



 

 
 

   
 
 

5 

2 Actors and Use Cases 503 

2.1 Introduction 504 

In order to develop the data models it is necessary to understand the functions to be 505 

supported resulting from the requirements definition. These are defined in a use case model. 506 

The use case model comprises actors and use cases and these are defined below. 507 

 508 

Actor 509 

“An actor defines a coherent set of roles that users of the system can play when interacting 510 

with it. An actor instance can be played by either an individual or an external system” 511 

 512 

Use case 513 

“A use case defines a set of use-case instances, where each instance is a sequence of 514 

actions a system performs that yields an observable result of value to a particular actor” 515 

 516 

The overall intent of the model is to support data and metadata reporting, dissemination, and 517 

exchange in the field of aggregated statistical data and related metadata. In order to achieve 518 

this, the model needs to support three fundamental aspects of this process: 519 

 520 

 Maintenance of structural and provisioning definitions 521 

 Data and reference metadata publishing (reporting), and consuming (using) 522 

 Access to data, reference metadata, and structural and provisioning definitions 523 

This document covers the first two aspects, whilst the document on the Registry logical model 524 

covers the last aspect. 525 



 

 
 

   
 
 

6 

2.2 Use Case Diagrams 526 

2.2.1 Maintenance of Structural and Provisioning Definitions 527 

2.2.1.1 Use cases 528 

 529 

Maintain Metadataflow

 Definition

Maintain Dataflow

 Definition

Maintain Category 

Scheme
Maintain Code

 List

Maintain Hierarchical

 Code Scheme

Maintain Data Structure Definition

Maintain Metadata 

Structure Definition

Maintain  

Structure Set

Maintenance 

Agency

Maintain Reporting

 Taxonomy

Maintain Maintenance

 Agency Scheme
Community 

Administrator
(from Actors)

Maintain Structure Definitions
Structural Definitions 

Maintenance Agency

Maintain Provision Agreement
Provisioning Definitions

 Maintenance Agency

MaintainConcepts

MaintainProcess

Maintain Organisation Scheme

Maintain Constraints

 

Figure 6 Use cases for maintaining data and metadata structural and provisioning definitions 

530 



 

 
 

   
 
 

7 

2.2.1.2 Explanation of the Diagram 531 

In order for applications to publish and consume data and reference metadata it is necessary 532 

for the structure and permitted content of the data and reference metadata to be defined and 533 

made available to the applications, as well as definitions that support the actual process of 534 

publishing and consuming. This is the responsibility of a Maintenance Agency. 535 

 536 

All maintained artefacts are maintained by a Maintenance Agency. For convenience the 537 

Maintenance Agency actor is sub divided into two actor roles: 538 

 539 

 maintaining structural definitions 540 

 maintaining provisioning definitions 541 

Whilst both these functions may be carried out by the same person, or at least by the same 542 

maintaining organization, the purpose of the definitions is different and so the roles have been 543 

differentiated: structural definitions define the format and permitted content of data and 544 

reference metadata when reported or disseminated, whilst provisioning definitions support the 545 

process of reporting and dissemination (who reports what to whom, and when). 546 

 547 

In a community based scenario where at least the structural definitions may be shared, it is 548 

important that the scheme of maintenance agencies is maintained by a responsible 549 

organization (called here the Community Administrator), as it is important that the Id of the 550 

Maintenance Agency is unique. 551 

2.2.1.3 Definitions 552 

Actor Use Case Description 

Community 

Administrator

 

 Responsible organisation 
that administers structural 
definitions common to the 
community as a whole. 

 

Maintain Maintenance

 Agency Scheme
 

Creation and maintenance of 
the top-level scheme of 
maintenance agencies for 
the Community. 

Maintenance Agency

 

 Responsible agency for 
maintaining structural 
artefacts such as code lists, 
concept schemes, Data 
Structure Definition structural 
definitions, metadata 
structure definitions, data 
and metadata provisioning 
artefacts such as provision 



 

 
 

   
 
 

8 

Actor Use Case Description 

agreement, and sub-
maintenance agencies. 
 
sub roles are: 

Structural Definitions 
Maintenance Agency 

Provisioning Definitions 
Maintenance Agency 

Structural Definitions 

Maintenance Agency

 

 Responsible for maintaining 
structural definitions. 

 

Maintain Structure Definitions

 

The maintenance of 
structural definitions. This 
use case has sub class use 
cases for each of the 
structural artefacts that are 
maintained. 

 

Maintain Code

 List
 

MaintainConcepts

 

 

Maintain Category 

Scheme
 

Maintain Data Structure Definition

 

Creation and maintenance of 
the Data Structure Definition, 
Metadata Structure 
Definition, and the supporting 
artefacts that they use, such 
as code list and concepts  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

   
 
 

9 

Actor Use Case Description 

Maintain Metadata 

Structure Definition
 

 

Maintain Hierarchical

 Code Scheme
 

Maintain Reporting

 Taxonomy
 

Maintain Organisation Scheme

 

MaintainProcess

 

Maintain Dataflow

 Definition
 

Maintain Metadataflow

 Definition
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This includes Agency, Data 
Provider, Data Consumer, 
and Organisation Unit 
Scheme 
 
 
 

Provisioning Definitions

 Maintenance Agency

 

 Responsible for maintaining 
data and metadata 
provisioning definitions.  



 

 
 

   
 
 

10 

Actor Use Case Description 

 

Maintain Provision Agreement

 

The maintenance of 
provisioning definitions.  

Figure 7: Table of Actors and Use Cases for Maintenance of Structural and Provisioning Definitions 553 

2.2.2 Publishing and Using Data and Reference Metadata 554 

2.2.2.1 Use Cases 555 

Publish Reference 

Metadata
Metadata Publisher

Data and metadata are published and 

used according to the specifications 

of the structural definitions which 

define format and permitted content, 

and the provisioning definitions which 

define the process of making the data 

and metadata available for 

consumption

Data Consumer

Metadata 

Consumer

Uses Data

Uses Reference Metadata

<<extend>>

Publish DataData Publisher

data source

metadata source

 556 
Figure 8: Actors and use cases for data and metadata publishing and consuming 557 

2.2.2.2 Explanation of the Diagram 558 

Note that in this diagram “publishing” data and reference metadata is deemed to be the same 559 

as “reporting” data and reference metadata. In some cases the act of making the data 560 

available fulfils both functions. Aggregated data is published and in order for the Data 561 

Publisher to do this and in order for consuming applications to process the data and reference 562 

metadata its structure must be known. Furthermore, consuming applications may also require 563 

access to reference metadata in order to present this to the Data Consumer so that the data is 564 

better understood. As with the data, the reference metadata also needs to be formatted in 565 

accordance with a maintained structure. The Data Consumer and Metadata Consumer cannot 566 



 

 
 

   
 
 

11 

use the data or reference metadata unless it is “published” and so there is a “data source” or 567 

“metadata source” dependency between the “uses” and “publish” use cases. 568 

 569 

In any data and reference metadata publishing and consuming scenario both the publishing 570 

and the consuming applications will need access to maintained Provisioning Definitions. 571 

These definitions may be as simple as who provides what data and reference metadata to 572 

whom, and when, or it can be more complex with constraints on the data and metadata that 573 

can be provided by a particular publisher, and, in a data sharing scenario where data and 574 

metadata are “pulled” from data sources, details of the source. 575 

2.2.2.3 Definitions 576 

Actor Use Case Description 

Data Publisher

 

 Responsible for publishing 
data according to a specified 
Data Structure Definition 
(data structure) definition, 
and relevant provisioning 
definitions. 

 

Publish Data

 

Publish a data set. This 
could mean a physical data 
set or it could mean to make 
the data available for access 
at a data source such as a 
database that can process a 
query. 

Data Consumer

 

 The user of the data. It may 
be a human consumer 
accessing via a user 
interface, or it could be an 
application such as a 
statistical production system. 

 

Uses Data

 

Use data that is formatted 
according to the structural 
definitions and made 
available according to the 
provisioning definitions. 
Data are often linked to 
metadata that may reside in 
a different location and be 
published and maintained 
independently. 



 

 
 

   
 
 

12 

Actor Use Case Description 

Metadata Publisher

 

 Responsible for publishing 
reference metadata 
according to a specified 
metadata structure definition, 
and relevant provisioning 
definitions. 

 

Publish Reference 

Metadata

 

Publish a reference 
metadata set. This could 
mean a physical metadata 
set or it could mean to make 
the reference metadata 
available for access at a 
metadata source such as a 
metadata repository that can 
process a query. 

Metadata Consumer

 

 The user of the reference 
metadata. It may be a human 
consumer accessing via a 
user interface, or it could be 
an application such as a 
statistical production or 
dissemination system. 

 

Uses Reference Metadata

 

Use reference metadata that 
is formatted according to the 
structural definitions and 
made available according to 
the provisioning definitions. 

 577 

578 



 

 
 

   
 
 

13 

3 SDMX Base Package 579 

3.1 Introduction 580 

The constructs in the SDMX Base package comprise the fundamental building blocks that 581 

support many of the other structures in the model. For this reason, many of the classes in this 582 

package are abstract (i.e. only derived sub-classes can exist in an implementation). 583 

 584 

The motivation for establishing the SDMX Base package is as follows: 585 

 586 

 it is accepted “Best Practise” to identify fundamental archetypes occurring in a model 587 

 identification of commonly found structures or “patterns” leads to easier understanding 588 

 identification of patterns encourages re-use 589 

Each of the class diagrams in this section views classes from the SDMX Base package from a 590 

different perspective.  There are detailed views of specific patterns, plus overviews showing 591 

inheritance between classes, and relationships amongst classes. 592 

 593 

594 



 

 
 

   
 
 

14 

3.2 Base Structures - Identification, Versioning, and Maintenance 595 

3.2.1 Class Diagram 596 

 597 

VersionableArtefact

version : String

validFrom : Date

validTo : Date

MaintainableArtefact

final : Boolean

isExternalReference : Boolean

serviceURL : URL

structureURL : URI

Agency

0..* 10..*

+maintainer

1

AnnotableArtefact

LocalisedString

label : String

locale : String

Annotation

id : String

title : String

type : String

url : String

0..1 0..*0..1 0..*

InternationalString
1 0..*1 0..*

0..1

0..1

0..1

+text

0..1

NameableArtefact

0..1

+description

0..1

1

+name

1

IdentifiableArtefact

urn : urn

uri : Url

id : String

 

Figure 9: SDMX Identification, Maintenance and Versioning 

 

3.2.2 Explanation of the Diagram 598 

3.2.2.1 Narrative 599 

This group of classes forms the nucleus of the administration facets of SDMX objects. They 600 

provide features which are reusable by derived classes to support horizontal functionality such 601 

as identity, versioning etc. 602 

 603 

All classes derived from the abstract class AnnotableArtefact may have Annotations (or 604 

notes): this supports the need to add notes to all SDMX-ML elements.  The Annotation is used 605 

to convey extra information to describe any SDMX construct. This information may be in the 606 

form of a URL reference and/or a multilingual text (represented by the association to 607 

InternationalString). 608 

 609 



 

 
 

   
 
 

15 

The IdentifiableArtefact is an abstract class that comprises the basic attributes 610 

needed for identification. Concrete classes based on IdentifiableArtefact all inherit the 611 

ability to be uniquely identified.  612 

 613 

The NamableArtefact is an abstract class that inherits from IdentifiableArtefact 614 

and in addition the +description and +name roles support multilingual descriptions and 615 

names for all objects based on NameableArtefact. The InternationalString supports 616 

the representation of a description in multiple locales (locale is similar to language but includes 617 

geographic variations such as Canadian French, US English etc.). The LocalisedString 618 

supports the representation of a description in one locale. 619 

 620 

VersionableArtefact is an abstract class which inherits from NameableArtefact and 621 

adds versioning ability to all classes derived from it. 622 

 623 

MaintainableArtefact further adds the ability for derived classes to be maintained via its 624 

association to Agency, and adds locational information (i.e. from where the object can be 625 

retrieved). It is possible to define whether the artefact is draft or final with the final attribute. 626 

 627 

The inheritance chain from AnnotableArtefact through to MaintainableArtefact 628 

allows SDMX classes to inherit the features they need, from simple annotation, through 629 

identity, naming, to versioning and maintenance. 630 

 631 

3.2.2.2 Definitions 632 

Class Feature Description 

AnnotableArtefact  Base inheritance sub 
classes are: 
IdentifiableArtefact 

Objects of classes derived 
from this can have attached 
annotations. 

Annotation  Additional descriptive 
information attached to an 
object. 

 id Identifier for the Annotation. 
It can be used to 
disambiguate one 
Annotation from another 
where there are several 
Annotations for the same 
annotated object. 

 title A title used to identify an 
annotation. 

 type Specifies how the annotation 
is to be processed. 

 url A link to external descriptive 
text. 

 +text An International String 
provides the multilingual text 
content of the annotation via 
this role. 



 

 
 

   
 
 

16 

Class Feature Description 

IdentifiableArtefact Superclass is 
AnnotableArtefact 

 
Base inheritance sub 
classes are: 
NameableArtefact 

Provides identity to all 
derived classes.  It also 
provides annotations to 
derived classes because it is 
a subclass of Annotable 
Artefact. 

 id The unique identifier of the 
object. 

 uri Universal resource identifier 
that may or may not be 
resolvable. 

 urn Universal resource name – 
this is for use in registries: all 
registered objects have a 
urn. 

NameableArtefact Superclass is 
IdentifiableArtefact 
Base inheritance sub 
classes are: 
VersionableArtefact 

Provides a Name and 
Description to all derived 
classes in addition to 
identification and 
annotations.  

 +description A multi-lingual description is 
provided by this role via the 
International String class. 

 +name A multi-lingual name is 
provided by this role via the 
International String class 

InternationalString  The International String is a 
collection of Localised 
Strings and supports the 
representation of text in 
multiple locales. 

LocalisedString  The Localised String 
supports the representation 
of text in one locale (locale is 
similar to language but 
includes geographic 
variations such as Canadian 
French, US English etc.). 

 label Label of the string. 

 locale The geographic locale of the 
string e.g French, Canadian 
French. 



 

 
 

   
 
 

17 

Class Feature Description 

VersionableArtefact Superclass is 
NameableArtefact 
Base inheritance sub 
classes are: 
MaintainableArtefact 

Provides versioning 
information for all derived 
objects. 

 version A version string following an 
agreed convention 

 validFrom Date from which the version 
is valid 

 validTo Date from which version is 
superceded 

MaintainableArtefact Inherits from 
VersionableArtefact 

 

An abstract class to group 
together primary structural 
metadata artefacts that are 
maintained by an Agency. 

 final Defines whether a 
maintained artefact is draft 
or final. 

 isExternalReference If set to “true” it indicates that 
the content of the object is 
held externally. 

 structureURL The URL of an SDMX-ML 
document containing the 
external object. 

 serviceURL The URL of an SDMX-
compliant web service from 
which the external object can 
be retrieved. 

 +maintainer Association to the 
Maintenance Agency 
responsible for maintaining 
the artefact. 

Agency  See section on 
“Organisations” 

 633 

634 



 

 
 

   
 
 

18 

3.3 Basic Inheritance 635 

3.3.1 Class Diagram– Basic Inheritance from the Base Inheritance Classes 636 

VersionableArtefact

version : String

validFrom : Date

validTo : Date

ItemScheme Constraint
(from Registry)

IdentifiableArtefact

urn : urn

uri : Url

id : String

Agency

MaintainableArtefact

final : Boolean

isExternalReference : Boolean

serviceURL : URL

structureURL : URI

10..*

+maintainer

10..*

ComponentList

Item

Component

ComponentMap
(from Mapping)

ProvisionAgreement
(from Registry)

AnnotableArtefact

LocalisedString

label : String

locale : String

Annotation

id : String

title : String

type : String

url : String

0..1 0..*0..1 0..*

NameableArtefact InternationalString
1 0..*1 0..*

0..1

0..1

0..1

+text

0..1

0..1
+description

0..1

1

+name

1

Process
(from Process)

Transition
(from Process)

ProcessStep
(from Process)

Hierarchy

HierarchicalCodelist
(from Code-List)

StructureUsage StructureSet
(from Mapping)

StructureMap
(from Mapping)

Structure

 637 
Figure 10: Basic Inheritance from the Base Structures 638 



 

 
 

   
 
 

19 

3.3.2 Explanation of the Diagram 639 

3.3.2.1 Narrative 640 

The diagram above shows the inheritance within the base structures. The concrete classes 641 

are introduced and defined in the specific package to which they relate. 642 

3.4 Data Types 643 

3.4.1 Class Diagram 644 

 645 

UsageStatus

mandatory : String

conditional : String

<<enumeration>>

FacetValueType

string

bigInteger

integer

long

short

decimal

float

double

boolean

uri

count

inclusiveValueRange

alpha

alphaNumeric

numeric

exclusiveValueRange

incremental

observationalTimePeriod

standardTimePeriod

basicTimePeriod

gregorianTimePeriod

gregorianYearMonth

gregorianDay

reportingTimePeriod

reportingYear

reportingSemester

reportingTrimester

reportingQuarter

reportingMonth

reportingWeek

reportingDay

dateTime

timesRange

month

monthDay

day

time

duration

keyValues

identifiableReference

dataSetReference

<<enumeration>>

FacetType

isSequence : Boolean

minLength : positiveInteger...

maxLength : positveInteger...

minValue : Decimal

maxValue : Decimal

startValue : Decimal

endValue : String

interval : Double

timeInterval : Duration

decimals : positiveInteger...

pattern : String

startTime : Date

endTime : Date

<<enumeration>>

ToValueType

name : String

description : String

id : String

<<enumeration>>

ActionType

delete : String

replace : String

append : String

information : String

<<enumeration>>

ExtendedFacetValueType

Xhtml : String

<<enumeration>>

ConstraintRoleType

allowableContent : String

actualContent : String

<<enumeration>>

 

Figure 11: Class Diagram of Basic Data Types 646 



 

 
 

   
 
 

20 

3.4.2 Explanation of the Diagram 647 

3.4.2.1 Narrative 648 

The UsageStatus enumeration is used as a data type on a DataAttribute where the 649 

value of the attribute in an instance of the class must take one of the values in the 650 

UsageStatus (i.e. mandatory, conditional). 651 

 652 

The FacetType and FacetValueType enumerations are used to specify the valid format of 653 

the content of a non enumerated Concept or the usage of a Concept when specified for use 654 

on a Component on a Structure (such as a Dimension in a 655 

DataStructureDefinition). The description of the various types can be found in the 656 

section on ConceptScheme (section 4.4). 657 

 658 

The ActionType enumeration is used to specify the action that a receiving system should 659 

take when processing the content that is the object of the action. It is enumerated as follows: 660 

 661 

 Append 662 

 663 

Data or metadata is an incremental update for an existing data/metadata set or the 664 

provision of new data or documentation (attribute values) formerly absent. If any of the 665 

supplied data or metadata is already present, it will not replace that data or metadata. This 666 

corresponds to the "Update" value found in version 1.0 of the SDMX Technical Standards 667 

 668 

 Replace 669 

 670 

Data/metadata is to be replaced, and may also include additional data/metadata to be 671 

appended. 672 

 673 

 Delete 674 

 675 

Data/Metadata is to be deleted. 676 

 677 

 Information 678 

 679 

Data and metadata are for information purposes. 680 

 681 

The IdentifiableObjectType enumeration is used to specify an object type whose class 682 

is a sub class of IdentifiableArtefact either directly of via NameableArtefact, 683 

VersionableArtefact or MaintainableArtefact. 684 
 685 

The ToValueType data type contains the attributes to support transformations defined in the 686 

StructureMap (see Section 9).  687 

 688 

The ConstraintRoleType data type contains the attributes that identify the purpose of a 689 

Constraint (allowableContent, actualContent).  690 



 

 
 

   
 
 

21 

3.5 The Item Scheme Pattern 691 

3.5.1 Context 692 

The Item Scheme is a basic architectural pattern that allows the creation of list schemes for 693 

use in simple taxonomies, for example.  694 

 695 

The ItemScheme is the basis for CategoryScheme, Codelist, ConceptScheme, 696 

ReportingTaxonomy, and OrganisationScheme. 697 

3.5.2 Class Diagram 698 

 

Figure 12 The Item Scheme Pattern 



 

 
 

   
 
 

22 

3.5.3 Explanation of the Diagram 699 

3.5.3.1 Narrative  700 

The ItemScheme is an abstract class which defines a set of Item (this class is also abstract). 701 

Its main purpose is to define a mechanism which can be used to create taxonomies which can 702 

classify other parts of the SDMX Information Model. It inherits from MaintainableArtefact 703 

which gives it the ability to be annotated, have identity, naming, versioning and be associated 704 

with an Agency. An example of a concrete class is a CategoryScheme. The associated 705 

Category are Items.  706 

 707 

In an exchange environment an ItemScheme is allowed to contain a sub-set of the Items in 708 

the maintained ItemScheme. If such an ItemScheme is disseminated with a sub-set of the 709 

Items then the fact that this is a sub-set is denoted by setting the isPartial attribute to 710 

“true”.  711 

 712 

A “partial” ItemScheme cannot be maintained independently in its partial form i.e. it cannot 713 

contain Items that are not present in the full ItemScheme and the content of any one Item 714 

(e.g. names and descriptions) cannot deviate from the content in the full ItemScheme. 715 

Furthermore, the Id of the ItemScheme where isPartial is set to “true” is the same as the 716 

Id of the full ItemScheme (maintenance agency, id, version). This is important as this is the Id 717 

that that is referenced in other structures (e.g. a Codelist referenced in a DSD) and this Id is 718 

always the same, regardless of whether the disseminated ItemScheme is the full 719 

ItemScheme or a partial ItemScheme. 720 

 721 

The purpose of a partial ItemScheme is to support the exchange and dissemination of a sub-722 

set ItemScheme without the need to maintain multiple ItemSchemes which contain the same 723 

Items. For instance, when a Codelist is used in a DataStructureDefinition it is 724 

sometimes the case that only a sub-set of the Codes in a Codelist are relevant. In this case 725 

a partial Codelist can be constructed using the Constraint mechanism explained later in this 726 

document. 727 

 728 

Item inherits from NameableArtefact which gives it the ability to be annotated and have 729 

identity, and therefore has id, uri and urn attributes, a name and a description in the form of an 730 

InternationalString. Unlike the parent ItemScheme, the Item itself is not a 731 

MaintainableArtefact and therefore cannot have an independent Agency (i.e. it implicitly 732 

has the same agency as the ItemScheme).  733 

 734 

The Item can be hierarchic and so one Item can have child Items. The restriction of the 735 

hierarchic association is that a child Item can have only parent Item. 736 

3.5.3.2 Definitions 737 

Class Feature Description 

ItemScheme 

 

Inherits from: 
MaintainableArtefact 

Direct sub classes are: 
CategoryScheme 
ConceptScheme 

Codelist 

The descriptive information 
for an arrangement or 
division of objects into 
groups based on 
characteristics, which the 
objects have in common. 



 

 
 

   
 
 

23 

Class Feature Description 

ReportingTaxonomy 

OrganisationScheme 

Transformation Scheme 

CustomTypeScheme 

NamePersonasationScheme 

RuletScheme 

VtlMappingScheme 
UserDefinedOperatorScheme 

 isPartial Denotes whether the Item 
Scheme contains a sub set 
of the full set of Items in the 
maintained scheme. 

 items Association to the Items in 
the scheme. 

Item 

 

Inherits from: 
NameableArtefact  

Direct sub classes are 
Category 

Concept 

Code 

ReportingCategory 

Organisation 

Transformation 

CustomType 

NamePersonlisation 

Ruleset 

VtlMapping 

UserDefinedOperator 

The Item is an item of 
content in an Item Scheme. 
This may be a node in a 
taxonomy or ontology, a 
code in a code list etc. 
Note that at the conceptual 
level the Organisation is not 
hierarchic 

 hierarchy This allows an Item 
optionally to have one or 
more child Items. 

3.6 The Structure Pattern 738 

3.6.1 Context 739 

The Structure Pattern is a basic architectural pattern which allows the specification of complex 740 

tabular structures which are often found in statistical data (such as Data Structure Definition, 741 

and Metadata Structure Definition). A Structure is a set of ordered lists.  A pattern to underpin 742 

this tabular structure has been developed, so that commonalities between these structure 743 

definitions can be supported by common software and common syntax structures. 744 



 

 
 

   
 
 

24 

3.6.2 Class Diagrams 745 

DataflowDefinition
(from DataStructureDefinition)

MetadataflowDefinition
(from Metadata-Structure-Defini tion)

AttributeDescriptor
(from DataStructureDefinition)

MeasureDescriptor
(from DataStructureDefinition)

ReportStructure
(from Metadata-Structure-Defini tion)

DataStructureDefinition
(from DataStructureDefinition)

MetadataAttribute
(from Metadata-Structure-Defini tion)

DataAttribute
(from DataStructureDefinition)

PrimaryMeasure
(from DataStructureDefinition)

Dimension
(from DataStructureDefinition)

TimeDimension
(from DataStructureDefinition)

MeasureDimension
(from DataStructureDefinition)

MetadataStructureDefinition
(from Metadata-Structure-Defini tion)

DataSetTarget
(from Metadata-Structure-Defini tion)

DimensionDescriptorValuesTarget
(from Metadata-Structure-Defini tion)

ReportPeriodTarget
(from Metadata-Structure-Defini tion)

IdentifiableObjectTarget
(from Metadata-Structure-Defini tion)

StructureUsage

Structure

0..*

1

0..*

1

structure

ComponentList

1..*

1

1..*

1

grouping

Component

1..*

1

1..*

1

components

Representation
0..10..1

localRepresentation

TargetObject
(from Metadata-Structure-Definition)

MetadataTarget
(from Metadata-Structure-Defini tion)

DimensionDescriptor
(from DataStructureDefinition)

DimensionComponent
(from DataStructureDefinition)

GroupDimensionDescriptor
(from DataStructureDefinition)

ConstraintContentTarget
(from Metadata-Structure-Defini tion)

 746 
Figure 13: The Structure Pattern 747 



 

 
 

   
 
 

25 

 748 

FacetType

isSequence : Boolean

minLength : positiveInteger...

maxLength : positveInteger...

minValue : Decimal

maxValue : Decimal

startValue : Decimal

endValue : String

interval : Double

timeInterval : Duration

decimals : positiveInteger...

pattern : String

startTime : Date

endTime : Date

<<enumeration>>

mutally 

exclusive

OrganisationScheme CategoryScheme

FacetValueType

string

bigInteger

integer

long

short

decimal

float

double

boolean

uri

count

inclusiveValueRange

alpha

alphaNumeric

numeric

exclusiveValueRange

incremental

observationalTimePeriod

standardTimePeriod

basicTimePeriod

gregorianTimePeriod

gregorianYearMonth

gregorianDay

reportingTimePeriod

reportingYear

reportingSemester

reportingTrimester

reportingQuarter

reportingMonth

reportingWeek

reportingDay

dateTime

timesRange

month

monthDay

day

time

duration

keyValues

identifiableReference

dataSetReference

<<enumeration>>

StructureUsage Structure
10..* 10..* structure

ComponentList

1

1..*

1

1..*

grouping

ExtendedFacet

facetType : ExtendedFacetValueType

facetValue : String

facetValueType : ExtendedFacetValueType

ConceptScheme

Component

1

1..*

1

1..*

components

Concept

0..10..1

conceptIdentity

Codelist

Facet

facetType : FacetType

facetValue : String

facetValueType : FacetValueType

Representation

0..*1

+nonEnumerated

0..*1

{Dimension

Data Attribute

Primary Measure

TargetObject

Concept

TimeDimension restricted

 to FacetType representing time

ReportingYearStartDate 

restric...

0..*

+nonEnumerated

0..*

{Metadata Attribute}

0..1

+enumerated

0..1

{Measure Dimension}

0..10..1

localRepresentation

0..10..1

coreRepresentation

0..1
+enumerated

0..1

{Dimension

Data Attribute

Metadata Attribute

Primary Measure

Concept}

ItemScheme

0..*

+itemSchemeFacet

0..*

0..1

+enumerated

0..1

{TargetObject}

ExtendedFacetValueType

Xhtml : String

<<enumeration>>

 

Figure 14: Representation within the Structure Pattern  



 

 
 

   
 
 

26 

 749 

3.6.3 Explanation of the Diagrams 750 

3.6.3.1 Narrative 751 

The Structure is an abstract class which contains a set of one or more ComponentList(s) 752 

(this class is also abstract). An example of a concrete Structure is 753 

DataStructureDefinition.   754 

 755 

The ComponentList is a list of one or more Component(s). The ComponentList has 756 

several concrete descriptor classes based on it: DimensionDescriptor, 757 

GroupDimensionDescriptor, MeasureDescriptor, and AttributeDescriptor of 758 

the DataStructureDefinition and MetadataTarget, and ReportStructure of the 759 

MetaDataStructureDefinition.  760 

 761 

The Component is contained in a ComponentList. The type of Component in a 762 

ComponentList is dependent on the concrete class of the ComponentList as follows: 763 

 764 

DimensionDescriptor: Dimension, Measure Dimension, Time Dimension 765 

GroupDimensionDescriptor: Dimension, Measure Dimension, Time 766 

Dimension 767 

MeasureDescriptor: PrimaryMeasure 768 

AttributeDescriptor: Data Attribute 769 

MetadataTarget: TargetObject and its sub classes 770 

ReportStructure: MetadataAttribute  771 

 772 

Each Component takes its semantic (and possibly also its representation) from a Concept in 773 

a ConceptScheme. This is represented by the conceptIdentity association to Concept.  774 

 775 

The Component may also have a localRepresentation, This allows a concrete class, 776 

such as Dimension, to specify its representation which is local to the Structure in which it 777 

is contained (for Dimension this will be DataStructureDefinition), and thus overrides 778 

any coreRepresentation specified for the Concept.  779 

 780 

The Representation can be enumerated or non-enumerated. The valid content of an 781 

enumerated representation is specified either in an ItemScheme which can be one of 782 

ConceptScheme, Codelist, OrganisationScheme, CategoryScheme, and 783 

ReportingTaxonomy. The valid content of a non-enumerated representation is specified as 784 

one or more Facet (for example these may specify minimum and maximum values). For a 785 

MetadataAttribute this is achieved by one of more Extended Facet which allows the 786 

additional representation of XHTML. 787 

 788 

The types of representation that are valid for specific components is expressed in the model 789 

as a constraint on the association viz: 790 

 791 

 The MeasureDimension must be enumerated and use a ConceptScheme 792 

 The Dimension (but not MeasureDimension), DataAttribute, 793 

PrimaryMeasure, MetadataAttribute may be enumerated and, if so, use a 794 

Codelist 795 



 

 
 

   
 
 

27 

 The TargetObject may be enumerated and, if so, can use any ItemScheme 796 

(Codelist, ConceptScheme, OrganisationScheme, CategoryScheme, 797 

ReportingTaxonomy) 798 

 The Dimension (but not MeasureDimension), Data Attribute, 799 

PrimaryMeasure, TargetObject may be non-enumerated and, if so, use one of 800 

more  Facet, note that the FacetValueType applicable to the TimeDimension 801 

is restricted to those that represent time 802 

 The MetadataAttribute may be non-enumerated and, if so, uses one or more 803 

ExtendedFacet 804 

 805 

The Structure may be used by one or more StructureUsage. An example of this in terms 806 

of concrete classes is that a DataflowDefinition (sub class of StructureUsage) may 807 

use a particular DataStructureDefinition (sub class of Structure), and similar 808 

constructs apply for the MetadataflowDefinition (link to 809 

MetadataStructureDefinition).  810 

3.6.3.2 Definitions 811 

Class Feature Description 

StructureUsage  

 

Inherits from: 
MaintainableArtefact 

Sub classes are: 
DataflowDefinition 

MetadataflowDefinition 

 

An artefact whose 
components are described 
by a Structure. In concrete 
terms (sub-classes) an 
example would be a 
Dataflow Definition which is 
linked to a given structure – 
in this case the Data 
Structure Definition. 

 structure An association to a 
Structure specifying the 
structure of the artefact.  

Structure Inherits from: 
MaintainableArtefact 

Sub classes are: 
DataStructure 

Definition 

MetadataStructure 

Definition 

Abstract specification of a 
list of lists to define a 
complex tabular structure. A 
concrete example of this 
would be statistical 
concepts, code lists, and 
their organisation in a data 
or metadata structure 
definition, defined by a 
centre institution, usually for 
the exchange of statistical 
information with its 
partners. 

 grouping A composite association to 
one or more component 
lists. 



 

 
 

   
 
 

28 

Class Feature Description 

ComponentList Inherits from: 
IdentifiableArtefact 

Sub classes are: 
DimensionDescriptor 

GroupDimension 

Descriptor 

MeasureDescriptor 

AttributeDescriptor 

MetadataTarget 

ReportStructure 

An abstract definition of a 
list of components.  A 
concrete example is a 
Dimension Descriptor which 
defines the list of 
Dimensions in a Data 
Structure Definition.   

 components An aggregate association to 
one or more components 
which make up the list. 

Component Inherits from: 
IdentifiableArtefact  

 
Sub classes are: 
PrimaryMeasure 

DataAttribute 

DimensionComponent 

TargetObject 

MetadataAttribute 

A component is an abstract 
super class used to define 
qualitative and quantitative 
data and metadata items 
that belong to a Component 
List and hence a Structure.  
Component is refined 
through its sub-classes. 

 conceptIdentity Association to a Concept in 
a Concept Scheme that 
identifies and defines the 
semantic of the Component 

 localRepresentation Association to the 
Representation of the 
Component if this is 
different from the 
coreRepresentation of the 
Concept which the 
Component uses 
(ConceptUsage) 

Representation  The allowable value or 
format for Component or 
Concept 



 

 
 

   
 
 

29 

Class Feature Description 

 +enumerated Association to an 
enumerated list that 
contains the allowable 
content for the Component 
when reported in a data or 
metadata set. The type of 
enumerated list that is 
allowed for any concrete 
Component is shown in the 
constraints on the 
association (e.g. Identifier 
Component can have any 
of the sub classes of Item 
Scheme, whereas Measure 
Dimension must have a 
Concept Scheme). 

 +nonEnumerated Association to a set of 
Facets that define the 
allowable format for the 
content of the Component 
when reported in a data or 
metadata set. 

Facet  Defines the format for the 
content of the Component 
when reported in a data or 
metadata set.  

 facetType A specific content type 
which is constrained by the 
FacetType enumeration  

 facetValueType The format of the value of a 
Component when reported 
in a data or metadata set. 
This is contrained by the 
FacetValueType 
enumeration. 

 +itemSchemeFacet Defines the format of the 
identifiers in an Item 
Scheme used by a 
Component. Typically this 
would define the number of 
characters (length) of the 
identifier.  

ExtendedFacet  This has the same function 
as Facet but allows 
additionally an XHTML 
representation. This is 
constrained for use with a 
Metadata Attribute 

 812 



 

 
 

   
 
 

30 

The specification of the content and use of the sub classes to ComponentList and  813 

Component can be found in the section in which they are used 814 

(DataStructureDefinition and MetadataStructureDefinition) 815 

3.6.3.3 Representation Constructs 816 

The majority of SDMX FacetValueTypes are compatible with those found in XML Schema, 817 

and have equivalents in most current implementation platforms: 818 

 819 

SDMX Facet Value 
Type 

XML Schema Data 
Type 

.NET Framework Type Java Data Type 
 

String xsd:string System.String java.lang.String 

Big Integer xsd:integer System.Decimal java.math.BigInteger 

Integer xsd:int System.Int32 int 

Long xsd.long System.Int64 long 

Short xsd:short System.Int16 short 

Decimal xsd:decimal System.Decimal java.math.BigDecimal 

Float xsd:float System.Single float 

Double xsd:double System.Double double 

Boolean xsd:boolean System.Boolean boolean 

URI xsd:anyURI System.Uri Java.net.URI or 

java.lang.String 

DateTime xsd:dateTime System.DateTime javax.xml.datatype.XMLG

regorianCalendar 

Time xsd:time System.DateTime javax.xml.datatype.XMLG

regorianCalendar 

GregorianYear xsd:gYear System.DateTime javax.xml.datatype.XMLG

regorianCalendar 

GregorianMonth xsd:gYearMonth System.DateTime javax.xml.datatype.XMLG

regorianCalendar 

GregorianDay xsd:date System.DateTime javax.xml.datatype.XMLG

regorianCalendar 

Day, MonthDay, 

Month  

xsd:g* System.DateTime javax.xml.datatype.XMLG

regorianCalendar 

Duration xsd:duration  System.TimeSpan javax.xml.datatype.Dura

tion 

 820 

There are also a number of SDMX data types which do not have these direct 821 

correspondences, often because they are composite representations or restrictions of a 822 

broader data type. These are detailed in Section 6 of the standards. 823 

 824 

The Representation is composed of Facets, each of which conveys characteristic 825 

information related to the definition of a value domain. Often a set of Facets are needed to 826 

convey the required semantic. For example, a sequence is defined by a minimum of two 827 

Facets: one to define the start value, and one to define the interval.  828 

 829 

Facet Type Explanation 

isSequence The isSequence facet indicates whether the values are intended to be 
ordered, and it may work in combination with the interval, startValue, and 
endValue facet or the timeInterval, startTime, and endTime, facets. If this 
attribute holds a value of true, a start value or time and a numeric or time 
interval must supplied. If an end value is not given, then the sequence 
continues indefinitely. 

interval The interval attribute specifies the permitted interval (increment) in a 



 

 
 

   
 
 

31 

4 Specific Item Schemes 830 

4.1 Introduction 831 

The structures that are an arrangement of objects into hierarchies or lists based on 832 

characteristics, and which are maintained as a group inherit from ItemScheme. These 833 

concrete classes are: 834 

 835 

 Codelist 836 

sequence. In order for this to be used, the isSequence attribute must 
have a value of true. 

startValue The startValue facet is used in conjunction with the isSequence and 
interval facets (which must be set in order to use this facet). This facet is 
used for a numeric sequence, and indicates the starting  point of the 
sequence. This value is mandatory for a numeric sequence to be 
expressed. 

endValue The endValue facet is used in conjunction with the isSequence and 
interval facets (which must be set in order to use this facet). This facet is 
used for a numeric sequence, and indicates that ending point (if any) of 
the sequence. 

timeInterval The timeInterval facet indicates the permitted duration in a time 
sequence. In order for this to be used, the isSequence facet must have a 
value of true. 

startTime The startTime facet is used in conjunction with the isSequence and 
timeInterval facets (which must be set in order to use this facet). This 
attribute is used for a time sequence, and indicates the start time of the 
sequence. This value is mandatory for a time sequence to be expressed. 

endTime The endTime facet is used in conjunction with the isSequence and 
timeInterval facets (which must be set in order to use this facet). This 
facet is used for a time sequence, and indicates that ending point (if any) 
of the sequence. 

minLength The minLength facet specifies the minimum and length of the value in 
characters. 

maxLength The maxLength facet specifies the maximum length of the value in 
characters. 

minValue The minValue facet is used for inclusive and exclusive ranges, indicating 
what the lower bound of the range is. If this is used with an inclusive 
range, a valid value will be greater than or equal to the value specified 
here. If the inclusive and exclusive data type is not specified (e.g. this 
facet is used with an integer data type), the value is assumed to be 
inclusive. 

maxValue The maxValue facet is used for inclusive and exclusive ranges, indicating 
what the upper bound of the range is. If this is used with an inclusive 
range, a valid value will be less than or equal to the value specified here. 
If the inclusive and exclusive data type is not specified (e.g. this facet is 
used with an integer data type), the value is assumed to be inclusive. 

decimals The decimals facet indicates the number of characters allowed after the 
decimal separator. 

pattern The pattern attribute holds any regular expression permitted in the 
implementation syntax (e.g. W3C XML Schema). 



 

 
 

   
 
 

32 

 ConceptScheme 837 

 CategoryScheme 838 

 AgencyScheme, DataProviderScheme, DataConsumerScheme, 839 

OrganisationUnitScheme which all inherit from the abstract class 840 

OrganisationScheme 841 

 Reporting Taxonomy 842 

4.2 Inheritance View 843 

The inheritance and relationship views are shown together in each of the diagrams in the 844 

specific sections below.  845 



 

 
 

   
 
 

33 

4.3 Codelist 846 

4.3.1 Class Diagram 847 

 848 

VersionableArtefact

version : String

validFrom : Date

validTo : Date

MaintainableArtefact

final : Boolean

isExternalReference : Boolean

serviceURL : URL

structureURL : URI

Code

ItemScheme

isPartial : Boolean

Item

0..*0..*

items

0..*

1

+child

0..*

hierarchy

+parent

1

IdentifiableArtefact

urn : urn

uri : Url

id : String

InternationalString NameableArtefact0..1

+description

0..1

1

+name

1

Codelist

 

Figure 15 Class diagram of the Codelist 

 849 



 

 
 

   
 
 

34 

4.3.2 Explanation of the Diagram 850 

4.3.2.1 Narrative 851 

The Codelist inherits from the ItemScheme and therefore has the following attributes: 852 

 853 

 id 854 

 uri 855 

 urn 856 

 version 857 

 validFrom 858 

 validTo 859 

 isExternalReference 860 

 serviceURL 861 

 structureURL 862 

 final 863 

 isPartial 864 

The Code inherits from Item and has the following attributes: 865 

 866 

 id 867 

 uri 868 

 urn 869 

Both Codelist and Code have the association to InternationalString to support a 870 

multi-lingual name, an optional multi-lingual description, and an association to Annotation to 871 

support notes (not shown).  872 

 873 

Through the inheritance the Codelist comprise one or more Codes, and the Code itself can 874 

have one or more child Codes in the (inherited) hierarchy association. Note that a child 875 

Code can have only one parent Code in this association. A more complex 876 

HierachicalCodelist which allow multiple parents and multiple hierarchies is described 877 

later. 878 

 879 

A partial Codelist (where isPartial is set to “true”) is identical to a Codelist and 880 

contains the Code and associated names and descriptions, just as in a normal code list. 881 

However, its content is a sub set of the full Codelist. The way this works is described in 882 

section 3.5.3.1 on ItemScheme. 883 

 884 



 

 
 

   
 
 

35 

4.3.2.2 Definitions 885 

Class Feature Description 

Codelist Inherits from 
ItemScheme 

A list from which some 
statistical concepts (coded 
concepts) take their 
values.  

Code Inherits from 
Item 

A language independent 
set of letters, numbers or 
symbols that represent a 
concept whose meaning is 
described in a natural 
language. 

 /hierarchy Associates the parent and 
the child codes. 

 886 



 

 
 

   
 
 

36 

4.4 Concept Scheme and Concepts 887 

4.4.1 Class Diagram - Inheritance 888 

 889 

InternationalString

Concept

ConceptScheme

VersionableArtefact

version : String

validFrom : Date

validTo : Date

ItemScheme

isPartial : Boolean

Item

0..*1

+child

0..*

hierarchy

+parent 1

0..*0..*

items

MaintainableArtefact

final : Boolean

isExternalReference : Boolean

serviceURL : URL

structureURL : URI

NameableArtefact

0..1 +description0..1

1 +name1

IdentifiableArtefact

urn : urn

uri : Url

id : String

 

Figure 16 Class diagram of the Concept Scheme 



 

 
 

   
 
 

37 

4.4.2 Explanation of the Diagram 890 

The ConceptScheme inherits from the ItemScheme and therefore has the following 891 

attributes: 892 

 893 

 id 894 

 uri 895 

 urn 896 

 version 897 

 validFrom 898 

 validTo 899 

 isExternalReference 900 

 registryURL 901 

 structureURL 902 

 repositoryURL 903 

 final 904 

 isPartial 905 

Concept inherits from Item and has the following attributes: 906 

 907 

 id 908 

 uri 909 

 urn 910 

Through the inheritance from NameableArtefact both ConceptScheme and Concept 911 

have the association to InternationalString to support a multi-lingual name, an optional 912 

multi-lingual description, and an association to Annotation to support notes (not shown). 913 

 914 

Through the inheritance from ItemScheme the ConceptScheme comprise one or more 915 

Concepts, and the Concept itself can have one or more child Concepts in the (inherited) 916 

hierarchy association. Note that a child Concept can have only one parent Concept in 917 

this association. 918 

 919 

A partial ConceptScheme (where isPartial is set to “true”) is identical to a 920 

ConceptScheme and contains the Concept and associated names and descriptions, just as 921 

in a normal ConceptScheme. However, its content is a sub set of the full ConceptScheme. 922 

The way this works is described in section 3.5.3.1 on ItemScheme. 923 



 

 
 

   
 
 

38 

 924 

4.4.3 Class Diagram - Relationship 925 

0..*

ConceptScheme

Representation
(from SDMX-Base)

ISOConceptReference

conceptAgency : String

conceptschemeID : String

conceptID : String

Concept

1

0..*

1

/items

0..*

1

+child

0..*

/hierarchy

+parent

1

0..10..1

coreRepresentation

0..1

+ISOConcept

0..1

 926 
Figure 17: Relationship class diagram of the Concept Scheme 927 

4.4.4 Explanation of the diagram 928 

4.4.4.1 Narrative 929 

The ConceptScheme can have one or more Concepts. A Concept can have zero or more 930 

child Concepts, thus supporting a hierarchy of Concepts. Note that a child Concept can 931 

have only one parent Concept in this association. The purpose of the hierarchy is to relate 932 

concepts that have a semantic relationship: for example a Reporting_Country and 933 

Vis_a_Vis_Country may both have Country as a parent concept, or a CONTACT may have a 934 

PRIMARY_CONTACT as a child concept. It is not the purpose of such schemes to define 935 

reporting structures: these reporting structures are defined in the 936 

MetadataStructureDefinition. 937 

 938 

The Concept can be associated with a coreRepresentation. The 939 

coreRepresentation is the specification of the format and value domain of the Concept 940 

when used on a structure like a DataStructureDefinition or a 941 

MetadataStructureDefinition, unless the specification of the Representation is 942 

overridden in the relevant structure definition. In a hierarchical ConceptScheme the 943 



 

 
 

   
 
 

39 

Representation is inherited from the parent Concept unless overridden at the level of the 944 

child Concept. 945 

 946 

Note that the ConceptScheme is used as the Representation of the MeasureDimension 947 

in a DataStructureDefinition (see 5.3.2). Each Concept in this ConceptScheme is a 948 

specific measure, each of which can be given a coreRepresentation. Thus the valid 949 

format of the observation for each measure when reported in a data set for the 950 

MeasureDimension is specified in the Concept. This allows a different format for each 951 

measure. This is covered in more detail in 5.3. 952 

 953 

The Representation is documented in more detail in the section on the SDMX Base. 954 

 955 

The Concept may be related to a concept described in terms of the ISO/IEC 11179 standard. 956 

The ISOConceptReference identifies this concept and concept scheme in which it is 957 

contained.  958 

4.4.4.2 Definitions 959 

Class Feature Description 

ConceptScheme 

 

Inherits from 
ItemScheme 

The descriptive 
information for an 
arrangement or division 
of concepts into groups 
based on characteristics, 
which the objects have in 
common. 

Concept Inherits from 
Item 

A concept is a unit of 
knowledge created by a 
unique combination of 
characteristics. 

 /hierarchy Associates the parent 
and the child concept. 

 coreRepresentation Associates a 
Representation. 

 +ISOConcept Association to an ISO 
concept reference. 

ISOConceptReference  The identity of an ISO 
concept definition. 

 conceptAgency The maintenance agency 
of the concept scheme 
containing the concept. 

 conceptSchemeID The identifier of the 
concept scheme. 

 conceptID The identifier of the 
concept. 

 960 



 

 
 

   
 
 

40 

4.5 Category Scheme 961 

4.5.1 Context 962 

This package defines the structure that supports the definition of and relationships between 963 

categories in a category scheme. It is similar to the package for concept scheme. An example 964 

of a category scheme is one which categorises data – sometimes known as a subject matter 965 

domain scheme or a data category scheme. Importantly, as will be seen later, the individual 966 

nodes in the scheme (the “categories”) can be associated to any set of 967 

IdentiableArtefacts in a Categorisation.  968 

4.5.2 Class diagram - Inheritance 969 

Item

MaintainableArtefact

final : Boolean

isExternalReference : Boolean

serviceURL : URL

structureURL : URI

VersionableArtefact

version : String

validFrom : Date

validTo : Date

IdentifiableArtefact

urn : urn

uri : Url

id : String

ItemScheme

isPartial : Boolean

0..*
1

+child

0..*

hierarchy

+parent 1

0..*0..*

items

Category

CategoryScheme

InternationalString NameableArtefact

0..1 +description0..1

1 +name1

 

Figure 18 Inheritance Class diagram of the Category Scheme 



 

 
 

   
 
 

41 

 970 

4.5.3 Explanation of the Diagram 971 

4.5.3.1 Narrative 972 

The categories are modelled as a hierarchical ItemScheme. The CategoryScheme inherits 973 

from the ItemScheme and has the following attributes: 974 

 975 

 id 976 

 uri 977 

 urn 978 

 version 979 

 validFrom 980 

 validTo 981 

 isExternalReference 982 

 structureURL 983 

 serviceURL 984 

 final 985 

 isPartial 986 

Category inherits from Item and has the following attributes: 987 

 988 

 id 989 

 uri 990 

 urn 991 

Both CategoryScheme and Category have the association to InternationalString to 992 

support a multi-lingual name, an optional multi-lingual description, and an association to 993 

Annotation to support notes (not shown on the model). 994 

 995 

Through the inheritance the CategoryScheme comprise one or more Categorys, and the 996 

Category itself can have one or more child Category in the (inherited) hierarchy 997 

association. Note that a child Category can have only one parent Category in this 998 

association. 999 

 1000 

A partial CategoryScheme (where isPartial is set to “true”) is identical to a 1001 

CategoryScheme and contains the Category and associated names and descriptions, just 1002 



 

 
 

   
 
 

42 

as in a normal CategoryScheme. However, its content is a sub set of the full 1003 

CategoryScheme. The way this works is described in section 3.5.3.1 on ItemScheme. 1004 

 1005 

4.5.4 Class diagram - Relationship 1006 

MaintainableArtefact

CategoryScheme

Category

1..*1..*

/items

1 0..*

+parent

1

/hierarchy

+child

0..*

Categorisation

0..* 10..*

+categorisedBy

1

IdentifiableArtefact

0..*

1

0..*

+categorisedArtefact

1

 1007 
Figure 19: Relationship Class diagram of the Category Scheme 1008 

The CategoryScheme can have one or more Categorys. The Category is Identifiable and 1009 

has identity information. A Category can have zero or more child Categorys, thus 1010 

supporting a hierarchy of Categorys. Any IdentifiableArtefact can be 1011 

+categorisedBy a Category. This is achieved by means of a Categorisation. Each 1012 

Categorisation can associate one IdentifiableArtefact with one Category. 1013 

Multiple Categorisations can be used to build a set of IdentifiableArtefacts that 1014 

are +categorisedBy the same Category. Note that there is no navigation (i.e. no 1015 

embedded reference) to the Categorisation from the Category. From an implementation 1016 

perspective this is necessary as Categorisation has no affect on the versioning of either 1017 

the Category or the IdentifiableArtefact. 1018 

4.5.4.1 Definitions 1019 

Class Feature Description 

CategoryScheme 

 

Inherits from 
ItemScheme 

The descriptive 
information for an 
arrangement or division of 
categories into groups 
based on characteristics, 
which the objects have in 
common. 

 /items Associates the 
categories. 



 

 
 

   
 
 

43 

Class Feature Description 

Category 

 

Inherits from 
Item 

An item at any level within 
a classification, typically 
tabulation categories, 
sections, subsections, 
divisions, subdivisions, 
groups, subgroups, 
classes and subclasses. 

 /hierarchy Associates the parent and 
the child Category. 

Categorisation Inherits from 

MaintainableArtefact 

Associates an 
IdentifableArtefact with a 
Category. 

 +categorisedArtefact Associates the 
IdentifableArtefact. 

 +categorisedBy Associates the Category. 



 

 
 

   
 
 

44 

4.6 Organisation Scheme 1020 

4.6.1 Class Diagram 1021 

 1022 

MaintainableArtefact

VersionableArtefact

IdentifiableArtefact

NameableArtefact

DataConsumerDataConsumerScheme

0..*0..*

/items {data consumers}

DataProvider

DataProviderScheme 0..*0..*

/items {data providers}

AgencyAgencyScheme

0..*0..*

/items {agencies}

ItemScheme

isPartial : Boolean

Item

0..*

1

+child

0..*
hierarchy

+parent

1

0..*0..*

items

OrganisationUnit

0..*

1

+child

0..*

/hierarchy

+parent

1

OrganisationUnitScheme

0..*0..*

/items

{organisatoin units}

Contact

name : String

organisationUnit : String

telephone : String

responsibility : InternationalString

fax : String

email : String

X400 : String

uri : URL

OrganisationScheme Organisation

1

0..*

1

+contact

0..*

0..*0..*

/items

0..*+child

+parent

/hierarchy

{no hierarchy}{no hierarchy} {no hierarchy}

0..*

 

Figure 20 The Organisation Scheme class diagram 

4.6.2 Explanation of the Diagram 1023 

4.6.2.1 Narrative 1024 

The OrganisationScheme is abstract. It contains Organisation which is also abstract. 1025 

The Organisation can have child Organisation. 1026 

 1027 

The OrganisationScheme can be one of four types: 1028 

 1029 

1. AgencyScheme – contains Agency which is restricted to a flat list of agencies (i.e. 1030 

there is no hierarchy). Note that the SDMX system of (Maintenance) Agency can be 1031 

hierarchic and this is explained in more detail in the separate document “Technical 1032 

Notes”. 1033 

2. DataProviderScheme – contains DataProvider which is restricted to a flat list of 1034 

agencies (i.e. there is no hierarchy). 1035 



 

 
 

   
 
 

45 

3. DataConsumerScheme – contains DataConsumer which is restricted to a flat list of 1036 

agencies (i.e. there is no hierarchy). 1037 

4. OrganisationUnitScheme – contains OrganisationUnit which does inherit the 1038 

/hierarchy association from Organisation. 1039 

 1040 

Reference metadata can be attached to the Organisation by means of the metadata 1041 

attachment mechanism. This mechanism is explained in the Reference Metadata section of 1042 

this document (see section 7). This means that the model does not specify the specific 1043 

reference metadata that can be attached to a DataProvider, 1044 

DataConsumer,OrganisationUnit or Agency, except for limited Contact information. 1045 

 1046 

A partial OrganisationScheme (where isPartial is set to “true”) is identical to a 1047 

OrganisationScheme and contains the Organisation and associated names and 1048 

descriptions, just as in a normal OrganisationScheme However, its content is a sub set of 1049 

the full OrganisationScheme. The way this works is described in section 3.5.3.1 on 1050 

ItemScheme. 1051 

 1052 

4.6.2.2 Definitions 1053 

Class Feature Description 

OrganisationScheme Abstract Class 
Inherits from 
ItemScheme 

Sub classes are: 
AgencyScheme 

DataProviderScheme 

DataConsumerScheme 
OrganisationUnitScheme 

A maintained collection 
of Organisations. 

 /items Association to the 
Organisations in the 
scheme. 

Organisation Inherits from 
Item 

Sub classes are: 
Agency 

DataProvider 

DataConsumer 

OrganisationUnit 

An organisation is a 
unique framework of 
authority within which a 
person or persons act, 
or are designated to act, 
towards some purpose. 

 +contact Association to the 
Contact information. 

 /hierarchy Association to child 
Organisations. 



 

 
 

   
 
 

46 

Class Feature Description 

Contact  An instance of a role of 
an individual or an 
organization (or 
organization part or 
organization person) to 
whom an information 
item(s), a material 
object(s) and/or 
person(s) can be sent to 
or from in a specified 
context. 

 name The designation of the 
Contact person by a 
linguistic expression. 

 organisationUnit The designation of the 
organisational structure 
by a linguistic 
expression, within which 
Contact person works. 

 responsibility The function of the 
contact person with 
respect to the 
organisation role for 
which this person is the 
Contact. 

 telephone The telephone number 
of the Contact. 

 fax The fax number of the 
Contact. 

 email The Internet e-mail 
address of the Contact. 

 X400 The X400 address of 
the Contact. 

 uri The URL address of the 
Contact. 

AgencyScheme  A maintained collection 
of Maintenace 
Agencies. 

 /items Association to the 
Maintenance Agency in 
the scheme. 

DataProviderScheme  A maintained collection 
of Data Providers. 

 /items Association to the Data 
Providers in the 
scheme. 

DataConsumerScheme  A maintained collection 
of Data Consumers. 



 

 
 

   
 
 

47 

Class Feature Description 

 /items Association to the Data 
Consumers in the 
scheme. 

OrganisationUnitScheme  A maintained collection 
of Organisation Units. 

 /items Association to the 
Organisation Units in 
the scheme. 

Agency Inherits from 
Organisation 

Responsible agency for 
maintaining artefacts 
such as statistical 
classifications, 
glossaries, structural 
metadata such as Data 
and Metadata Structure 
Definitions, Concepts 
and Code lists. 

DataProvider Inherits from 
Organisation 

An organisation that 
produces data or 
reference metadata.  

DataConsumer Inherits from 
Organisation 

An organisation using 
data as input for further 
processing. 

OrganisationUnit Inherits from 
Organisation 

A designation in the 
organisational structure. 

 /hierarchy Association to child 
Organisation Units 

 1054 



 

 
 

   
 
 

48 

4.7 Reporting Taxonomy 1055 

4.7.1 Class Diagram 1056 

MaintainableArtefact

final : Boolean

isExternalReference : Boolean

serviceURL : URL

structureURL : URI

ReportingTaxonomy

VersionableArtefact

version : String

validFrom : Date

validTo : Date

ItemScheme

isPartial : Boolean

Item
0..*0..*

items

0..*

1

+child0..*

hierarchy

+parent

1

StructureUsage Structure

10..* 10..*

structure

ReportingCategory

0..*

+flow

0..* 0..*

+structure

0..*

DataStructureDefinition
(from DataStructureDefinition)

DataflowDefinition
(from DataStructureDefinition)

MetadataStructureDefinition
(from Metadata-Structure-Defini tion)

MetadataflowDefinition
(from Metadata-Structure-Defini tion)

IdentifiableArtefact

InternationalString NameableArtefact
0..1 +description0..1

1 +name1

 1057 
Figure 21: Class diagram of the Reporting Taxonomy 1058 

4.7.2 Explanation of the Diagram 1059 

4.7.2.1 Narrative 1060 

In some data reporting environments, and in particular those in primary reporting, a report may 1061 

comprise a variety of heterogeneous data, each described by a different Structure. Equally, 1062 

a specific disseminated or published report may also comprise a variety of heterogeneous 1063 

data. The definition of the set of linked sub reports is supported by the ReportingTaxonomy. 1064 

 1065 

The ReportingTaxonomy is a specialised form of ItemScheme. Each 1066 

ReportingCategory of the ReportingTaxonomy can link to one or more 1067 



 

 
 

   
 
 

49 

StructureUsage which itself can be one of DataflowDefinition, or 1068 

MetadataflowDefinition, and one or more Structure, which itself can be one of 1069 

DataStructureDefinition or MetadataStructureDefinition. It is expected that 1070 

within a specific ReportingTaxonomy each Category that is linked in this way will be linked 1071 

to the same class (e.g. all Category in the scheme will link to a DataflowDefinition). 1072 

Note that a ReportingCategory can have child ReportingCategory and in this way it is 1073 

possible to define a hierarchical ReportingTaxonomy. It is possible in this taxonomy that 1074 

some ReportingCategory are defined just to give a reporting structure. For instance: 1075 

 1076 

Section 1 1077 

 1. linked to DatafowDefinition_1 1078 

 2 linked to DatafowDefinition_2 1079 

Section 2 1080 

 1 linked toDatafowDefinition_3 1081 

 2 linked to DatafowDefinition_4 1082 

 1083 

Here, the nodes of Section 1 and Section 2 would not be linked to DataflowDefinition but 1084 

the other would be linked to a DataflowDefinition (and hence the 1085 

DataStructureDefinition). 1086 

 1087 

A partial ReportingTaxonomy (where isPartial is set to “true”) is identical to a 1088 

ReportingTaxonomy and contains the ReportingCategory and associated names and 1089 

descriptions, just as in a normal ReportingTaxonomy However, its content is a sub set of 1090 

the full ReportingTaxonomy The way this works is described in section 3.5.3.1 on 1091 

ItemScheme. 1092 

 1093 

4.7.2.2 Definitions 1094 

Class Feature Description 

ReportingTaxonomy Inherits from 
ItemScheme 

A scheme which defines 
the composition structure 
of a data report where 
each component can be 
described by an 
independent Dataflow 
Definition or Metdataflow 
Definition. 

 items Associates the Reporting 
Category 

ReportingCategory Inherits from 
Item 

A component that gives 
structure to the report and 
links to data and 
metadata. 

 hierarchy Associates child 
Reporting Category. 



 

 
 

   
 
 

50 

Class Feature Description 

 +flow Association to the data 
and metadata flows that 
link to metadata about the 
provisioning and related 
data and metadata sets, 
and the structures that 
define them. 
 

 +structure Association to the Data 
Structure Definition and 
Metadata Structure 
Definitions which define 
the structural metadata 
describing the data and 
metadata that are 
contained at this part of 
the report.   

 1095 

1096 



 

 
 

   
 
 

51 

5 Data Structure Definition and Dataset 1097 

5.1 Introduction 1098 

The DataStructureDefiniton is the class name for a structure definition for data. Some 1099 

organisations know this type of definition as a “Key Family” and so the two names are 1100 

synonymous. The term Data Structure Definition (also referred to as DSD) is used in this 1101 

specification. 1102 

 1103 

Many of the constructs in this layer of the model inherit from the SDMX Base Layer. Therefore, 1104 

it is necessary to study both the inheritance and the relationship diagrams to understand the 1105 

functionality of individual packages. In simple sub models these are shown in the same 1106 

diagram, but are omitted from the more complex sub models for the sake of clarity. In these 1107 

cases, the inheritance diagram below shows the full inheritance tree for the classes concerned 1108 

with data structure definitions. 1109 

 1110 

There are very few additional classes in this sub model other than those shown in the 1111 

inheritance diagram below. In other words, the SDMX Base gives most of the structure of this 1112 

sub model both in terms of associations and in terms of attributes. The relationship diagrams 1113 

shown in this section show clearly when these associations are inherited from the SDMX Base 1114 

(see the Appendix “A Short Guide to UML in the SDMX Information Model” to see the 1115 

diagrammatic notation used to depict this). 1116 

 1117 

The actual SDMX Base construct from which the concrete classes inherit depends upon the 1118 

requirements of the class for: 1119 

 1120 

 Annotation - AnnotableArtefact 1121 

 Identification - IdentifiableArtefact 1122 

 Naming - NameableArtefact 1123 

 Versioning – VersionableArtefact 1124 

 Maintenance - MaintainableArtefact 1125 



 

 
 

   
 
 

52 

5.2 Inheritance View 1126 

5.2.1 Class Diagram 1127 

 1128 

ConceptScheme

VersionableArtefact

version : String

validFrom : Date

validTo : Date

MaintainableArtefact

final : Boolean

isExternalReference : Boolean

serviceURL : URL

structureURL : URI

AttributeDescriptor

StructureUsage

MeasureDescriptor

DataflowDefinition DataStructureDefinition

Key

DataSet

GroupKey
(from Data-Set)

ItemScheme

AnnotableArtefact

LocalisedString

label : String

locale : String

Annotation

id : String

title : String

type : String

url : String

0..1 0..*0..1 0..*

InternationalString
(from SDMX-Base)

1

0..*

1

0..*

0..1

0..1

0..1

+text

0..1

NameableArtefact 0..1+description 0..1
1+name 1

IdentifiableArtefact

urn : urn

uri : Url

id : String

Structure

ComponentList

Item

Component

Dimension

DataAttribute PrimaryMeasure

Codelist

SeriesKey
(from Data-Set)

Observation

MeasureDimension

TimeDimension

ReportingYearStartDay

DimensionDescriptor

GroupDimensionDescriptor DimensionComponent

Concept
(from Concept-Scheme)

 

Figure 22 Class inheritance in the Data Structure Definition and Data Set Packages 



 

 
 

   
 
 

53 

5.2.2 Explanation of the Diagram 1129 

5.2.2.1 Narrative 1130 

Those classes in the SDMX metamodel which require annotations inherit from 1131 

AnnotableArtefact . These are: 1132 

 1133 

 IdentifiableArtefact 1134 

 DataSet (and therefore StructureSpecificDataSet, GenericDataSet, 1135 

GenericTimeSeriesDataSet StructureSpecificTimeSeriesDataSet) 1136 

 Key (and therefore SeriesKey and GroupKey) 1137 

Those classes in the SDMX metamodel which require annotations and global identity are 1138 

derived from IdentifiableArtefact . These are: 1139 

 1140 

 NameableArtefact 1141 

 ComponentList 1142 

 Component 1143 

Those classes in the SDMX metamodel which require annotations, global identity, multilingual 1144 

name and multilingual description are derived from NameableArtefact . These are: 1145 

 1146 

 VersionableArtefact 1147 

 Item 1148 

The classes in the SDMX metamodel which require annotations, global identity, multilingual 1149 

name and multilingual description, and versioning are derived from VersionableArtefact . 1150 

These are: 1151 

 1152 

 MaintainableArtefact 1153 

Abstract classes which represent information that is maintained by Maintenance Agencies all 1154 

inherit from MaintainableArtefact, they also inherit all the features of a 1155 

VersionableArtefact, and are: 1156 

 1157 

 StructureUsage 1158 

 Structure 1159 

 ItemScheme 1160 

All the above classes are abstract. The key to understanding the class diagrams presented in 1161 

this section are the concrete classes that inherit from these abstract classes. 1162 

 1163 



 

 
 

   
 
 

54 

Those concrete classes in the SDMX Data Structure Definition and Dataset packages of the 1164 

metamodel which require to be maintained by Agencies all inherit (via other abstract classes) 1165 

from MaintainableArtefact, these are: 1166 

 1167 

 DataflowDefinition 1168 

 DataStructureDefinition 1169 

The component structures that are lists of lists, inherit directly from Structure. A 1170 

Structure contains several lists of components. The concrete class that inherits from 1171 

Structure is:   1172 

 DataStructureDefinition 1173 

A DataStructureDefinition contains a list of dimensions, a list of measures and a list of 1174 

attributes.  1175 

 1176 

The concrete classes which inherit from ComponentList and are sub components of the 1177 

DataStructureDefinition are:  1178 

 1179 

 DimensionDescriptor – content is Dimension, MeasureDimension and 1180 

Time Dimension 1181 

 DimensionGroupDescriptor – content is an association to Dimension, 1182 

MeasureDimension, TimeDimension 1183 

 MeasureDescriptor – content is PrimaryMeasure 1184 

 AttributeDescriptor – content is DataAttribute 1185 

The classes that inherit from Component are: 1186 

 1187 

 PrimaryMeasure 1188 

 DimensionComponent and thereby its sub classes of Dimension, 1189 

MeasureDimension, and TimeDimension 1190 

 1191 

 DataAttribute 1192 

The class that inherit from DataAttribute is: 1193 

 1194 

 ReportingYearStartDay 1195 

 1196 

The concrete classes identified above are the majority of the classes required to define the 1197 

metamodel for the DataStructureDefinition. The diagrams and explanations in the rest 1198 

of this section show how these concrete classes are related in order to support the 1199 

functionality required. 1200 



 

 
 

   
 
 

55 

5.3 Data Structure Definition – Relationship View 1201 

5.3.1 Class Diagram  1202 

{0..1 MeasureDimension 

0..1 TimeDimension}

UsageStatus

mandatory : String

conditional : String

<<enumeration>>

these are 

mutually 

exclusive

TimeDimensionMeasureDimension

DataflowDefinition

Dimension

MeasureDescriptor

AttributeRelationship

AttributeDescriptor

ReportingYearStartDay

AttachmentConstraint
(from Registry)

DataStructureDefinition

0..*

1

0..*

1

/structure

1

1

1

1

/grouping

10..1 10..1

/grouping
DimensionDescriptor

11

/grouping

GroupDimensionDescriptor

isAttachmentConstraint : Boolean

0..1
+constraint

0..1

0..*0..*

/grouping

PrimaryMeasure

11

/components

DataAttribute

usageStatus : UsageStatus

1

+relatedTo

1

0..*

1

0..*

1

/components

DimensionComponent

order : Integer

1

0..*

1

0..*

/components

0..*

0..*

0..*

0..*

/components

{partial-key}

Concept
0..*+role 0..* 11

/conceptIdentity

11/conceptIdentity
0..* +role0..*

11 /conceptIdentity

{Dimension

MeasureDimension}

{not ReportingYearStartDay}

 1203 
 1204 

Figure 23 Relationship class diagram of the Data Structure Definition excluding representation 

5.3.2 Explanation of the Diagrams 1205 

5.3.2.1 Narrative 1206 

A DataStructureDefinition defines the Dimensions, MeasureDimension, 1207 

TimeDimension, DataAttributes, and PrimaryMeasure, and associated 1208 

Representation that comprise the valid structure of data and related attributes that are 1209 

contained in a DataSet, which is defined by a DataflowDefinition. 1210 

 1211 

The DataflowDefinition may also have additional metadata attached that defines 1212 

qualitative information and Constraints on the use of the DataStructureDefinition 1213 

such as the sub set of Codes used in a Dimension (this is covered later in this document – 1214 



 

 
 

   
 
 

56 

see “Data Constraints and Provisioning” section 9).  Each DataflowDefinition has a 1215 

maximum of one DataStructureDefinition specified which defines the structure of any 1216 

DataSets to be reported/disseminated. 1217 

 1218 

There are three types of dimension each having a common association to Concept: 1219 

 1220 

 Dimension 1221 

 MeasureDimension 1222 

 TimeDimension 1223 

 1224 

Note that In the description here DimensionComponent can be oany or all of its sub classes 1225 

i.e. Dimension, MeasureDimension, TimeDimension., and the term “DataAttribute” 1226 

refers to both DataAttribute and its sub class ReportingYearStartDate. 1227 

 1228 

The DimensionComponent, DataAttribute, and PrimaryMeasure link to the Concept 1229 

that defines its name and semantic (/conceptIdentity association to Concept). The 1230 

DataAttribute, Dimension, and MeasureDimension (but not TimeDimension) can 1231 

optionally have a +conceptRole association with a Concept that identifies its role in the 1232 

DataStructureDefinition. Therefore, the allowable roles of a Concept are maintained 1233 

in a ConceptScheme. Examples of roles are: geography, entity, count, unit of measure. The 1234 

use of these roles is to enable applications to process the data in a meaningful way (e.g. 1235 

relating a dimension value to a mapping vector). It is expected that communities (such as the 1236 

official statistics community) will harmonise these roles with their community so that data can 1237 

be exchanged and shared in a meaningful way in the community.  1238 

 1239 

The valid values for a DimensionComponent, PrimaryMeasure, or DataAttribute, 1240 

when used in this DataStructureDefinition, are defined by the Representation. This 1241 

Representation is taken from the Concept definition (coreRepresentation) unless it is 1242 

overridden in this DataStructureDefinition (localRepresentation) – see Figure 23. 1243 

Note that for the MeasureDimension the Representation must be a ConceptScheme 1244 

and this must always be referenced from the MeasureDimension and cannot therefore be 1245 

defaulted to the Representation of the Concept associated by the/conceptIdentity. 1246 

Note also that TimeDimension and ReportingYearStartDate are constrained to specific 1247 

FacetValueTypes 1248 

 1249 

There will always be a DimensionDescriptor grouping that identifies all of the Dimension 1250 

comprising the full key. Together the Dimensions specify the key of an Observation. 1251 

 1252 

The DimensionComponent can optionally be grouped by multiple 1253 

GroupDimensionDescriptors each of which identifies the group of Dimensions that can 1254 

form a partial key. The GroupDimensionDescriptor must be identified 1255 

(GroupDimensionDescriptor.id) and this is used in the GroupKey of the DataSet to 1256 

declare which DataAttributes are reported at this group level in the DataSet. 1257 

 1258 

There may be a maximum of one MeasureDimension specified in the 1259 

DimensionDescriptor. The purpose of a MeasureDimension is to specify formally the 1260 

meaning of the measures (because the PrimaryMeasure typically has a generic meaning 1261 

e.g. observation value) and to enable multiple measures to be defined and reported in a 1262 

StructureSpecificDataSet. Note that the MeasureDimension references a 1263 



 

 
 

   
 
 

57 

ConceptScheme as its Representation (see later) whereas a Dimension can have either 1264 

an enumerated (Codelist) or non-enumerated (Facet) representation. For a 1265 

MeasureDimension the Concepts in the ConceptScheme comprise the list of allowable 1266 

measures. This enables the representation for each individual measure (Concept) to be 1267 

declared as the coreRepresentation of the Concept, thus overriding the 1268 

Representation specified for the PrimaryMeasure for the observation value of this 1269 

MeasureDimension Concept. 1270 

 1271 

There can be a maximum of one TimeDimension specified in the DimensionDescriptor. 1272 

The TimeDimension is used to specify the Concept used to convey the time period of the 1273 

observation in a data set. The TimeDimension must contain a valid representation of time 1274 

and cannot be coded 1275 

 1276 

The PrimaryMeasure is the observable phenomenon, and, although there can be only one 1277 

PrimaryMeasure, for consistency with the ComponentList/Component pattern it is 1278 

grouped by a MeasureDescriptor. 1279 

 1280 

The DataAttribute defines a characteristic of data that are collected or disseminated and is 1281 

grouped in the DataStructureDefinition by a single AttributeDescriptor. The 1282 

DataAttribute can be specified as being mandatory, or conditional, as defined in 1283 

usageStatus. The DataAttribute may play a specific role in the structure and this is 1284 

specified by the +role association to the Concept that identifies its role. 1285 

 1286 

A DataAttribute is specified as being +relatedTo an AttributeRelationship which 1287 

defines the constructs to which the DataAttribute is to be reported present in a DataSet. 1288 

The DataAttribute can be specified as being related to one of the following artefacts: 1289 

 1290 

 DataSet (NoSpecifiedRelationship) 1291 

 Dimension or set of Dimensions (DimensionRelationship) 1292 

 Set of Dimensions specified by a GroupKey (GroupRelationship – this is retained 1293 

for compatibility reasons – or +groupKey of the DimensionRelationship) 1294 

 Observation (PrimaryMeasureRelationship) 1295 



 

 
 

   
 
 

58 

NoSpecifiedRelationship PrimaryMeasureRelationship

DataStructureDefinition

AttributeRelationship

AttributeDescriptor

1

0..1

1

0..1

/grouping

DataAttribute

1

+relatedTo

1

1

0..*

1

0..*

/components

ReportingYearStartDay

GroupRelationship

GroupDimensionDescriptor

1

+groupKey

1

DimensionComponentDimensionRelationship

0..*

+groupKey

0..*

1..*

+dimensions

1..*

 1296 
Figure 24: Attribute Attachment Defined in the Data Structure Definition 1297 

The following table details the possible relationships a DataAttribute may specify. Note 1298 

that these relationships are mutually exclusive, and therefore only one of the following is 1299 

possible. 1300 

Relationship Meaning Location in Data Set at 
which the Attribute is 
reported 

None The value of the attribute 
does not vary with the values 
of any other Component. 

The attribute is reported at 
the level of the Dataset 
Attribute. 

Dimension 
(1..n) 

The value of the attribute will 
vary with the value(s) of the 
referenced Dimension(s). In 
this case, Group(s) to which 
the attribute should be 
attached may optionally be 
specified. 

The attribute is reported at 
the lowest level of the 
Dimension to which the 
Attribute is related, 
otherwise at the level of 
the Group if Attachment 
Group(s) is specified. 



 

 
 

   
 
 

59 

Relationship Meaning Location in Data Set at 
which the Attribute is 
reported 

Group The value of the Attribute 
varies with combination of 
values for all of the 
Dimensions contained in the 
Group. This is added as a 
convenience to listing all 
Dimensions and the 
attachment Group, but should 
only be used when the 
Attribute value varies based 
on all Group Dimension 
values. 

The attribute is reported at 
the level of Group. 

Primary 
Measure 

The value of the Attribute 
varies with the observed 
value. 

The attribute is reported at 
the level of Observation. 

 1301 

 1302 



 

 
 

   
 
 

60 

FacetType

isSequence : Boolean

minLength : positiveInteger

maxLength : positveInteger

minValue : Decimal

maxValue : Decimal

startValue : Decimal

endValue : String

interval : Double

timeInterval : Duration

decimals : positiveInteger

pattern : String

startTime : Date

endTime : Date

<<enumeration>>

FacetValueType

string

bigInteger

integer

long

short

decimal

float

double

boolean

uri

count

inclusiveValueRange

alpha

alphaNumeric

numeric

exclusiveValueRange

incremental

observationalTimePeriod

standardTimePeriod

basicTimePeriod

gregorianTimePeriod

gregorianYearMonth

gregorianDay

reportingTimePeriod

reportingYear

reportingSemester

reportingTrimester

reportingQuarter

reportingMonth

reportingWeek

reportingDay

dateTime

timesRange

month

monthDay

day

time

duration

keyValues

identifiableReference

dataSetReference

<<enumeration>>

Dimension

PrimaryMeasure

Component
(from SDMX-Base)

Facet

facetType : FacetType

facetValue : String

facetValueType : FacetValueType

Codelist

ItemScheme

MeasureDimension
TimeDimension

ConceptScheme

Representation

0..10..1

localRepresentation

0..*

1

+nonEnumerated

0..*

1

{Dimension

Data Attribute

Primary Measure

TargetObject

Concept

TimeDimension restricted

 to FacetType representing time

ReportingYearStartDate restricted 

to a FacetType of MonthDay}
0..1

+enumerated

0..1

{Measure Dimension}

0..1

+enumerated

0..1

{Dimension

Data Attribute

Metadata Attribute

Primary Measure

Concept}

DataAttribute

ReportingYearStartDate

DimensionComponent

Concept

1

0..*

1

0..*

/items

0..10..1

coreRepresentation

 1303 
Figure 25: Representation of DSD Components 1304 



 

 
 

   
 
 

61 

Each of Dimension, MeasureDimension, TimeDimension, PrimaryMeasure, and 1305 

DataAttribute can have a Representation specified (using the 1306 

localRepresentation association). If this is not specified in the 1307 

DataStructureDefinition then the representation specified for Concept 1308 

(coreRepresentation) is used. For the MeasureDimension the representation for the 1309 

individual measures is specified for the Concept in the ConceptScheme referenced by the 1310 

MeasureDimension.  1311 

 1312 

A DataStructureDefinition can be extended to form a derived 1313 

DataStructureDefinition. This is supported in the StructureMap. 1314 

5.3.2.2  Definitions 1315 

Class Feature Description 

StructureUsage  See “SDMX Base”. 

DataflowDefinition Inherits from 

StructureUsage 

Abstract concept (i.e. the 
structure without any 
data) of a flow of data 
that providers will 
provide for different 
reference periods. 

 /structure Associates a Dataflow 
Definition to the Data 
Structure Definition. 

DataStructureDefinition  A collection of metadata 
concepts, their structure 
and usage when used to 
collect or disseminate 
data. 

 /grouping An association to a set of 
metadata concepts that 
have an identified 
structural role in a Data 
Structure Definition. 

Group 

DimensionDescriptor 

Inherits from 
ComponentList 

A set metadata concepts 
that define a partial key 
derived from the 
Dimension Descriptor in 
a Data Structure 
Definition. 

  

+constraint 

Identifies an Attachment 
Constraint that specifies 
the sub set of 
Dimension, Measure, or 
Attribute values to which 
an Attribute can be 
attached. 

 /components An association to the 
Dimension and Measure 



 

 
 

   
 
 

62 

Class Feature Description 

Dimension components 
that comprise the group. 

DimensionDescriptor Inherits from 
ComponentList 

An ordered set of 
metadata concepts that, 
combined, classify a 
statistical series, and 
whose values, when 
combined (the key) in an 
instance such as a data 
set, uniquely identify a 
specific observation. 

 /components An association to the 
Dimension, Measure 
Dimension, and Time 
Dimension comprising 
the Key Descriptor. 

AttributeDescriptor Inherits from 
ComponentList 

A set metadata concepts 
that define the attributes 
of a Data Structure 
Definition. 

 /components An association to a Data 
Attribute component. 

MeasureDescriptor Inherits from 
ComponentList 

A metadata concept that 
defines the measure of a 
Data Structure Definition. 

 /components An association to a 
measure component. 

Dimension Inherits from 
Component 

 

A metadata concept used 
(most probably together 
with other metadata 
concepts) to classify a 
statistical series, e.g. a 
statistical concept 
indicating a certain 
economic activity or a 
geographical reference 
area. 

 /role Association to the 
Concept that specifies 
the role that that the 
Dimension plays in the 
Data Structure Definition.  

 /conceptIdentity An association to the 
metadata concept which 
defines the semantic of 
the Dimension. 

MeasureDimension Inherits from 
Dimension 

A statistical concept that 
identifies the component 
in the key structure that 



 

 
 

   
 
 

63 

Class Feature Description 

has an enumerated list of 
measures. This 
dimension has, as its 
representation the 
Concept Scheme that 
enumerates the measure 
concepts. 

TimeDimension Inherits from 
Dimension 

A metadata concept that 
identifies the component 
in the key structure that 
has the role of “time”. 

DataAttribute Inherits from 
Component 

Sub class 

ReportingYear 

StartDay 

 

A characteristic of an 
object or entity. 

 /role Association to the 
Concept that specifies 
the role that that the Data 
Attribute plays in the 
Data Structure Definition.  

 usageStatus Defines the usage status 
which is constrained by 
the data type Usage 
Status. 

 +relatedTo Association to a Attribute 
Relationship. 

 /conceptIdentity An association to the 
Concept which defines 
the semantic of the 
component. 

ReportingYearStartDay 

 
Inherits from 

DataAttribute 

A specialised Data 
Attribute whose value is 
used in conjunction with 
the predefined reporting 
periods in the Time 
Dimension. If this is not 
present, then by default 
all reporting period 
values for the Time 
Dimension will be 
assumed to be based on 
a reporting year start day 
of January 1. 



 

 
 

   
 
 

64 

Class Feature Description 

PrimaryMeasure Inherits from 
Component 

 

The metadata concept 
that is the phenomenon 
to be measured in a data 
set. In a data set the 
instance of the measure 
is often called the 
observation.  

 /conceptIdentity An association to the 
Concept which carries 
the values of the 
measures. 

AttributeRelationship Abstract Class 
 
Sub classes 
NoSpecified 

Relationship 

PrimaryMeasure 

Relationship 

GroupRelationship 

Dimension 

Relationship 

Specifies the type of 
artefact to which a Data 
Attribute can be attached 
in a Data Set. 

NoSpecifiedRelationship  The Data Attribute is not 
related to any specific 
construct. 

PrimaryMeasure 

Relationship 

 The Data Attribute is 
related to the Primary 
Measure construct. 

GroupRelationship  The Data Attribute is 
related to a Group 
Dimension Descriptor 
construct. 

 +groupKey An association to the 
Group Dimension 
Descriptor 

DimensionRelationship  The Data Attribute is 
related to a set of 
Dimensions.  

 +dimensions Association to the set of 
Dimensions to which the 
Data Attribute is related. 

 +groupKey Association to the Group 
Dimension Descriptor 
which specifies the set of 
Dimensions to which the 
Data Attribute is 
attached. 

 1316 



 

 
 

   
 
 

65 

The explanation of the classes, attributes, and associations comprising the Representation is 1317 

described in the section on the SDMX Base. 1318 

5.4 Data Set – Relationship View 1319 

5.4.1 Context 1320 

A data set comprises the collection of data values and associated metadata that are collected 1321 

or disseminated according to a known DataStructureDefinition. 1322 

5.4.2 Class Diagram 1323 

UncodedAttributeValue

startTime : Date

Annotab leArtefact
(from SDMX-Base)

UncodedKeyValue

startTime : Date

StructureSpecificTimeseriesDataSet

UncodedObserva...

value : String
CodedObservation CodedAttributeValue

CodedKeyValue

Code
(f rom Code-List)

+valueOf
+valueOf

+valueOf

Codelist
(f rom Code-List)

1..*

1

1..*

1

/items

ConceptScheme

MeasureKeyValue

GenericDataSet

StructureSpecificDataSet

GenericTimeseriesDataSet

TimeKeyValue

timeValue : observationalTimePeriod

MeasureDimension

TimeDimension

DataStructureDefinition
(f rom DataStructureDef inition)

AttributeDescriptor
(f rom DataStructureDef inition)

1

0..1

1

0..1/grouping

MeasureDescriptor
(f rom DataStructureDef inition)

1

1

1

1

/grouping

DataflowDefinition
(f rom DataStructureDef inition)

DataProvider

DataAttribute
(f rom DataStructureDef inition)

1 0..*1 0..*/components

GroupKey

id

DataStructureDefinition
(f rom DataStructureDef inition)

0..*

1

0..*

1

PrimaryMeasure
(f rom DataStructureDef inition)

11

/components

SeriesKey

ObservationValue

DataSet

reportingBegin : Date

reportingEnd : Date

dataExtractionDate : Date

validFrom : Date

validTo : Date

publicationYear : Date

publicationPeriod : Date

setId : String

action : ActionType

0..1

+describedBy

0..10..1

+publishedBy

0..1

1

+structuredBy

1

AttributeValue

value : String

1

+valueFor

1

0..*

+attachedAttribute

0..*
Observation

+valueFor

{primaryMeasureObservation}

1..*1..*

0..*+attachedAttribute 0..*

11

Key

1..*1..*

0..*+attachedAttribute 0..*

Dimension

KeyValue

1
+observationDimension

1

1..*1..*keyValues

Concept

1

0..*

1

0..*

+valueOf

DimensionDescriptor
(f rom DataStructureDef inition)

11

+describedBy

GroupDimensionDescriptor
(f rom DataStructureDef inition)

0..*

1

0..*

+describedBy

1

0..*0..*

DimensionComponent

1 0..*1 0..*

/components

0..*

0..*

0..*

0..*

/components

{partial-key}

1

+valueFor

1

 

Figure 26 Class Diagram of the Data Set 



 

 
 

   
 
 

66 

5.4.3 Explanation of the Diagram 1324 

5.4.3.1 Narrative – Data Set 1325 

Note that the DataSet must conform to the DataStructureDefinition associated to the 1326 

DataflowDefinition for which this DataSet is an “instance of data”. Whilst the model 1327 

shows the association to the classes of the DataStructureDefinition, this is for 1328 

conceptual purposes to show the link to the DataStructureDefinition. In the actual 1329 

DataSet as exchanged there must, of course, be a reference to the 1330 

DataStructureDefinition and optionally a DataflowDefinition, but the 1331 

DataStructureDefinition is not necessarily exchanged with the data.  Therefore, the 1332 

DataStructureDefinition classes are shown in the grey areas, as these are not a part of 1333 

the DataSet when the DataSet is exchanged. However, the structural metadata in the 1334 

DataStructureDefinition can be used by an application to validate the contents of the 1335 

DataSet in terms of the valid content of a KeyValue as defined by the Representation in 1336 

the DataStructureDefinition.  1337 

 1338 

An organisation playing the role of DataProvider can be responsible for one or more 1339 

DataSet.  1340 

 1341 

A DataSet can be formatted either as a generic data set (GenericDataSet, 1342 

GenericTimeseriesDataSet) or a DataStructureDefinition specific data set 1343 

(StructureSpecificDataSet, StructureSpecificTimeseriesDataSet). The 1344 

generic data set is structured in exactly the same way no matter which 1345 

DataStructureDefinition the DataSet expresses. The structured data set is structured 1346 

according to one specific DataStructureDefinition. Depending on the syntax chosen for 1347 

the implementation the structured data set should support better validation at the syntax level. 1348 

 1349 

A DataSet is a collection of a set of Observations that share the same dimensionality, 1350 

which is specified by a set of unique components (Dimension, MeasureDimension, 1351 

TimeDimension) defined in the DimensionDescriptor of the 1352 

DataStructureDefinition, together with associated AttributeValues that define 1353 

specific characteristics about the artefact to which it is attached.  -  DataSet, Observation, 1354 

set of Dimensions. It is structured in terms of a SeriesKey to which Observations are 1355 

reported.  1356 

 1357 

The Observation can be the value of the variable being measured for the Concept 1358 

associated to the PrimaryMeasure in the MeasureDescriptor of the 1359 

DataStructureDefinition. This is true when there is no MeasureDimension that 1360 

specifies the precise meaning of each Observation. Each Observation associates an 1361 

ObservationValue with a KeyValue (+observationDimension) which is the value for 1362 

the “Dimension at the Observation Level”. Any dimension can be specified as being the 1363 

“Dimension at the Observation Level”, and this specification is made at the level of the 1364 

DataSet (i.e. it must be the same dimension for the entire DataSet).  1365 

 1366 

If the “Dimension at the Observation Level” is the MeasureDimension it is possible (but not 1367 

mandatory) that an Observation can be reported with an explicit identification of one or 1368 

more Concept in the ConceptScheme referenced by the MeasureDimension as its 1369 

Representation. In other words, the actual Concepts are explicitly stated in the 1370 

Observation. 1371 



 

 
 

   
 
 

67 

 1372 

If it is required to specify explicitly that the DataSet is time series then one of 1373 

GenericTimeSeriesDataSet or StructureSpecificTimeSeriesDataSet is used and 1374 

the KeyValue for the +observationDimension must be a TimeKeyValue. In a 1375 

GenericDataSet and a StructureSpecificDataSet it is permissible to have any 1376 

dimension as the +observationDimension including the TimeDimension. 1377 

 1378 

The KeyValue is a value for one of MeasureDimension, TimeDimension, or 1379 

Dimension specified in the DataStructureDefinition. If it is a Dimension it can be 1380 

coded (CodedKeyValue) or uncoded (UncodedKeyValue). If it is a MeasureDimension 1381 

then it is MeasureKeyValue. If it is TimeDimension then it is a TimeKeyValue. The actual 1382 

value that the CodedDimensionValue can take must be one of the Codes in the Codelist 1383 

specified as the Representation of the Dimension in the DataStructureDefinition. 1384 

The actual value that the MeasureDimensionValue can take must be a valid representation 1385 

specified for the Concept in the ConceptScheme to which this MeasureDimensionValue 1386 

is related (+valueFor).  1387 

 1388 

The ObservationValue can be coded - this is the CodedObservation – or it can be 1389 

uncoded – this is the UncodedObservation. 1390 

 1391 

The GroupKey is a sub unit of the Key that has the same dimensionality as the SeriesKey, 1392 

but defines a subset of the KeyValues of the SeriesKey. Its sub dimension structure is 1393 

defined in the GroupDimensionDescriptor of the DataStructureDefinition identified 1394 

by the same id as the GroupKey. The id identifies a “type” of group and the purpose of the 1395 

GroupKey is to report one or more AttributeValue that are contained at this group level. 1396 

The GroupKey is present when the GroupDimensionDescriptor is related to the 1397 

GroupRelationship in the DataStructureDefinition. There can be many types of 1398 

groups in a DataSet. If the Group is related to the DimensionRelationship in the 1399 

DataStructureDefinition then the AttributeValue will be reported with the 1400 

appropriate dimension in the SeriesKey or Observation. 1401 

 1402 

In this way each of DataSet, SeriesKey, GroupKey, and Observation can have zero or 1403 

more AttributeValue that defines some metadata about the object to which it is 1404 

associated. The allowable Concepts and the objects to which these metadata can be 1405 

associated (attached) are defined in the DataStructureDefinition.  1406 

 1407 

The AttributeValue links to the object type (DataSet, SeriesKey, GroupKey, 1408 

Observation,) to which it is associated.  1409 

 1410 

5.4.3.2 Definitions 1411 

Class Feature Description 



 

 
 

   
 
 

68 

Class Feature Description 

DataSet Abstract Class 
 
Sub classes 
 
GenericDataSet 

StructureSpecificDataSet 

GenericTime 

SeriesDataSet 

StructureSpecificTime 

SeriesDataSet 

An organised collection of 
data. 

 reportingBegin A specific time period in a 
known system of time 
periods that identifies the 
start period of a report. 

 reportingEnd A specific time period in a 
known system of time 
periods that identifies the 
end period of a report. 

 dataExtractionDate A specific time period that 
identifies the date and 
time that the data are 
extracted from a data 
source.  

 validFrom Indicates the inclusive 
start time indicating the 
validity of the information 
in the data set. 

 validTo Indicates the inclusive 
end time indicating the 
validity of the information 
in the data set. 

 publicationYear Specifies the year of 
publication of the data or 
metadata in terms of 
whatever provisioning 
agreements might be in 
force. 

 publicationPeriod Specifies the period of 
publication of the data or 
metadata in terms of 
whatever provisioning 
agreements might be in 
force. 

 setId Provides an identification 
of the data set. 

 action Defines the action to be 
taken by the recipient 
system (update, append, 
delete) 



 

 
 

   
 
 

69 

Class Feature Description 

 describedBy Associates a data flow 
definition and thereby a 
Data Structure Definition 
to the data set.  

 +structuredBy Associates the Data 
Structure Definition that 
defines the structure of 
the Data Set. Note that 
the Data Structure 
Definition is the same as 
that associated (non-
mandatory) to the 
Dataflow Definition. 

 +publishedBy Associates the Data 
Provider that 
reports/publishes the 
data. 

 +attachedAttribute Association to the 
Attribute Values relating 
to the Data Set 

GenericDataSet  A data format structure 
that is able to contain 
data corresponding to any 

Data Structure Definition. 

StructureSpecific 

DataSet 

 A data format structure 
that contains data 
corresponding to one 
specific Data Structure 

Definition. 

GenericTimeseries 

DataSet 

 A data format structure 
that is able to contain 
timeseries data 
corresponding to any 

Data Structure Definition. 

StructureSpecific 

TimeseriesDataSet 

 A data format structure 
that contains timeseries 
data corresponding to one 
specific Data Structure 

Definition. 

Key Abstract class 
Sub classes 
SeriesKey 

GroupKey 

Comprises the cross 
product of values of 
dimensions that identify 
uniquely an Observation. 

 keyValues Association to the 
individual Key Values that 
comprise the Key. 



 

 
 

   
 
 

70 

Class Feature Description 

 +attachedAttribute Association to the 
Attribute Values relating 
to the Series Key or 
Group Key. 

KeyValue Abstract class 
Sub classes 
MeasureKeyValue 

TimeKeyValue 

CodedKeyValue 

UncodedKeyValue 

The value of a component 
of a key such as the value 
of the instance a 
Dimension in a Dimension 
Descriptor of a Data 
Structure Definition.  

 +valueFor Association to the key 
component in the Data 
Structure Definition for 
which this Key Value is a 
valid representation.  
 
Note that this is 
conceptual association as 
the key component is 
identified explicitly in the 
data set. 

MeasureKeyValue Inherits from 
KeyValue 

The value of the Measure 
Dimension component of 
the key. The value is the 
Concept to which this 
class is associated. 

 +value Association to the 
Concept. 
 
Note that this is a 
conceptual association 
showing that the Concept 
must exist in the Concept 
Scheme associated with 
the Measure Dimension in 
the Data Structure 
Definition. In the actual 
Data Set the value of the 
Concept is placed in the 
Key Value. 

TimeKeyValue Inherits from 
KeyValue 

The value of the Time 
Dimension component of 
the key. 

CodedKeyValue Inherits from 
KeyValue 

The value of a coded 
component of the key. 
The value is the Code to 
which this class is 
associated. 



 

 
 

   
 
 

71 

Class Feature Description 

 +value Association to the Code. 
 
Note that this is a 
conceptual association 
showing that the Code 
must exist in the Code list 
associated with the 
Dimension in the Data 
Structure Definition. In the 
actual Data Set the value 
of the Code is placed in 
the Key Value. 

UnCodedKeyValue Inherits from 
KeyValue 

The value of an uncoded 
component of the key.  

 value The value of the key 
component. 

 startTime This attribute is only used 
if the textFormat of the 
attribute is of the 
Timespan type in the 
Data Structure Definition 
(in which case the value 

field takes a duration). 
 +valueFor Associates Dimension, 

Measure Dimension, or 
Time Dimension to the 
Key Value, and thereby to 
the Concept that is the 
semantic of the 
Dimension, or Time 
Dimension. 

GroupKey 

 

Inherits from 
Key 

A set of Key Values that 
comprise a partial key, of 
the same dimensionality 
as the Time Series Key 
for the purpose of 
attaching Data Attributes.  

 +describedBy Associates the Group 
Dimension Descriptor 
defined in the Data 
Structure Definition. 

SeriesKey Inherits from 
Key 

 

Comprises the cross 
product of values of all 
the Key Values that, 
together with the Key 
Value of the +observation 
Dimension identify 
uniquely an Observation. 



 

 
 

   
 
 

72 

Class Feature Description 

 +describedBy Associates the Dimension 
Descriptor defined in the 
Data Structure Definition. 

Observation  The value of the observed 
phenomenon in the 
context of the Key Values 
comprising the key. 

 +valueFor Associates the Primary 
Measure defined in the 
Data Structure Definition. 

 +attachedAttribute Association to the 
Attribute Values relating 
to the Observation. 

 +observationDimension Association to the Key 
Value that holds the value 
of the “Dimension at the 
Observation Level”. 

ObservationValue Abstract class 
Sub classes 
UncodedObservation 
CodedObservation 

 

 

UncodedObservation Inherits from 
ObservationValue 

An observation that has a 
text value. 

 value The value of the Uncoded 
Observation. 

CodedObservation Inherits from 
ObservationValue 

An Observation that takes 
its value from a code in a 
Code list. 

 +value Association to the Code 
that is the value of the 
Observation. 
 
Note that this is a 
conceptual association 
showing that the Code 
must exist in the Code list 
associated with the 
Primary Measure or the 
Concept of the Measure 
Dimension in the Data 
Structure Definition. In the 
actual Data Set the value 
of the Code is placed in 
the Observation. 



 

 
 

   
 
 

73 

Class Feature Description 

AttributeValue Abstract class 
 
Sub classes 
UncodedAttributeValue 
CodedAttributeValue 

The value of an attribute, 
such as the instance of a 
Coded Attribute or of an 
Uncoded Attribute in a 
structure such as a Data 
Structure Definition. 

 value The value of the attribute. 

 +valueFor Association to the Data 
Attribute defined in the 
Data Structure Definition. 
Note that this is 
conceptual association as 
the Concept is identified 
explicitly in the data set. 

UncodedAttribute 

Value 

Inherits from 
AttributeValue 

An attribute value that has 
a text value. 

 startTime This attribute is only used 
if the textFormat of the 
attribute is of the 
Timespan type in the 
Data Structure Definition 
(in which case the value 
field takes a duration). 

CodedAttribute 

Value 

Inherits from 
AttributeValue 

An attribute that takes it 
value from a Code in 
Code list. 

 +value Association to the Code 
that is the value of the 
Attribute Value. 
 
Note that this is a 
conceptual association 
showing that the Code 
must exist in the Code list 
associated with the Data 
Attribute in the Data 
Structure Definition. In the 
actual Data Set the value 
of the Code is placed in 
the Attribute Value. 

 1412 

1413 



 

 
 

   
 
 

74 

6 Cube 1414 

6.1 Context 1415 

Some statistical systems create views of data based on a “cube” structure. In essence, a cube 1416 

is an n-dimensional object where the value of each dimension can be derived from a 1417 

hierarchical code list. The utility of such cube systems is that it is possible to “roll up” or “drill 1418 

down” each of the hierarchy levels for each of the dimensions to specify the level of granularity 1419 

required to give a “view” of the data – some dimensions may be rolled up, others may be 1420 

drilled down. Such systems give a dynamic view of the data, with aggregated values for rolled 1421 

up dimension positions. For example, the individual countries may be rolled up into an 1422 

economic region such as the EU, or a geographical region such as Europe, whilst another 1423 

dimension, such as “type of road” may be drilled down to its lower level. The resulting 1424 

measure (such as “number of accidents”) would then be an aggregation of the value for each 1425 

individual country for the specific type of road. 1426 

 1427 

Such cube systems rely, not on simple code lists, but on hierarchical code sets (see section 1428 

8).  1429 

6.2 Support for the Cube in the Information Model 1430 

Data reported using a Data Structure Definition structure (where each dimension value, if 1431 

coded, is taken from a flat code list) can be described by a cube definition and can be 1432 

processed by cube aware systems. The SDMX-IM supports the definition of such cubes in the 1433 

following way: 1434 

 1435 

 The HierachicalCodelist defines the (often complex) hierarchies of codes 1436 

 If required, the StructureSet can 1437 

o group DataStructureDefinition that describe the cube 1438 

o provide a mapping mechanism between the codes in the flat code lists used by 1439 

the DataStructureDefinition and a HierarchicalCodelist where 1440 

the HierarchicalCodelist uses code lists that are not used in the 1441 

DataStructureDefinition 1442 

 1443 

1444 



 

 
 

   
 
 

75 

7  Metadata Structure Definition and Metadata Set 1445 

7.1 Context 1446 

The SDMX metamodel allows metadata: 1447 

 1448 

1. To be exchanged without the need to embed it within the object that it is describing. 1449 

 1450 

2. To be stored separately from the object that it describes, yet be linked to it (for 1451 

example, an organisation has a metadata repository which supports the dissemination 1452 

of metadata resulting from metadata requests generated by systems or services that 1453 

have access to the object for which the metadata pertains. This is common in web 1454 

dissemination where additional metadata is available for viewing (and eventually 1455 

downloading) by clicking on an “information” icon next to the object to which the 1456 

metadata is attached). 1457 

 1458 

3. To be indexed to aid searching (example: a registry service can process a metadata 1459 

report and extract structural information that allows it to catalogue the metadata in a 1460 

way that will enable users to query for it). 1461 

 1462 

4. To be reported according to a defined structure. 1463 

 1464 

In order to achieve this, the following structures are modelled:  1465 

 1466 

 metadata structure definition which has the following components: 1467 

o the object types to which the metadata are to be associated (attached) 1468 

o the components that, together, comprise a unique key of the object type to 1469 

which the metadata are to be associated 1470 

o the reporting structure comprising the metadata attributes that can be attached 1471 

to the various object types (these attributes can be structured in a hierarchy), 1472 

together with any constraints that may apply (e.g. association to a code list that 1473 

contains valid values for the attribute when reported in a metadata set) 1474 

 the metadata set, which contains reported metadata 1475 

7.2 Inheritance 1476 

7.2.1 Introduction 1477 

As with the Data Structure Definition Structure, many of the constructs in this layer of the 1478 

model inherit from the SDMX Base layer. Therefore, it is necessary to study both the 1479 

inheritance and the relationship diagrams to understand the functionality of individual 1480 

packages. The diagram below shows the full inheritance tree for the classes concerned with 1481 

the MetadataStructureDefinition and the MetadataSet.  1482 

 1483 

There are very few additional classes in the MetadataStructureDefinition package that 1484 

do not themselves inherit from classes in the SDMX Base. In other words, the SDMX Base 1485 

gives most of the structure of this sub model both in terms of associations and in terms of 1486 



 

 
 

   
 
 

76 

attributes. The relationship diagrams shown in this section show clearly when these 1487 

associations are inherited from the SDMX Base (see the Appendix “A Short Guide to UML in 1488 

the SDMX Information Model” to see the diagrammatic notation used to depict this). It is 1489 

important to note that SDMX base structures used for the MetadataStructureDefinition 1490 

are the same as those used for the DataStructureDefinition and so, even though the 1491 

usage is slightly different, the underlying way of defining a 1492 

MetadataStructureDefinition is similar to that used for defining a 1493 

DataStructureDefinition. 1494 

7.2.2 Class Diagram - Inheritance 1495 

ComponentList

VersionableArtefact

MaintainableArtefact

ItemScheme

Item

Component

CodeCategory

CategoryScheme ConceptScheme

Organisation

OrganisationScheme

MetadataAttribute

ReportedAttribute AnnotableArtefact

LocalisedString

label : String

locale : String

Annotation

id : String

title : String

type : String

url : String

0..1 0..*0..1 0..*

InternationalString
(from SDMX-Base)

1

0..*

1

0..*

0..1

0..1

0..1

+text

0..1

NameableArtefact

0..1

+description

0..1

1+name 1

IdentifiableArtefact

urn : urn

uri : Url

id : String

Concept

ReportStructure

MetadataflowDefinition MetadataStructureDefinition

MetadataSet

Codelist

TargetObject

MetadataTarget

ReportPeriodTarget

DimensionDescriptorValuesTarget

IdentifiableObjectTarget

DataSetTarget

ReportingTaxonomy

StructureUsage
Structure

ReportingCategory

 1496 

Figure 27: Inheritance class diagram of the Metadata Structure Definition 1497 



 

 
 

   
 
 

77 

7.2.3 Explanation of the Diagram 1498 

7.2.3.1 Narrative 1499 

It is important to the understanding of the relationship class diagrams presented in this section 1500 

to identify the concrete classes that inherit from the abstract classes. 1501 

 1502 

The concrete classes in this part of the SDMX metamodel which require to be maintained by 1503 

Maintenance Agencies all inherit from MaintainableArtefact. These are: 1504 

 1505 

 StructureUsage (concrete class is MetadataflowDefinition) 1506 

 Structure (concrete class is MetadataStructureDefinition) 1507 

These classes also inherit the identity and versioning facets of IdentifiableArtefact, 1508 

NameableArtefact, and VersionableArtefact. 1509 

 1510 

A Structure contains several lists of components. The concrete classes which inherit from 1511 

ComponentList and in themselves are sub components of the 1512 

MetadataStructureDefinition are:  1513 

 1514 

 MetadataTarget 1515 

 ReportStructure 1516 

ComponentList contains Components. The classes that inherit from Component are: 1517 

 1518 

 Sub Classes of TargetObject 1519 

 MetadataAttribute 1520 

7.3 Metadata Structure Definition 1521 

7.3.1 Introduction 1522 

The diagrams and explanations in the rest of this section show how these concrete classes 1523 

are related so as to support the functionality required.  1524 

7.3.2 Structures Already Described 1525 

The MetadataStructureDefinition makes use of the following ItemScheme structures 1526 

either as explicit concrete classes in the model, or as possible lists which comprise the value 1527 

domain of a TargetObject. 1528 

 1529 

 CategoryScheme 1530 

 ConceptScheme 1531 

 Codelist 1532 

 OrganisationScheme 1533 

 Reporting Taxonomy 1534 



 

 
 

   
 
 

78 

7.3.3 Class Diagram – Relationship 1535 

Facet

DimensionDescriptorValuesTarget

DataSetTarget

ReportPeriodTarget

IdentifiableObjectTarget

objectType : IdentifiableObjectType

ItemScheme

Representation
(from SDMX-Base)

0..*

1

+nonEnumerated
0..*

1

0..1

+enumerated

0..1

MetadataflowDefinition

TargetObject

0..10..1

localRepresentation

MetadataStructureDefinition

0..*

1

0..*

1

/structure

MetadataTarget

1..*1..*

/grouping

1..*1..*

componentsExtendedFacet

Codelist

ReportStructure

1..*

1

1..*

1

/grouping

1..*

+reportFor

1..*

Representation
(from SDMX-Base)

0..*
+nonEnumerated

0..*

{Metadata Attribute}

0..1

+enumerated

0..1

Concept

0..10..1

coreRepresentation

MetadataAttribute

isPresentational : Boolean

minoccurs : Integer

maxOccurs : Integer

0..*
+child

0..*

/hierarchy

+parent

1

1..*

1

1..*

/components

0..10..1

/localRepresentation

11

/conceptIdentity

ConstraintContentTarget

objectType : AttachmentConstraint

 1536 

Figure 28: Relationship class diagram of the Metadata Structure Definition  1537 

7.3.4 Explanation of the Diagram 1538 

7.3.4.1 Narrative 1539 

In brief a MetadataStructureDefinition (MSD) defines: 1540 

 1541 

 The MetadataTarget which defines the components (TargetObject) and their 1542 

Representation which are valid for this MetadataStructureDefinition, and 1543 

which are the metadata target object of one or more ReportStructure 1544 

 The ReportStructures comprising the MetadataAttributes that can be 1545 

associated with the object type identified in the referenced MetadataTargets, and 1546 

hierarchical structure of the attributes 1547 



 

 
 

   
 
 

79 

The MetadataTarget comprises one or more TargetObjects. The combination of 1548 

TargetObjects identifies a specific object type to which metadata can be attached in a 1549 

MetadataSet. 1550 

 1551 

The TargetObject is one of the following: 1552 

 1553 

 DimensionDescriptorValuesTarget - this allows the specification of a full or 1554 

partial key (as used in a dataset) to be specified in a MetadataSet as the target 1555 

object 1556 

 IdentifiableObjectTarget – this defines a specific object type, which can be any 1557 

IdentifiableArtefact 1558 

 DataSetTarget – this specifies that the target object is a DataSet 1559 

 ReportPeriodTarget - this specifies that the report period must be present in the 1560 

MetadataSet 1561 

 ConstraintContentTarget – this specifies that target object is the content of an 1562 

AttachmentConstraint i.e. the part of the data set or metadata set identified by the 1563 

content of an AttachmentConstraint 1564 

The valid content of a TargetObject when reported in a MetadataSet is defined in the 1565 

Representation. This can be an enumerated representation (i.e. a reference to one of the 1566 

sub clases of ItemScheme – these are Codelist, ConceptScheme, 1567 

OrganisationScheme, CategoryScheme, or ReportingTaxonomy) or non-1568 

enumerated. 1569 

 1570 

Thus a single MetadataStructureDefinition can be defined for a discrete set of related 1571 

object types. For example, a single definition can be constructed to define the metadata that 1572 

can be attached to any part of a Data Structure Definition, or that can be attached to 1573 

any artefact concerned with the reporting of quality metadata (such as data provider and 1574 

(data) category). The MetadataTarget specifies the identification properties of a specific 1575 

object type to which metadata can be attached in a MetadataSet. For example, in a 1576 

DataStructureDefinition the MetadataTarget might be a Dimension, and therefore 1577 

the TargetObjects are those that uniquely identify a Dimension. This will include both the 1578 

DataStructureDefinition and the Dimension (both of these are  an 1579 

IdentifiableArtefact and will use the IdentitifableObjectTarget) as both 1580 

TargetObjects are required in order to identify uniquely a Dimension). 1581 

 1582 

The ReportStructure comprises a set of MetadataAttributes - these can be defined 1583 

as a hierarchy. Each MetadataAttribute identifies a Concept that is reported or 1584 

disseminated in a MetadataSet (/conceptIdentity) that uses this 1585 

MetadataStructureDefinition. Different MetadataAttributes in the same 1586 

ReportStructure can use Concepts from different ConceptSchemes. Note that a 1587 

MetadataAttribute does not link to a Concept that defines its role in this 1588 

MetadataStructureDefinition (i.e. the MetadataAttribute does not play a role). 1589 

 1590 



 

 
 

   
 
 

80 

The MetadataAttribute can be specified as having multiple occurrences and/or specified 1591 

as being mandatory (minOccurs=1 or more) or conditional (minOccurs=0). A hierarchical 1592 

ReportStructure can be defined by specifying a hierarchy for a MetadataAttribute. 1593 

 1594 

The ReportStructure is associated to one or more of the MetadataTargets which 1595 

specify to which object the MetadataAttributes specified in the ReportStructure are 1596 

attached when reported in a MetadataSet. 1597 

 1598 

It can be seen from this that the specification of the object types to which a 1599 

MetadataAttribute can be attached is indirect: the MetadataAttributes are defined in 1600 

a ReportStructure which itself is attached to one or more MetadataTarget  and the  1601 

actual object is identified by the TargetObjects comprising the MetadataTarget. This 1602 

gives a flexible mechanism by which the actual object types need not be defined in concrete 1603 

terms in the model, but are defined dynamically in the MetadataStructureDefinition, 1604 

in much the same way as the keys to which data observation are “attached” in a 1605 

DataStructureDefinition. In this way the MetadataStructureDefinition can be 1606 

used to define any set of MetadataAttributes and any set of object types to which they 1607 

can be attached. 1608 

 1609 

Each MetadataAttribute can have a Representation specified (using the 1610 

/localRepresentation association). If this is not specified in the 1611 

MetadataStructureDefinition then the Representation is taken from that defined 1612 

for the Concept (the coreRepresentation association). 1613 

 1614 

The definition of the various types of Representation can be found in the specification of 1615 

the Base constructs. Note that if the Representation is non-enumerated then the 1616 

association is to the ExtendedFacet (which allows for xhtml as a FacetValueType). If the 1617 

Representation is enumerated then is must use a Codelist. 1618 

 1619 

The MetadataStructureDefinition is linked to a MetadataflowDefinition. The 1620 

MetadataflowDefinition does not have any attributes in addition to those inherited from 1621 

the Base classes.  1622 

 1623 

7.3.4.2 Definitions 1624 

Class Feature Description 

StructureUsage  See “SDMX Base”. 

Metadataflow 

Definition 

Inherits from: 
StructureUsage 

Abstract concept (i.e. the 
structure without any 
metadata) of a flow of 
metadata that providers 
will provide for different 
reference periods. 

 /structure Associates a Metadata 
Structure Definition. 



 

 
 

   
 
 

81 

Class Feature Description 

MetadataStructure 

Definition 

 A collection of metadata 
concepts, their structure 
and usage when used to 
collect or disseminate 
reference metadata. 

 /grouping An association to a 
Metadata Target or 
Report Structure. 

MetadataTarget Inherits from 
 
ComponentList 

A set of components that 
define a key of an object 
type to which metadata 
may be attached. 

 /components Associates the Target 
Object components that 
define the key of the 
Metadata Target. 

TargetObject Abstract Class 

Sub Classes 
DimensionDescriptorValues

Target 
IdentifiableObjectTarget  
DataSetTarget 
ReportPeriodTarget 

 

 /localRepresentation Associates a 
Representation to the 
Target Object that must 
be respected when the 
object is identified in a 
Metadata Set. This may 
be enumerated or non-
enumerated.  

DimensionDescriptor

ValuesTarget 

Inherits from 
 
TargetObject 

The target object is the 
key of a data series. 

IdentifiableObject 

Target 

Inherits from 
 
TargetObject 

The target object is a 
specified object type. 

 objectType Identifies the object type. 

DataSetTarget 
 

Inherits from 
 
TargetObject 

The target object is a 
Data Set. 



 

 
 

   
 
 

82 

Class Feature Description 

ReportPeriodTarget Inherits from 
 
TargetObject 

The target is a report 
period. Note that this does 
not describe the use of an 
object, but rather serves 
as a unique metadata key 
for metadata reports. 
Metadata reports attached 
to a particular object may 
vary over time, and this 
time identifier component 
can be used to 
disambiguate the reports, 
much like the time 
dimension disambiguates 
observations in a data 
series. 

ConstraintTarget 
 

Inherits from 
 
TargetObject 

The target object is the 
data or reference 
metadata that is identified 
in the content of an 
Attachment Constraint. 

ReportStructure Inherits from: 
 
ComponentList 

Defines a set of concepts 
that comprises the 
Metadata Attributes to be 
reported.  

 /components An association to the 
Metadata Attributes 
relevant to the Report 
Structure. 

 +reportFor Associates the Metadata 
Targets for which this 
Report Structure is used. 

MetadataAttribute  Identifies a Concept for 
which a value may be 
reported in a Metadata 
Set. 

 /hierarchy Association to one or 
more child Metadata 
Attribute. 

 /conceptIdentity An association to the 
concept which defines the 
semantic of the attribute. 



 

 
 

   
 
 

83 

Class Feature Description 

 isPresentational Indication that the 
Metadata Attribute is 
present for structural 
purposes (i.e. it has child 
attributes) and that no 
value for this attribute is 
expected to be reported in 
a Metadata Set using this 
Report Structure. 

 minOccurs 

maxOccurs 

Specifies how many 
occurrences of the 
Metadata Attribute may 
be reported at this point in 
the Metadata Report. 

ConceptUsage  The use of a Concept as 
Metadata Attribute. 

 concept Association to a Concept 
in a ConceptScheme. 

 /localRepresentation Associates a 
Representation that 
overrides any core 
representation specified 
for the Concept itself. 

Representation  The representation of the 
Metadata Attribute. 



 

 
 

   
 
 

84 

7.4 Metadata Set 1625 

7.4.1 Class Diagram 1626 

 1627 

Figure 29: Relationship Class Diagram of the Metadata Set 1628 

s
h
o
w

s
 t

h
e
 l
in

k
 t

o
 

th
e
 M

e
ta

d
a
ta

 

S
tr

u
c
tu

re
 D

e
fin

it
io

n

N
o
n
E

n
u
m

e
ra

te
d
A

tt
ri
b

u
te

V
a
lu

e

X
H

T
M

L
A

tt
ri
b
u
te

V
a
lu

e

va
lu

e
 :

 S
tr

in
g

T
e
x
tA

tt
ri
b
u
te

V
a
lu

e

te
x
t 

: 
In

te
rn

a
ti
o
n
a
lS

tr
in

g

O
th

e
rN

o
n
E

n
u
m

e
ra

te
d
A

tt
ri
b
u
te

V
a
lu

e

va
lu

e
 :

 S
tr

in
g

T
a
rg

e
tO

b
je

c
tV

a
lu

e

T
a
rg

e
tO

b
je

c
t

1

+
va

lu
e
F

o
r1

T
a
rg

e
tO

b
je

c
tK

e
y

1
..

*

+
k
e
y
V

a
lu

e
s

1
..

*

M
e
ta

d
a
ta

T
a
rg

e
t

(f
ro

m
 M

e
ta

d
a

ta
-S

tr
u

c
tu

re
-D

e
fi

n
it

io
n

)

1

+
va

lu
e
F

o
r

1
1
..

*
1
..

*

c
o
m

p
o
n
e
n
ts

R
e
p
o
rt

e
d
A

tt
ri
b

u
te

0
..

*

+
c
h
ild 0
..

*
+

p
a
re

n
t

M
e
ta

d
a
ta

flo
w

D
e
fin

it
io

n
(f

ro
m

 M
e

ta
d

a
ta

-S
tr

u
c
tu

re
-D

e
fi

n
it

io
n

)

D
a
ta

P
ro

vi
d
e
r

(f
ro

m
 S

D
M

X
-B

a
se

)

M
e
ta

d
a
ta

R
e
p
o
rt

1
..

*

+
m

e
ta

d
a
ta

1
..

*
1

+
a
tt

a
c
h
e
s
T
o

1+
ta

rg
e
t

M
e
ta

d
a
ta

S
tr

u
c
tu

re
D

e
fin

it
io

n
(f

ro
m

 M
e

ta
d

a
ta

-S
tr

u
c
tu

re
-D

e
fi

n
it

io
n

)

0
..

*

1

0
..

*

1/s
tr

u
c
tu

re

1
..

*
1
..

*

/g
ro

u
p
in

g
M

e
ta

d
a
ta

A
tt

ri
b
u
te

(f
ro

m
 M

e
ta

d
a

ta
-S

tr
u

c
tu

re
-D

e
fi

n
it

io
n

)

0
..

*
+

c
h
ild

0
..

*

/h
ie

ra
rc

h
y

+
p
a
re

n
t

+
va

lu
e
F

o
r

M
e
ta

d
a
ta

S
e
t

re
p
o
rt

in
g
B

e
g
in

 :
 D

a
te

re
p
o
rt

in
g
E

n
d
 :

 D
a
te

va
lid

F
ro

m
 :

 D
a
te

va
lid

T
o
 :

 D
a
te

p
u
b
lic

a
ti
o
n
Y

e
a
r 

: 
D

a
te

p
u
b
lic

a
ti
o
n
P

e
ri
o
d
 :

 D
a
te

s
e
tI
d
 :

 S
tr

in
g

a
c
ti
o
n
 :

 A
c
ti
o
n
T
y
p
e

0
..

1

+
d
e
s
c
ri
b
e
d
B

y

0
..

1

0
..

1
0
..

*

+
p
u
b
lis

h
e
d
B

y

0
..

1
0
..

*

1
..

*
1
..

*

1

+
s
tr

u
c
tu

re
d
B

y

1
R

e
p
o
rt

S
tr

u
c
tu

re
(f

ro
m

 M
e

ta
d

a
ta

-S
tr

u
c
tu

re
-D

e
fi

n
it

io
n

)

1 1
..

*

1 1
..

*

/c
o
m

p
o
n
e
n
ts

1

+
d
e
s
c
ri
b
e
d
B

y

1

Id
e
n
ti
fia

b
le

A
rt

e
fa

c
tR

e
f

id
 :

 S
tr

in
g

s
tr

u
c
tu

re
T
y
p
e
 :

 I
d
e
n
ti
fia

b
le

O
b
je

c
tT

y
p
e

0
..

1

+
c
o
n
ta

in
e
d
O

b
je

c
t

0
..

1

M
a
in

ta
in

a
b
le

A
rt

e
fa

c
tR

e
f

a
g
e
n
c
y
ID

 :
 S

tr
in

g

id
 :

 S
tr

in
g

ve
rs

io
n
 :

 S
tr

in
g

S
tr

u
c
tu

re
R

e
f

s
tr

u
c
tu

re
T
y
p
e
 :

 I
d
e
n
ti
fia

b
le

O
b
je

c
tT

y
p
e

11

T
a
rg

e
tI
d
e
n
ti
fia

b
le

O
b
je

c
t

11

D
a
ta

P
ro

vi
d
e
rR

e
f

T
a
rg

e
tD

a
ta

S
e
t

id
 :

 S
tr

in
g

11

T
a
rg

e
tR

e
p
o
rt

P
e
ri
o
d

re
p
o
rt

P
e
ri
o
d
 :

 S
tr

in
g

E
n
u
m

e
ra

te
d
A

tt
ri
b
u
te

V
a
lu

e

va
lu

e
 :

 S
tr

in
gC
o
d
e

+
va

lu
e
F

o
r

T
a
rg

e
tD

a
ta

K
e
y

va
lu

e
 :

 S
tr

in
g

T
im

e
D

im
e
n
s
io

n
V

a
lu

e

ti
m

e
V

a
lu

e
 :

 o
b
s
e
rv

a
ti
o
n
a
lT

im
e
P

e
ri
o
d

o
p
e
ra

to
r 

: 
S

tr
in

g
C

o
m

p
o
n
e
n
t

C
o
m

p
o
n
e
n
tV

a
lu

e

va
lu

e
 :

 S
tr

in
g0
..

*
0
..

*

0
..

*
0
..

*

1

+
va

lu
e
F

o
r

1



 

 
 

   
 
 

85 

7.4.2 Explanation of the Diagram 1629 

7.4.2.1 Narrative 1630 

Note that the MetadataSet must conform to the MetadataStructureDefinition 1631 

associated to the MetadataflowDefinition for which this MetadataSet is an “instance 1632 

of metadata”. Whilst the model shows the association to the classes of the 1633 

MetadataStructureDefinition, this is for conceptual purposes to show the link to the 1634 

MetadataStructureDefinition. In the actual MetadataSet as exchanged there must, 1635 

of course, be a reference to the MetadataStructureDefinition and the 1636 

ReportStructure, and optionally a MetadataflowDefinition, but the 1637 

MetadataStructureDefinition is not necessarily exchanged with the metadata.  1638 

Therefore, the MetadataStructureDefinition classes are shown in the grey areas, as 1639 

these are not a part of the MetadataSet itself.  1640 

 1641 

An organisation playing the role of DataProvider can be responsible for one or more 1642 

MetadataSet. 1643 

 1644 

A MetadataSet comprises one or more MetadataReport, each of which must be for the 1645 

same ReportStructure. It references both a MetadataTarget, defined in the 1646 

MetadataStructureDefinition, and contains a TargetObjectKey and 1647 

ReportedAttributes. 1648 

 1649 

The identified ReportStructure specifies which MetadataAttributes are expected as 1650 

ReportedAttributes. The identified MetadataTarget specifies the expected content of 1651 

the TargetObjectKey i.e. it specifies the information required to identify the object for 1652 

which the ReportedAttributes are reported. 1653 

 1654 

The TargetObjectValue can be one of: 1655 

 1656 

 TargetDataKey – this can contain: 1657 

o a SeriesKey (set of dimension values) 1658 

o a SeriesKey plus a value or values (giving  time range) for the 1659 

TimeDimension (TimeDimensionValue) 1660 

o a value of values for the TimeDimension 1661 

 TargetIdentifiableObject -this identifies any identifiable object (which includes 1662 

both Maintainable and Identifiable objects 1663 

 TargetDataSet – this identifies a DataSet 1664 

 TargetReportPeriod – this specifies the report period for the Report 1665 

 1666 

A simple text value for the ReportedAttribute uses the 1667 

NonEnumeratedAttributeValue sub class of ReportedAttribute whilst a coded value 1668 

uses the EnumeratedAttributeValue sub class.  1669 

 1670 

The NonEnumeratedAttributeValue can be one of: 1671 

 1672 

 XHTMLAttributeValue – the content is XHTML 1673 

 TextAttributeValue – the content is textual and may contain the text in multiple 1674 

languages 1675 



 

 
 

   
 
 

86 

 OtherNonEnumeratedAttributeValue – the content is a string value that must 1676 

conform to the Representation specified for the MetadataAttribute in the 1677 

MetadataStructureDefinition for the relevant ReportStructure 1678 

 1679 

The EnumeratedAttributeValue contains a value for a Code specified as the 1680 

Representation for the MetadataAttribute in the MetadataStructureDefinition 1681 

for the relevant ReportStructure. 1682 

7.4.2.2 Definitions 1683 

Class Feature Description 

MetadataSet  Any organised collection 
of metadata. 

 reportingBegin A specific time period in a 
known system of time 
periods that identifies the 
start period of a report. 

 reportingEnd A specific time period in a 
known system of time 
periods that identifies the 
ebd period of a report. 

 dataExtractionDate A specific time period that 
identifies the date and 
time that the data are 
extracted from a data 
source.  

 validFrom Indicates the inclusive 
start time indicating the 
validity of the information 
in the data set. 

 validTo Indicates the inclusive 
end time indicating the 
validity of the information 
in the metadata set. 

 publicationYear Specifies the year of 
publication of the data or 
metadata in terms of 
whatever provisioning 
agreements might be in 
force. 

 publicationPeriod Specifies the period of 
publication of the data or 
metadata in terms of 
whatever provisioning 
agreements might be in 
force. 

 setId Provides an identification 
of the metadata set. 



 

 
 

   
 
 

87 

Class Feature Description 

 action Defines the action to be 
taken by the recipient 
system (update, replace, 
delete) 

 +describedBy Associates a 
Metadataflow Definition to 
the Metadata Set.  

 +structuredBy Associates the Metadata 
Structure Definition that 
defines the structure of 
the Metadata Set. Note 
that the Metadata 
Structure Definition 
is the same as that 
associated (non-
mandatory) to the 
Metadataflow Definition. 

 +publishedBy Associates the Data 
Provider that 
reports/publishes the 
metadata. 

 +describedBy Reference to the Report 
Structure. 

MetadataReport  A set of values for 
Metadata Attributes 
defined in a Report 
Structure of a Metadata 
Structure Definition. 

 +attachesTo Associates the object key 
to which metadata is to be 
attached. 

 +target Associates the Metadata 
Target that defines the 
target object to which the 
metadata are to be 
associated. 

 +metadata Associates the Reported 
Attribute values which are 
to be associated with the 
object or objects identified 
by the Target Object Key.  

TargetObjectKey  Identifies the key of the 
object to which the 
metadata are to be 
attached. 



 

 
 

   
 
 

88 

Class Feature Description 

 +valueFor Associates the Metadata 
Target that identifies the 
object type and the 
component structure of 
the Target Object Key. 
 
Note that this is a 
conceptual association 
showing the link to the 
MSD construct. 

 +keyValues Associates the Target 
Object Values of the 
Target Object Key. 

TargetObjectValue Abstract class 
Sub classes are 

TargetDataKey 
TargetIdentifiableObject 

TargetDataSet 

TargetReportPeriod 

The key of an individual 
object of the type 
specified in the Metadata 
Target of the Metadata 
Structure Definition. 

 +valueFor Associates the Target 
Object for which this value 
is provided.  
 
Note that this is a 
conceptual association 
showing the link to the 
MSD construct. 

TargetDataKey Inherits from 
TargetObjectValue 

The identification of the 
components and the 
values that form the data 
or metadata key. 

ComponentValue  Collectively contain the 
identification of the 
components and the 
values that form the data 
key. 

value  The key value. 

 +valueFor Associates the 
Component for which the 
value is declared. 

TimeDimensionValue  Contains identification of 
the Time Dimension and 
the value. 

TargetIdentifiable 

Object 

Inherits from 
TargetObjectValue 

Specifies the identification 
of an Identifiable object. 



 

 
 

   
 
 

89 

Class Feature Description 

StructureRef  Contains the identification 
of an Identifiable object. 

 structureType The object type of the 
target object. 

Maintainable 

ArtefactRef 

 

Identifiable 

ArtefactRef 

 Identification of the target 
object by means of its 
identifier constructs i.e 
agency ID, id, version for 
Maintainable Object plus, 
for Identifiable Object, the 
id.  

 +containedObject Association to a contained 
object in a hierarchy of 
Identifiable Objects such 
as a Transition in a 
Process Step. 

TargetDataSet Inherits from 
TargetObjectValue 

Contains the identification 
of a Data Set 

TargetReportPeriod Inherits from 
TargetObjectValue 

Contains the period 
covered by the Metadata 
Report. 

ReportedAttribute Abstract class 
Sub classes are: 
NonEnumeratedAttributeValue 

EnumeratedAttributeValue 

The value for a Metadata 
Attribute. 

 +valueFor Association to the 
Metadata Attribute in the 
Metadata Structure 
Definition that identifies 
the Concept and allowed 
Representation for the 
Reported Attribute.  
 
Note that this is a 
conceptual association 
showing the link to the 
MSD construct. The 
syntax for the Reported 
Attribute will state, in 
some form, the id of the 
Metadata Attribute. 

 +child Association to a child 
Reported Attribute 
consistent with the 
hierarchy defined in the 
Report Structure for the 
Metadata Attribute for 
which this child is a 
Reported Attribute. 



 

 
 

   
 
 

90 

Class Feature Description 

NonEnumerated 

AttributeValue 

Inherits from 
 
ReportedAttribute 

Sub class: 
XHTMLAttributeValue 

TextAttributeValue 

OtherNonEnumerated 

AttributeValue 

The content of a Reported 
Attribute where this is 
textual. 

XHTMLAttributeValue  This contains XHTML. 

 value The string value of the 
XHTML. 

TextAttributeValue  This value of a Reported 
Attribute where the 
content is human-
readable text. 

 text The string value is text. 
This can be present in 
multiple language 
versions. 

OtherNonEnumerated 

AttributeValue 

 The value of a Reported 
Attribute where the 
content is not of human-
readable text. 

 value A text string that is 
consistent in format to 
that defined in the 
Representation of the 
Metadata Attribute for 
which this is a Reported 
Attribute. 

EnumeratedAttribute

Value 

Inherits from 
 
MetadataAttributeValue 

The content of a Reported 
Attribute that is taken from 
a Code in a Code list. 

 value The Code value of the 
Reported Attribute. 



 

 
 

   
 
 

91 

Class Feature Description 

 +value Association to a Code in 
the Code list specified in 
the Representation of the 
Metadata Attribute for 
which this Reported 
Attribute is the value  
 
Note that this shows the 
conceptual link to the Item 
that is the value. In reality, 
the value itself will be 
contained in the 
Enumerated Attribute 
Value. 

 1684 

1685 



 

 
 

   
 
 

92 

8 Hierarchical Code List 1686 

8.1 Scope 1687 

The Codelist described in the section on structural definitions supports a simple hierarchy of 1688 

Codes, and restricts any child Code to having just one parent Code. Whilst this structure is 1689 

useful for supporting the needs of the DataStructureDefinition and the 1690 

MetadataStructureDefinition, it may not sufficient for supporting the more complex 1691 

associations between codes that are often found in coding schemes such as a classification 1692 

scheme. Often, the Codelist used in a DataStructureDefinition is derived from a 1693 

more complex coding scheme. Access to such a coding scheme can aid applications, such as 1694 

OLAP applications or data visualisation systems, to give more views of the data than would be 1695 

possible with the simple Codelist used in the DataStructureDefinition.  1696 

 1697 

Note that a hierarchical code list is not necessarily a balanced tree. A balanced tree is where 1698 

levels are pre-defined and fixed, (i.e. a level always has the same set of codes, and any code 1699 

has a fixed parent and child relationship to other codes). A statistical classification is an 1700 

example of a balanced tree, and the support for a balanced hierarchy is a sub set, and special 1701 

case, of the hierarchical code list.  1702 

 1703 

The principal features of the Hierarchical Codelist are: 1704 

 1705 

1. A child code can have more than one parent. 1706 

 1707 

2. There can be more than one code that has no parent (i.e. more than one “root node”). 1708 

 1709 

3. There may be many hierarchies (or “views”) defined, in terms of the associations 1710 

between the codes. Each hierarchy serves a particular purpose in the reporting, 1711 

analysis, or dissemination of data. 1712 

 1713 

4. The levels in a hierarchy can be explicitly defined or they can be implicit:  (i.e. they 1714 

exist only as parent/child relationships in the coding structure).  1715 



 

 
 

   
 
 

93 

8.2 Inheritance 1716 

8.2.1 Class Diagram 1717 

MaintainableArtefact

VersionableArtefact

Hierarchical

Codelist

IdentifiableArtefact

NameableArtefact

Hierarchy Level

HierarchicalCode

 1718 

Figure 30: Inheritance class diagram for the Hierarchical Codelist 1719 

8.2.2 Explanation of the Diagram 1720 

8.2.2.1 Narrative 1721 

 1722 

The HierarchicalCodelist inherits from MaintainableArtefact and thus has  1723 

identification, naming, versioning and a maintenance agency. Both Hierarchy and Level 1724 

are a NameableArtefact and therefore have an Id, multi-lingual name and multi-lingual 1725 

description. A HierachicalCode is an IdentifiableArtefact. 1726 

 1727 

It is important to understand that the Codes participating in a HierarchicalCodelist are 1728 

not themselves contained in the list – they are referenced from the list and are maintained in 1729 

one or more Codelists. This is explained in the narrative of the relationship class diagram 1730 

below.. 1731 

8.2.2.2 Definitions 1732 

The definitions of the various classes, attributes, and associations are shown in the 1733 

relationship section below. 1734 

 1735 



 

 
 

   
 
 

94 

8.3 Relationship 1736 

8.3.1 Class Diagram 1737 

Codelist

Code

1

1..*

1

1..*

/items

Hierarchical

Codelist

HierarchicalCode

validFrom : Date

validTo : Date

0..*

0..1

+child

0..*

+parent

0..1

0..*

1

0..*

+code

1

Hierarchy

hasFormalLevels : Boolean

1..*

+hierarchy

1..*

0..*

+codes

0..*

CodingFormat

codingFormat : Facet

Level
0..1

0..*

+level

0..1

0..*

0..1

+level

0..10..1

+child

0..1

+parent

0..*

+codeFormat

0..*

 1738 

Figure 31: Relationship class diagram of the Hierarchical Code Scheme 1739 

8.3.2 Explanation of the Diagram 1740 

8.3.2.1 Narrative 1741 

The basic principles of   the HierarchicalCodelist are: 1742 

 1743 

1. The HierarchicalCodelist is a specification of the Codes comprising the scheme 1744 

and the specification of the structure of the Codes in the scheme in terms of one or 1745 

more Hierarchy. 1746 

 1747 

2. The Codes in the HierarchicalCodelist are not themselves a part of the scheme, 1748 

rather they are references to Codes in one or more external Codelists.  1749 

 1750 



 

 
 

   
 
 

95 

3. Any individual Code may participate in many Hierarchys, in order to give structure to 1751 

the HierarchicalCodelist. 1752 

 1753 

4. The Hierarchy of Codes is specified in HierarchicalCode. This references the 1754 

Code and its immediate child HierarchicalCodes. 1755 

 1756 

A Hierarchy can have formal levels (hasFormalLevels=”true”). However, even if 1757 

hasFormalLevels=”false” the Hierarchy can still have one or more Levels associated 1758 

in order to document information about the HierarchicalCodes.   1759 

 1760 

If hasFormalLevels=”false the Hierarchy is “value based” comprising a hierarchy of 1761 

codes with no formal Levels. If hasFormalLevels=”true” then the hierarchy is “level 1762 

based” where each Level is a formal Level in the HierarchicalCodeList, such as 1763 

those present in statistical classifications.  In a “level based” hierarchy each 1764 

HierarchicalCode is linked to the Level in which it resides (which must be in the same 1765 

Hierarchy as the HierarchicalCode). It is expected that all HierarchicalCodes at the 1766 

same hierarchic level defined by the +parent/+child association will be linked to the same 1767 

Level. Note that the +level association need only be specified if the HierarchicalCode is at a 1768 

different hierarchical level ((implied by the HierarchicalCode parent/child association) than the 1769 

actual Level in the level hierarchy (implied by the Level parent/child association). 1770 

 1771 

[Note that organisations wishing to be compliant with accepted models for statistical 1772 

classifications should ensure that the Id is the number associated with the Level, where 1773 

Levels are numbered consecutively starting with level 1 at the highest Level]. 1774 

 1775 

The Level may have CodingFormat information defined (e.g. coding type at that level).  1776 

 1777 

8.3.2.2 Definitions 1778 

 1779 

Class Feature Description 

HierarchicalCode 

list 

Inherits from: 
 
MaintainableArtefact 

An organised collection of 
codes that may participate 
in many parent/child 
relationships with other 
Codes in the scheme, as 
defined by one or more 
Hierarchy of the scheme. 

 +hierarchy Association to Hierarchies 
of Codes. 

Hierarchy Inherits from: 
 
NameableArtefact 

 
 

A classification structure 
arranged in levels of detail 
from the broadest to the 
most detailed level. 



 

 
 

   
 
 

96 

Class Feature Description 

 hasFormalLevels If “true” this indicates a 
hierarchy where the 
structure is arranged in 
levels of detail from the 
broadest to the most 
detailed level. 
 
If “false” this indicates a 
hierarchy structure where 
the items in the hierarchy 
have no formal level 
structure. 

 +codes Association to the top-
level Hierarchical Codes 
in the Hierarchy. 

 +level Association to the top 
Level in the Hierarchy. 

Level Inherits from 
NameableArtefact 

In a “level based” 
hierarchy this describes a 
group of Codes which are 
characterised by 
homogeneous coding, 
and where the parent of 
each Code in the group is 
at the same higher level 
of the Hierarchy. 
 
In a “value based’ 
hierarchy this describes 
information about the 
HierarchicalCodes at the 
specified nesting level.  

 +codeFormat Association to the Coding 
Format. 

 +child Association to a child 
Level of Level. 

CodingFormat  Specifies format 
information for the codes 
at this level in the 
hierarchy such as whether 
the codes at the level are 
alphabetic, numeric or 
alphanumeric and the 
code length. 

HierarchicalCode  A hierarchic structure of 
code references.  

 validFrom Date from which the 
construct is valid 



 

 
 

   
 
 

97 

Class Feature Description 

 validTo Date from which construct 
is superseded. 

 +code Association to the Code 
that is used at the specific 
point in the hierarchy. 

 +child Association to a child 
Code in the hierarchy.  

 +level 

 

Association to a Level 
where levels have been 
defined for the Hierarchy.  

Code  The Code to be used at 
this point in the hierarchy. 

 /items Association to the Code 
list containing the Code. 

Codelist  The Code list containing 
the Code. 

 1780 

1781 



 

 
 

   
 
 

98 

9 Structure Set and Mappings 1782 

9.1 Scope 1783 

A StructureSet allows components in one structure to be mapped to components in 1784 

another structure of the same type. In this context the term “structure” is used loosely to 1785 

include types of ItemScheme, types of Structure, and types of StructureUsage. The 1786 

allowable structures that can be mapped, and the components that can be mapped within 1787 

these structures are: 1788 

 1789 

Structure Type Component type 

Codelist Code 

Category Scheme Category 

Concept Scheme Concept 

Organisation Scheme Organisation – this allows mapping any 
type of Organisation to any type of 
Organisation (e.g. a Data Provider to an 
Organisation Unit) 

Hierarchical Codelist Hierachical Code to Code or vice-versa 

Data Structure Definition Dimension, Measure Dimension, Time 
Dimension. Data Attribute, Primary 
Measure 

Metadata Structure Definition Target Object, Metadata Attribute 

Dataflow Definition None 

Metadataflow Definition None 

 1790 

The StructureSet can contain one or more “maps” and can define related structures (via 1791 

the association +relatedStructure) which group related DataStructureDefinitions, 1792 

MetadataStructureDefinitions, DataflowDefinintions, 1793 

MetadataflowDefinintions.  1794 



 

 
 

   
 
 

99 

9.2 Structure Set 1795 

9.2.1 Class Diagram – Inheritance 1796 

ComponentMap OrganisationMap

OrganisationSchemeMap

MaintainableArtefact

StructureMap

CategoryMap

CategorySchemeMap

ItemAssociation

ItemSchemeMap

ConceptMap

ConceptSchemeMap

StructureSet

CodeMap

CodelistMap

ReportingCategoryMap

ReportingTaxonomyMap

NameableArtefact

HybridCodeMap

HybridCodelistMap

AnnotableArtefact

 1797 

Figure 32: Inheritance Class Diagram of the Structure Set 1798 



 

 
 

   
 
 

100 

9.2.2 Class Diagram – Relationship 1799 

 1800 

MaintainableArtefact

ItemSchemeMapHybridCodeListMap

DataStructureDefinition

DataflowDefinition

MetadataStructureDefinition

MetadataflowDefinition

Structure
(from SDMX-Base)

StructureSet
0..1

0..*

0..1

+relatedStructure

0..*

0..*

+itemSchemeMap

0..*0..*0..*

StructureUsage
(from SDMX-Base) 0..*

+relatedStructureUsage

0..*

StructureMap

1

+sourceStructure

1

1

+targetStructure

1

0..*

+map

0..*

1

+sourceStructureUsage

1

1

+targetStructureUsage

1

note that the source 

and the target must 

be of the same type 

e.g. Data Structure 

Definition

 1801 
Figure 33: Relationship Class diagram of the Structure Set 1802 

9.2.3 Explanation of the Diagram 1803 

9.2.3.1 Narrative 1804 

The StructureSet is a MaintainableArtefact. It can contain: 1805 

 1806 

1. A set of references to concrete sub-classes of Structure and StructureUsage 1807 

(DataStructureDefinition, MetadataStructureDefinition, 1808 

DataflowDefinition or MetadataflowDefinition) to indicate that a 1809 

relationship exists between them. For example there may be a group of 1810 

DataStructureDefinition which, together, form the definition of a cube, each 1811 

DataStructureDefinition defining a part of the cube.  1812 

2. A set of StructureMaps which define which components of one structure are 1813 

equivalent to those in another in a ComponentMap.  1814 

3. A set of ItemSchemeMaps which define the mapping between two concrete classes of 1815 

ItemScheme, and the mapping of the Items in these schemes, such as the mapping 1816 

of Codes in two Codelists..  1817 

4. A set of HybridCodelistMaps which define the mapping between a Codelist and 1818 

a HierachicalCodelist. 1819 

 1820 

The StructureMap references two Structures or StructureUsages. In concrete terms 1821 

these references will be to DataStructureDefinitions, 1822 

MetadataStructureDefinitions, DataflowDefinitions or 1823 

MetadataflowDefinitions.  1824 



 

 
 

   
 
 

101 

9.2.3.2 Definitions 1825 

Class Feature Description 

StructureSet Inherits from 
MaintainableArtefact 

A maintainable collection 
of structural maps that link 
components together in a 
source/target relationship 
where there is a semantic 
equivalence between the 
source and the target 
components. 

 +relatedStructure Association to a set of 
Data Structure Definitions 
and Metadata Structure 
Definitions. 

 +relatedStructureUsage Association to a set of 
Dataflow Definition and 
Metadataflow Definition. 

 +map Association to Structure 
Map. 

 +itemSchemeMap Association to Item 
Scheme Map 

StructureMap Inherits from 
NameableArtefact 

Links a source and target 
structure where there is a 
semantic equivalence 
between the source and 
the target structures.  

 sourceStructure Association to the source 
Structure. 

 targetStructure Association to the target 
Structure which must be 
of the same type as the 
source Structure. 

 sourceStructureUsage Association to the source 
Structure Usage. 

 targetStructureUsage Association to the target 
Structure Usage which 
must be of the same type 
as the source Structure 
Usage. 



 

 
 

   
 
 

102 

9.3 Structure Map 1826 

9.3.1 Class Diagram 1827 

ToTextFormat

textFormat : FacetType

toValueType : ToValueType

ToValueType

name : String

description : String

id : String

<<enumeration>>

RepresentationMapping

Component

SchemeMap

ComponentMap

alias : String

preferredLanguage : String

0..1

+contentMap

0..1

1+source1

1
+target

1

ItemSchemeMap

alias : String

11

StructureMap

isExtension : Boolean

alias : String

1..*

1

+map 1..*

1

StructureSet

0..*
+itemSchemeMap

0..*

0..*
+map

0..*

 1828 
Figure 34: Class diagram of the Structure Map 1829 

9.3.2 Explanation of the Diagram 1830 

9.3.2.1 Narrative 1831 

The StructureMap contains a set of ComponentMaps, each one indicating equivalence 1832 

between Components of the referenced Structure. ComponentMap has a 1833 

RepresentationMapping which can be one of the concete classes of ItemSchemeMap 1834 



 

 
 

   
 
 

103 

(e.g. for a Dimension this would be a CodelistMap) or ToTextFormat which takes values: 1835 

id, name, description. This instructs mapping tools to use the id, name or description of a 1836 

coded component to determine equivalence with an uncoded component's value.  1837 

 1838 

An example of a ComponentMap is linking the source Component that is a Dimension in the 1839 

source DataStructureDefinition (identified in the StructureMap) to the equivalent 1840 

target Component that is a Dimension in the target DataStructureDefinition). 1841 

 1842 

9.3.2.2 Definitions 1843 

Class Feature Description 

StructureMap Inherits from 
NameableArtefact 

Links a source and target 
structure where there is a 
semantic equivalence 
between the source and 
the target structures.  

 alias An alternate identification 
of the map, that allows the 
relation of multiple maps 
to be expressed by the 
sharing of this value. 

 +map Association to the 
Component Map. 

ComponentMap Inherits from 
AnnotableArtefact 

Links a source and target 
Component where there 
is a semantic equivalence 
between the source and 
the target Components. 

 alias An alternate identification 
of the map, that allows the 
relation of multiple maps 
to be expressed by the 
sharing of this value. 

 preferredLanguage Specifies the language to 
use for the content of the 
To Text Format option of 
RepresentationMap 

 +source Association to the source 
Component. 

 +target Association to the target 
Component. 

 +contentMap Association to the 
constructs that map the 
content of the 
Components – this will be 
either one of sub classes 
of Item Scheme or a 
mapping to text.  



 

 
 

   
 
 

104 

Class Feature Description 

Representation 

Mapping 

AbstractClass 

Sub classes: 

SchemeMap 

ToTextFormat 

Defines the mapping of 
the content of the source 
Component to the content 
of the target Component. 

SchemeMap Inherits from 

RepresentationMapping 

Associates an Item 
Scheme Map 

ToTextFormat Inherits from 

RepresentationMapping 

Defines the text format  

 textFormat Text format type. 

 toValueType Identifies the construct to 
be taken from the Item of 
the source Component 
when mapping the 
content of the source 
Component to the content 
of the target Component.  

ToValueType  Enumeration of the 
construct in the Item. 

9.4 Item Scheme Map 1844 

9.4.1 Context 1845 

The ItemSchemeMap is used to associate the Items in two different ItemSchemes. This is a 1846 

generic mechanism that can be used to map Items. Specific models exist for mapping 1847 

schemes where there is a semantic equivalence between Items in the ItemScheme. The 1848 

model supports the mapping of any two ItemSchemes of the same type. These are: 1849 

 1850 

 ConceptScheme 1851 

 CategoryScheme 1852 

 OrganisationScheme 1853 

 Codelist 1854 

 ReportingTaxonomy 1855 



 

 
 

   
 
 

105 

9.4.2 Class Diagram 1856 

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

0..*0..*items

ItemSchemeMap

11

source

11

target

ItemAssociation

11

source

11

target

0..1 1..*0..1 1..*

ItemAssociation

CategoryScheme

CategorySchemeMap

11

/source

11

/target

CategoryMap

1

0..*

1

0..*

/itemAssociation

Category

11

/target

11

/source

The concrete classes in the 

ItemSchemeAssociation 

restrict the mapping to 

schemes and items of the 

same type (e.g. a code list 

and its codes must be 

mapped to another code list 

and its codes)

OrganisationScheme

OrganisationSchemeMap

11

/source

11

/target

OrganisationMap

1

0..*

1

0..*

/itemAssociation

Organisation

11

/source

11

/target

ConceptScheme

ConceptSchemeMap

11

/source

11

/target

ConceptMap

1

0..*

1

0..*

/itemAssociation

Concept

11

/source

11

/target

Codelist

CodelistMap

11

/source

11

/target

Code

CodeMap

0..*0..*

/itemAssociation

11

/source

11

/target

ReportingCategory

ReportingTaxonomy

ReportingCategoryMap

11

/source

11

/target

ReportingTaxonomyMap

11

/target

11

/source

0..*0..*

Whilst these classes are 

abstract  the agency/id/version 

is sufficient to enable the 

identification of the scheme 

type and so the individual 

schemes do not have individual 

classes to structure the 

mapping.

 1857 
Figure 35: Class diagram of the Item Scheme Map 1858 

9.4.3 Explanation of the Diagram 1859 

9.4.3.1 Narrative 1860 

Both the ItemSchemeMap and the ItemAssociation inherit from NameableArtefact.  1861 

 1862 

Each of ConceptSchemeMap, CategorySchemeMap, CodelistMap and 1863 

OrganisationSchemeMap, ReportingTaxonomyMap provides a mechanism for 1864 

specifying semantic equivalence between the items (Concept, Category,Code, 1865 

Organisation, ReportingCategory) in the scheme. Note that any type of 1866 

OrganisationScheme and Organisation can be mapped (e.g. an Agency in an 1867 

AgencyScheme can be mapped to an OrganisationUnit in an 1868 

OrganisationUnitScheme). 1869 

 1870 

Each scheme map identifies a +source and +target scheme whose content is to be 1871 

mapped. Note that many schemes can be joined together via a set of pair-wise mappings. The 1872 

ConceptMap, CategoryMap, CodelistMap, OrganisationMap, and 1873 

ReportingTaxonomyMap denotes which Concepts, Categorys, Codes, Organisations, 1874 

and ReportingCategorys are semantically equivalent and a shared alias can be specified 1875 

to refer to a set of mapped concepts to facilitate querying. 1876 

9.4.3.2 Definitions 1877 

Class Feature Description 

ItemSchemeMap Inherits from Associates two Item 
Schemes  



 

 
 

   
 
 

106 

Class Feature Description 

 NameableArtefact 

Sub Classes 

ConceptSchemeMap 

CategorySchemeMap 

CodelistMap 

OrganisationSchemeMap 

ReportingTaxonomyScheme

Map 

 source Association to the source 
Item Scheme. 

 target Association to the target 
Item Scheme. 

 ItemAssociation Association to the Item 
Association.  

ItemAssociation Inherits from 
AnnotableArtefact 

Sub Classes 

ConceptMap 

CategoryMap 

CodeMap 

OrganisationMap 

ReportingCategoryMap 

 

 source Association to the source 
Item. 

 target Association to the target 
Item. 

ConceptSchemeMap Inherits from 
ItemSchemeMap 

Associates a source and 
target Concept Scheme 

 /source Association to the source 
Concept Scheme. 

 /target Association to the target 
Concept Scheme. 

ConceptMap Inherits from 
ItemAssociation 

Associates a source and 
target Concept. 

 /source Association to the source 
Concept. 

 /target Association to the target 
Concept. 

CodelistMap Inherits from 
ItemSchemeMap 

Associates a source and 
target Code list. 

 /source Association to the source 
Code list. 

 /target Association to the target 
Code list. 



 

 
 

   
 
 

107 

Class Feature Description 

CodeMap Inherits from 
ItemAssociation 

Associates a source and 
target Code. 

 /source Association to the source 
Code. 

 /target Association to the target 
Code. 

CategorySchemeMap Inherits from 
ItemSchemeMap 

Associates a source and 
target Category Scheme. 

 /source Association to the source 
Category Scheme. 

 /target Association to the target 
Category Scheme. 

CategoryMap Inherits from 
ItemAssociation 

Associates a source and 
target Category. 

 /source Association to the source 
Category. 

 /target Association to the target 
Category. 

OrganisationSchemeMap Inherits from 
ItemSchemeMap 

Associates a source and 
target Organisation 
Scheme. 

 /source Association to the source 
Organisation  Scheme. 

 /target Association to the target 
Organisation Scheme. 

OrganisationMap Inherits from 
ItemAssociation 

Associates a source and 
target Organisation. 

 /source Association to the source 
Organisation. 

 /target Association to the target 
Organisation. 

ReportingTaxonomyMap Inherits from 
ItemSchemeMap 

Associates a source and 
target Reporting 
Taxonomy. 

 /source Association to the source 
Reporting Taxonomy. 

 /target Association to the target 
Reporting Taxonomy. 

ReportingCategoryMap Inherits from 
ItemAssociation 

Associates a source and 
target Reporting 
Category. 

 /source Association to the source 
Reporting Category. 

 /target Association to the target 
Reporting Category. 



 

 
 

   
 
 

108 

9.5 Hybrid Codelist Map 1878 

9.5.1 Class Diagram 1879 

SourceHierarchicalCodelist

HierarchicalCodelist

11

TargetHierarchicalCodelist

11Hierarchy HierarchicalCode

SourceHierarchicalCode

HierarchicalCodeReference

1

+hierarchy

1 1
+codeAssociation

1

11

TargetHierarchicalCode

11

TargetCode

Code

11

SourceCode

11

SourceCodelist

Codelist

11

TargetCodelist

11

SourceCodeMap
TargetCodeMap

SourceList TargetList

StructureSet

HybridCodeMap

alias : String

1+source 1
1

+target
1

HybridCodelistMap

alias : String

1
+source

1 1
+target

1

0..*0..*

1..*

+hybridCodeMap

1..*

 1880 
Figure 36: Class diagram of the Hybrid Codelist Map 1881 

9.5.2 Explanation of the Diagram 1882 

9.5.2.1 Narrative 1883 

The HybridCodelistMap maps the content of a Codelist and a 1884 

HierachicalCodelist. It contains a mapping of the codes in the two schemes 1885 

(HybridCodeMap). The HybridCodeMap maps either a Code or HierachicalCode to a 1886 

Code or HierarchicalCode. The HierarchicalCode is identified by a combination of the 1887 

Hierarchy and the HierarchicalCode. 1888 

 1889 

9.5.2.2 Definitions 1890 

Class Feature Description 

HybridCodelist 

Map 

 

Inherits from 
NameableArtefact 

Associates a Codelist and 
a Hierarchical Codelist. 

 alias An alternate identification 
of the map, that allows 
the relation of multiple 
maps to be expressed by 
the sharing of this value. 

 +source Association to the source 
List. 

 +target Association to the target 
List. 



 

 
 

   
 
 

109 

Class Feature Description 

 +hybridCodeMap Association to the set of 
Hybrid Code Maps in the 
Hybrid Codelist Map. 

SourceList Abstract Class 
 
Sub classes 
SourceCodelist 

SourceHierarchical 

Codelist 

 

TargetList Abstract Class 
 
Sub classes 
TargetCodelist 

TargetHierarchical 

Codelist 

 

SourceCodelist  Identifies the Codelist 
where this is the source 
of the map. 

TargetCodelist  Identifies the Codelist 
where this is the target of 
the map. 

SourceHierarchical 

Codelist 

 Identifies the Hierarchical 
Codelist where this is the 
source of the map. 

TargetHierarchical 

Codelist 

 Identifies the Hierarchical 
Codelist where this is the 
target of the map. 

HybridCodeMap Inherits from 
AnnotableArtefact 

Associates the source 
and target codes in 
Hybrid Codelist Map. 

 +source Associates the Source 
Code Map. 

 +target Associates the Target 
Code Map.  

SourceCodeMap Abstract Class 
 
Sub classes 
SourceCode 

SourceHierarchical 

Code 

 

TargetCodeMap Abstract Class 
 
Sub classes 
TargetCode 

TargetHierarchical 

Code 

 

SourceCode  Identifies the Code where 
this is the source of the 
map. 



 

 
 

   
 
 

110 

Class Feature Description 

TargetCode  Identifies the Code where 
this is the target of the 
map. 

SourceHierarchical 

Code 

 Identifies the Hierarchical 
Code where this is the 
source of the map 

TargetHierarchical 

Code 

 Identifies the Hierarchical 
Code where this is the 
target of the map. 

HierarchicalCode 

Reference 

 References both the 
Hierarchy and the 
Hierarchical Code in a 
Hierarchical Codelist. 

 +hierarchy 

+codeAssociation 

Associates the 
Hierarchical Code in the 
Hierarchy of the 
Hierarchical Codelist. 

 1891 

1892 



 

 
 

   
 
 

111 

10 Constraints 1893 

10.1 Scope 1894 

The scope of this section is to describe the support in the metamodel for specifying both the 1895 

access to and the content of a data source. The information may be stored in a resource such 1896 

as a registry for use by applications wishing to locate data and metadata which is available via 1897 

the Internet. The Constraint is also used to specify a sub set of a Codelist which may used as 1898 

a partial code list which is relevant in the context of the artefact to which the Constraint is 1899 

attached e.g. Data Structure Definition, Dataflow, Provision Agreement. 1900 

 1901 

Note that in this metamodel the term data source refers to both data and metadata sources, 1902 

and data provider refers to both data and metadata providers. 1903 

 1904 

A data source may be a simple file of data or metadata (in SDMX-ML format), or a database or 1905 

metadata repository. A data source may contain data for many data or metadataflows (called 1906 

DataflowDefinition, and MetadataflowDefinition in the model), and the 1907 

mechanisms described in this section allow an organisation to specify precisely the scope of 1908 

the content of the data source where this data source is registered (SimpleDataSource, 1909 

QueryDataSource).  1910 

 1911 

The DataflowDefinition and MetadataflowDefinition, themselves may be 1912 

specified as containing only a sub set of all the possible keys that could be derived from a 1913 

DataStructureDefinition or MetadataStructureDefinition. 1914 

 1915 

These specifications are called Constraint in this model. 1916 

10.2 Inheritance 1917 

10.2.1 Class Diagram of Constrainable Artefacts - Inheritance 1918 

DataStructureDefinition

ConstrainableArtefact

DataflowDefinition

DataSet

QueryDatasource ProvisionAgreementSimpleDatasource

RestDatasource WebServiceDatasource

MetadataflowDefinition

MetadataStructureDefinition

MetadataSet

DataProvider

0..*

0..1

references

0..*

0..1

references

 1919 

Figure 37: Inheritance class diagram of constrainable and provisioning artefacts 1920 

10.2.2 Explanation of the Diagram 1921 

10.2.2.1 Narrative 1922 

Any artefact that is derived from ConstrainableArtefact can have constraints defined. 1923 

The artefacts that can have constraint metadata attached are: 1924 

 1925 

 DataflowDefinition 1926 

 ProvisionAgreement 1927 



 

 
 

   
 
 

112 

 DataProvider – this is restricted to release calendar 1928 

 MetadataflowDefinition 1929 

 DataStructureDefinition 1930 

 MetadataStructureDefinition 1931 

 DataSet 1932 

 SimpleDataSource – this is a registered data source where the 1933 

registration references the actual DataSet or MetadataSet 1934 

 QueryDataSource 1935 

Note that, because the Constraint can specify a sub set of the component values implied 1936 

by a specific Structure (such a specific DataStructureDefinition or specific 1937 

MetadataStructureDefinition), the ConstrainableArtefacts must be associated 1938 

with a specific Structure. Therefore, whilst the Constraint itself may not be linked directly 1939 

to a DataStructureDefinition or MetadataStructureDefinition, the artefact that 1940 

it is constraining will be linked to a DataStructureDefinition or 1941 

MetadataStructureDefinition. As a Data Provider does not link to any one specific 1942 

DSD or MSD the type of information that can be contained in a Constraint linked to a 1943 

DataProvider is restricted to Release Calendar. 1944 

10.3 Constraints 1945 

10.3.1 Relationship Class Diagram – high level view 1946 

ConstraintRoleType

allowableContent : String

actualContent : String

<<enumeration>>

MaintainableArtefact

ConstraintRole

role : ConstraintRoleType

DataKeySet

isIncuded : Boolean

Constraint

1..*

+role

1..*

1

0..*

1

+dataContentKeys

0..*

MetdataKeySet

isIncuded : Boolean

0..*

+metadataContentKeys

0..*

AttachmentConstraint

ConstrainableArtefact

0..*

0..*

0..*

0..*

attachment

ReferencePeriod

startDate : Date

endDate : Date

ReleaseCalendar

periodicity : Duration

offset : Duration

tolerance : Duration

CubeRegion

isIncuded : Boolean

ContentConstraint

0..*

0..*

0..*

0..*

content

0..1

1

+availableDates

0..1

1

0..10..1

0..*

+dataContentRegion

0..*

MetadataTargetRegion

isIncluded : Boolean

0..*

+metadataContentRegion

0..*

 1947 

Figure 38: Relationship class diagram showing constraint metadata 1948 



 

 
 

   
 
 

113 

10.3.2 Explanation of the Diagram 1949 

10.3.2.1 Narrative 1950 

The constraint mechanism allows specific constraints to be attached to a 1951 

ConstrainableArtefact. With the exception of ReferencePeriod, and 1952 

ReleaseCalendar these constraints specify a sub set of the total set of values or keys that 1953 

may be present in any of the ConstrainableArtefacts. 1954 

 1955 

For instance a DataStructureDefinition specifies, for each Dimension, the list of 1956 

allowable code values. However, a specific DataflowDefinition that uses the 1957 

DataStructureDefinition may contain only a sub set of the possible range of keys that 1958 

is theoretically possible from the DataStructureDefinition definition (the total range of 1959 

possibilities is sometimes called the Cartesian product of the dimension values). In addition to 1960 

this, a DataProvider that is capable of supplying data according to the 1961 

DataflowDefinition has a ProvisionAgreement, and the DataProvider may also 1962 

wish to supply constraint information which may further constrain the range of possibilities in 1963 

order to describe the data that the provider can supply. It may also be useful to describe the 1964 

content of a datasource in terms of the KeySets or CubeRegions contained within it. 1965 

 1966 

A ConstrainableArtefact can have two types of Constraint: 1967 

 1968 

1. ContentConstraint – is used solely as a mechanism to specify either the available 1969 

set of keys (DataKeySet, MetadataKeySet) or set of component values 1970 

(CubeRegion, MetadatTargetRegion) in a DataSource such as a DataSet or a 1971 

database (QueryDatasource), or the allowable keys that can be constructed from a 1972 

DataStructureDefinition. Multiple such constraints may be present for a 1973 

ConstrainableArtefact. For instance, there may be a ContentConstraint 1974 

that specifies the values allowed for the ConstrainableArtefact (role is 1975 

allowableContent) which can be used for validation or for constructing a partial 1976 

code list, whilst another constraint can specify the actual content of a data or 1977 

metadata source (role is actualContent). 1978 

2. AttachmentConstraint – is used as a mechanism to define slices of the full set of 1979 

data and to which metadata can be attached in a Data Set or MetadataSet. These 1980 

slices can be defined either as a set of keys (KeySet) or a set of component values 1981 

(CubeRegion). There can be many AttachmentConstraints specified for a 1982 

specific AttachableArtefact. 1983 

 1984 

In addition to (DataKeySet, MetadataKeySet, CubeRegion, 1985 

MetadataTargetRegion, a Constraint can have a ReferencePeriod defining one of 1986 

more date ranges (ValidityPeriod) specifying the time period for which data or metadata 1987 

are available in the ConstrainableArtefact and a ReleaseCalendar specifying when 1988 

data are released for publication or reporting. 1989 

 1990 



 

 
 

   
 
 

114 

10.3.3 Relationship Class Diagram – Detail 1991 

MaintainableArtefact

DataKeySet

isIncuded : Boolean

TimeDimensionValue

timeValue : observationalTimePeriod

operator : String

DataKey

isIncuded : Boolean

1..*
+keys

1..*

ComponentValue

value : String

0..*0..*

1..*
+keyValue

1..*

Component

1

+valueFor

1

Constraint

0..*

1

+dataContentKeys

0..*

1

MetadataKey

isIncuded : Boolean

1..*+keyValue1..*

ComponentListMetdataKeySet

isIncuded : Boolean

0..*

+metadataContentKeys

0..*

1..*
+keys

1..*

11

MetadataTarget

 1992 

Figure 39: Constraints - Key Set Constraints 1993 



 

 
 

   
 
 

115 

Dimension

DataAttribute

Constraint

MetadataAttribute

ReportStructure

TargetObject

MetadataTarget

MemberValue

value : String

cascadeValues : Boolean

MeasureDimensionTimeDimension

ComponentList

ContentConstraint

Component
(from SDMX-Base)

CubeRegion

isIncuded : Boolean

0..*

+dataContentRegion

0..*

MetadataTargetRegion

isIncluded : Boolean
11

0..*

+metadataContentRegion

0..*

SelectionValue

MemberSelection

isIncuded : Boolean

1

+valuesFor

1

0..*

0..1

+member
0..*

0..1

0..*

+member

0..*

0..*0..*

TimeRangeValue

BeforePeriod

isInclusive : Boolean

period : ObservationalTimePeriod

AfterPeriod

isInclusive : Boolean

period : ObservationalTimePeriod

StartPeriod

isInclusive : Boolean

period : ObservationalTimePeriod

EndPeriod

isInclusive : Boolean

period : ObservationalTimePeriod

RangePeriod

1+start 1
1

+end
1

DimensionComponent

 1994 
Figure 40: Constraints - Cube Region and Metadata Target Region Constraints 1995 

10.3.3.1 Explanation of the Diagram 1996 

A Constraint is a MaintainableArtefact.  1997 

 1998 

A Constraint has a choice of two ways of specifying value sub sets: 1999 

 2000 

1. As a set of keys that can be present in the DataSet (DataKeySet) or MetadataSet 2001 

(MetadataKeySet). Each DataKey or MetadataKey specifies a number of 2002 

ComponentValues each of which reference a Component (e.g. Dimension, 2003 

TargetObject).  Each ComponentValue is a value that may be present for a 2004 

Component of a structure when contained in a DataSet or MetadataSet. The 2005 

MetadataKeySet must also identify the MetadataTarget as there can be many of 2006 

each of these in a MetadataStructureDefinition. For the DataKeySet the 2007 

equivalent identification is not necessary as there is only one DimensionDescriptor 2008 

and one AttributeDescriptor. 2009 

2. As a set of CubeRegions or MetadataTaregetRegions each of which defines a 2010 

“slice” of the total structure (MemberSelection) in terms of one or more 2011 

MemberValues that may be present for a Component of a structure when contained 2012 

in a DataSet or MetadataSet. 2013 

The difference between (1) and (2) above is that in (1) a complete key is defined whereas in 2014 

(2) above the “slice” defines a list of possible values for each of the Components but does 2015 

not specify specific key combinations. In addition, in (1) the association between Component 2016 



 

 
 

   
 
 

116 

and DataKeyValue or MetadataKeyValue is constrained to the components that comprise 2017 

the key or identifier, whereas in (2) it can contain other component types (such as attributes). 2018 

The value in ComponentValue.value and MemberValue.value must be consistent with 2019 

the Representation declared for the Component in the DataStructureDefinition or 2020 

MetadataStructureDefinition. Note that in all cases the “operator” on the value is 2021 

deemed to be “equals”. Furthermore, it is possible in a MemberValue to specify that child 2022 

values (e.g. child codes) are included in the constraint by means of the cascadeValues 2023 

attribute. 2024 

 2025 

It is possible to define for the DataKeySet, DataKey, MetadataKeySet, MetadataKey, 2026 

CubeRegion, MetadataTargetRegion, and MemberSelection whether the set is 2027 

included (isIncluded = “true”) or excluded (isIncluded = ”false”) from the constraint 2028 

definition. This attribute is useful if, for example, only a small sub-set of the possible values 2029 

are not included in the set, then this smaller sub-set can be defined and excluded from the 2030 

constraint. Note that if the child construct is “included: and the parent construct is “excluded” 2031 

then the child construct is included in the list of constructs that are “excluded”.  2032 

10.3.3.2 Definitions 2033 

Class Feature Description 

Constrainable 

Artefact 

Abstract Class 
Sub classes are: 
 
DataflowDefinition 

Metadataflow 

Definition 

ProvisionAgreement 

DataProvider 

QueryDatasource 

SimpleDatasource 

DataStructure 

Definition 

MetadataStructure 

Definition 

An artefact that can have 
Constraints specified. 

 content Associates the metadata 
that constrains the 
content to be found in a 
data or metadata source 
linked to the 
Constrainable Artefact. 

 attachment Associates the metadata 
that constrains the valid 
content of a Constrainable 
Artefact to which 
metadata  may be 
attached.  



 

 
 

   
 
 

117 

Class Feature Description 

Constraint Inherits from 

MaintainableArtefact 

Abstract class. Sub classes 
are: 

AttachmentConstraint 

ContentConstraint 

Specifies a sub set of the 
definition of the allowable 
or actual content of a data 
or metadata source that 
can be derived from the 
Structure that defines 
code lists and other valid 
content.  

 +availableDates Association to the time 
period that identifies the 
time range for which data 
or metadata are available 
in the data source. 

 +dataContentKeys Association to a sub set of 
Data Key Sets (i.e. value 
combinations) that can be 
derived from the definition 
of the structure to which 
the Constrainable Artefact 
is linked.  

 +metadataContentKeys Association to a sub set of 
Metdata Key Sets (i.e. 
value combinations) that 
can be derived from the 
definition of the Structure 
to which the 
Constrainable Artefact is 
linke 

 +dataContentRegion Association to a sub set of 
component values that 
can be derived from the 
Data Structure Definition 
to which the 
Constrainable Artefact is 
linked. 

 +metadataContentRegion Association to a sub set of 
component values that 
can be derived from the 
Metadata Structure 
Definition to which the 
Constrainable Artefact is 
linked. 



 

 
 

   
 
 

118 

Class Feature Description 

ContentConstraint Inherits from 
Constraint 

Defines a Constraint in 
terms of the content that 
can be found in data or 
metadata sources linked 
to the Constrainable  
Artefact to which this 
constraint is associated.  

 +role Association to the role 
that the Constraint plays 

ConstraintRole  Specifies the way the type 
of content of a Constraint 
in terms of its purpose.   

 allowableContent The Constraint contains a 
specification of the valid 
sub set of the Component 
values or keys. 

 actualContent The Constraint contains a 
specification of the actual 
content of a data or 
metadata source in terms 
of  the Component values 
or keys in the source. 

Attachment 

Constraint 

Inherits from 
Constraint 

Defines a Constraint in 
terms of the combination 
of component values that 
may be found in a data 
source, and to which a 
Constrainable Artefact 
may be associated in a 
structure definition. 

DataKeySet  A set of data keys. 

 isIncluded Indicates whether the 
Data Key Set is included 
in the constraint definition 
or excluded from the 
constraint definition. 

 +keys Association to the Data 
Keys in the set. 

MetadataKeySet  A set of metadata keys. 

 isIncluded Indicates whether the 
Metadata Key Set is 
included in the constraint 
definition or excluded 
from the constraint 
definition. 

 +keys Association to the 
Metadata Keys in the set. 



 

 
 

   
 
 

119 

Class Feature Description 

DataKey  The values of a key in a 
data set. 

 isIncluded Indicates whether the 
Data Key is included in 
the constraint definition or 
excluded from the 
constraint definition. 

 +keyValue Associates the 
Component Values that 
comprise the key. 

MetadataKey  The values of a key in a 
metadata set. 

 isIncluded Indicates whether the 
Metdadata Key is 
included in the constraint 
definition or excluded 
from the constraint 
definition. 

 +keyValue Associates the 
Component Values that 
comprise the key. 

ComponentValue  The identification of and 
value of a Component of 
the key (e.g. Dimension) 

 value The value of Component 

 +valueFor Association to the 
Component (e.g. 
Dimension) in the 
Structure to which the 
Constrainable Artefact is 
linked. 

TimeDimensionValue  The value of the Time 
Dimension component. 

 timeValue The value of the time 
period. 



 

 
 

   
 
 

120 

Class Feature Description 

 operator Indicates whether the 
specified value represents 
and exact time or time 
period, or whether the 
value should be handled 
as a range.  
 
A value of greaterThan or 
greaterThanOrEqual 
indicates that the value is 
the beginning of a range 
(exclusive or inclusive, 
respectively).  
 
A value of lessThan or 
lessThanOrEqual 
indicates that the value is 
the end or a range 
(exclusive or inclusive, 
respectively).  
 
In the absence of the 
opposite bound being 
specified for the range, 
this bound is to be treated 
as infinite (e.g. any time 
period after the beginning 
of the provided time 
period for 
greaterThanOrEqual) 

CubeRegion  A set of Components and 
their values that defines a 
sub set or “slice” of the 
total range of possible 
content of a data structure 
to which the 
Constrainable Artefact is 
linked. 

 isIncluded Indicates whether the 
Cube Region is included 
in the constraint definition 
or excluded from the 
constraint definition. 

 +member Associates the set of 
Components that define 
the sub set of values. 



 

 
 

   
 
 

121 

Class Feature Description 

MetadataTargetRegion  A set of Components and 
their values that defines a 
sub set or “slice” of the 
total range of possible 
content of a metadata 
structure to which the 
Constrainable Artefact is 
linked. 

 isIncluded Indicates whether the 
Metadata Target Region 
is included in the 
constraint definition or 
excluded from the 
constraint definition. 

 +member Associates the set of 
Components that define 
the sub set of values. 

MemberSelection  A set of permissible 
values for one component 
of the axis. 

 isIncluded Indicates whether the 
Member Selection is 
included in the constraint 
definition or excluded 
from the constraint 
definition. 

 +valuesFor Association to the 
Component in the 
Structure to which the 
Constrainable Artefact is 
linked, which defines the 
valid Representation for 
the Member Values. 

SelectionValue Abstract class. Sub classes 
are: 
MemberValue 

TimeRangeValue 

A collection of values for 
the Member Selections 
that, combined with other 
Member Selections, 
comprise the value 
content of the Cube 
Region. 

MemberValue Inherits from 
SelectionValue 

A single value of the set 
of values for the Member 
Selection. 

 value A value of the member. 



 

 
 

   
 
 

122 

Class Feature Description 

 cascadeValues Indicates that the child 
nodes of the member are 
included in the Member 
Selection (e.g. child 
codes)  

TimeRangeValue Inherits from 
SelectionValue  

Abstract Class 

Concrete Classes 

BeforePeriod 

AfterPeriod 

RangePeriod 

A time value or values 
that specifies the date or 
dates for which the 
constrained selection is 
valid. 

BeforePeriod Inherits from 

TimeRangeValue 

The period before which 
the constrained selection 
is valid. 

 isInclusive Indication of whether the 
date is inclusive in the 
period. 

AfterPeriod Inherits from 

TimeRangeValue 

The period after which the 
constrained selection is 
valid. 

 isInclusive Indication of whether the 
date is inclusive in the 
period. 

RangePeriod  The start and end periods 
in a date range. 

 +start Association to the Start 
Period. 

 +end Association to the End 
Period. 

StartPeriod Inherits from 

TimeRangeValue 

The period from which the 
constrained selection is 
valid. 

 isInclusive Indication of whether the 
date is inclusive in the 
period. 

EndPeriod Inherits from 

TimeRangeValue 

The period to  which the 
constrained selection is 
valid. 

 isInclusive Indication of whether the 
date is inclusive in the 
period. 



 

 
 

   
 
 

123 

Class Feature Description 

ReferencePeriod  A set of dates that 
constrain the content that 
may be found in a data or 
metadata set. 

 startDate The start date of the 
period. 

 endDate The end date of the 
period. 

ReleaseCalendar  The schedule of 
publication or reporting of 
the data or metadata 

 periodicity The time period between 
the releases of the data or 
metadata 

 offset Interval between January 
1st and the first release of 
the data 

 tolerance Period after which the 
data or metadata may be 
deemed late. 



 

 
 

   
 
 

124 

11 Data Provisioning 2034 

11.1 Class Diagram 2035 

ItemScheme
(from SDMX-Base)

Item
(from SDMX-Base)

0..*

1

+child
0..*

hierarchy

+parent

1
0..*0..*

items

this is registry 

based metadata

SimpleDatasource

DataSet
(from Data-Set)

MetadataSet
(f rom Metadata-Set)

0..*
0..1

refere...

0..* 0..1
refere...

DataflowDefinition
(f rom DataStructureDef inition)

DataStructureDefinition
(f rom DataStructureDef inition)

0..*

1

0..*

1

/structure

MetadataflowDefinition
(f rom Metadata-Structure-Def inition)

MetadataStructureDefinition
(f rom Metadata-Structure-Def inition)

0..*

1

0..*

1

/structure

Structure
(from SDMX-Base)

StructureUsage
(from SDMX-Base)

1

0..*

1

0..*

structure

Registration
(f rom Registry )

ProvisionAgreement

0..*

1

0..*

1

controlledBy

DataProvider
(f rom SDMX-Base)

0..*1 0..*1

hasAgreement

Versionab leArtefact
(from SDMX-Base)

MaintainableArtefact
(from SDMX-Base)

CategoryScheme
(f rom Category -Scheme)

Category
(f rom Category -Scheme)

1..*1..*

/items

1 0..*

+parent

1

/hierarchy

+child
0..*

Categorisation
(f rom Category -Scheme)

0..*1 0..*

+categorisedBy

1

IdentifiableArtefact
(from SDMX-Base)

0..*

1

0..*

+categorisedArtefact

1

NameableArtefact
(from SDMX-Base)

Datasource

1..*0..1 1..*0..1

0..1

0..1

+source

0..1

0..1

URL

<<datatype>>

1

1

1

+sourceURL

1

WebServicesDatasource

1 1

+WSDLURL

1 1

RESTDatasource SOAPDatasource

 2036 

Figure 41: Relationship and inheritance class diagram of data provisioning 2037 



 

 
 

   
 
 

125 

11.2 Explanation of the Diagram 2038 

11.2.1 Narrative 2039 

This sub model links many artefacts in the SDMX-IM and is pivotal to an SDMX metadata 2040 

registry, as all of the artefacts in this sub model must be accessible to an application that is 2041 

responsible for data and metadata registration or for an application that requires access to the 2042 

data or metadata. 2043 

 2044 

Whilst a registry contains all of the metadata depicted on the diagram above, the classes in 2045 

the grey shaded area are specific to a registry based scenario where data sources (either 2046 

physical data and metadata sets or databases and metadata repositories) are registered. 2047 

More details on how these classes are used in a registry scenario can be found in the SDMX 2048 

Registry Interface document. (Section 5 of the SDMX Standards). 2049 

 2050 

A ProvisionAgreement links  the artefact that defines how data and metadata are 2051 

structured and classified (StructureUsage) to the DataProvider, and, by means of a data 2052 

or metadata registration, it references  the Datasource (this can be data or metadata), 2053 

whether this be an SDMX conformant file on a website (SimpleDatasource) or a database 2054 

service capable of supporting an SDMX query and responding with an SDMX conformant 2055 

document (QueryDatasource).  2056 

 2057 

The StructureUsage, which has concrete classes of DataflowDefinition and  2058 

MetadataflowDefinition identifies the corresponding DataStructureDefinition or 2059 

MetadataStructureDefinition,  and, via Categorisation, can  link to one or more 2060 

Category in a CategoryScheme such as a subject matter domain scheme, by which the 2061 

StructureUsage can be classified. This can assist in drilling down from subject matter 2062 

domains to find the data or metadata that may be relevant. 2063 

 2064 

The SimpleDatasource links to the actual DataSet or MetadataSet on a website (this is 2065 

shown on the diagram as a dependency called “references”). The sourceURL is obtained 2066 

during the registration process of the DataSet or the MetadataSet. Additional information 2067 

about the content of the SimpleDatasource is stored in the registry in terms of a 2068 

ContentConstraint (see 10.3) for the Registration. 2069 

 2070 

The QueryDatasource is an abstract class that represents a data source which can 2071 

understand an SDMX-ML query (SOAPDatasource) or RESTful query (RESTDatasource) 2072 

and respond appropriately. Each of these different Datasources inherit the dataURL from 2073 

Datasource, and the QueryDatasource has an additional URL to locate a WSDL or WADL 2074 

document to describe how to access it. All other supported protocols are assumed to use the 2075 

SimpleDatasource URL. 2076 

 2077 

The diagram below shows in schematic way the essential navigation through the SDMX 2078 

structural artefacts that eventually link to a data or metadata registration. 2079 

 2080 



 

 
 

   
 
 

126 

 2081 
Figure 42: Schematic of the linking of structural metadata to data and metadata registration 2082 

11.2.2 Definitions 2083 

 2084 

Class Feature Description 

StructureUsage Abstract class: 
Sub classes are: 
 
DataflowDefinition 

MetadataflowDefinition 

 

This is described in the 
Base. 

 controlledBy Association to the 
Provision Agreements 
that comprise the 
metadata related to the 
provision of data. 

DataProvider  See Organisation 
Scheme. 

 hasAgreement Association to the 
Provision Agreements for 
which the provider 
supplies data or 
metadata.  



 

 
 

   
 
 

127 

Class Feature Description 

 +source Association to a data or 
metadata source which 
can process a data or 
metadata query. 

ProvisionAgreement  Links the Data Provider to 
the relevant Structure 
Usage (e.g. Dataflow 
Definition or Metadataflow 
Definition) for which the 
provider supplies data or 
metadata The agreement 
may constrain the scope 
of the data or metadata 
that can be provided, by 
means of a Constraint. 

 +source Association to a data or 
reference metadata 
source which can process 
a data or metadata query. 

Datasource Abstract class: 
 
Sub classes are: 
 
SimpleDatasource 

 
WebServices 

Datasource 

Identification of the 
location or service from 
where data or reference 
metadata can be 
obtained. 

 +sourceURL The URL of the data or 
reference metadata 
source (a file or a web 
service). 

SimpleDatasource  An SDMX-ML data set  
accessible as a file at a 
URL. 

WebServices 

Datasource 

Abstract class: 
Inherits from: 
 
Datasource 

Sub classes are: 
 
RESTDatasource 

SOAPDatasource 

A data or reference 
metadata source which 
can process a data or 
metadata query. 



 

 
 

   
 
 

128 

Class Feature Description 

RESTDatasource  A data or reference 
metadata source that is 
accessible via a RESTful 
web services interface. 

SOAPDatasource  A data or reference 
metadata source that 
conforms to a SOAP web 
service interface. 

 +WSDLURL Association to the URL of 
the Web Service 
Definition Language 
(SOAP) or Web Service 
Application Language 
(REST) profile of the web 
service. 

Registration  This is not detailed here 
but is shown as the link 
between the SDMX-IM 
and the Registry Service 
API. It denotes a data or 
metadata registration 
document. 

12 Process 2085 

12.1 Introduction 2086 

In any system that processes data and reference metadata the system itself is a series of 2087 

processes and in each of these processes the data or reference metadata may undergo a 2088 

series of transitions. This is particularly true of its path from raw data to published data and 2089 

reference metadata. The process model presented here is a generic model that can capture 2090 

key information about these stages in both a textual way and also in a more formalised way by 2091 

linking to specific identifiable objects, and by identifying software components that are used. 2092 



 

 
 

   
 
 

129 

12.2 Model – Inheritance and Relationship view 2093 

12.2.1 Class Diagram 2094 

1

The process step can 

reference any identifiable 

object as input or output.

MaintainableArtefact

Process

Computation

localId : String

softwarePackage : String

softwareLanguage

softwareVersion : String

Transition

localId : String

InternationalString

+condition

1

ProcessStep

0..*
+step

0..*

0..1

+computation

0..1

0..*
+child

0..*+parent

1

+target

10..*

+transition

0..*

+source

ProcessArtefact

localID : String

0..*

+output

0..* 0..*

+input

0..*

IdentifiableArtefact

11

+artefact

AnnotableArtefact

InternationalString

1..*

+description

1..*

 2095 

Figure 43: Inheritance and Relationship class diagram of Process and Transitions 2096 

12.2.2 Explanation of the Diagram 2097 

12.2.2.1 Narrative 2098 

The Process is a set of hierarchical ProcessSteps. Each ProcessStep can take zero or 2099 

more IdentifiableArtefacts as input and output. Each of the associations to the input 2100 

and output IdentifiableArtefacts (ProcessArtefact) can be assigned a localID. 2101 

 2102 

The computation performed by a ProcessStep is optionally described by a Computation, 2103 

which can identify the software used by the ProcessStep and can also be described in 2104 

textual form (+description) in multiple language variants. The Transition describes the 2105 

execution of ProcessSteps from +source ProcessStep to +target ProcessStep  2106 

based on the outcome of a +condition  that can be described in multiple language variants.  2107 

 2108 
2109 



 

 
 

   
 
 

130 

12.2.2.2 Definitions 2110 

Class Feature Description 

+Process Inherits from 
Maintainable 

A scheme which defines 
or documents the 
operations performed on 
data or metadata in order 
to validate data or 
metadata to derive new 
information according to a 
given set of rules.  

 +step Associates the Process 
Steps. 

ProcessStep Inherits from 
IdentifiableArtefact 

A specific operation, 
performed on data or 
metadata in order to 
validate or to derive new 
information according to a 
given set of rules. 

 +input Association to the 
Process Artefact that 
identifies the objects 
which are input to the 
Process Step.  

 +output Association to the 
Process Artefact that 
identifies the objects 
which are output from the 
Process Step. 

 +child Association to child 
Processes that combine 
to  form a part of this 
Process. 

 +computation Association to one or 
more  Computations. 

 +transition Association to one or 
more Transitions. 

Computation  Describes in textual form 
the computations involved 
in the process. 

 localId Distinguishes between 
Computations in the same 
Process. 

 softwarePackage 

softwareLanguage 

softwareVersion 

Information about the 
software that is used to 
perform the computation. 



 

 
 

   
 
 

131 

Class Feature Description 

 +description Text describing or giving 
additional information 
about the computation. 
This can be in multiple 
language variants. 

Transition Inherits from 
IdentifiableArtefact 

An expression in a textual 
or formalised way of the 
transformation of data 
between two specific 
operations (Processes) 
performed on the data. 

 +target Associates the Process 
Step that is the target of 
the Transition. 

 +condition Associates a textual 
description of the 
Transition.  

ProcessArtefact  Identification of an object 
that is an input to or an 
output from a Process 
Step. 

 +artefact Association to an 
Identifiable Artefact that is 
the input to or the output 
from  the Process Step. 

 2111 

2112 



 

 
 

   
 
 

132 

13 Validation and Transformation Language 2113 

13.1 Introduction 2114 

This SDMX model package supports the definition of Transformations, which are algorithms to calculate 2115 
new data starting from already existing ones, written using the Validation and Transformation Language 2116 

(VTL)2. 2117 
 2118 
The purpose of this model package is to enable the: 2119 
 2120 

 definition of validation and transformation algorithms by means of VTL, in order to specify how 2121 
to calculate new SDMX data from existing ones; 2122 

 exchange of the definition of VTL algorithms, also together the definition of the data structures 2123 
of the involved data (for example, exchange the data structures of a reporting framework 2124 
together with the validation rules to be applied, exchange the input and output data structures of 2125 
a calculation task together with the VTL transformations describing the calculation algorithms); 2126 

 execution of VTL algorithms, either interpreting the VTL transformations or translating them in 2127 
whatever other computer language is deemed as appropriate;  2128 

 2129 
This model package does not explain the VTL language or any of the content published in the VTL 2130 
guides. Rather, this is an illustration of the SDMX classes and attributes that allow defining VTL 2131 
transformations applied to SDMX artefacts.  2132 
  2133 
The SDMX model represented below is consistent with the VTL 2.0 specification. However, the former 2134 
uses the SDMX terminology and is a model at technical level (from which the SDMX implementation 2135 
artefacts for defining VTL transformations are built), whereas the latter uses the VTL terminology and is 2136 
at conceptual level. The guidelines for mapping these terminologies and using the VTL in the SDMX 2137 
context can be found in a dedicated chapter (“Validation and Transformation Language”) of the Section 2138 
6 of the SDMX Standards (“SDMX Technical Notes”), often referenced below. 2139 

                                                      

2   The Validation and Transformation Language is a standard language designed and published under the SDMX 

initiative. VTL is described in the VTL User and Reference Guides available on the SDMX website 

https://sdmx.org. 

https://sdmx.org/


 

 
 

   
 
 

133 

13.2 Model - Inheritance view 2140 

13.2.1 Class Diagram 2141 

 2142 

 2143 
Figure 44: Class inheritance diagram in the Transformations and Expressions Package 2144 

13.2.2 Explanation of the Diagram 2145 

13.2.2.1 Narrative 2146 

The model artefacts TransformationScheme, RulesetScheme, 2147 

UserDefinedOperatorScheme, NamePersonalisationScheme, 2148 

CustomTypeScheme, and VtlMappingScheme inherit from ItemScheme  2149 

 2150 

These schemes inherit from the ItemScheme and therefore have the following attributes: 2151 

 2152 

 id 2153 

 uri 2154 

 urn 2155 

 version 2156 

 validFrom 2157 

 validTo 2158 

 isExternalReference 2159 

 registryURL 2160 

 structureURL 2161 

 repositoryURL 2162 



 

 
 

   
 
 

134 

 final 2163 

 isPartial 2164 

The model artefacts Transformation, Ruleset, UserDefinedOperator, 2165 

NamePersonalisation, VtlMapping, CustomType inherit the attributes and 2166 

associations of Item which itself inherits from NameableArtefact. They have the following 2167 

attributes: 2168 

 2169 

 id 2170 

 uri 2171 

 urn 2172 

The multi-lingual name and description are provided by the relationship to InternationalString 2173 

from NameableArtefact. 2174 

2175 



 

 
 

   
 
 

135 

13.3 Model - Relationship View 2176 

13.3.1 Class Diagram 2177 

 2178 
Figure 45: Relationship diagram in the Transformations and Expressions Package 2179 



 

 
 

   
 
 

136 

13.3.2 Explanation of the Diagram 2180 

13.3.2.1 Narrative - Overview 2181 

 2182 

Transformation Scheme 2183 

 2184 

A TransformationScheme is a set of Transformations aimed at obtaining some 2185 

meaningful results for the user (e.g. the validation of one or more Data Sets). This set of 2186 

Transformations is meant to be executed together (in the same run) and may contain any 2187 

number of Transformations in order to produce any number of results. Therefore, a 2188 

TransformationScheme can be considered as a VTL program. 2189 

 2190 

The TransformationScheme must include the attribute vtlVersion expressed as a 2191 

string (e.g. “2.0”), as the version of the VTL determines which syntax is used in defining the 2192 

transformations of the scheme. 2193 

 2194 

A Transformation consists of a statement which assigns the outcome of the evaluation of a 2195 

VTL expression to a result (an artefact of the VTL Information Model, which in the SDMX 2196 

context can be a persistent or non-persistent Dataflow3).  2197 

 2198 

For example, assume that D1, D2 and D3 are SDMX Dataflows (called Data Sets in VTL) 2199 

containing information on some goods, specifically:  D3 the current stocks, D1 the stocks of 2200 

the previous date, D2 the flows in the last period. A possible VTL Transformation aimed at 2201 

checking the consistency between flows and stocks is the following:   2202 

                  2203 

Dr := If ( (D1 + D2) = D3, then “true”, else “false”) 2204 

 2205 

In this Transformation: 2206 

 2207 

 Dr         is the result (a new dataflow) 2208 

 :=         is an assignment operator 2209 

 If ( (D1 + D2) = D3, then “true”, else “false”)  is the expression 2210 

 D1, D2, D3       are the operands  2211 

 If, ( ), +, =      are VTL operators 2212 

 2213 

The Transformation model artefact contains three attributes: 2214 

 2215 

1. result  2216 

The left-hand side of a VTL statement, which specifies the Artefact to which the 2217 

outcome of the expression is assigned.  An artefact cannot be result of more than one 2218 

Transformation. 2219 

 2220 

2. isPersistent 2221 

                                                      

3   Or a part of a Dataflow, see also the chapter “Validation and Transformation Language” of the Section 6 of 

the SDMX Standards (“SDMX Technical Notes”), paragraph “Mapping dataflow subsets to distinct VTL data 

sets”. 



 

 
 

   
 
 

137 

An assignment operator, which specifies also the persistency of the left-hand side. The 2222 

assignment operators are two, namely := for non-persistent assignment (the result is 2223 

non-persistent) and <- for persistent assignment (the result is persistent).  2224 

 2225 

3. expression 2226 

The right-hand side of a VTL statement, which is the expression to be evaluated. An 2227 

expression consists in the invocation of VTL operators in a certain order. When an 2228 

operator is invoked, for each input parameter, an actual argument is passed to the 2229 

operator, which returns an actual argument for the output parameter. An expression 2230 

is simply a text string written according the VTL grammar.  2231 

 2232 

Because an Artefact can be the result of just one Transformation and a 2233 

Transformation belongs to just one TransformationScheme, it follows also that a 2234 

derived Artefact (e.g. a new Dataflow) is produced in just one TransformationScheme.  2235 

 2236 

The result of a Transformation can be input of other Transformations. The VTL 2237 

assumes that non-persistent results are maintained only within the same 2238 

TransformationScheme in which they are produced. Therefore, a non-persistent result of a 2239 

Transformation can be the operand of other Transformations of the same 2240 

TransformationScheme, whereas a persistent result can be operand of transformations of 2241 

any TransformationScheme4.  2242 

 2243 

The TransformationScheme has an association to zero of more RulesetScheme, zero or 2244 

more UserDefinedOperatorScheme, zero or one NamePersonalisationScheme, 2245 

zero or one VtlMappingScheme, and zero or one CustomTypeScheme  2246 

 2247 

The RulesetScheme, UserDefinedOperatorScheme NamePersonalisationScheme 2248 

and CustomTypeScheme have an attribute vtlVersion. Thus, a 2249 

TransformationScheme using a specific version of VTL can be linked to such schemes 2250 

only if they are consistent with the same VTL version.   2251 

 2252 

The VtlMappingScheme associated to a TransformationScheme must contain the 2253 

mappings between the references to the SDMX artefacts from the TransformationScheme 2254 

and the structured identifiers of these SDMX artefacts. 2255 

 2256 

Ruleset Scheme 2257 

 2258 

Some VTL Operators can invoke rulesets, i.e., sets of previously defined rules to be applied by 2259 

the Operator. Once defined, a Ruleset is persistent and can be invoked as many times as 2260 

needed. The knowledge of the rulesets’ definitions (if any) is essential for understanding the 2261 

actual behaviour of the Transformation that use them: this is achieved through the 2262 

RulesetScheme model artefact. The RulesetScheme is the container for one or more 2263 

Ruleset. 2264 

 2265 

The Ruleset model artefact contains the following attributes: 2266 

 2267 

                                                      

4   Provided that the VTL consistency rules are accomplished (see the “Generic Model for Transformations” in the 

VTL User Manual and its sub-section “Transformation Consistency”). 



 

 
 

   
 
 

138 

1. rulesetType – the type of the ruleset according to VTL (VTL 2.0 allows two types: 2268 

“datapoint” and “hierarchical” ruleset); 2269 

2. rulesetScope – the VTL artefact on which the ruleset is defined; VTL 2.0 allows 2270 

rulesets defined on Value Domains, which correspond to SDMX Codelists, or to 2271 

SDMX Concept Schemes and rulesets defined on Variables, which correspond to 2272 

SDMX Concepts for which a definite Representation is assumed; 2273 

3. rulesetDefinition – the VTL statement that defines the ruleset according to the 2274 

syntax of the VTL definition language. 2275 

 2276 

The RulesetScheme can have an association with zero or more VtlMappingScheme. 2277 

These mappings define the correspondence between the references to the SDMX artefacts 2278 

contained in the rulesetDefinition and the structured identifiers of these SDMX 2279 

artefacts.  2280 

 2281 

The rulesets defined on Value Domains reference Codelists or ConceptSchemes (the 2282 

latter in VTL are considered as the Value Domains of the variables corresponding to the 2283 

SDMX Measure Dimensions). The rulesets defined on Variables reference Concepts (for 2284 

which a definite Representation is assumed). In conclusion, in the VTL rulesets there can 2285 

exist mappings for three kinds of SDMX artefacts: Codelists, ConceptSchemes and 2286 

Concepts.  2287 

 2288 

User Defined Operator Scheme 2289 

 2290 

The UserDefinedOperatorScheme is a container for zero of more 2291 

UserDefinedOperator. The UserDefinedOperator is defined using VTL standard 2292 

operators. This is essential for understanding the actual behaviour of the Transformations 2293 

that invoke them.  2294 

 2295 

The attribute operatorDefinition contains the VTL statement that defines the operator 2296 

according to the syntax of the VTL definition language.  2297 

 2298 

Although the VTL user defined operators are conceived to be defined on generic operands, so 2299 

that the specific artefacts to be manipulated are passed as parameters at the invocation, it is 2300 

also possible that they reference specific SDMX artefacts like Dataflows, Codelists and 2301 

ConceptSchemes. Therefore, the UserDefinedOperatorScheme can link to zero or one 2302 

VtlMappingScheme, which must contain the mappings between the VTL references and the 2303 

structured URN of the corresponding SDMX artefacts (see also the “VTL mapping” section 2304 

below). 2305 

 2306 

The definition of a UserDefinedOperator can also make use of VTL rulesets; therefore, the 2307 

UserDefinedOperatorScheme can link to zero, one or more RulesetScheme, which must 2308 

contain the definition of these Rulesets (see also the “Ruleset Scheme” section above).  2309 

 2310 



 

 
 

   
 
 

139 

Name Personalisation Scheme 2311 

 2312 

In some operations, the VTL assigns by default some standard names to some measures 2313 

and/or attributes of the data structure of the result5. The VTL allows also to personalise the 2314 

names to be assigned. The knowledge of the personalised names (if any) is essential for 2315 

understanding the actual behaviour of the Transformation: this is achieved through the 2316 

NamePersonalisationScheme. A NamePersonalisation specifies a personalised name 2317 

that will be assigned in place of a VTL default name. The NamePersonalisationScheme is 2318 

a container for zero or more NamePersonalisation.  2319 

 2320 

VTL Mapping 2321 

 2322 

The mappings between SDMX and VTL can be relevant to the names of the artefacts and to 2323 

the methods for converting the data structures from SDMX to VTL and vice-versa. These 2324 

features are achieved through the VtlMappingScheme, which is a container for zero or 2325 

more VtlMapping. 2326 

 2327 

The VTL assumes that the operands are directly referenced through their actual names 2328 

(unique identifiers). In the VTL transformations, rulesets, user defined operators, the SDMX 2329 

artefacts are referenced through VTL aliases. The alias can be the complete URN of the 2330 

artefact, an abbreviated URN, or another user-defined name, as described in the Section 6 of 2331 

the SDMX Standards.6  2332 

 2333 

The VTLmapping defines the correspondence between the VTL alias and the structured 2334 

identifier of the SDMX artefact, for each referenced SDMX artefact. This correspondence is 2335 

needed for four kinds of SDMX artefacts: Dataflows, Codelists,  ConceptSchemes and 2336 

Concepts. Therefore, there are four corresponding mapping subclasses: 2337 

VtlDataflowMapping; VtlCodelistMapping; VtlConceptSchemeMapping; 2338 

VtlConceptMapping. 2339 

 2340 

As for the Dataflows, it is also possible to specify the method to convert the Data Structure 2341 

of the Dataflow. This kind of conversion can happen in two directions, from SDMX to VTL 2342 

when a SDMX Dataflow is accessed by a VTL Transformation (toVtlMappingMethod), or 2343 

from VTL to SDMX when a SDMX derived Dataflow is calculated through VTL 2344 

(fromVtlMappingMethod).7  2345 

 2346 

The default mapping method from SDMX to VTL is called “Basic”. Three alternative mapping 2347 

methods are possible, called “Pivot”, “Basic-A2M”, “Pivot-A2M” (“A2M” stands for “Attributes to 2348 

Measures”, i.e. the SDMX Data Attributes become VTL Measures).   2349 

 2350 

                                                      

5  For example, the check operator produces some new components in the result called by default bool_var, 

errorcode, errorlevel, imbalance. These names can be personalised if needed. 

6  SDMX Technical Notes, chapter “Validation and Transformation Language”, section “References to SDMX 

artefacts from VTL statements”.  

7  For a more thorough description of these conversions, see the Section 6 of the SDMX Standards (“SDMX 

Technical Notes”), chapter “Validation and Transformation Language”, section “Mapping between SDMX and 

VTL”. 



 

 
 

   
 
 

140 

The default mapping method from VTL to SDMX is also called “Basic”, and the two alternative 2351 

mapping methods are called “Unpivot” and “M2A” (“M2A” stands for “Measures to Attributes”, 2352 

i.e. one VTL Measure becomes the SDMX PrimaryMeasure and the other VTL Measures 2353 

become a SDMX DataAttribute).  2354 

 2355 

In both the mapping directions, no specification is needed if the default mapping method 2356 

(Basic) is used. When an alternative mapping method is applied for some Dataflow, this has 2357 

to be specified in toVtlMappingMethod or fromVtlMappingMethod.  2358 

 2359 

ToVtlSubspace, ToVtlSpaceKey, FromVtlSuperspace, FromVtlSpaceKey 2360 

 2361 

Although in general one SDMX Dataflow is mapped to one VTL dataset and vice-versa, it is 2362 

also allowed to map distinct parts of a single SDMX Dataflow to distinct VTL data sets 2363 

according to the rules and conventions described in the Section 6 of the SDMX Standards.8  2364 

 2365 

In the direction from SDMX to VTL, this is achieved by fixing the values of some predefined 2366 

Dimensions of the SDMX Data Structure: all the observations having such combination of 2367 

values are mapped to one corresponding VTL dataset (the Dimensions having fixed values 2368 

are not maintained in the Data Structure of the resulting VTL dataset). The ToVtlSubspace 2369 

and ToVtlSpaceKey classes allow to define these Dimensions. When one SDMX Dataflow is 2370 

mapped to just one VTL dataset these classes are not used. 2371 

 2372 

Analogously, in the direction from VTL to SDMX, it is possible to map more calculated VTL 2373 

datasets to distinct parts of a single SDMX Dataflow, as long as these VTL datasets have the 2374 

same Data Structure. This can be done by providing, for each VTL dataset, distinct values for 2375 

some additional SDMX Dimensions that are not part of the VTL data structure.  The 2376 

FromVtlSuperspace and FromVtlSpaceKey classes allow to define these dimensions. 2377 

When one VTL dataset is mapped to just one SDMX Dataflow these classes are not used. 2378 

 2379 

Custom Type Scheme 2380 

 2381 

As already said, a Transformation consists of a statement which assigns the outcome of 2382 

the evaluation of a VTL expression to a result, i.e. an artefact of the VTL Information 2383 

Model, which in the SDMX context can be a persistent or non-persistent Dataflow9.  2384 

Therefore, the VTL data type of the outcome of the VTL expression has to be converted into 2385 

the SDMX data type of the resulting Dataflow. A default conversion table from VTL to SDMX 2386 

data types is assumed10.  The CustomTypeScheme allows to specify custom conversions that 2387 

override the default conversion table. The CustomTypeScheme is a container for zero or 2388 

more CustomType. A CustomType specifies the custom conversion from a VTL scalar type 2389 

that will override the default conversion. The overriding SDMX data type is specified by means 2390 

                                                      

8  SDMX Technical Notes, chapter “Validation and Transformation Language”, section “Mapping dataflow 

subsets to distinct VTL data sets”.  

9  Or a part of a Dataflow, as described in the previous paragraph. 

10 The default conversion table from VTL to SDMX is described in the the Section 6 of the SDMX Standards 

(“SDMX Technical Notes”), chapter “Validation and Transformation Language”, section “Mapping VTL basic 

scalar types to  SDMX data types”. 



 

 
 

   
 
 

141 

of the dataType and outputFormat attributes (the SDMX data type assumes the role of 2391 

external representation in respect to VTL11). 2392 

 2393 

Moreover, the CustomType allows to customize the default format of VTL literals and the 2394 

(possible) SDMX value to be produced when a VTL measure or attribute is NULL.  2395 

 2396 

VTL expression can contain literals, i.e. specific values of a certain VTL data type written 2397 

according to a certain format. For example, consider the following Transformation that 2398 

extracts from the dataflow D1 the observations for which the “reference_date” belongs to the 2399 

years 2018 and 2019:  2400 

 2401 

Dr := D1 [ filter  between (reference_date, 2018-01-01, 2019-12-31)] 2402 

 2403 

In this expression, the two values 2018-01-01 and 2019-12-31 are literals of the VTL “date” 2404 

scalar type expressed in the format YYYY-MM-DD. 2405 

 2406 

The VTL literals are assumed to be written in the same SDMX format specified in the default 2407 

conversion table mentioned above, for the conversion from VTL to SDMX data types. If a 2408 

different format is used for a certain VTL scalar type, it must be specified in the 2409 

vtlLiteralFormat attribute of the CustomType  2410 

 2411 

Regarding the management of NULLs, in the conversions between SDMX and VTL, by default 2412 

a missing value in SDMX in converted in VTL NULL and vice-versa, for any VTL scalar type. If 2413 

a different value is needed, after the conversion from SDMX to VTL, proper VTL operators can 2414 

be used for obtaining it. In the conversion from VTL to SDMX the desired value can be 2415 

declared in the nullValue attribute (separately for each VTL basic scalar type). 2416 

 2417 

13.3.2.2 Definitions 2418 

 2419 

Class Feature Description 

Transformation 

Scheme 

Inherits from 
ItemScheme 

Contains the definitions of 
transformations meant to 
produce some derived 
data and be executed 
together 

 vtlVersion The version of the VTL 
language used for 
defining transformations  

Transformation Inherits from 
Item 

A VTL statement which 
assigns the outcome of an 
expression to a result. 

                                                      

11 About VTL internal and external representations, see also the VTL User Manual, section “Basic scalar types”, 

p.53. 



 

 
 

   
 
 

142 

Class Feature Description 

 result The left-hand side of the 
VTL statement, which 
identifies the result 
artefact. 

 isPersistent A boolean that indicates 
whether the result is 
permanently stored or not, 
depending on the VTL 
assignment operator. 

 expression The right-hand side of the 
VTL statement that is the 
expression to be 
evaluated, which includes  
the references to the 
operands of the 
Transformation. 

RulesetScheme Inherits from 
ItemScheme 

Container of rulesets. 

 vtlVersion The version of the VTL 
language used for 
defining the rulesets 

Ruleset Inherits from 
Item 

A persistent set of rules 
which can be invoked by 
means of appropriate VTL 
operators. 

 rulesetDefinition A VTL statement for the 
definition of a ruleset 
(according to the syntax 
of the VTL definition  
language)  

 rulesetType The VTL type of the 
ruleset (e.g., in VTL 2.0, 
datapoint or hierarchical) 

 rulesetScope The model artefact on 
which the ruleset is 
defined (e.g., in VTL 2.0, 
valuedomain or variable) 

UserDefinedOperator

Scheme 

Inherits from 
ItemScheme 

Container of user defined 
operators 

 vtlVersion The version of the VTL 
language used for 
defining the user defined 
operators 

UserDefinedOperator Inherits from 
Item 

Custom VTL operator (not 
existing in the standard 
library) that extends the 
VTL standard library for 
specific purposes. 



 

 
 

   
 
 

143 

Class Feature Description 

 operatorDefinition A VTL statement for the 
definition of a new 
operator: it specifies the 
operator name, its 
parameters and their data 
types, the VTL expression 
that defines its behaviour.  

NamePersonalisation

Scheme 

Inherits from 
ItemScheme 

Container of name 
personalisations. 

 vtlVersion The VTL version which 
the VTL default names to 
be personalised belong 
to. 

NamePersonalisation Inherits from 
Item 

Definition of personalised 
name to be used in place 
of a VTL default name.  

 vtlArtefact VTL model artefact to 
which the VTL default 
name to be personalised 
refers, e.g. variable, value 
domain. 

 vtlDefaultName The VTL default name to 
be personalised. 

 personalisedName The personalised name to 
be used in place of the 
VTL default name. 

VtlMappingScheme Inherits from 
ItemScheme 

Container of VTL 
mappings. 

VtlMapping Inherits from 
Item 

 
Sub classes are: 
VtlDataflowMapping 

VtlCodelistMapping 

VtlConceptSchemeMapp

ing 

VtlConceptMapping 

Single mapping between 
the reference to a SDMX 
artefact made from VTL 
transformations, rulesets,  
user defined operators 
and the corresponding 
SDMX structure identifier.  

VtlDataflowMapping Inherits from 

VtlMapping 

Single mapping between 
the reference to a SDMX 
dataflow and the 
corresponding SDMX 
structure identifier 



 

 
 

   
 
 

144 

Class Feature Description 

 dataflowAlias Alias used in VTL to 
reference a SDMX 
dataflow (it can be the 
URN, the abbreviated 
URN or a user defined 
alias). The alias must be 
univocal: different SDMX 
artefacts cannot have the 
same VTL alias.  

 toVtlMappingMethod Custom specification of 
the mapping method from 
SDMX to VTL data 
structures for the dataflow 
(overriding the default 
“basic” method). 

 fromVtlMappingMethod Custom specification of 
the mapping method from 
VTL to SDMX data 
structures for the dataflow 
(overriding the default 
“basic” method). 

VtlCodelistMapping Inherits from 

VtlMapping 

Single mapping between 
the VTL reference to a 
SDMX   codelist and the  
SDMX structure identifier 
of the codelist. 

 codelistAlias Name used in VTL to 
reference a SDMX 
codelist. The name/alias 
must be univocal: different 
SDMX artefacts cannot 
have the same VTL alias.  

VtlConceptSchemeMap

ping 

Inherits from 

VtlMapping 

Single mapping between 
the VTL reference to a 
SDMX concept scheme 
and the SDMX structure 
identifier of the concept 
scheme. 

 conceptSchemeAlias Name used in VTL to 
reference a SDMX 
concept scheme. The 
name/alias must be 
univocal: different SDMX 
artefacts cannot have the 
same VTL alias.  



 

 
 

   
 
 

145 

Class Feature Description 

VtlConceptMapping Inherits from 

VtlMapping 

Single mapping between 
the VTL reference to a 
SDMX concept and the 
SDMX structure identifier 
of the concept. 

 conceptAlias Name used in VTL to 
reference a SDMX 
concept. The name/alias 
must be univocal: different 
SDMX artefacts cannot 
have the same VTL alias.  

ToVtlSubspace  Subspace of the 
dimensions of the SDMX 
dataflow used to  identify 
the parts of the dataflow 
to be mapped to distinct 
VTL datasets 

ToVtlSpaceKey  A dimension of the SDMX 
dataflow that contributes 
to identify the parts of the 
dataflow to be mapped to 
distinct VTL datasets 

 Key The identity of the 
dimension in the data 
structure definition of the 
dataflow that contributes 
to identify the parts of the 
dataflow to be mapped to 
distinct VTL datasets 

FromVtlSuperspace  Superspace composed of 
the dimensions to be 
added to the data 
structure of the VTL result 
dataset in order to obtain  
the data structure  of the 
derived SDMX dataflow 
(in case the latter  is a 
superset of distinct VTL 
datasets calculated 
independently) 

FromVtlSpaceKey  A SDMX dimension to be 
added to the data 
structure of the VTL result 
dataset in order to obtain 
the data structure of the 
derived SDMX dataflow  



 

 
 

   
 
 

146 

Class Feature Description 

 Key The identity of the 
dimension to be added to 
the data structure of the 
VTL result dataset in 
order to obtain the data 
structure of the derived 
SDMX dataflow  

CustomTypeScheme Inherits from 
ItemScheme 

Container of custom  
specifications for VTL 
basic scalar types. 

 vtlVersion The VTL version which 
the VTL  scalar types 
belong to. 

CustomType Inherits from 
Item 

Custom specification for a 
VTL basic scalar type. 

 vtlScalarType VTL scalar type for which 
the custom specifications 
are given. 

 outputFormat Custom specification of  
the VTL formatting mask 
needed to obtain to the 
desired representation, 
i.e. the desired SDMX 
format (e.g. YYYY-MM-
DD, see also the VTL 
formatting mask in the 
VTL Reference Manual 
and the SDMX Technical 
Notes).  If not specified,  
the “Default output format” 
of the default conversion 
table from VTL to SDMX 
is used. 12  

                                                      

12 See “Mapping VTL basic scalar types to SDMX data types” in the SDMX Technical Notes, chapter 

“Validation and Transformation Language”. 



 

 
 

   
 
 

147 

Class Feature Description 

 datatype Custom specification of 
the external (SDMX) data 
type in which the VTL 
data type has to be 
converted (e.g. the 
GregorianDay). If not 
specified, the “Default 
SDMX data type” of the 
default conversion table 
from VTL to SDMX is 
used. 13  

 nullValue Custom specification of 
the SDMX value to be 
produced for the VTL 
NULL values, with 
reference to the  
vtlScalarType 

specified above. If no 
value is specified, no 
value is produced. 

 vtlLiteralFormat Custom specification of 
the format of the VTL 
literals belonging to the 
vtlScalarType used in the 
VTL program (e.g. YYYY-
MM-DD)14. If not 
specified,  the “Default 
output format” of the 
default conversion table 
from VTL to SDMX is 
assumed.15  

2420 

                                                      

13 See “Mapping VTL basic scalar types to SDMX data types” in the SDMX Technical Notes, chapter 

“Validation and Transformation Language”. 

14  See also the VTL formatting mask in the VTL Reference Manual and the SDMX Technical Notes. 

15 See “Mapping VTL basic scalar types to SDMX data types” in the SDMX Technical Notes,   chapter 

“Validation and Transformation Language. 



 

 
 

   
 
 

148 

 2421 

14 Appendix 1: A Short Guide To UML in the SDMX 2422 

Information Model 2423 

14.1 Scope 2424 

The scope of this document is to give a brief overview of the diagram notation used in UML. 2425 

The examples used in this document have been taken from the SDMX UML model.  2426 

14.2 Use Cases 2427 

In order to develop the data models it is necessary to understand the functions that require to 2428 

be supported. These are defined in a use case model. The use case model comprises actors 2429 

and use cases and these are defined below. 2430 

 2431 

The actor can be defined as follows:  2432 

“An actor defines a coherent set of roles that users of the system can play when 2433 

interacting with it. An actor instance can be played by either an individual or an 2434 

external system” 2435 

 2436 

The actor is depicted as a stick man as shown below. 2437 

 2438 

Data Publisher

 

Figure 46 Actor 

 2439 

The use case can be defined as follows: 2440 

“A use case defines a set of use-case instances, where each instance is a sequence of 2441 

actions a system performs that yields an observable result of value to a particular 2442 

actor” 2443 

 2444 

Publish Data

 

Figure 47 Use case 

 2445 



 

 
 

   
 
 

149 

Data Publisher
Publish Data

 

Figure 48 Actor and use case 

 2446 

Data Consumer

Metadata 

Consumer

Uses Data

Uses Reference Metadata

<<extend>>

 

Figure 49 Extend use cases 

An extend use case is where a use case may be optionally extended by a use case that is 2447 

independent of the using use case. The arrow in the association points to he owning use case 2448 

of the extension. In the example above the Uses Data use case is optionally extended by the 2449 

Uses Metadata use case. 2450 

14.3 Classes and Attributes 2451 

14.3.1 General 2452 

A class is something of interest to the user. The equivalent name in an entity-relationship 2453 

model (E-R model) is the entity and the attribute. In fact, if the UML is used purely as a means 2454 

of modelling data, then there is little difference between a class and an entity. 2455 

 2456 

Annotation

name : String

type : String

url : String
 

Figure 50 Class and its attributes 

 2457 

Figure 50 shows that a class is represented by a rectangle split into three compartments. The 2458 

top compartment is for the class name, the second is for attributes and the last is for 2459 

operations. Only the first compartment is mandatory. The name of the class is Annotation, 2460 

and it belongs to the package SDMX-Base. It is common to group related artefacts (classes, 2461 

use-cases, etc.) together in packages. . Annotation has three “String” attributes –  name, 2462 



 

 
 

   
 
 

150 

type, and url. The full identity of the attribute includes its class e.g. the name attribute is 2463 

Annotation.name. 2464 

 2465 

Note that by convention the class names use UpperCamelCase – the words are 2466 

concatenated and the first letter of each word is capitalized. An attribute uses 2467 

lowerCamelCase - the first letter of the first (or only) word is not capitalized, the remaining 2468 

words have capitalized first letters. 2469 

14.3.2 Abstract Class 2470 

An abstract class is drawn because it is a useful way of grouping classes, and avoids drawing 2471 

a complex diagram with lots of association lines, but where it is not foreseen that the class 2472 

serves any other purpose (i.e. it is always implemented as one of its sub classes). In the 2473 

diagram in this document an abstract class is depicted with its name in italics, and coloured 2474 

white. 2475 

 2476 

AbstractClass ConcreteClass

 

Figure 51 Abstract and concrete classes 

14.4 Associations 2477 

14.4.1 General 2478 

In an E-R model these are known as relationships. A UML model can give more meaning to 2479 

the associations than can be given in an E-R relationship. Furthermore, the UML notation is 2480 

fixed (i.e. there is no variation in the way associations are drawn). In an E-R diagram, there 2481 

are many diagramming techniques, and it is the relationship in an E-R diagram that has many 2482 

forms, depending on the particular E-R notation used. 2483 

14.4.2 Simple Association 2484 

DataflowDefinition

DataStructureDefinition

/structure

0..*

1

 

Figure 52 A simple association 

 2485 

Here the DataflowDefinition class has an association with the 2486 

DataStructureDefinition class. The diagram shows that a DataflowDefinition can 2487 

have an association with only one DataStructureDefinition (1) and that a 2488 



 

 
 

   
 
 

151 

DataStructureDefinition can be linked to many DataflowDefinitions (0..*). The 2489 

association is sometimes named to give more semantics.  2490 

 2491 

In UML it is possible to specify a variety of “multiplicity” rules. The most common ones are: 2492 

 2493 

 Zero or one (0..1) 2494 

 Zero or many (0..*) 2495 

 One or many (1..*) 2496 

 Many (*) 2497 

 Unspecified (blank) 2498 

14.4.3 Aggregation 2499 

Dimension

GroupDimensionDescriptor

isAttachmentConstraint : Boolean

0..*

0..*

0..*

0..*

 2500 

Figure 53: A simple aggregate association 2501 

 2502 

Process

0..*

ProcessStep

 

Figure 54 A composition aggregate association 

 2503 

An association with an aggregation relationship indicates that one class is a subordinate class 2504 

(or a part) of another class. In an aggregation relationship. There are two types of aggregation, 2505 

a simple aggregation where the child class instance can outlive its parent class, and a 2506 

composition aggregation where   2507 



 

 
 

   
 
 

152 

the child class's instance lifecycle is dependent on the parent class's instance lifecycle. In the 2508 

simple aggregation it is usual, in the SDMX Information model, for this association to also be a 2509 

reference to the associated class. 2510 

14.4.4 Association Names and Association-end (role) Names 2511 

It can be useful to name associations as this gives some more semantic meaning to the model 2512 

i.e. the purpose of the association. It is possible for two classes to be joined by two (or more) 2513 

associations, and in this case it is extremely useful to name the purpose of the association. 2514 

Figure 55 shows a simple aggregation between CategoryScheme and Category called 2515 

/items (this means it is derived from the association between the super classes – in this case 2516 

between the ItemScheme and the Item, and another between Category called /hierarchy. 2517 

 2518 

Item

0..*

1

+child
0..*

+parent

1

hierarchy

ItemScheme

1..*1..*

items

 

Figure 55 Association names and end names 

Furthermore, it is possible to give role names to the association-ends to give more semantic 2519 

meaning – such as parent and child in a tree structure association. The role is shown with “+” 2520 

preceding the role name (e.g. in the diagram above the semantic of the association is that a 2521 

Item can have zero or one parent Items and zero or many child Item). 2522 

 2523 

In this model the preference has been to use role names for associations between concrete 2524 

classes and association names for associations between abstract classes. The reason for 2525 

using an association name is often useful to show a physical association between two sub 2526 

classes that inherit the actual association between the super class from which they inherit. 2527 

This is possible to show in the UML with association names, but not with role names. This is 2528 

covered later in “Derived Association”.   2529 

 2530 

Note that in general the role name is given at just one end of the association. 2531 

14.4.5 Navigability 2532 

Associations are, in general, navigable in both directions. For a conceptual data model it is not 2533 

necessary to give any more semantic than this.  2534 

 2535 

However, UML allows a notation to express navigability in one direction only. In this model this 2536 

“navigability” feature has been used to represent referencing. In other words, the class at the 2537 

navigable end of the association is referenced from the class at the non-navigable end. This is 2538 

aligned, in general, with the way this is implemented in the XML schemas.   2539 



 

 
 

   
 
 

153 

A B

 

Figure 56 One way association 

Here it is possible to navigate from A to B, but there is no implementation support for 2540 

navigatation from B to A using this association. 2541 

14.4.6 Inheritance 2542 

Sometimes it is useful to group common attributes and associations together in a super class. 2543 

This is useful if many classes share the same associations with other classes, and have many 2544 

(but not necessarily all) attributes in common. Inheritance is shown as a triangle at the super 2545 

class. 2546 

 2547 

Dimension

IdentifiableArtefact

urn : urn

uri : Url

id : String

Component

 

Figure 57 Inheritance 

Here the Dimension is derived from Component which itself is derived from 2548 

IdentifiableArtefact. Both Component and IdentifiableArtefact are abstract 2549 

superclasses.  The Dimension inherits the attributes and associations of all of the the super 2550 

classes in the inheritance tree. Note that a super class can be a concrete class (i.e. it exists in 2551 

its own right as well as in the context of one of its sub classes), or an abstract class. 2552 

14.4.7 Derived association 2553 

It is often useful in a relationship diagram to show associations between sub classes that are 2554 

derived from the associations of the super classes from which the sub classes inherit. A 2555 

derived association is shown by “/” preceding the association name e.g. /name. 2556 

 2557 



 

 
 

   
 
 

154 

Category

CategoryScheme

1..*

/items

1..*

1 0..*

/hierarchy

+parent

1

+child

0..*

Item

0..*

1

+child
0..*

+parent

1

hierarchy

ItemScheme

1..*1..*

items

 

Figure 58 Derived associations 

 2558 


