

SDMX STANDARDS: SECTION 6

SDMX TECHNICAL NOTES

VERSION 2.1

April 2011

© SDMX 2011
http://www.sdmx.org/

http://www.sdmx.org/

Contents

1 Purpose and Structure...1

1.1 Purpose..1

1.2 Structure...1

2 General Notes on This Document...1

3 Guide for SDMX Format Standards ..2

3.1 Introduction...2

3.2 SDMX Information Model for Format Implementers...2

3.2.1 Introduction ..2

3.3 SDMX-ML and SDMX-EDI: Comparison of Expressive Capabilities and
Function ...3

3.3.1 Format Optimizations and Differences ..3

3.3.2 Data Types ..4

3.4 SDMX-ML and SDMX-EDI Best Practices ...6

3.4.1 Reporting and Dissemination Guidelines...6

3.4.2 Best Practices for Batch Data Exchange...10

4 General Notes for Implementers...12

4.1 Representations ...12

4.2 Time and Time Format ...14

4.2.1 Introduction ..14

4.2.2 Observational Time Period ..14

4.2.3 Standard Time Period..15

4.2.4 Gregorian Time Period ..15

4.2.5 Date Time ..15

4.2.6 Standard Reporting Period ..15

4.2.7 Distinct Range ...19

4.2.8 Time Format ..19

4.2.9 Transformation between SDMX-ML and SDMX-EDI...................................20

4.2.10 Time Zones..20

4.2.11 Representing Time Spans Elsewhere ...21

4.2.12 Notes on Formats ..21

4.2.13 Effect on Time Ranges ..21

4.2.14 Time in Query Messages...21

4.3 Structural Metadata Querying Best Practices ..24

4.4 Versioning and External Referencing...24

5 Metadata Structure Definition (MSD)..25

5.1 Scope ...25

5.2 Identification of the Object Type to which the Metadata is to be Attached.......25

5.3 Report Structure ...27

5.4 Metadata Set ..28

6 Maintenance Agencies...29

7 Concept Roles ..31

7.1 Overview ..31

7.2 Information Model...31

7.3 Technical Mechanism...32

7.4 SDMX-ML Examples in a DSD...33

7.5 SDMX Cross Domain Concept Scheme...34

8 Constraints ...34

8.1 Introduction...34

8.2 Types of Constraint ..34

8.3 Rules for a Content Constraint ...35

8.3.1 Scope of a Content Constraint...35

8.3.2 Multiple Content Constraints..36

8.3.3 Inheritance of a Content Constraint ...37

8.3.4 Constraints Examples..38

9 Annex I: How to eliminate extra element in the .NET SDMX Web Service44

9.1 Problem statement ...44

9.2 Solution ..45

9.3 Applying the solution ..48

1

1 Purpose and Structure 1

1.1 Purpose 2
The intention of this document is to document certain aspects of SDMX that are 3
important to understand and will aid implementation decisions. The explanations here 4
supplement the information documented in the SDMX XML schema and the 5
Information Model. 6

1.2 Structure 7
This document is organized into the following major parts: 8
 9
A guide to the SDMX Information Model relating to Data Structure Definitions and 10
Data Sets, statement of differences in functionality supported by the different formats 11
and syntaxes for Data Structure Definitions and Data Sets, and best practices for use 12
of SDMX formats, including the representation for time period 13

A guide to the SDMX Information Model relating to Metadata Structure Definitions, 14
and Metadata Sets 15

Other structural artefacts of interest: agencies, concept role. constraint, partial code 16
list 17

2 General Notes on This Document 18
At this version of the standards, the term “Key family” is replaced by Data Structure 19
Definition (also known and referred to as DSD) both in the XML schemas and the 20
Information Model. The term “Key family” is not familiar to many people and its name 21
was taken from the model of SDMX-EDI (previously known as GESMES/TS). The 22
more familiar name “Data Structure Definition” which was used in many documents is 23
now also the technical artefact in the SDMX-ML and Information Model technical 24
specifications. The term “Key family” is still used in the SDMX-EDI specification. 25
 26
There has been much work within the SDMX community on the creation of user 27
guides, tutorials, and other aides to implementation and understanding of the 28
standard. This document is not intended to duplicate the function of these 29
documents, but instead represents a short set of technical notes not generally 30
covered elsewhere. 31
 32
 33

2

3 Guide for SDMX Format Standards 34

3.1 Introduction 35
This guide exists to provide information to implementers of the SDMX format 36
standards – SDMX-ML and SDMX-EDI – that are concerned with data, i.e. Data 37
Structure Definitions and Data Sets. This section is intended to provide information 38
which will help users of SDMX understand and implement the standards. It is not 39
normative, and it does not provide any rules for the use of the standards, such as 40
those found in SDMX-ML: Schema and Documentation and SDMX-EDI: Syntax and 41
Documentation. 42
 43

3.2 SDMX Information Model for Format Implementers 44

3.2.1 Introduction 45
The purpose of this sub-section is to provide an introduction to the SDMX-IM relating 46
to Data Structure Definitions and Data Sets for those whose primary interest is in the 47
use of the XML or EDI formats. For those wishing to have a deeper understanding of 48
the Information Model, the full SDMX-IM document, and other sections in this guide 49
provide a more in-depth view, along with UML diagrams and supporting explanation. 50
For those who are unfamiliar with DSDs, an appendix to the SDMX-IM provides a 51
tutorial which may serve as a useful introduction. 52
 53
The SDMX-IM is used to describe the basic data and metadata structures used in all 54
of the SDMX data formats. The Information Model concerns itself with statistical data 55
and its structural metadata, and that is what is described here. Both structural 56
metadata and data have some additional metadata in common, related to their 57
management and administration. These aspects of the data model are not addressed 58
in this section and covered elsewhere in this guide or in the full SDMX-IM document. 59
 60
The Data Structure Definition and Data Set parts of the information model are 61
consistent with the GESMES/TS version 3.0 Data Model (called SDMX-EDI in the 62
SDMX standard), with these exceptions: 63
 64
the “sibling group” construct has been generalized to permit any dimension or 65
dimensions to be wildcarded, and not just frequency, as in GESMES/TS. It has been 66
renamed a “group” to distinguish it from the “sibling group” where only frequency is 67
wildcarded. The set of allowable partial “group” keys must be declared in the DSD, 68
and attributes may be attached to any of these group keys; 69

furthermore, whilst the “group” has been retained for compatibility with version 2.0 70
and with SDMX-EDI, it has, at version 2.1, been replaced by the “Attribute 71
Relationship” definition which is explained later 72

the section on data representation is now a convention, to support interoperability 73
with EDIFACT-syntax implementations (see section 3.3.2); 74

3

DSD-specific data formats are derived from the model, and some supporting features 75
for declaring multiple measures have been added to the structural metadata 76
descriptions 77

Clearly, this is not a coincidence. The GESMES/TS Data Model provides the 78
foundation for the EDIFACT messages in SDMX-EDI, and also is the starting point 79
for the development of SDMX-ML. 80
 81
Note that in the descriptions below, text in courier and italicised are the names used 82
in the information model (e.g. DataSet). 83

3.3 SDMX-ML and SDMX-EDI: Comparison of Expressive 84
Capabilities and Function 85

SDMX offers several equivalent formats for describing data and structural metadata, 86
optimized for use in different applications. Although all of these formats are derived 87
directly from the SDM-IM, and are thus equivalent, the syntaxes used to express the 88
model place some restrictions on their use. Also, different optimizations provide 89
different capabilities. This section describes these differences, and provides some 90
rules for applications which may need to support more than one SDMX format or 91
syntax. This section is constrained to the Data Structure Definitionand the Date Set. 92

3.3.1 Format Optimizations and Differences 93
The following section provides a brief overview of the differences between the 94
various SDMX formats. 95
 96
Version 2.0 was characterised by 4 data messages, each with a distinct format: 97
Generic, Compact, Cross-Sectional and Utility. Because of the design, data in some 98
formats could not always be related to another format. In version 2.1, this issue has 99
been addressed by merging some formats and eliminating others. As a result, in 100
SDMX 2.1 there are just two types of data formats: GenericData and 101
StructureSpecificData (i.e. specific to one Data Structure Definition). 102
 103
Both of these formats are now flexible enough to allow for data to be oriented in 104
series with any dimension used to disambiguate the observations (as opposed to 105
only time or a cross sectional measure in version 2.0). The formats have also been 106
expanded to allow for ungrouped observations. 107
 108
To allow for applications which only understand time series data, variations of these 109
formats have been introduced in the form of two data messages; 110
GenericTimeSeriesData and StructureSpecificTimeSeriesData. It is important to note 111
that these variations are built on the same root structure and can be processed in the 112
same manner as the base format so that they do NOT introduce additional 113
processing requirements. 114
 115
Structure Definition 116

The SDMX-ML Structure Message supports the use of annotations to the structure, 117
which is not supported by the SDMX-EDI syntax. 118

The SDMX-ML Structure Message allows for the structures on which a Data 119
Structure Definition depends – that is, codelists and concepts – to be either included 120

4

in the message or to be referenced by the message containing the data structure 121
definition. XML syntax is designed to leverage URIs and other Internet-based 122
referencing mechanisms, and these are used in the SDMX-ML message. This option 123
is not available to those using the SDMX-EDI structure message. 124

Validation 125

SDMX-EDI – as is typical of EDIFACT syntax messages – leaves validation to 126
dedicated applications (“validation” being the checking of syntax, data typing, and 127
adherence of the data message to the structure as described in the structural 128
definition.) 129

The SDMX-ML Generic Data Message also leaves validation above the XML syntax 130
level to the application. 131

The SDMX-ML DSD-specific messages will allow validation of XML syntax and 132
datatyping to be performed with a generic XML parser, and enforce agreement 133
between the structural definition and the data to a moderate degree with the same 134
tool. 135

Update and Delete Messages and Documentation Messages 136

All SDMX data messages allow for both delete messages and messages consisting 137
of only data or only documentation. 138
 139
Character Encodings 140

All SDMX-ML messages use the UTF-8 encoding, while SDMX-EDI uses the ISO 141
8879-1 character encoding. There is a greater capacity with UTF-8 to express some 142
character sets (see the “APPENDIX: MAP OF ISO 8859-1 (UNOC) CHARACTER 143
SET (LATIN 1 OR “WESTERN”) in the document “SYNTAX AND 144
DOCUMENTATION VERSION 2.0”.) Many transformation tools are available which 145
allow XML instances with UTF-8 encodings to be expressed as ISO 8879-1-encoded 146
characters, and to transform UTF-8 into ISO 8879-1. Such tools should be used 147
when transforming SDMX-ML messages into SDMX-EDI messages and vice-versa. 148
 149
Data Typing 150

The XML syntax and EDIFACT syntax have different data-typing mechanisms. The 151
section below provides a set of conventions to be observed when support for 152
messages in both syntaxes is required. For more information on the SDMX-ML 153
representations of data, see below. 154

3.3.2 Data Types 155
The XML syntax has a very different mechanism for data-typing than the EDIFACT 156
syntax, and this difference may create some difficulties for applications which support 157
both EDIFACT-based and XML-based SDMX data formats. This section provides a 158
set of conventions for the expression in data in all formats, to allow for clean 159
interoperability between them. 160
 161
It should be noted that this section does not address character encodings – it is 162
assumed that conversion software will include the use of transformations which will 163

5

map between the ISO 8879-1 encoding of the SDMX-EDI format and the UTF-8 164
encoding of the SDMX-ML formats. 165
 166
Note that the following conventions may be followed for ease of interoperation 167
between EDIFACT and XML representations of the data and metadata. For 168
implementations in which no transformation between EDIFACT and XML syntaxes is 169
foreseen, the restrictions below need not apply. 170
 171
1. Identifiers are: 172

• Maximum 18 characters; 173

• Any of A..Z (upper case alphabetic), 0..9 (numeric), _ (underscore); 174

• The first character is alphabetic. 175

2. Names are: 176
 177

• Maximum 70 characters. 178

• From ISO 8859-1 character set (including accented characters) 179

3. Descriptions are: 180
 181

• Maximum 350 characters; 182

• From ISO 8859-1 character set. 183

4. Code values are: 184
 185

• Maximum 18 characters; 186

• Any of A..Z (upper case alphabetic), 0..9 (numeric), _ (underscore), / (solidus, 187
slash), = (equal sign), - (hyphen); 188

However, code values providing values to a dimension must use only the following 189
characters: 190
 191
A..Z (upper case alphabetic), 0..9 (numeric), _ (underscore) 192
 193
5. Observation values are: 194
 195

• Decimal numerics (signed only if they are negative); 196

• The maximum number of significant figures is: 197

• 15 for a positive number 198
 199

• 14 for a positive decimal or a negative integer 200
 201
• 13 for a negative decimal 202

 203
• Scientific notation may be used. 204

6

6. Uncoded statistical concept text values are: 205
 206

• Maximum 1050 characters; 207

• From ISO 8859-1 character set. 208

7. Time series keys: 209
 210
In principle, the maximum permissible length of time series keys used in a data 211
exchange does not need to be restricted. However, for working purposes, an effort is 212
made to limit the maximum length to 35 characters; in this length, also (for SDMX-213
EDI) one (separator) position is included between all successive dimension values; 214
this means that the maximum length allowed for a pure series key (concatenation of 215
dimension values) can be less than 35 characters. The separator character is a 216
colon (“:”) by conventional usage. 217

3.4 SDMX-ML and SDMX-EDI Best Practices 218

3.4.1 Reporting and Dissemination Guidelines 219

3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges 220
Central institutions are the organisations to which other partner institutions "report" 221
statistics. These statistics are used by central institutions either to compile 222
aggregates and/or they are put together and made available in a uniform manner 223
(e.g. on-line or on a CD-ROM or through file transfers). Therefore, central institutions 224
receive data from other institutions and, usually, they also "disseminate" data to 225
individual and/or institutions for end-use. Within a country, a NSI or a national central 226
bank (NCB) plays, of course, a central institution role as it collects data from other 227
entities and it disseminates statistical information to end users. In SDMX the role of 228
central institution is very important: every statistical message is based on underlying 229
structural definitions (statistical concepts, code lists, DSDs) which have been devised 230
by a particular agency, usually a central institution. Such an institution plays the role 231
of the reference "structural definitions maintenance agency" for the corresponding 232
messages which are exchanged. Of course, two institutions could exchange data 233
using/referring to structural information devised by a third institution. 234
 235
Central institutions can play a double role: 236
 237

• collecting and further disseminating statistics; 238

• devising structural definitions for use in data exchanges. 239

3.4.1.2 Defining Data Structure Definitions (DSDs) 240
The following guidelines are suggested for building a DSD. However, it is expected 241
that these guidelines will be considered by central institutions when devising new 242
DSDs. 243
 244
Dimensions, Attributes and Code Lists 245
 246

7

Avoid dimensions that are not appropriate for all the series in the data 247
structure definition. If some dimensions are not applicable (this is evident from the 248
need to have a code in a code list which is marked as “not applicable”, “not relevant” 249
or “total”) for some series then consider moving these series to a new data structure 250
definition in which these dimensions are dropped from the key structure. This is a 251
judgement call as it is sometimes difficult to achieve this without increasing 252
considerably the number of DSDs. 253

Devise DSDs with a small number of Dimensions for public viewing of data. A 254
DSD with the number dimensions in excess 6 or 7 is often difficult for non specialist 255
users to understand. In these cases it is better to have a larger number of DSDs with 256
smaller “cubes” of data, or to eliminate dimensions and aggregate the data at a 257
higher level. Dissemination of data on the web is a growing use case for the SDMX 258
standards: the differentiation of observations by dimensionality which are necessary 259
for statisticians and economists are often obscure to public consumers who may not 260
always understand the semantic of the differentiation. 261

Avoid composite dimensions. Each dimension should correspond to a single 262
characteristic of the data, not to a combination of characteristics. 263

Consider the inclusion of the following attributes. Once the key structure of a 264
data structure definition has been decided, then the set of (preferably mandatory) 265
attributes of this data structure definition has to be defined. In general, some 266
statistical concepts are deemed necessary across all Data Structure Definitions to 267
qualify the contained information. Examples of these are: 268

• A descriptive title for the series (this is most useful for dissemination of data for 269
viewing e.g. on the web) 270

 271
• Collection (e.g. end of period, averaged or summed over period) 272

 273
• Unit (e.g. currency of denomination) 274

 275
• Unit multiplier (e.g. expressed in millions) 276

 277
• Availability (which institutions can a series become available to) 278

 279
• Decimals (i.e. number of decimal digits used in numerical observations) 280

 281
• Observation Status (e.g. estimate, provisional, normal) 282

 283
Moreover, additional attributes may be considered as mandatory when a specific 284
data structure definition is defined. 285
 286
Avoid creating a new code list where one already exists. It is highly 287
recommended that structural definitions and code lists be consistent with 288
internationally agreed standard methodologies, wherever they exist, e.g., System of 289
National Accounts 1993; Balance of Payments Manual, Fifth Edition; Monetary and 290
Financial Statistics Manual; Government Finance Statistics Manual, etc. When 291
setting-up a new data exchange, the following order of priority is suggested when 292
considering the use of code lists: 293

8

• international standard code lists; 294

• international code lists supplemented by other international and/or regional 295
institutions; 296

• standardised lists used already by international institutions; 297

• new code lists agreed between two international or regional institutions; 298

• new specific code lists. 299

The same code list can be used for several statistical concepts, within a data 300
structure definition or across DSDs. Note that SDMX has recognised that these 301
classifications are often quite large and the usage of codes in any one DSD is only a 302
small extract of the full code list. In this version of the standard it is possible to 303
exchange and disseminate a partial code list which is extracted from the full code 304
list and which supports the dimension values valid for a particular DSD. 305
 306
Data Structure Definition Structure 307

The following items have to be specified by a structural definitions maintenance 308
agency when defining a new data structure definition: 309

Data structure definition (DSD) identification: 310

• DSD identifier 311

• DSD name 312

A list of metadata concepts assigned as dimensions of the data structure definition. 313
For each: 314

• (statistical) concept identifier 315

• ordinal number of the dimension in the key structure (SDMX-EDI only) 316

• code list identifier (Id, version, maintenance agency) if the 317
representation is coded 318

A list of (statistical) concepts assigned as attributes for the data structure definition. 319
For each: 320

• (statistical) concept identifier 321

• code list identifier if the concept is coded 322

• assignment status: mandatory or conditional 323

• attachment level 324

• maximum text length for the uncoded concepts 325

9

• maximum code length for the coded concepts 326

A list of the code lists used in the data structure definition. For each: 327

• code list identifier 328

• code list name 329

• code values and descriptions 330

Definition of data flow definitions. Two (or more) partners performing data 331
exchanges in a certain context need to agree on: 332

• the list of data set identifiers they will be using; 333

 334
• for each data flow: 335

• its content and description 336

• the relevant DSD that defines the structure of the data reported or 337
disseminated according the the dataflow definition 338

3.4.1.3 Exchanging Attributes 339

3.4.1.3.1 Attributes on series, sibling and data set level 340
Static properties. 341

• Upon creation of a series the sender has to provide to the receiver values for all 342
mandatory attributes. In case they are available, values for conditional 343
attributes should also be provided. Whereas initially this information may be 344
provided by means other than SDMX-ML or SDMX-EDI messages (e.g. 345
paper, telephone) it is expected that partner institutions will be in a position to 346
provide this information in SDMX-ML or SDMX-EDI format over time. 347

 348
• A centre may agree with its data exchange partners special procedures for 349

authorising the setting of attributes' initial values. 350
 351

• Attribute values at a data set level are set and maintained exclusively by the 352
centre administrating the exchanged data set. 353

 354
Communication of changes to the centre. 355

• Following the creation of a series, the attribute values do not have to be 356
reported again by senders, as long as they do not change. 357

 358
• Whenever changes in attribute values for a series (or sibling group) occur, the 359

reporting institutions should report either all attribute values again (this is the 360
recommended option) or only the attribute values which have changed. This 361
applies both to the mandatory and the conditional attributes. For example, if a 362

10

previously reported value for a conditional attribute is no longer valid, this has 363
to be reported to the centre. 364

 365
• A centre may agree with its data exchange partners special procedures for 366

authorising modifications in the attribute values. 367
 368
Communication of observation level attributes “observation status”, "observation 369
confidentiality", "observation pre-break". 370

• In SDMX-EDI, the observation level attribute “observation status” is 371
part of the fixed syntax of the ARR segment used for observation reporting. 372
Whenever an observation is exchanged, the corresponding observation 373
status must also be exchanged attached to the observation, regardless of 374
whether it has changed or not since the previous data exchange. This rule 375
also applies to the use of the SDMX-ML formats, although the syntax does 376
not necessarily require this. 377

 378
• If the “observation status” changes and the observation remains 379

unchanged, both components would have to be reported. 380
 381

• For Data Structure Definitions having also the observation level 382
attributes “observation confidentiality” and "observation pre-break" defined, 383
this rule applies to these attribute as well: if an institution receives from 384
another institution an observation with an observation status attribute only 385
attached, this means that the associated observation confidentiality and pre-386
break observation attributes either never existed or from now they do not 387
have a value for this observation. 388

3.4.2 Best Practices for Batch Data Exchange 389

3.4.2.1 Introduction 390
Batch data exchange is the exchange and maintenance of entire databases between 391
counterparties. It is an activity that often employs SDMX-EDI formats, and might also 392
use the SDMX-ML DSD-specific data set. The following points apply equally to both 393
formats. 394

3.4.2.2 Positioning of the Dimension "Frequency" 395
The position of the “frequency” dimension is unambiguously identified in the data 396
structure definition. Moreover, most central institutions devising structural definitions 397
have decided to assign to this dimension the first position in the key structure. This 398
facilitates the easy identification of this dimension, something that it is necessary to 399
frequency's crucial role in several database systems and in attaching attributes at the 400
“sibling” group level. 401

3.4.2.3 Identification of Data Structure Definitions (DSDs) 402
In order to facilitate the easy and immediate recognition of the structural definition 403
maintenance agency that defined a data structure definition, most central institutions 404
devising structural definitions use the first characters of the data structure definition 405
identifiers to identify their institution: e.g. BIS_EER, EUROSTAT_BOP_01, 406
ECB_BOP1, etc. 407

11

3.4.2.4 Identification of the Data Flows 408
In order to facilitate the easy and immediate recognition of the institution 409
administrating a data flow definitions, many central institutions prefer to use the first 410
characters of the data flow definition identifiers to identify their institution: e.g. 411
BIS_EER, ECB_BOP1, ECB_BOP1, etc. Note that in GESMES/TS the Data Set 412
plays the role of the data flow definition (see DataSet in the SDMX-IM). 413
 414
The statistical information in SDMX is broken down into two fundamental parts - 415
structural metadata (comprising the Data Structure Definition, and associated 416
Concepts and Code Lists) - see Framework for Standards -, and observational data 417
(the DataSet). This is an important distinction, with specific terminology associated 418
with each part. Data - which is typically a set of numeric observations at specific 419
points in time - is organized into data sets (DataSet) These data sets are structured 420
according to a specific Data Structure Definition (DataStructureDefinition) and are 421
described in the data flow definition (DataflowDefinition) The Data Structure 422
Definition describes the metadata that allows an understanding of what is expressed 423
in the data set, whilst the data flow definition provides the identifier and other 424
important information (such as the periodicity of reporting) that is common to all of its 425
component data sets. 426
 427
Note that the role of the Data Flow (called DataflowDefintion in the model) and Data 428
Set is very specific in the model, and the terminology used may not be the same as 429
used in all organisations, and specifically the term Data Set is used differently in 430
SDMX than in GESMES/TS. Essentially the GESMES/TS term "Data Set" is, in 431
SDMX, the "Dataflow Definition" whist the term "Data Set" in SDMX is used to 432
describe the "container" for an instance of the data. 433

3.4.2.5 Special Issues 434

3.4.2.5.1 "Frequency" related issues 435
Special frequencies. The issue of data collected at special (regular or irregular) 436
intervals at a lower than daily frequency (e.g. 24 or 36 or 48 observations per year, 437
on irregular days during the year) is not extensively discussed here. However, for 438
data exchange purposes: 439

• such data can be mapped into a series with daily frequency; this daily series 440
will only hold observations for those days on which the measured event takes 441
place; 442

 443
• if the collection intervals are regular, additional values to the existing frequency 444

code list(s) could be added in the future. 445
 446
Tick data. The issue of data collected at irregular intervals at a higher than daily 447
frequency (e.g. tick-by-tick data) is not discussed here either. However, for data 448
exchange purposes, such series can already be exchanged in the SDMX-EDI format 449
by using the option to send observations with the associated time stamp. 450

12

4 General Notes for Implementers 451
This section discusses a number of topics other than the exchange of data sets in 452
SDMX-ML and SDMX-EDI. Supported only in SDMX-ML, these topics include the 453
use of the reference metadata mechanism in SDMX, the use of Structure Sets and 454
Reporting Taxonomies, the use of Processes, a discussion of time and data-typing, 455
and some of the conventional mechanisms within the SDMX-ML Structure message 456
regarding versioning and external referencing. 457
 458
This section does not go into great detail on these topics, but provides a useful 459
overview of these features to assist implementors in further use of the parts of the 460
specification which are relevant to them. 461

4.1 Representations 462
There are several different representations in SDMX-ML, taken from XML Schemas 463
and common programming languages. The table below describes the various 464
representations which are found in SDMX-ML, and their equivalents. 465
 466

SDMX-ML Data
Type

XML Schema
Data Type

.NET Framework
Type

Java Data Type

String xsd:string System.String java.lang.String
Big Integer xsd:integer System.Decimal java.math.BigInteg

er
Integer xsd:int System.Int32 int
Long xsd.long System.Int64 long
Short xsd:short System.Int16 short
Decimal xsd:decimal System.Decimal java.math.BigDecim

al
Float xsd:float System.Single float
Double xsd:double System.Double double
Boolean xsd:boolean System.Boolean boolean
URI xsd:anyURI System.Uri Java.net.URI or

java.lang.String
DateTime xsd:dateTime System.DateTim

e
javax.xml.datatype
.XMLGregorianCalen
dar

Time xsd:time System.DateTim
e

javax.xml.datatype
.XMLGregorianCalen
dar

GregorianYear xsd:gYear System.DateTim
e

javax.xml.datatype
.XMLGregorianCalen
dar

GregorianMont
h

xsd:gYearMont
h

System.DateTim
e

javax.xml.datatype
.XMLGregorianCalen
dar

GregorianDay xsd:date System.DateTim
e

javax.xml.datatype
.XMLGregorianCalen
dar

Day,
MonthDay,
Month

xsd:g* System.DateTim
e

javax.xml.datatype
.XMLGregorianCalen
dar

13

SDMX-ML Data
Type

XML Schema
Data Type

.NET Framework
Type

Java Data Type

Duration xsd:duration System.TimeSpa
n

javax.xml.datatype
.Duration

 467
There are also a number of SDMX-ML data types which do not have these direct 468
correspondences, often because they are composite representations or restrictions 469
of a broader data type. For most of these, there are simple types which can be 470
referenced from the SDMX schemas, for others a derived simple type will be 471
necessary: 472
 473

• AlphaNumeric (common:AlphaNumericType, string which only allows A-z and 474
0-9) 475

• Alpha (common:AlphaType, string which only allows A-z) 476
• Numeric (common:NumericType, string which only allows 0-9, but is not 477

numeric so that is can having leading zeros) 478
• Count (xs:integer, a sequence with an interval of “1”) 479
• InclusiveValueRange (xs:decimal with the minValue and maxValue facets 480

supplying the bounds) 481
• ExclusiveValueRange (xs:decimal with the minValue and maxValue facets 482

supplying the bounds) 483
• Incremental (xs:decimal with a specified interval; the interval is typically 484

enforced outside of the XML validation) 485
• TimeRange (common:TimeRangeType, start DateTime + Duration,) 486
• ObservationalTimePeriod (common: ObservationalTimePeriodType, a union 487

of StandardTimePeriod and TimeRange). 488
• StandardTimePeriod (common: StandardTimePeriodType, a union of 489

BasicTimePeriod and TimeRange). 490
• BasicTimePeriod (common: BasicTimePeriodType, a union of 491

GregorianTimePeriod and DateTime) 492
• GregorianTimePeriod (common:GregorianTimePeriodType, a union of 493

GregorianYear, GregorianMonth, and GregorianDay) 494
• ReportingTimePeriod (common:ReportingTimePeriodType, a union of 495

ReportingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, 496
ReportingMonth, ReportingWeek, and ReportingDay). 497

• ReportingYear (common:ReportingYearType) 498
• ReportingSemester (common:ReportingSemesterType) 499
• ReportingTrimester (common:ReportingTrimesterType) 500
• ReportingQuarter (common:ReportingQuarterType) 501
• ReportingMonth (common:ReportingMonthType) 502
• ReportingWeek (common:ReportingWeekType) 503
• ReportingDay (common:ReportingDayType) 504
• XHTML (common:StructuredText, allows for multi-lingual text content that has 505

XHTML markup) 506
• KeyValues (common:DataKeyType) 507
• IdentifiableReference (types for each identifiable object) 508
• DataSetReference (common:DataSetReferenceType) 509
• AttachmentConstraintReference 510

(common:AttachmentConstraintReferenceType) 511
 512

14

 513
Data types also have a set of facets: 514
 515

• isSequence = true | false (indicates a sequentially increasing value) 516
• minLength = positive integer (# of characters/digits) 517
• maxLength = positive integer (# of characters/digits) 518
• startValue = decimal (for numeric sequence) 519
• endValue = decimal (for numeric sequence) 520
• interval = decimal (for numeric sequence) 521
• timeInterval = duration 522
• startTime = BasicTimePeriod (for time range) 523
• endTime = BasicTimePeriod (for time range) 524
• minValue = decimal (for numeric range) 525
• maxValue = decimal (for numeric range) 526
• decimal = Integer (# of digits to right of decimal point) 527
• pattern = (a regular expression, as per W3C XML Schema) 528
• isMultiLingual = boolean (for specifying text can occur in more than one 529

language) 530
 531
Note that code lists may also have textual representations assigned to them, in 532
addition to their enumeration of codes.s 533

4.2 Time and Time Format 534

4.2.1 Introduction 535
First, it is important to recognize that most observation times are a period. SDMX 536
specifies precisely how Time is handled. 537
 538
The representation of time is broken into a hierarchical collection of representations. 539
A data structure definition can use of any of the representations in the hierarchy as 540
the representation of time. This allows for the time dimension of a particular data 541
structure definition allow for only a subset of the default representation. 542
 543
The hierarchy of time formats is as follows (bold indicates a category which is made 544
up of multiple formats, italic indicates a distinct format): 545
 546

• Observational Time Period 547
o Standard Time Period 548

 Basic Time Period 549
• Gregorian Time Period 550
• Date Time 551

 Reporting Time Period 552
o Time Range 553

 554
The details of these time period categories and of the distinct formats which make 555
them up are detailed in the sections to follow. 556

4.2.2 Observational Time Period 557
This is the superset of all time representations in SDMX. This allows for time to be 558
expressed as any of the allowable formats. 559

15

4.2.3 Standard Time Period 560
This is the superset of any predefined time period or a distinct point in time. A time 561
period consists of a distinct start and end point. If the start and end of a period are 562
expressed as date instead of a complete date time, then it is implied that the start of 563
the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is 564
the end of the end day (i.e. 23:59:59). 565

4.2.4 Gregorian Time Period 566
A Gregorian time period is always represented by a Gregorian year, year-month, or 567
day. These are all based on ISO 8601 dates. The representation in SDMX-ML 568
messages and the period covered by each of the Gregorian time periods are as 569
follows: 570
 571

Gregorian Year: 572
Representation: xs:gYear (YYYY) 573
Period: the start of January 1 to the end of December 31 574

Gregorian Year Month: 575
Representation: xs:gYearMonth (YYYY-MM) 576
Period: the start of the first day of the month to end of the last day of the month 577

Gregorian Day: 578
Representation: xs:date (YYYY-MM-DD) 579
Period: the start of the day (00:00:00) to the end of the day (23:59:59) 580

4.2.5 Date Time 581
This is used to unambiguously state that a date-time represents an observation at a 582
single point in time. Therefore, if one wants to use SDMX for data which is measured 583
at a distinct point in time rather than being reported over a period, the date-time 584
representation can be used. 585

Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)1 586

4.2.6 Standard Reporting Period 587
Standard reporting periods are periods of time in relation to a reporting year. Each of 588
these standard reporting periods has a duration (based on the ISO 8601 definition) 589
associated with it. The general format of a reporting period is as follows: 590
 591

[REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE] 592
 593
Where: 594

REPORTING_YEAR represents the reporting year as four digits (YYYY) 595
PERIOD_INDICATOR identifies the type of period which determines the 596
duration of the period 597
PERIOD_VALUE indicates the actual period within the year 598

 599
The following section details each of the standard reporting periods defined in SDMX: 600
 601

Reporting Year: 602
 Period Indicator: A 603

1 The seconds can be reported fractionally

16

Period Duration: P1Y (one year) 604
Limit per year: 1 605
Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) 606

Reporting Semester: 607
 Period Indicator: S 608

Period Duration: P6M (six months) 609
Limit per year: 2 610
Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) 611

Reporting Trimester: 612
 Period Indicator: T 613

Period Duration: P4M (four months) 614
Limit per year: 3 615
Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) 616

Reporting Quarter: 617
 Period Indicator: Q 618

Period Duration: P3M (three months) 619
Limit per year: 4 620
Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) 621

Reporting Month: 622
Period Indicator: M 623
Period Duration: P1M (one month) 624
Limit per year: 1 625
Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) 626
Notes: The reporting month is always represented as two digits, therefore 1-9 627
are 0 padded (e.g. 01). This allows the values to be sorted chronologically 628
using textual sorting methods. 629

Reporting Week: 630
Period Indicator: W 631
Period Duration: P7D (seven days) 632
Limit per year: 53 633
Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53) 634
Notes: There are either 52 or 53 weeks in a reporting year. This is based on the 635
ISO 8601 definition of a week (Monday - Saturday), where the first week of a 636
reporting year is defined as the week with the first Thursday on or after the 637
reporting year start day.2 The reporting week is always represented as two 638
digits, therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted 639
chronologically using textual sorting methods. 640

Reporting Day: 641
Period Indicator: D 642
Period Duration: P1D (one day) 643
Limit per year: 366 644
Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) 645
Notes: There are either 365 or 366 days in a reporting year, depending on 646
whether the reporting year includes leap day (February 29). The reporting day 647
is always represented as three digits, therefore 1-99 are 0 padded (e.g. 001). 648

2 ISO 8601 defines alternative definitions for the first week, all of which produce
equivalent results. Any of these definitions could be substituted so long as they are in
relation to the reporting year start day.

17

This allows the values to be sorted chronologically using textual sorting 649
methods. 650

 651
The meaning of a reporting year is always based on the start day of the year and 652
requires that the reporting year is expressed as the year at the start of the period. 653
This start day is always the same for a reporting year, and is expressed as a day and 654
a month (e.g. July 1). Therefore, the reporting year 2000 with a start day of July 1 655
begins on July 1, 2000. 656
 657
A specialized attribute (reporting year start day) exists for the purpose of 658
communicating the reporting year start day. This attribute has a fixed identifier 659
(REPORTING_YEAR_START_DAY) and a fixed representation (xs:gMonthDay) so 660
that it can always be easily identified and processed in a data message. Although 661
this attribute exists in specialized sub-class, it functions the same as any other 662
attribute outside of its identification and representation. It must takes its identity from 663
a concept and state its relationship with other components of the data structure 664
definition. The ability to state this relationship allows this reporting year start day 665
attribute to exist at the appropriate levels of a data message. In the absence of this 666
attribute, the reporting year start date is assumed to be January 1; therefore if the 667
reporting year coincides with the calendar year, this Attribute is not necessary. 668
 669
Since the duration and the reporting year start day are known for any reporting 670
period, it is possible to relate any reporting period to a distinct calendar period. The 671
actual Gregorian calendar period covered by the reporting period can be computed 672
as follows (based on the standard format of [REPROTING_YEAR]-673
[PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as 674
[REPORTING_YEAR_START_DAY]): 675
 676

1. Determine [REPORTING_YEAR_BASE]: 677
Combine [REPORTING_YEAR] of the reporting period value (YYYY) with 678
[REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD). 679
This is the [REPORTING_YEAR_START_DATE] 680

a) If the [PERIOD_INDICATOR] is W: 681
1. If [REPORTING_YEAR_START_DATE] is a Friday, Saturday, 682

or Sunday: 683
Add3 (P3D, P2D, or P1D respectively) to the 684
[REPORTING_YEAR_START_DATE]. The result is the 685
[REPORTING_YEAR_BASE]. 686

2. If [REPORTING_YEAR_START_DATE] is a Monday, 687
Tuesday, Wednesday, or Thursday: 688
Add3 (P0D, -P1D, -P2D, or -P3D respectively) to the 689
[REPORTING_YEAR_START_DATE]. The result is the 690
[REPORTING_YEAR_BASE]. 691

b) Else: 692
The [REPORTING_YEAR_START_DATE] is the 693
[REPORTING_YEAR_BASE]. 694

2. Determine [PERIOD_DURATION]: 695
a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y. 696
b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M. 697
c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M. 698
d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M. 699
e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M. 700

18

f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D. 701
g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D. 702

3. Determine [PERIOD_START]: 703
Subtract one from the [PERIOD_VALUE] and multiply this by the 704
[PERIOD_DURATION]. Add3 this to the [REPORTING_YEAR_BASE]. The 705
result is the [PERIOD_START]. 706

4. Determine the [PERIOD_END]: 707
Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add3 this to 708
the [REPORTING_YEAR_BASE] add3 -P1D. The result is the 709
[PERIOD_END]. 710
 711

For all of these ranges, the bounds include the beginning of the [PERIOD_START] 712
(i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59). 713

 714
Examples: 715
 716
2010-Q2, REPORTING_YEAR_START_DAY = --07-01 (July 1) 717

1. [REPORTING_YEAR_START_DATE] = 2010-07-01 718
b) [REPORTING_YEAR_BASE] = 2010-07-01 719

2. [PERIOD_DURATION] = P3M 720
3. (2-1) * P3M = P3M 721

2010-07-01 + P3M = 2010-10-01 722
[PERIOD_START] = 2010-10-01 723

4. 2 * P3M = P6M 724
2010-07-01 + P6M = 2010-13-01 = 2011-01-01 725
2011-01-01 + -P1D = 2010-12-31 726
[PERIOD_END] = 2011-12-31 727
 728
The actual calendar range covered by 2010-Q2 (assuming the reporting year 729
begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59 730

 731
2011-W36, REPORTING_YEAR_START_DAY = --07-01 (July 1) 732

1. [REPORTING_YEAR_START_DATE] = 2010-07-01 733
a) 2011-07-01 = Friday 734

2011-07-01 + P3D = 2011-07-04 735
[REPORTING_YEAR_BASE] = 2011-07-04 736

2. [PERIOD_DURATION] = P7D 737
3. (36-1) * P7D = P245D 738

2011-07-04 + P245D = 2012-03-05 739
[PERIOD_START] = 2012-03-05 740

4. 36 * P7D = P252D 741
2011-07-04 + P252D =2012-03-12 742
2012-03-12 + -P1D = 2012-03-11 743
[PERIOD_END] = 2012-03-11 744
 745

3 The rules for adding durations to a date time are described in the W3C XML
Schema specification. See http://www.w3.org/TR/xmlschema-2/#adding-durations-to-
dateTimes for further details.

http://www.w3.org/TR/xmlschema-2/#adding-durations-to-dateTimes
http://www.w3.org/TR/xmlschema-2/#adding-durations-to-dateTimes

19

The actual calendar range covered by 2011-W36 (assuming the reporting year 746
begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59 747

 748

4.2.7 Distinct Range 749
In the case that the reporting period does not fit into one of the prescribe periods 750
above, a distinct time range can be used. The value of these ranges is based on the 751
ISO 8601 time interval format of start/duration. Start can be expressed as either an 752
ISO 8601 date or a date-time, and duration is expressed as an ISO 8601 duration. 753
However, the duration can only be postive. 754
 755

4.2.8 Time Format 756
In version 2.0 of SDMX there is a recommendation to use the time format attribute to 757
gives additional information on the way time is represented in the message. 758
Following an appraisal of its usefulness this is no longer required. However, it is still 759
possible, if required , to include the time format attribute in SDMX-ML. 760
 761
Code Format

OTP Observational Time Period: Superset of all SDMX time formats (Gregorian
Time Period, Reporting Time Period, and Time Range)

STP Standard Time Period: Superset of Gregorian and Reporting Time Periods

GTP Superset of all Gregorian Time Periods and date-time

RTP Superset of all Reporting Time Periods

TR Time Range: Start time and duration (YYYY-MM-
DD(Thh:mm:ss)?/<duration>)

GY Gregorian Year (YYYY)

GTM Gregorian Year Month (YYYY-MM)

GD Gregorian Day (YYYY-MM-DD)

DT Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)

RY Reporting Year (YYYY-A1)

RS Reporting Semester (YYYY-Ss)

RT Reporting Trimester (YYYY-Tt)

RQ Reporting Quarter (YYYY-Qq)

RM Reporting Month (YYYY-Mmm)

20

Code Format

RW Reporting Week (YYYY-Www)

RD Reporting Day (YYYY-Dddd)

 Table 1: SDMX-ML Time Format Codes 762

4.2.9 Transformation between SDMX-ML and SDMX-EDI 763
When converting SDMX-ML data structure definitions to SDMX-EDI data structure 764
definitions, only the identifier of the time format attribute will be retained. The 765
representation of the attribute will be converted from the SDMX-ML format to the 766
fixed SDMX-EDI code list. If the SDMX-ML data structure definition does not define a 767
time format attribute, then one will be automatically created with the identifier 768
"TIME_FORMAT". 769
 770
When converting SDMX-ML data to SDMX-EDI, the source time format attribute will 771
be irrelevant. Since the SDMX-ML time representation types are not ambiguous, the 772
target time format can be determined from the source time value directly. For 773
example, if the SDMX-ML time is 2000-Q2 the SDMX-EDI format will always be 774
608/708 (depending on whether the target series contains one observation or a 775
range of observations) 776
 777
When converting a data structure definition originating in SDMX-EDI, the time format 778
attribute should be ignored, as it serves no purpose in SDMX-ML. 779
When converting data from SDMX-EDI to SDMX-ML, the source time format is only 780
necessary to determine the format of the target time value. For example, a source 781
time format of 604 will result in a target time in the format YYYY-Ss whereas a 782
source format of 608 will result in a target time value in the format YYYY-Qq. 783

4.2.10 Time Zones 784
In alignment with ISO 8601, SDMX allows the specification of a time zone on all time 785
periods and on the reporting year start day. If a time zone is provided on a reporting 786
year start day, then the same time zone (or none) should be reported for each 787
reporting time period. If the reporting year start day and the reporting period time 788
zone differ, the time zone of the reporting period will take precedence. Examples of 789
each format with time zones are as follows (time zone indicated in bold): 790
 791

• Time Range (start date): 2006-06-05-05:00/P5D 792
• Time Range (start date-time): 2006-06-05T00:00:00-05:00/P5D 793
• Gregorian Year: 2006-05:00 794
• Gregorian Month: 2006-06-05:00 795
• Gregorian Day: 2006-06-05-05:00 796
• Distinct Point: 2006-06-05T00:00:00-05:00 797
• Reporting Year: 2006-A1-05:00 798
• Reporting Semester: 2006-S2-05:00 799
• Reporting Trimester: 2006-T2-05:00 800
• Reporting Quarter: 2006-Q3-05:00 801
• Reporting Month: 2006-M06-05:00 802
• Reporting Week: 2006-W23-05:00 803

21

• Reporting Day: 2006-D156-05:00 804
• Reporting Year Start Day: --07-01-05:00 805

According to ISO 8601, a date without a time-zone is considered "local time". SDMX 806
assumes that local time is that of the sender of the message. In this version of 807
SDMX, an optional field is added to the sender definition in the header for specifying 808
a time zone. This field has a default value of 'Z' (UTC). This determination of local 809
time applies for all dates in a message. 810

4.2.11 Representing Time Spans Elsewhere 811
It has been possible since SDMX 2.0 for a Component to specify a representation of 812
a time span. Depending on the format of the data message, this resulted in either an 813
element with 2 XML attributes for holding the start time and the duration or two 814
separate XML attributes based on the underlying Component identifier. For example 815
if REF_PERIOD were given a representation of time span, then in the Compact data 816
format, it would be represented by two XML attributes; REF_PERIODStartTime 817
(holding the start) and REF_PERIOD (holding the duration). If a new simple type is 818
introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will 819
no longer be necessary. What was represented as this: 820
 821

 <Series REF_PERIODStartTime="2000-01-01T00:00:00" REF_PERIOD="P2M"/> 822
 823
can now be represented with this: 824
 825

<Series REF_PERIOD="2000-01-01T00:00:00/P2M"/> 826

4.2.12 Notes on Formats 827
There is no ambiguity in these formats so that for any given value of time, the 828
category of the period (and thus the intended time period range) is always clear. It 829
should also be noted that by utilizing the ISO 8601 format, and a format loosely 830
based on it for the report periods, the values of time can easily be sorted 831
chronologically without additional parsing. 832

4.2.13 Effect on Time Ranges 833
All SDMX-ML data messages are capable of functioning in a manner similar to 834
SDMX-EDI if the Dimension at the observation level is time: the time period for the 835
first observation can be stated and the rest of the observations can omit the time 836
value as it can be derived from the start time and the frequency. Since the frequency 837
can be determined based on the actual format of the time value for everything but 838
distinct points in time and time ranges, this makes is even simpler to process as the 839
interval between time ranges is known directly from the time value. 840
 841

4.2.14 Time in Query Messages 842
When querying for time values, the value of a time parameter can be provided as any 843
of the Observational Time Period formats and must be paired with an operator. In 844
addition, an explicit value for the reporting year start day can be provided, or this can 845
be set to "Any". This section will detail how systems processing query messages 846
should interpret these parameters. 847
 848

22

Fundamental to processing a time value parameter in a query message is 849
understanding that all time periods should be handled as a distinct range of time. 850
Since the time parameter in the query is paired with an operator, this is also 851
effectively represents a distinct range of time. Therefore, a system processing the 852
query must simply match the data where the time period for requested parameter is 853
encompassed by the time period resulting from value of the query parameter. The 854
following table details how the operators should be interpreted for any time period 855
provided as a parameter. 856
 857
Operator Rule
Greater Than Any data after the last moment of the

period
Less Than Any data before the first moment of the

period
Greater Than or Equal To Any data on or after the first moment of

the period
Less Than or Equal To Any data on or before the last moment of

the period
Equal To Any data which falls on or after the first

moment of the period and before or on
the last moment of the period

 858
Reporting Time Periods as query parameters are handled based on whether the 859
value of the reportingYearStartDay XML attribute is an explicit month and day or 860
"Any": 861
 862

If the time parameter provides an explicit month and day value for the 863
reportingYearStartDay XML attribute, then the parameter value is converted to 864
a distinct range and processed as any other time period would be processed. 865
 866
If the reportingYeartStartDay XML attribute has a value of "Any", then any data 867
within the bounds of the reporting period for the year is matched, regardless of 868
the actual start day of the reporting year. In addition, data reported against a 869
normal calendar period is matched if it falls within the bounds of the time 870
parameter based on a reporting year start day of January 1. When determining 871
whether another reporting period falls within the bounds of a report period 872
query parameter, one will have to take into account the actual time period to 873
compare weeks and days to higher order report periods. This will be 874
demonstrated in the examples to follow. 875
 876

Note that the reportingYearStartDay XML attribute on the time value parameter is 877
only used to qualify a reporting period value for the given time value parameter. The 878
usage of this is different than using the attribute value parameter for the actual 879
reporting year start day attribute. In the case that the attribute value parameters is 880
used for the reporting year start day data structure attribute, it will be treated as any 881
other attribute value parameter; data will be filtered to that which matches the values 882
specified for the given attribute. For example, if the attribute value parameter 883
references the reporting year start day attribute and specifies a value of "--07-01", 884
then only data which has this attribute with the value "--07-01" will be returned. In 885
terms of processing any time value parameters, the value supplied in the attribute 886
value parameter will be irrelevant. 887

 888

23

Examples: 889
 890
Gregorian Period 891

Query Parameter: Greater than 2010 892
Literal Interpretation: Any data where the start period occurs after 2010-12-893
31T23:59:59. 894
Example Matches: 895

• 2011 or later 896
• 2011-01 or later 897
• 2011-01-01 or later 898
• 2011-01-01/P[Any Duration] or any later start date 899
• 2011-[Any reporting period] (any reporting year start day) 900
• 2010-S2 (reporting year start day --07-01 or later) 901
• 2010-T3 (reporting year start day --07-01 or later) 902
• 2010-Q3 or later (reporting year start day --07-01 or later) 903
• 2010-M07 or later (reporting year start day --07-01 or later) 904
• 2010-W28 or later (reporting year start day --07-01 or later) 905
• 2010-D185 or later (reporting year start day --07-01 or later) 906

 907
Reporting Period with explicit start day 908

Query Parameter: Greater than or equal to 2009-Q3, reporting year start day = "--909
07-01" 910
Literal Interpretation: Any data where the start period occurs on after 2010-01-911
01T00:00:00 (Note that in this case 2009-Q3 is converted to the explicit date 912
range of 2010-01-01/2010-03-31 because of the reporting year start day value). 913
Example Matches: Same as previous example 914

 915
Reporting Period with "Any" start day 916

Query Parameter: Greater than or equal to 2010-Q3, reporting year start day = 917
"Any" 918
Literal Interpretation: Any data with a reporting period where the start period is on 919
or after the start period of 2010-Q3 for the same reporting year start day, or and 920
data where the start period is on or after 2010-07-01. 921
Example Matches: 922

• 2011 or later 923
• 2010-07 or later 924
• 2010-07-01 or later 925
• 2010-07-01/P[Any Duration] or any later start date 926
• 2011-[Any reporting period] (any reporting year start day) 927
• 2010-S2 (any reporting year start day) 928
• 2010-T3 (any reporting year start day) 929
• 2010-Q3 or later (any reporting year start day) 930
• 2010-M07 or later (any reporting year start day) 931
• 2010-W27 or later (reporting year start day --01-01)4 932
• 2010-D182 or later (reporting year start day --01-01) 933
• 2010-W28 or later (reporting year start day --07-01)5 934

4 2010-Q3 (with a reporting year start day of --01-01) starts on 2010-07-01. This is
day 4 of week 26, therefore the first week matched is week 27.

24

• 2010-D185 or later (reporting year start day --07-01) 935

4.3 Structural Metadata Querying Best Practices 936
When querying for structural metadata, the ability to state how references should be 937
resolved is quite powerful. However, this mechanism is not always necessary and 938
can create an undue burden on the systems processing the queries if it is not used 939
properly. 940
 941
Any structural metadata object which contains a reference to an object can be 942
queried based on that reference. For example, a categorisation references both a 943
category and the object is it categorising. As this is the case, one can query for 944
categorisations which categorise a particular object or which categorise against a 945
particular category or category scheme. This mechanism should be used when the 946
referenced object is known. 947
 948
When the referenced object is not know, then the reference resolution mechanism 949
could be used. For example, suppose one wanted to find all category schemes and 950
the related categorisations for a given maintenance agency. In this case, one could 951
query for the category scheme by the maintenance agency and specify that parent 952
and sibling references should be resolved. This would result in the categorisations 953
which reference the categories in the matched schemes to be returned, as well as 954
the object which they categorise. 955

4.4 Versioning and External Referencing 956
Within the SDMX-ML Structure Message, there is a pattern for versioning and 957
external referencing which should be pointed out. The identifiers are qualified by their 958
version numbers – that is, an object with an Agency of “A”, and ID of “X” and a 959
version of “1.0” is a different object than one with an Agency of “A’, an ID of “X”, and 960
a version of “1.1”. 961
 962
The production versions of identifiable objects/resources are assumed to be static – 963
that is, they have their isFinal attribute set to ‘true”. Once in production, and object 964
cannot change in any way, or it must be versioned. For cases where an object is not 965
static, the isFinal attribute must have a value of “false”, but non-final objects should 966
not be used outside of a specific system designed to accommodate them. For most 967
purposes, all objects should be declared final before use in production. 968
 969
This mechanism is an “early binding” one – everything with a versioned identity is a 970
known quantity, and will not change. It is worth pointing out that in some cases 971
relationships are essentially one-way references: an illustrative case is that of 972
Categories. While a Category may be referenced by many dataflows and metadata 973
flows, the addition of more references from flow objects does not version the 974
Category. This is because the flows are not properties of the Categories – they 975
merely make references to it. If the name of a Category changed, or its sub-976
Categories changed, then versioning would be necessary. 977
 978

5 2010-Q3 (with a reporting year start day of --07-01) starts on 2011-01-01. This is
day 6 of week 27, therefore the first week matched is week 28.

25

Versioning operates at the level of versionable and maintainable objects in the SDMX 979
information model. If any of the children of objects at these levels change, then the 980
objects themselves are versioned. 981
 982
One area which is much impacted by this versioning scheme is the ability to 983
reference external objects. With the many dependencies within the various structural 984
objects in SDMX, it is useful to have a scheme for external referencing. This is done 985
at the level of maintainable objects (DSDs, code lists, concept schemes, etc.) In an 986
SDMX-ML Structure Message, whenever an “isExternalReference” attribute is set to 987
true, then the application must resolve the address provided in the associated “uri” 988
attribute and use the SDMX-ML Structure Message stored at that location for the full 989
definition of the object in question. Alternately, if a registry “urn” attribute has been 990
provided, the registry can be used to supply the full details of the object. 991
 992
Because the version number is part of the identifier for an object, versions are a 993
necessary part of determining that a given resource is the one which was called for. It 994
should be noted that whenever a version number is not supplied, it is assumed to be 995
“1.0”. (The “x.x” versioning notation is conventional in practice with SDMX, but not 996
required.) 997

5 Metadata Structure Definition (MSD) 998

5.1 Scope 999
The scope of the MSD is enhanced in this version to better support the types of 1000
construct to which metadata can be attached. In particular it is possible to specify an 1001
attachment to any key or partial key of a data set. This is particularly useful for web 1002
dissemination where metadata may be present for the data, but is not stored with the 1003
data but is related to it. For this use case to be supported it is necessary to be able to 1004
specify in the MSD that metadata is attached to a key or partial key, and the actual 1005
key or partial key to be identified in the Metadata Set. 1006
 1007
In addition to the increase in the scope of objects that can be included in an MSD, 1008
the way the identifier mechanism works in this version, and the terminology used, is 1009
much simpler. 1010
 1011

5.2 Identification of the Object Type to which the Metadata is 1012
to be Attached 1013

The following example shows the structure and naming of the MSD components for 1014
the use case of defining full and partial keys. 1015
 1016
The schematic structure of an MSD is shown below. 1017
 1018

26

 1019
 1020

 Figure 1: Schematic of the Metadata Structure Definition 1021

The MSD comprises the specification of the object types to which metadata can be 1022
reported in a Metadata Set (Metadata Target(s)), and the Report Structure(s) 1023
comprising the Metadata Attributes that identify the Concept for which metadata may 1024
be reported in the Metadata Set. Importantly, one Report Structure references the 1025
Metadata Target for which it is relevant. One Report Structure can reference many 1026
Metadata Target i.e. the same Report Structure can be used for different target 1027
objects.1028

 1029

27

 Figure 2: Example MSD showing Metadata Targets 1030

Note that the SDMX-ML schemas have explicit XML elements for each identifiable 1031
object type because identifying, for instance, a Maintainable Object has different 1032
properties from an Identifiable Object which must also include the agencyId, version, 1033
and id of the Maintainable Object in which it resides. 1034

5.3 Report Structure 1035
An example is shown below. 1036

 1037

Figure 3: Example MSD showing specification of three Metadata Attributes 1038

This example shows the following hierarchy of Metadata Attributes: 1039

28

Source – this is presentational and no metadata is expected to be reported at this 1040
level 1041

o Source Type 1042

o Collection Source Name 1043

5.4 Metadata Set 1044
An example of reporting metadata according to the MSD described above, is shown 1045
below. 1046
 1047

 1048

 Figure 4: Example Metadata Set 1049

This example shows: 1050

1. The reference to the MSD, Metadata Report, and Metadata Target 1051
(MetadataTargetValue) 1052

29

2. The reported metadata attributes (AttributeValueSet) 1053

6 Maintenance Agencies 1054
All structural metadata in SDMX is owned and maintained by a maintenance agency 1055
(Agency identified by agencyID in the schemas). It is vital to the integrity of the 1056
structural metadata that there are no conflicts in agencyID. In order to achieve this 1057
SDMX adopts the following rules: 1058
 1059

1. Agencies are maintained in an Agency Scheme (which is a sub class of 1060
Organisation Scheme) 1061

2. The maintenance agency of the Agency Scheme must also be declared in a 1062
(different) Agency Scheme. 1063

3. The “top-level” agency is SDMX and this agency scheme is maintained by 1064
SDMX. 1065

4. Agencies registered in the top-level scheme can themselves maintain a single 1066
Agency Scheme. SDMX is an agency in the SDMX agency scheme. Agencies 1067
in this scheme can themselves maintain a single Agency Scheme and so on. 1068

5. The AgencyScheme cannot be versioned and so take a default version 1069
number of 1.0 and cannot be made “final”. 1070

6. There can be only one AgencyScheme maintained by any one Agency. It has 1071
a fixed Id of AgencyScheme. 1072

7. The format of the agency identifier is agencyId.agencyID etc. The top-level 1073
agency in this identification mechanism is the agency registered in the SDMX 1074
agency scheme. In other words, SDMX is not a part of the hierarchical ID 1075
structure for agencies. SDMX is, itself, a maintenance agency. 1076

 1077
This supports a hierarchical structure of agencyID. 1078
 1079
An example is shown below. 1080
 1081

 1082
 Figure 5: Example of Hierarchic Structure of Agencies 1083

Each agency is identified by its full hierarchy excluding SDMX. 1084

30

 1085
The XML representing this structure is shown below. 1086
 1087

 1088
 Figure 6: Example Agency Schemes Showing a Hierarchy 1089

Example of Structure Definitions: 1090
 1091

31

 1092
 Figure 7: Example Showing Use of Agency Identifiers 1093

 1094
Each of these maintenance agencies has an identical Codelist with the Id CL_BOP. 1095
However, each is uniquely identified by means of the hierarchic agency structure. 1096

7 Concept Roles 1097

7.1 Overview 1098
The DSD Components of Dimension and Attribute can play a specific role in the DSD 1099
and it is important to some applications that this role is specified. For instance, the 1100
following roles are some examples: 1101
 1102
Frequency – in a data set the content of this Component contains information on the 1103
frequency of the observation values 1104
Geography - in a data set the content of this Component contains information on the 1105
geographic location of the observation values 1106
Unit of Measure - in a data set the content of this Component contains information 1107
on the unit of measure of the observation values 1108
 1109
In order for these roles to be extensible and also to enable user communities to 1110
maintain community-specific roles, the roles are maintained in a controlled 1111
vocabulary which is implemented in SDMX as Concepts in a Concept Scheme. The 1112
Component optionally references this Concept if it is required to declare the role 1113
explicitly. Note that a Component can play more than one role and therefore multiple 1114
“role” concepts can be referenced. 1115

7.2 Information Model 1116
The Information Model for this is shown below: 1117
 1118

32

TimeDimensionMeasureDimensionDimension

PrimaryMeasure

DataAttribute
DimensionComponentConcept

0..*
+role

0..* 1

/conceptIdentity

1

1/conceptIdentity 1

0..* +role0..*

1 /conceptIdentity1

{Dimension
MeasureDimension}

{not ReportingYearStartDay}

 1119
 Figure 8: Information Model Extract for Concept Role 1120

It is possible to specify zero or more concept roles for a Dimension, Measure 1121
Dimension and Data Attribute (but not the ReportingYearStartDay). The Time 1122
Dimension, Primary Measure, and the Attribute ReportingYearStartDay have 1123
explicitly defined roles and cannot be further specified with additional concept roles. 1124

7.3 Technical Mechanism 1125
The mechanism for maintain and using concept roles is as follows: 1126
 1127

1. Any recognized Agency can have a concept scheme that contains concepts 1128
that identify concept roles. Indeed, from a technical perspective any agency 1129
can have more than one of these schemes, though this is not recommended. 1130

 1131
2. The concept scheme that contains the “role” concepts can contain concepts 1132

that do not play a role. 1133
 1134

3. There is no explicit indication on the Concept whether it is a ‘role” concept. 1135
 1136

4. Therefore, any concept in any concept scheme is capable of being a “role” 1137
concept. 1138

 1139
5. It is the responsibility of Agencies to ensure their community knows which 1140

concepts in which concept schemes play a “role” and the significance and 1141
interpretation of this role. In other words, such concepts must be known by 1142
applications, there is no technical mechanism that can inform an application 1143
on how to process such a “role”. 1144
 1145

6. If the concept referenced in the Concept Identity in a DSD component 1146
(Dimension, Measure Dimension, Attribute) is contained in the concept 1147
scheme containing concept roles then the DSD component could play the role 1148
implied by the concept, if this is understood by the processing application. 1149
 1150

7. If the concept referenced in the Concept Identity in a DSD component 1151
(Dimension, Measure Dimension, Attribute) is not contained in the concept 1152
scheme containing concept roles, and the DSD component is playing a role, 1153
then the concept role is identified by the Concept Role in the schema. 1154
 1155

33

7.4 SDMX-ML Examples in a DSD 1156
 1157

The Cross-Domain Concept Scheme maintained by SDMX contains concept role 1158
concepts (FREQ chosen as an example). 1159

 1160

 1161

Whether this is a role or not depends upon the application understanding that FREQ 1162
in the Cross-Domain Concept Scheme is a role of Frequency. 1163

Using a Concept Scheme that is not the Cross-Domain Concept Scheme where it is 1164
required to assign a role using the Cross-Domain Concept Scheme. Again FREQ is 1165
chosen as the example. 1166

1167
 1168

This explicitly states that this Dimension is playing a role identified by the FREQ 1169
concept in the Cross-Domain Concept Scheme. Again the application needs to 1170
understand what FREQ in the Cross-Domain Concept Scheme implies in terms of a 1171
role. 1172

This is all that is required for interoperability within a community. The important point 1173
is that a community must recognise a specific Agency as having the authority to 1174
define concept roles and to maintain these “role” concepts in a concept scheme 1175
together with documentation on the meaning of the role and any relevant processing 1176
implications. This will then ensure there is interoperability between systems that 1177
understand the use of these concepts. 1178
 1179
Note that each of the Components (Data Attribute, Primary Measure, Dimension, 1180
Measure Dimension, Time Dimension) has a mandatory identity association 1181
(Concept Identity) and if this Concept also identifies the role then it is possible to 1182
state this by 1183
 1184

34

7.5 SDMX Cross Domain Concept Scheme 1185
All concepts in the SDMX Cross Domain Concept Scheme are capable of playing a 1186
role and this scheme will contain all of the roles that were allowed at version 2.0 and 1187
will be maintained with new roles that are agreed at the level of the community using 1188
the Cross Domain Concept Scheme. 1189
 1190
The table below lists the Concepts that need to be in this scheme either for 1191
compatibility with version 2.0 or because of requests for additional roles at version 1192
2.1 which have been accepted. 1193
 1194
Note that each of the Components (Data Attribute, Primary Measure, Dimension, 1195
Measure Dimension, Time Dimension) has a mandatory identity association 1196
(Concept Identity) and if this Concept also identifies the role then it is possible to 1197
state this by means of the isRole attribute (isRole=true) Additional roles can still 1198
be specified by means of the +role association to additional Concepts that identify 1199
the role. 1200

8 Constraints 1201

8.1 Introduction 1202
In this version of SDMX the Constraints is a Maintainable Artefact can be associated 1203
to one or more of: 1204
 1205

• Data Structure Definition 1206
• Metadata Structure Definition 1207
• Dataflow 1208
• Metadataflow 1209
• Provision Agreement 1210
• Data Provider (this is restricted to a Release Calendar Constraint) 1211
• Simple or Queryable Datasources 1212

 1213
Note that regardless of the artifact to which the Constraint is associated, it is 1214
constraining the contents of code lists in the DSD to which the constrained object is 1215
related. This does not apply, of course, to a Data Provider as the Data Provider can 1216
be associated, via the Provision Agreement, to many DSDs. Hence the reason for 1217
the restriction on the type of Constraint that can be attached to a Data Provider. 1218

8.2 Types of Constraint 1219
The Constraint can be of one of two types: 1220
 1221

• Content constraint 1222
• Attachable constraint 1223

 1224
The attachable constraint is used to define “cube slices” which identify sub sets of 1225
data in terms of series keys or dimension values. The purpose of this is to enable 1226
metadata to be attached to the constraint, and thereby to the cube slices defined in 1227
the Constraint. The metadata can be attached via the “reference metadata” 1228
mechanism – MSD and Metadata Set – or via a Group in the DSD. Below is snippet 1229

35

of the schema for a DSD that shows the constructs that enable the Constraint to 1230
referenced from a Group in a DSD. 1231
 1232

 1233
 1234

Figure 9: Extract from the SDMX-ML Schema showing reference to Attachment 1235
Constraint 1236

For the Content Constraint specific “inheritance” rules apply and these are detailed 1237
below. 1238

8.3 Rules for a Content Constraint 1239

8.3.1 Scope of a Content Constraint 1240
A Content Constraint is used specify the content of a data or metadata source in 1241
terms of the component values or the keys. 1242
 1243
In terms of data the components are: 1244
 1245

• Dimension 1246
• Measure Dimension 1247
• Time Dimension 1248
• Data Attribute 1249
• Primary Measure 1250

 1251
And the keys are the content of the KeyDescriptor – i.e. the series keys composed, 1252
for each key, by a value for each Dimension and Measure Dimension 1253
 1254

36

In terms of reference metadata the components are: 1255
 1256

• Target Object which is one of: 1257
o Key Descriptor Values 1258
o Data Set 1259
o Report Period 1260
o IdentifiableObject 1261

 1262
• Metadata Attribute 1263

 1264
The “key” is therefore the combination of the Target Objects that are defined for the 1265
Metadata Target. 1266
 1267
For a Constraint based on a DSD the Content Constraint can reference one or more 1268
of: 1269
 1270

• Data Structure Definition 1271
• Dataflow 1272
• Provision Agreement 1273

 1274
For a Constraint based on an MSD the Content Constraint can reference one or 1275
more of: 1276
 1277

• Metadata Structure Definition 1278
• Metadataflow 1279
• Provision Agreement 1280

 1281
Furthermore, there can be more than one Content Constraint specified for a specific 1282
object e.g. more than one Constraint for a specific DSD. 1283
 1284
In view of the flexibility of constraints attachment, clear rules on their usage are 1285
required. These are elaborated below. 1286

8.3.2 Multiple Content Constraints 1287
There can be many Content Constraints for any Constrainable Artefact (e.g. DSD), 1288
subject to the following restrictions: 1289

8.3.2.1 Cube Region 1290
1. The constraint can contain multiple Member Selections (e.g. Dimension) but: 1291
2. A specific Member Selection (e.g. Dimension FREQ) can only be contained in 1292

one Content Constraint for any one attached object (e.g. a specific DSD or 1293
specific Dataflow) 1294

8.3.2.2 Key Set 1295
Key Sets will be processed in the order they appear in the Constraint and wildcards 1296
can be used (e.g. any key position not reference explicitly is deemed to be “all 1297
values”). As the Key Sets can be “included” or “excluded” it is recommended that Key 1298
Sets with wildcards are declared before KeySets with specific series keys. This will 1299
minimize the risk that keys are inadvertently included or excluded. 1300

37

8.3.3 Inheritance of a Content Constraint 1301

8.3.3.1 Attachment levels of a Content Constraint 1302
There are three levels of constraint attachment for which these inheritance rules 1303
apply: 1304

• DSD/MSD – top level 1305
o Dataflow/Metadataflow – second level 1306

 Provision Agreement – third level 1307
 1308

Note that these rules do not apply to the Simple Datasoucre or Queryable 1309
Datasource: the Content Constraint(s) attached to these artefacts are resolved for 1310
this artefact only and do not take into account Constraints attached to other artefacts 1311
(e.g. Provision Agreement. Dataflow, DSD). 1312

It is not necessary for a Content Constraint to be attached to higher level artifact. e.g. 1313
it is valid to have a Content Constraint for a Provision Agreement where there are no 1314
constraints attached the relevant dataflow or DSD. 1315

8.3.3.2 Cascade rules for processing Constraints 1316
The processing of the constraints on either Dataflow/Metadataflow or Provision 1317
Agreement must take into account the constraints declared at higher levels. The 1318
rules for the lower level constraints (attached to Dataflow/ Metadataflow and 1319
Provision Agreement) are detailed below. 1320

Note that there can be a situation where a constraint is specified at a lower level 1321
before a constraint is specified at a higher level. Therefore, it is possible that a higher 1322
level constraint makes a lower level constraint invalid. SDMX makes no rules on how 1323
such a conflict should be handled when processing the constraint for attachment. 1324
However, the cascade rules on evaluating constraints for usage are clear - the higher 1325
level constraint takes precedence in any conflicts that result in a less restrictive 1326
specification at the lower level. 1327

8.3.3.3 Cube Region 1328
1. It is not necessary to have a constraint on the higher level artifact (e.g. DSD 1329

referenced by the Dataflow) but if there is such a constraint at the higher 1330
level(s) then: 1331

a. The lower level constraint cannot be less restrictive than the constraint 1332
specified for the same Member Selection (e.g. Dimension) at the next 1333
higher level which constraints that Member Selection (e.g. if the 1334
Dimension FREQ is constrained to A, Q in a DSD then the constraint 1335
at the Dataflow or Provision Agreement cannot be A, Q, M or even just 1336
M – it can only further constrain A,Q). 1337

b. The constraint at the lower level for any one Member Selection further 1338
constrains the content for the same Member Selection at the higher 1339
level(s). 1340

38

2. Any Member Selection which is not referenced in a Content Constraint is 1341
deemed to be constrained according to the Content Constraint specified at 1342
the next higher level which constraints that Member Selection. 1343

3. If there is a conflict when resolving the constraint in terms of a lower-level 1344
constraint being less restrictive than a higher-level constraint then the 1345
constraint at the higher-level is used. 1346

 1347

Note that it is possible for a Content Constraint at a higher level to constrain, say, 1348
four Dimensions in a single constraint, and a Content Constraint at a lower level to 1349
constrain the same four in two, three, or four Content Constraints. 1350

8.3.3.4 Key Set 1351
1. It is not necessary to have a constraint on the higher level artefact (e.g. DSD 1352

referenced by the Dataflow) but if there is such a constraint at the higher 1353
level(s) then: 1354
 1355

a. The lower level constraint cannot be less restrictive than the constraint 1356
specified at the higher level. 1357

b. The constraint at the lower level for any one Member Selection further 1358
constrains the keys specified at the higher level(s). 1359

2. Any Member Selection which is not referenced in a Content Constraint is 1360
deemed to be constrained according to the Content Constraint specified at 1361
the next higher level which constraints that Member Selection. 1362

3. If there is a conflict when resolving the keys in the constraint at two levels, in 1363
terms of a lower-level constraint being less restrictive than a higher-level 1364
constraint, then the offending keys specified at the lower level are not 1365
deemed part of the constraint. 1366

 1367
Note that a Key in a Key Set can have wildcarded Components. For instance the 1368
constraint may simply constrain the Dimension FREQ to “A”, and all keys where the 1369
FREQ=A are therefore valid. 1370
 1371
The following logic explains how the inheritance mechanism works. Note that this is 1372
conceptual logic and actual systems may differ in the way this is implemented. 1373
 1374

1. Determine all possible keys that are valid at the higher level. 1375
2. These keys are deemed to be inherited by the lower level constrained object, 1376

subject to the constraints specified at the lower level. 1377
3. Determine all possible keys that are possible using the constraints specified at 1378

the lower level. 1379
4. At the lower level inherit all keys that match with the higher level constraint. 1380
5. If there are keys in the lower level constraint that are not inherited then the key 1381

is invalid (i.e. it is less restrictive). 1382

8.3.4 Constraints Examples 1383
The following scenario is used. 1384

DSD 1385

This contains the following Dimensions: 1386

39

• GEO – Geography 1387

• SEX – Sex 1388

• AGE – Age 1389

• CAS – Current Activity Status 1390

In the DSD common code lists are used and the requirement is to restrict these at 1391
various levels to specify the actual code that are valid for the object to which the 1392
Content Constraint is attached. 1393

 1394

 Figure 10: Example Scenario for Constraints 1395

Constraints are declared as follows: 1396

40

 1397

 Figure 11: Example Content Constraints 1398

Notes: 1399

1. AGE is constrained for the DSD and is further restricted for the Dataflow 1400
CENSUS_CUBE1. 1401

2. The same Constraint applies to both Provision Agreements. 1402
 1403

The cascade rules elaborated above result as follows: 1404

DSD 1405

1. Constrained by eliminating code 001 from the code list for the AGE Dimension. 1406
 1407

Dataflow CENSUS_CUBE1 1408

1. Constrained by restricting the code list for the AGE Dimension to codes 002 and 1409
003(note that this is a more restrictive constraint than that declared for the DSD 1410
which specifies all codes except code 001). 1411

2. Restricts the CAS codes to 003 and 004. 1412
 1413
Dataflow CENSUS_CUBE2 1414

1. Restricts the code list for the CAS Dimension to codes TOT and NAP. 1415
2. Inherits the AGE constraint applied at the level of the DSD. 1416
 1417

41

Provision Agreements CENSUS_CUBE1_IT 1418

1. Restricts the codes for the GEO Dimension to IT and its children. 1419
2. Inherits the constraints from Dataflow CENSUS_CUBE1 for the AGE and CAS 1420

Dimensions. 1421
 1422

Provision Agreements CENSUS_CUBE2_IT 1423

1. Restricts the codes for the GEO Dimension to IT and its children. 1424
2. Inherits the constraints from Dataflow CENSUS_CUBE2 for the CAS Dimension. 1425
3. Inherits the AGE constraint applied at the level of the DSD. 1426
 1427

The constraints are defined as follows: 1428

DSD Constraint 1429

 1430

 1431

42

Dataflow Constraints 1432

 1433

 1434

43

Provision Agreement Constraint 1435

 1436

 1437

44

9 Annex I: How to eliminate extra element in the .NET 1438

SDMX Web Service 1439

9.1 Problem statement 1440
For implementing an SDMX compliant Web Service the standardised WSDL file 1441
should be used that describes the expected request/response structure. The request 1442
message of the operation contains a wrapper element (e.g. “GetGenericData”) that 1443
wraps a tag called “GenericDataQuery”, which is the actual SDMX query XML 1444
message that contains the query to be processed by the Web Service. In the same 1445
way the response is formulated in a wrapper element “GetGenericDataResponse”. 1446

As defined in the SOAP specification, the root element of a SOAP message is the 1447
Envelope, which contains an optional Header and a mandatory Body. These are 1448
illustrated below along with the Body contents according to the WSDL: 1449

XML

<SOAP-ENV:Envelope

 <SOAP-ENV:Body>

 <GetGenericData>

 <sdmx:GenericDataQuery>

 ...

 </sdmx:GenericDataQuery>

 </GetGenericData>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 1450

The problem that initiated the present analysis refers to the difference in the way 1451
SOAP requests are when trying to implement the aforementioned Web Service in 1452
.NET framework. 1453

Building such a Web Service using the .NET framework is done by exposing a 1454
method (i.e. the getGenericData in the example) with an XML document argument 1455
(lets name it “Query”). The difference that appears in Microsoft .Net 1456
implementations is that there is a need for an extra XML container around the 1457
SDMX GenericDataQuery. This is the expected behavior since the framework is let 1458
to publish automatically the Web Service as a remote procedure call, thus wraps 1459
each parameter into an extra element. The .NET request is illustrated below: 1460

XML

<SOAP-ENV:Envelope

45

 <SOAP-ENV:Body>

 <GetGenericData>

 <Query> <!-- MS .Net implementation -->

 <GenericDataQuery>

 ...

 </GenericDataQuery>

 </Query> <!-- MS .Net implementation -->

 </GetGenericData>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 1461

Furthermore this extra element is also inserted in the automatically generated WSDL 1462
from the framework. Therefore this particularity requires custom clients for the .NET 1463
Web Services that is not an interoperable solution. 1464

 1465

9.2 Solution 1466
 1467

The solution proposed for conforming the .NET implementation to the envisioned 1468
SOAP requests has to do with the manual intervention to the serialisation and 1469
deserialisation of the XML payloads. Since it is a Web Service of already prepared 1470
XML messages requests/responses this is the indicate way so as to have full control 1471
on the XML messages. This is the way the Java implementation (using Apache Axis) 1472
of the SDMX Web Service has adopted. 1473

As regards the .NET platform this is related with the usage of XmlAnyElement 1474
parameter for the .NET web methods. 1475

Web methods use XmlSerializer in the .NET Framework to invoke methods and build 1476
the response. 1477

 1478

46

 1479

The XML is passed to the XmlSerializer to de-serialize it into the instances of classes 1480
in managed code that map to the input parameters for the Web method. Likewise, 1481
the output parameters and return values of the Web method are serialized into XML 1482
in order to create the body of the SOAP response message. 1483

In case the developer wants more control over the serialization and de-serialization 1484
process a solution is represented by the usage of XmlElement parameters. This 1485
offers the opportunity of validating the XML against a schema before de-serializing it, 1486
avoiding de-serialization in the first place, analyzing the XML to determine how you 1487
want to de-serialize it, or using the many powerful XML APIs that are available to 1488
deal with the XML directly. This also gives the developer the control to handle errors 1489
in a particular way instead of using the faults that the XmlSerializer might generate 1490
under the covers. 1491

In order to control the de-serialization process of the XmlSerializer for a Web method, 1492
XmlAnyElement is a simple solution to use. 1493

To understand how the XmlAnyElement attribute works we present the following two 1494
web methods: 1495

C#

// Simple Web method using XmlElement parameter

[WebMethod]

public void SubmitXml(XmlElement input)

{ return; }

 1496

In this method the input parameter is decorated with the XmlAnyElement 1497
parameter. This is a hint that this parameter will be de-serialized from an xsd:any 1498
element. Since the attribute is not passed any parameters, it means that the entire 1499
XML element for this parameter in the SOAP message will be in the Infoset that is 1500
represented by this XmlElement parameter. 1501

 1502

C#

// Simple Web method...using the XmlAnyElement attribute

[WebMethod]

public void SubmitXmlAny([XmlAnyElement] XmlElement input)

{ return; }

 1503

The difference between the two is that for the first method, SubmitXml, the 1504
XmlSerializer will expect an element named input to be an immediate child of the 1505

47

SubmitXml element in the SOAP body. The second method, SubmitXmlAny, will 1506
not care what the name of the child of the SubmitXmlAny element is. It will plug 1507
whatever XML is included into the input parameter. The message style from 1508
ASP.NET Help for the two methods is shown below. First we look at the message for 1509
the method without the XmlAnyElement attribute. 1510

 1511

XML

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <SubmitXml xmlns="http://msdn.microsoft.com/AYS/XEService">

 <input>xml</input>

 </SubmitXml>

 </soap:Body>

</soap:Envelope>

Now we look at the message for the method that uses the XmlAnyElement attribute. 1512

XML

<?xml version="1.0" encoding="utf-8"?>

<!-- SOAP message for method using XmlAnyElement -->

<soap:Envelope

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <SubmitXmlAny xmlns="http://msdn.microsoft.com/AYS/XEService">

 Xml

 </SubmitXmlAny>

 </soap:Body>

48

</soap:Envelope>

The method decorated with the XmlAnyElement attribute has one fewer wrapping 1513
elements. Only an element with the name of the method wraps what is passed to the 1514
input parameter. 1515

For more information please consult: 1516

http://msdn.microsoft.com/en-us/library/aa480498.aspx 1517

Furthermore at this point the problem with the different requests has been solved. 1518
However there is still the difference in the produced WSDL that has to be taken care. 1519
The automatic generated WSDL now doesn’t insert the extra element, but defines the 1520
content of the operation wrapper element as “xsd:any” type. 1521

XML

<xs:element name="GetGenericData">
 <xs:complexType>
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Without a common WSDL still the solution doesn’t enforce interoperability. In order to 1522
“fix” the WSDL, there two approaches. The first is to intervene in the generation 1523
process. This is a complicated approach, compared to the second approach, which 1524
overrides the generation process and returns the envisioned WSDL for the SDMX 1525
Web Service. 1526

This is done by redirecting the request to the “/Service?WSDL” to the envisioned 1527
WSDL stored locally into the application. To do this, from the project add a “Global 1528
Application Class” item (.asax file) and override the request in the 1529
“Application_BeginRequest” method. This is demonstrated in detail in the next 1530
section. 1531

This approach has the disadvantage that for each deployment the WSDL end point 1532
has to be changed to reflect the current URL. However this inconvenience can be 1533
easily eliminated if a developer implements a simple rewriting module for changing 1534
the end point to the one of the current deployment. 1535

9.3 Applying the solution 1536
In the context of the SDMX Web Service, applying the above solution translates into 1537
the following: 1538

C#

[return: XmlAnyElement]

public XmlDocument GetGenericData([XmlAnyElement]XmlDocument Query)

{ return; }

http://msdn.microsoft.com/en-us/library/aa480498.aspx

49

The SOAP request/response will then be as follows: 1539

GenericData Request 1540

 1541

XML

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <GetGenericData xmlns="http://www.sdmx.org/resources/webservices">

 Xml

 </GetGenericData>

 </soap:Body>

</soap:Envelope>

 1542

GenericData Response 1543

 1544

XML

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <GetGenericDataResponse
xmlns="http://www.sdmx.org/resources/webservices">

 Xml

 </GetGEnericDataResponse>

 </soap:Body>

</soap:Envelope>

For overriding the automatically produced WSDL, in the solution explorer right click 1545
the project and select “Add” -> “New item…”. Then select the “Global Application 1546
Class”. This will create “.asax” class file in which the following code should replace 1547
the existing empty method: 1548

50

C#

protected void Application_BeginRequest(object sender, EventArgs e)

{

 System.Web.HttpApplication app = (System.Web.HttpApplication)sender;

 if (Request.RawUrl.EndsWith("/Service1.asmx?WSDL"))

 {

 app.Context.RewritePath("/SDMX_WSDL.wsdl", false);

 }

}

 1549

The SDMX_WSDL.wsdl should reside in the in the root directory of the application. 1550
After applying this solution the returned WSDL is the envisioned. Thus in the request 1551
message definition contains: 1552

XML

<xs:element name="GetGenericData">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sdmx:GenericQueryData"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

 1553

	1 Purpose and Structure
	1.1 Purpose
	1.2 Structure

	2 General Notes on This Document
	3 Guide for SDMX Format Standards
	3.1 Introduction
	3.2 SDMX Information Model for Format Implementers
	3.2.1 Introduction

	3.3 SDMX-ML and SDMX-EDI: Comparison of Expressive Capabilities and Function
	3.3.1 Format Optimizations and Differences
	3.3.2 Data Types

	3.4 SDMX-ML and SDMX-EDI Best Practices
	3.4.1 Reporting and Dissemination Guidelines
	3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges
	3.4.1.2 Defining Data Structure Definitions (DSDs)
	3.4.1.3 Exchanging Attributes
	3.4.1.3.1 Attributes on series, sibling and data set level

	3.4.2 Best Practices for Batch Data Exchange
	3.4.2.1 Introduction
	3.4.2.2 Positioning of the Dimension "Frequency"
	3.4.2.3 Identification of Data Structure Definitions (DSDs)
	3.4.2.4 Identification of the Data Flows
	3.4.2.5 Special Issues
	3.4.2.5.1 "Frequency" related issues

	4 General Notes for Implementers
	4.1 Representations
	4.2 Time and Time Format
	4.2.1 Introduction
	4.2.2 Observational Time Period
	4.2.3 Standard Time Period
	4.2.4 Gregorian Time Period
	4.2.5 Date Time
	4.2.6 Standard Reporting Period
	4.2.7 Distinct Range
	4.2.8 Time Format
	4.2.9 Transformation between SDMX-ML and SDMX-EDI
	4.2.10 Time Zones
	4.2.11 Representing Time Spans Elsewhere
	4.2.12 Notes on Formats
	4.2.13 Effect on Time Ranges
	4.2.14 Time in Query Messages

	4.3 Structural Metadata Querying Best Practices
	4.4 Versioning and External Referencing

	5 Metadata Structure Definition (MSD)
	5.1 Scope
	5.2 Identification of the Object Type to which the Metadata is to be Attached
	5.3 Report Structure
	5.4 Metadata Set

	6 Maintenance Agencies
	7 Concept Roles
	7.1 Overview
	7.2 Information Model
	7.3 Technical Mechanism
	7.4 SDMX-ML Examples in a DSD
	7.5 SDMX Cross Domain Concept Scheme

	8 Constraints
	8.1 Introduction
	8.2 Types of Constraint
	8.3 Rules for a Content Constraint
	8.3.1 Scope of a Content Constraint
	8.3.2 Multiple Content Constraints
	8.3.2.1 Cube Region
	8.3.2.2 Key Set

	8.3.3 Inheritance of a Content Constraint
	8.3.3.1 Attachment levels of a Content Constraint
	8.3.3.2 Cascade rules for processing Constraints
	8.3.3.3 Cube Region
	8.3.3.4 Key Set

	8.3.4 Constraints Examples

	9 Annex I: How to eliminate extra element in the .NET SDMX Web Service
	9.1 Problem statement
	9.2 Solution
	9.3 Applying the solution

