

SDMX STANDARDS: SECTION 7

GUIDELINES FOR THE

USE OF WEB SERVICES

VERSION 2.1

April 2011

© SDMX 2011
http://www.sdmx.org/

Contents
1 Introduction ..1

2 Web Services and SDMX-ML...1

3 SOAP-Based SDMX Web Services: WSDL Operations and Behaviours.....3

3.1 Introduction...3

3.2 The SDMX Web-Services Namespace ..3

3.3 Support for WSDL Operations..3

3.4 List of WSDL Operations..3

3.4.1 Data ...3

3.4.2 Metadata..4

3.4.3 Structure usage ...4

3.4.4 Structure ..4

3.4.5 Item scheme ..5

3.4.6 Other maintainable artefacts..5

3.4.7 XML Schemas (XSD)...6

3.4.8 Generic query for structural metadata ...6

3.5 Other Behaviours ...6

3.5.1 Versioning Defaults..6

3.5.2 Resolving References and Specifying Returned Objects6

3.5.3 Enabling compression ...6

3.5.4 Implementation of the SOAP based SDMX Web Services............................6

3.5.5 Compliance with WS-I ...7

4 SDMX RESTful API ...7

4.1 A Brief Introduction to REST ..7

4.2 Scope of the API ..7

4.3 Structural Metadata Queries ..8

4.3.1 Resources..8

4.3.2 Parameters ..9

4.3.3 Examples ...12

4.4 Data and Metadata Queries ...13

4.4.1 Resources..13

4.4.2 Parameters ..13

4.4.3 Examples ...17

4.5 Schema queries ...18

4.5.1 Resources..18

4.5.2 Parameters ..18

4.5.3 Examples ...19

4.6 Selection of the Appropriate Representation..20

4.7 Enabling data compression ..21

5 Standard Errors for SDMX Web Services ..21

5.1 Introduction...21

5.2 Error handling in REST Web Service ...21

5.3 SOAP Web Service ..21

5.4 Error categories..21

5.5 Client-Caused Errors..22

5.5.1 No results found – 100...22

5.5.2 Unauthorized – 110 ...22

5.5.3 Response Too Large Due to Client Request 130 ..22

5.5.4 Syntax error – 140 ...22

5.5.5 Semantic error – 150 ...22

5.6 Server-Caused Errors ..22

5.6.1 Internal Server Error – 500 ..22

5.6.2 Not implemented – 501..22

5.6.3 Service unavailable – 503..23

5.6.4 Response size exceeds service limit - 510..23

5.7 Custom Errors – 1000+ ..23

5.8 SDMX to HTTP Error Mapping...23

6 Annex: Examples ...24

6.1 Sample Queries for a Web Services Client ..24

6.1.1 Step 1: Browsing an SDMX data source, using a list of subject-matter
domains 24

6.1.1.3 Request using the SOAP API ..24

6.1.2 STEP 2: Selecting a dataflow ..25

6.1.2.3 Request using the SOAP API ..26

6.1.3 STEP 3: Data selection..28

6.1.3.3 Request using the SOAP API ..28

6.2 Sample Error Element in an SDMX message ..30

6.3 Soap Fault example ...31

1

1 Introduction 1
Web services represent the current generation of Internet technologies. They allow computer 2
applications to exchange data directly over the Internet, essentially allowing modular or 3
distributed computing in a more flexible fashion than ever before. In order to allow web 4
services to function, however, many standards are required: for requesting and supplying 5
data; for expressing the enveloping data which is used to package exchanged data; for 6
describing web services to one another, to allow for easy integration into applications that use 7
other web services as data resources. 8

SDMX, with its focus on the exchange of data using Internet technologies provides some of 9
these standards relating to statistical data and metadata. Many web-services standards 10
already exist, however, and there is no need to re-invent them for use specifically within the 11
statistical community. Specifically, SOAP (which originally stood for the “Simple Object 12
Access Protocol”) and the Web Services Description Language (WSDL) can be used by 13
SDMX to complement the data and metadata exchange formats they are standardizing. In the 14
web services world, the REST (“Representational State Transfer”) protocol is also often used, 15
relying on a URL-based syntax to invoke web services. Such REST-based services can be 16
described in a standard fashion using WADL (“Web Application Description Language”), in 17
the same way that XML-invoked web services based on SOAP can be described using 18
WSDL. 19

Despite the promise of SOAP and WSDL, it became evident from early implementations by 20
vendors that these were not, in fact, interoperable. It was for this reason that the Web 21
Services - Interoperability (WS-I) initiative was started. This consists of a group of vendors 22
who have all implemented the same web-services standards the same way, and have verified 23
this fact by doing interoperability tests. They publish profiles describing how to use web 24
services standards interoperably. SDMX uses the work of WS-I as appropriate to meet the 25
needs of the statistical community. 26

This document provides several SDMX-specific guidelines for using the existing standards in 27
a fashion which will promote interoperability among SDMX web services, and allow for the 28
creation of generic client applications which will be able to communicate meaningfully with 29
any SDMX web service which implements these guidelines. 30

Much of the content of this document is not normative – instead the intention is to suggest a 31
best practice in using SDMX-ML documents and web services standards for the exchange of 32
statistical data and metadata. However, the SDMX WSDL and WADL files that formalise, in 33
XML, the APIs described in this document are normative. 34

2 Web Services and SDMX-ML 35
Conventional applications and services traditionally expose their functionality through 36
application programming interfaces (APIs). Web services are no different – they provide a 37
public version of the function calls which can be accessed over the web using web-services 38
protocols (SOAP or REST). In order to make a set of web services interoperate, it is 39
necessary to have a standard abstraction, or model, on which these public functions are 40
based. SDMX benefits from having a common information model, and it is a natural 41
extension to use the SDMX Information Model as the basis for standard web-services function 42
calls. 43

Web services exchange data in an XML format: this is how the data passed between web 44
services is formatted. SDMX-ML, as a standard XML for exchanging data and structural 45
metadata within the statistical realm, provides a useful XML format for the public serialization 46
of web-services data. While there are some techniques for simple web-services data 47

2

exchanges – remote procedure calls (RPCs) – which are often used, the use of a set of XML 48
exchanges based on a common information model is seen as a better approach for achieving 49
interoperability. 50

There are several different document types available within SDMX-ML, and all are 51
potentially important to the creators and users of SDMX web services. 52
 53
1. The "Structure" Message: This message describes the concepts, data and 54

metadata structure definitions, and code lists which define the structure of 55
statistical data and reference metadata. Every SDMX-compliant data set or 56
metadata set must have a data or metadata structure definition described for it. 57
This XML description must be available from an SDMX web service when it is 58
asked for. 59

2. The "Generic" Data Message: This is the "generic" way of marking up an SDMX 60
data set. This schema describes a non-data-structure-definition-specific format 61
for exchanging SDMX data, and it is a requirement that every SDMX data web 62
service makes its data available in at least this form. It is expected that, in many 63
instances, other data-structure-definition-specific XML forms for expressing data 64
will also be supported in parallel services. 65

3. The "Structure Specific" Data Message: This is a standard schema format 66
derived from the structure description using a standardized mapping, and many 67
standard tags. It is specific to the structure of a particular data structure definition, 68
and so every data structure definition will have its own "structure specific" 69
schemas. It is designed to enable the exchange of large data sets, This is a data 70
format that a web service may wish to provide, depending on the requirements of 71
the data they exchange. 72

4. The "Query" Messages: This is the set of messages used to invoke SOAP-73
based SDMX web services. These messages all conform in a consistent way to a 74
master template, but are decomposed into specific queries to allow each service 75
to support only those fields in the template message which are meaningful to it. 76
These query messages are generic across all data and metadata structure 77
definitions, making queries in terms of the values specified for the concepts of a 78
specific structure (as specified in a structure description). It allows users to query 79
for data, concepts, code lists, data and metadata structure definitions. 80

5. The “RegistryInterfaces” Message: All of the Registry Interfaces are sub-81
elements of this SDMX-ML Message type. They are more fully described in the 82
SDMX Registry Specification. 83

6. The “Generic” Metadata Message: This is a message used to report reference 84
metadata concepts, which is generic across all types of reference metadata 85
structural descriptions. 86

7. The “Structure Specific” Metadata Message: This is a message used to report 87
reference metadata concepts specific to a particular metadata structure definition. 88

3

3 SOAP-Based SDMX Web Services: WSDL 89

Operations and Behaviours 90

3.1 Introduction 91
This section addresses the operations and behaviours specific to SOAP-based Web Services. 92
Most important is a list of standard WSDL operations, which will form the basis of, and be 93
accompanied by, actual standard WSDL XML instances, for use in development packages. 94
There are also several guidelines for the implementation of web services, to support 95
interoperability. 96

All SDMX SOAP web services should be described using WSDL instances. The global 97
element for each XML data and metadata format within SDMX should be specified as the 98
content of the replies to each exchange. The function names for each identified pattern are 99
specified below, along with the type of SDMX-ML payload. 100

Because SOAP RPC is not supported, the “parameters” of each function are simply an 101
instance of the appropriate SDMX-ML message type. As noted above, <wsdl:import> should 102
be used to specify the schema for a multiple-message exchange. The distributed WSDL files 103
illustrate how SOAP messages should be used. 104

3.2 The SDMX Web-Services Namespace 105
The SDMX Web Services namespace1 contains a set of messages specific to the use of 106
SOAP-based services. Each of the operations described will have a message to invoke the 107
Web-Service, and a response message. In each case, these are refinements of other SDMX 108
messages, appropriate to the operation being performed – these are described in the list of 109
operations, below. 110

Additionally, there is a list of error codes to be used in the SOAP envelope (see the standard 111
error codes section). 112

3.3 Support for WSDL Operations 113
An SDMX web service must support all of the listed operations, even if the support is minimal, 114
and only involves the generation of an error explaining that the requested operation has not 115
been implemented. This is necessary for the sake of interoperability. 116

3.4 List of WSDL Operations 117
For the use of SOAP and WSDL, the Web Services Interoperability specification version 1.1 118
should be followed. 119

3.4.1 Data 120

3.4.1.1 GetStructureSpecificData 121
This operation is invoked using a GetStructureSpecificDataRequest message, and receives a 122
GetStructureSpecificDataResponse as a reply. 123

1 i.e., the declared namespace of the SDMX WSDL definition.

4

3.4.1.2 GetGenericData 124
This operation is invoked using a GetGenericDataRequest message, and receives a 125
GetGenericDataResponse as a reply. 126

3.4.1.3 GetStructureSpecificTimeSeriesData 127
This operation is invoked using a GetStructureSpecificTimeSeriesDataRequest message, and 128
receives a GetStructureSpecificTimeSeriesDataResponse as a reply. 129

3.4.1.4 GetGenericTimeSeriesData 130
This operation is invoked using a GetGenericTimeSeriesDataRequest message, and receives 131
a GetGenericTimeSeriesDataResponse as a reply. 132

3.4.2 Metadata 133

3.4.2.1 GetGenericMetadata 134
This operation is invoked using a GetGenericMetadataRequest message, and receives a 135
GetGenericMetdataResponse as a reply. 136

3.4.2.2 GetStructureSpecificMetadata 137
This operation is invoked using a GetStructureSpecificRequest message, and receives a 138
GetStructureSpecificResponse as a reply. 139

3.4.3 Structure usage 140

3.4.3.1 GetDataflow 141
This operation is invoked using a GetDataflowRequest message, and receives a 142
GetDataflowResponse as a reply. 143

3.4.3.2 GetMetadataflow 144
This operation is invoked using a GetMetadataflowRequest message, and receives a 145
GetMetadataflowResponse as a reply. 146

3.4.4 Structure 147

3.4.4.1 GetDataStructure 148
This operation is invoked using a GetDataStructureRequest message, and receives a 149
GetDataStructureResponse as a reply. 150

3.4.4.2 GetMetadataStructure 151
This operation is invoked using a GetMetadataStructureRequest message, and receives a 152
GetMetadataStructureResponse as a reply. 153

5

3.4.5 Item scheme 154

3.4.5.1 GetCategoryScheme 155
This operation is invoked using a GetCategorySchemeRequest message, and receives a 156
GetCategorySchemeResponse as a reply. 157

3.4.5.2 GetConceptScheme 158
This operation is invoked using a GetConceptSchemeRequest message, and receives a 159
GetConceptSchemeResponse as a reply. 160

3.4.5.3 GetCodelist 161
This operation is invoked using a GetCodelistRequest message, and receives a 162
GetCodelistResponse as a reply. 163

3.4.5.4 GetHierarchicalCodelist 164
This operation is invoked using a GetHierarchicalCodelistRequest message, and receives a 165
GetHierarchicalCodelistResponse as a reply. 166

3.4.5.5 GetOrganisationScheme 167
This operation is invoked using a GetOrganisationsSchemeRequest message, and receives a 168
GetOrganisationSchemeResponse as a reply. 169

3.4.5.6 GetReportingTaxonomy 170
This operation is invoked using a GetReportingTaxonomyRequest message, and receives a 171
GetReportingTaxonomyResponse as a reply. 172

3.4.6 Other maintainable artefacts 173

3.4.6.1 GetStructureSet 174
This operation is invoked using a GetStructureSetRequest message, and receives a 175
GetStructureSetResponse as a reply. 176

3.4.6.2 GetProcess 177
This operation is invoked using a GetProcessRequest message, and receives a 178
GetProcessResponse as a reply. 179

3.4.6.3 GetCategorisation 180
This operation is invoked using a GetCategorisationRequest message, and receives a 181
GetCategorisationResponse as a reply. 182

6

3.4.6.4 GetProvisionAgreement 183
This operation is invoked using a GetProvisionAgreementRequest message, and receives a 184
GetProvisionAgreementResponse as a reply. 185

3.4.6.5 GetConstraint 186
This operation is invoked using a GetConstraintRequest message, and receives a 187
GetConstraintResponse as a reply. 188

3.4.7 XML Schemas (XSD) 189

3.4.7.1 GetDataSchema 190
This operation is invoked using a GetDataSchemaRequest message, and receives a 191
GetDataSchemaResponse as a reply. 192

3.4.7.2 GetMetadataSchema 193
This operation is invoked using a GetMetadataSchemaRequest message, and 194
receives a GetMetadataSchemaResponse as a reply. 195

3.4.8 Generic query for structural metadata 196

3.4.8.1 GetStructures 197
This operation is invoked using a GetStructuresRequest message, and receives a 198
GetStructuresResponse as a reply. 199
 200

3.5 Other Behaviours 201

3.5.1 Versioning Defaults 202
When no version is specified in the message invoking a service, the default is to return the 203
last production version of the resource(s) requested. 204

3.5.2 Resolving References and Specifying Returned Objects 205
Version 2.1 of the SDMX-ML Query message offers new functionality to resolve reference 206
and specify the type of objects to be returned. The SOAP API relies on this mechanism for 207
resolving references and specifying returned objects. See Section “Applicability and meaning 208
of references attribute”. 209

3.5.3 Enabling compression 210
Compression should be enabled using the appropriate HTTP Header field (Accept-Encoding). 211

3.5.4 Implementation of the SOAP based SDMX Web Services 212
In the SDMX Web Services, the development is Contract-First since the WSDL has been 213
specified by the standard. Furthermore it is a Web Service of already prepared XML 214
messages requests/responses, i.e. the interfaces for the application logic are the XML 215
messages. Therefore there is no need to generate stubs for serialisation and de-serialisation 216

7

of the SOAP payloads from/to the native language classes. The indicative way is to have full 217
control on the XML messages requests/responses. When using the automatic generation of 218
code it will include an extra element for the parameter of the operation in the SOAP request 219
according to the RPC paradigm, and to the SOAP specifications that is not desired according 220
to the standardised SDMX WSDL. 221

When using Apache Axis in Java, an interface for the service is offered by the toolkit that 222
reads/returns the XML payloads using DOM elements (DOMElement in Axis2). Moreover 223
when using the Java API for XML Web Services (JAX-WS), the developer can use the 224
Provider<SOAPMessage> interface, where he is responsible for creating the SOAP request 225
and response messages as well as specifying the standardised WSDL of the service. 226

However in the .NET environment there is no similar solution for this. The developer of the 227
service will have to use the XmlAnyElement parameter for the .NET web methods. This 228
specifies that the parameter of the Service method can be any XML element thus allows the 229
developer to take control of the XML payload. The details of this approach are presented in 230
the “Annex I: How to eliminate extra element in the .NET SDMX Web Service” in the section 231
06 of the SDMX documentation. 232

3.5.5 Compliance with WS-I 233
To ensure interoperability between SDMX web services, compliance with sections of the WS-I 234
Profile 1.1 is recommended for all SDMX web services. The documentation can be found at 235
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html. The recommended sections 236
are those concerning the use of SOAP and WSDL. UDDI, while useful for advertising the 237
existence of SDMX web services, is not necessarily central to SDMX interoperability. 238

4 SDMX RESTful API 239

4.1 A Brief Introduction to REST 240
This SDMX API is based on the REST principles, as described below: 241

• In REST, specific information is known as “Resource”. In SDMX, specific resources 242
would be, for example, code lists, concept schemes, data structure definitions, 243
dataflows, etc. Each resource is addressable via a global identifier (i.e.: a URI). 244

• Manipulating resources is done using methods defined in the HTTP protocol (e.g.: 245
GET, POST, PUT, DELETE). This API focuses on data retrieval, and, therefore, only 246
the usage of HTTP GET is covered in this document. 247

• A resource can be represented in various formats (such as the different flavours and 248
versions of the SDMX-ML standard). Selection of the appropriate representation is 249
done using HTTP Content Negotiation and the HTTP Accept request header. 250

4.2 Scope of the API 251
The RESTful API focuses on simplicity. The aim is not to replicate the full semantic richness 252
of the SDMX-ML Query message but to make it simple to perform a limited set of standard 253
queries. Also, in contrast to other parts of the SDMX specification, the RESTful API focuses 254
solely on data retrieval (via HTTP GET). More specifically, the API allows: 255

• To retrieve structural metadata, using a combination of id, agencyID and version 256
number. 257

• To retrieve statistical data or reference metadata using keys (with options for 258
wildcarding and support for the OR operator), data or metadata flows and data or 259
metadata providers. 260

8

• To further refine queries for statistical data or reference metadata using time 261
information (start period and end period). 262

• To retrieve updates and revisions only. 263
• To return the results of a query in various formats. The desired format and version of 264

the returned message will be specified using HTTP Content Negotiation (and the 265
HTTP Accept request header). 266

• For structural metadata, it is possible to instruct the web service to resolve references 267
(for instance, when querying for data structure definitions, it is possible to also 268
retrieve the concepts and code lists used in the returned data structure definitions), 269
as well as artefacts that use the matching artefact (for example, to retrieve the 270
dataflows that use a matching data structure definition). 271

• For structural metadata, it is possible to retrieve a minimal version of the artefact, for 272
the sake of efficiency (for example, to retrieve all code lists – names, ids, etc – 273
without the codes). 274

• A distinction should be established between the elements that allow identifying the 275
resource to be retrieved and the elements that give additional information about, or 276
allow to further filter, the desired results. Elements belonging to the 1st category are 277
specified in the path part of the URL while elements belonging to the 2nd category are 278
specified in the query string part of the URL. 279

4.3 Structural Metadata Queries 280

4.3.1 Resources 281
The following resources are defined: 282

• datastructure2 283
• metadatastructure3 284
• categoryscheme 285
• conceptscheme 286
• codelist 287
• hierarchicalcodelist 288
• organisationscheme4 289
• agencyscheme5 290
• dataproviderscheme 291
• dataconsumerscheme 292
• organisationunitscheme 293
• dataflow 294
• metadataflow 295
• reportingtaxonomy 296
• provisionagreement 297
• structureset 298
• process 299
• categorisation 300
• contentconstraint 301
• attachmentconstraint 302
• structure6 303

2 This has been shortened from DataStructureDefinition to allow for shorter URLs.
3 This has been shortened from MetadataStructureDefinition to allow for shorter URLs.
4 The organisationscheme resource can be used whenever the role played by the organisation schemes
(e.g. maintenance agencies) is not known/relevant.
5 For 3 of the subtypes of OrganisationScheme (AgencyScheme, DataProviderScheme and
DataConsumerScheme), the id and version parameters have fixed values. See Section 03 of the SDMX
information model document for additional information.
6 This type can be used to retrieve any type of structural metadata matching the supplied parameters.

9

4.3.2 Parameters 304

4.3.2.1 Parameters used for identifying a resource 305
The following parameters are used for identifying resources: 306

Parameter Type Description

agencyID A string compliant with the
SDMX
common:NCNameIDType

The agency maintaining the artefact to be
returned

resourceID A string compliant with the
SDMX common: IDType

The id of the artefact to be returned

version A string compliant with the
SDMX
common:VersionType

The version of the artefact to be returned

The parameters mentioned above are specified using the following syntax: 307

protocol:// ws-entry-point/resource/agencyID/resourceID /version 308

Furthermore, some keywords may be used: 309

Keyword Scope Description

all7 agencyID Returns artefacts maintained by any maintenance agency8

all resourceID Returns all resources of the type defined by the resource
parameter8

all version Returns all versions of the resource

latest version Returns the latest version in production of the resource8

 310

The following rules apply: 311

• If no version is specified, the version currently used in production should be returned. 312
It is therefore equivalent to using the keyword “latest”. 313

• If no agencyID is specified, the matching artefacts maintained by any maintenance 314
agency should be returned. It is therefore equivalent to using the keyword “all”9. 315

• If no resourceID is specified, all matching artefacts (according to the other criteria 316
used) should be returned. It’s is therefore equivalent to using the keyword “all”. 317

• If no parameters are specified, the “latest” version of “all” resources of the type 318
identified by the resource parameter, maintained by any maintenance agency should 319
be returned. 320

7 As “all” is a reserved keyword in the SDMX RESTful API, it is recommended not to use it as an
identifier for agencies, resources or a specific version.
8 Default, if parameter not specified
9 This would potentially return more than one artefact, if different agencies give the same identifier to a
resource (for example, http://ws-entry-point/codelist/all/CL_FREQ, could return more than one codelist
if more than one agency is maintaining a codelist with id “CL_FREQ”).

http://ws-entry-point/codelist/all/CL_FREQ

10

4.3.2.2 Parameters used to further describe the desired results 321
The following parameters are used to further describe the desired results, once the resource 322
has been identified. As mentioned in 3.2, these parameters appear in the query string part of 323
the URL. 324

Parameter Type Description Default

detail String This attribute specifies the desired amount
of information to be returned. For example,
it is possible to instruct the web service to
return only basic information about the
maintainable artefact (i.e.: id, agency id,
version and name). Most notably, items of
item schemes will not be returned (for
example, it will not return the codes in a
code list query). Possible values are:
“allstubs” (all artefacts should be returned
as stubs10), “referencestubs” (referenced
artefacts should be returned as stubs11) and
full (all available information for all artefacts
should be returned12).

full

references String This attribute instructs the web service to
return (or not) the artefacts referenced by
the artefact to be returned (for example, the
code lists and concepts used by the data
structure definition matching the query), as
well as the artefacts that use the matching
artefact (for example, the dataflows that use
the data structure definition matching the
query). Possible values are: “none” (no
references will be returned), “parents” (the
artefacts that use the artefact matching the
query), “parentsandsiblings” (the artefacts
that use the artefact matching the query, as
well as the artefacts referenced by these
artefacts), “children” (artefacts referenced
by the artefact to be returned),
“descendants” (references of references, up
to any level, will also be returned), “all” (the
combination of parentsandsiblings and
descendants). In addition, a concrete type
of resource, as defined in 3.3.1, may also
be used (for example, references=codelist).

none

4.3.2.3 Applicability and meaning of references attribute 325
The table below lists the artefacts that will be returned if the references parameter is set to 326
“all”. 327

Maintainable artefact Artefacts returned

10 The equivalent in SDMX-ML query is: Stub at the query level and Stub at the reference level.
11 The equivalent in SDMX-ML query is: Full at the query level and Stub at the reference level.
12 The equivalent in SDMX-ML query is: Full at the query level and Full at the reference level.

11

Categorisation All

CategoryScheme Categorisations

Codelist HierarchicalCodelist

ConceptScheme Codelists

Constraint OrganisationSchemes
DataProviderSchemes
DataStructureDefinitions
Dataflows
MetadataStructureDefinitions
Metadataflows
ProvisionAgreements

Dataflow Constraints
DataStructureDefinitions
ProvisionAgreements
ReportingTaxonomies
StructureSets

DataProviderScheme Constraint
ProvisionAgreement

HierarchicalCodelist Codelists

DataStructureDefinition Codelists
ConceptSchemes
Constraints
Dataflows
StructureSets

Metadataflow Constraints
MetadataStructureDefinitions
ProvisionAgreements
ReportingTaxonomies
StructureSets

MetadataStructureDefinition ConceptSchemes
Codelists
DataProviderSchemes
DataConsumerSchemes
AgencySchemes
OrganisationSchemes
Constraints
Metadataflows
StructureSets

OrganisationScheme None

Process All

ProvisionAgreement DataProviderSchemes
Dataflows

12

Metadataflows

ReportingTaxonomy Dataflows
Metadataflows

StructureSet DataStructureDefinitions
MetadataStructureDefinitions
CategorySchemes
DataProviderSchemes
DataConsumerSchemes
AgencySchemes
OrganisationSchemes
ConceptSchemes
Codelists
HierarchicalCodelists

4.3.3 Examples 328
 329

- To retrieve version 1.0 of the DSD with id ECB_EXR1 maintained by the ECB, as well as the 330
code lists and the concepts used in the DSD: 331
http://ws-entry-point/datastructure/ECB/ECB_EXR1/1.0?references=children 332

- To retrieve the latest version in production of the DSD with id ECB_EXR1 maintained by the 333
ECB, without the code lists and concepts of the DSD: 334

http://ws-entry-point/datastructure/ECB/ECB_EXR1 335

- To retrieve all DSDs maintained by the ECB, as well as the dataflows using these 336
DSDs: 337

http://ws-entry-point/datastructure/ECB?references=dataflow 338

- To retrieve the latest version in production of all code lists maintained by all maintenance 339
agencies, but without the codes: 340

http://ws-entry-point/codelist?detail=allstubs 341

- To retrieve, as stubs, the latest version in production of all maintainable artefacts maintained 342
by the ECB: 343

http://ws-entry-point/structure/ECB?detail=allstubs 344

http://ws-entry-point/datastructure/ECB/ECB_EXR1/1.0?references=children
http://ws-entry-point/datastructure/ECB/ECB_EXR1
http://ws-entry-point/datastructure/ECB?references=dataflow
http://ws-entry-point/codelist?detail=allstubs
http://ws-entry-point/structure/ECB?detail=allstubs

13

4.4 Data and Metadata Queries 345

4.4.1 Resources 346
The following resources should be supported: 347

• data 348
• metadata 349

4.4.2 Parameters 350

4.4.2.1 Parameters used for identifying a resource 351
The following parameters are used for identifying resources in data queries: 352

Parameter Type Description

flowRef13 A string identifying the dataflow.
The syntax is agency id, artefact
id, version, separated by a “,”. For
example:
AGENCY_ID,FLOW_ID,VERSION

In case the string only contains
one out of these 3 elements, it is
considered to be the flow id, i.e.
ALL,FLOW_ID,LATEST

In case the string only contains
two out of these 3 elements, they
are considered to be the agency
id and the flow id, i.e.
AGENCY_ID,FLOW_ID,LATEST

The data (or metadata) flow of the data
(or metadata) to be returned

key A string compliant with the
KeyType defined in the SDMX
WADL.

The key of the artefact to be returned.
Wildcarding is supported by omitting the
dimension code for the dimension to be
wildcarded. For example, if the
following series key identifies the
bilateral exchange rates for the daily US
dollar exchange rate against the euro,
D.USD.EUR.SP00.A, then the following
series key can be used to retrieve the
data for all currencies against the euro:
D..EUR.SP00.A. The OR operator is
supported using the + character. For
example, the following series key can
be used to retrieve the exchange rates
against the euro for both the US dollar
and the Japanese Yen:
D.USD+JPY.EUR.SP00.A.

13 It’s a common use case in SDMX-based web services that the flow id is sufficient to uniquely
identify a dataflow. Should this not be the case, the agency id and the dataflow version, can be used, in
conjunction with the flow id, in order to uniquely identify a dataflow.

14

providerRef14 A string identifying the provider.
The syntax is agency id, provider
id, separated by a “,”. For
example:
AGENCY_ID,PROVIDER_ID.

In case the string only contains
one out of these 2 elements, it is
considered to be the provider id,
i.e. ALL,PROVIDER_ID.

The provider of the data (or metadata)
to be retrieved. If not supplied, the
returned message will contain data (or
metadata) provided by any provider.

 353

The parameters mentioned above are specified using the following syntax: 354

protocol://ws-entry-point/resource/flowRef/key/providerRef 355

Furthermore, some keywords may be used: 356

Keyword Scope Description

all key Returns all data belonging to the specified dataflow and provided
by the specified provider.

all15 providerRef Returns all data matching the supplied key and belonging to the
specified dataflow that has been provided by any data provider.

 357

The following rules apply: 358

• If no key is specified, all data (or metadata) belonging to the dataflow (or 359
metadataflow) identified by the flowRef should be supplied. It is therefore equivalent 360
to using the keyword “all”. 361

• If no providerRef is specified, the matching data (or metadata) provided by any data 362
provider should be returned. It is therefore equivalent to using the keyword “all”. 363

4.4.2.2 Parameters used to further filter the desired results 364
The following parameters are used to further describe (or filter) the desired results, once the 365
resource has been identified. As mentioned in 3.2, these parameters go in the query string 366
part of the URL. 367

Parameter Type Description

startPeriod common:StandardTimePeriodType,
as defined in the
SDMXCommon.xsd schema.

Can be expressed using16:

The start period for which
results should be supplied
(inclusive).

14 It’s a common use case in SDMX-based web services that the provider id is sufficient to uniquely
identify a data provider. Should this not be the case, the agency can be used, in conjunction with the
provider id, in order to uniquely identify a data provider.
15 As “all” is a reserved keyword in the SDMX RESTful API, it is recommended not to use it as an
identifier for providers.

15

• dateTime: all data that falls
between the calendar
dates will be matched

• Gregorian Period: all data
that falls between the
calendar dates will be
matched

• Reporting Period: all data
reported as periods that fall
between the specified
periods will be returned.
When comparing reporting
weeks and days to higher
order periods (e.g.
quarters) one must account
for the actual time frames
covered by the periods to
determine whether the data
should be included. Data
reported as Gregorian
periods or distinct ranges
will be returned if it falls
between the specified
reporting periods, based on
a reporting year start day
of January 1.

In case the : or + characters are
used, the parameter must be
percent-encoded by the client17.

Note that this value is assumed to
be inclusive to the range of data
being sought.

endPeriod Same as above The end period for which
results should be supplied
(inclusive).

updatedAfter xs:dateTime The last time the query
was performed by the
client in the database. If
this attribute is used, the
returned message should
only include the latest
version of what has
changed in the database
since that point in time
(updates and revisions).
This should include:

16 For additional information, see section 4.2.14 of Section 06 (SDMX Technical Notes).
17 See http://en.wikipedia.org/wiki/URL_encoding#Percent-encoding_reserved_characters for
additional information.

http://en.wikipedia.org/wiki/URL_encoding#Percent-encoding_reserved_characters

16

- Observations18 that have
been added since the last
time the query was
performed (INSERT).

- Observations that have
been revised since the
last time the query was
performed (UPDATE).

- Observations that have
been deleted since the
last time the query was
performed (DELETE).

If no offset is specified,
default to local time of the
web service.

firstNObservations Positive integer Integer specifying the
maximum number of
observations to be
returned for each of the
matching series, starting
from the first observation

lastNObservations Positive integer Integer specifying the
maximum number of
observations to be
returned for each of the
matching series, counting
back from the most recent
observation

dimensionAtObservation19 A string compliant with the SDMX
common:NCNameIDType

The ID of the dimension to
be attached at the
observation level.

detail String This attribute specifies the
desired amount of
information to be returned.
For example, it is possible
to instruct the web service
to return data only (i.e. no
attributes). Possible
options are: “full” (all data
and documentation,
including annotations -
This is the default),
“dataonly” (attributes –
and therefore groups –

18 If the information about when the data has been updated is not available at the observation level, the
web service should return either the series that have changed (if the information is attached at the series
level) or the dataflows that have changed (if the information is attached at the dataflow level).
19 This parameter is useful for cross-sectional data queries, to indicate which dimension should be
attached at the observation level.

17

will be excluded from the
returned message),
“serieskeysonly” (returns
only the series elements
and the dimensions that
make up the series keys.
This is useful for
performance reasons, to
return the series that
match a certain query,
without returning the
actual data), “nodata”
(returns the groups and
series, including attributes
and annotations, without
observations).

 368

The table below defines the meaning of parameters combinations: 369

startPeriod with no endPeriod Until the most recent

endPeriod and no startPeriod From the beginning

startPeriod and endPeriod Within the supplied time range

lastNObservations + startPeriod/endPeriod The specified number of observations,
starting from the end, within the supplied time
range

firstNObservations + startPeriod/endPeriod +
updatedAfterDate

The specified number of observations,
starting from the beginning, that have
changed since the supplied timestamp, within
the supplied time range

updatedAfterDate + startPeriod/endPeriod The observations, within the supplied time
range, that have changed since the supplied
timestamp.

4.4.3 Examples 370
• To retrieve the data for the series M.USD.EUR.SP00.A supplied by the ECB for the 371

ECB_EXR1_WEB dataflow: 372
http://ws-entry-point/data/ECB_EXR1_WEB/M.USD.EUR.SP00.A/ECB 373
In this example, the assumption is made that the dataflow id (ECB_EXR1_WEB) is 374
sufficient to uniquely identify the dataflow, and the data provider id (ECB) is sufficient 375
to uniquely identify the data provider. 376

• To retrieve the data, provided by the ECB for the ECB_EXR1_WEB dataflow, for the 377
supplied series keys, using wildcarding for the second dimension: 378
http://ws-entry-379
point/data/ECB,ECB_EXR1_WEB,LATEST/M..EUR.SP00.A/ECB 380

In this example, the full reference to the dataflow is supplied (ECB as maintenance 381
agency, ECB_EXR1_WEB as dataflow id and LATEST for the version). 382

http://ws-entry-point/data/ECB_EXR1_WEB/M.USD.EUR.SP00.A/ECB
http://ws-entry-point/data/ECB,ECB_EXR1_WEB,LATEST/M..EUR.SP00.A/ECB
http://ws-entry-point/data/ECB,ECB_EXR1_WEB,LATEST/M..EUR.SP00.A/ECB

18

• To retrieve the updates and revisions for the data matching the supplied series keys, 383
using the OR operator for the second dimension, and using percent encoding for the 384
updatedAfterDate: 385
http://ws-entry-386
point/Data/ECB_EXR1_WEB/M.USD+GBP+JPY.EUR.SP00.A?updatedAfter=2387
009-05-15T14 %3A 15 %3A 00%2B01%3A00 388

• To retrieve the data matching the supplied series key and restricting the start and end 389
dates: 390
http://ws-entry-391
point/data/ECB_EXR1_WEB/D.USD.EUR.SP00.A?startPeriod=2009-05-392
01&endPeriod=2009-05-31 393

4.5 Schema queries 394

4.5.1 Resources 395
The following resource is defined: 396

• schema 397
 398
This resource allows a client to ask a service to return an XML schema, which defines data 399
(or reference metadata) validity within a certain context. The service must take into account 400
the constraints that apply within that context (DSD or MSD, dataflow or metadataflow, or 401
provision agreement). 402

4.5.2 Parameters 403

4.5.2.1 Parameters used for identifying a resource 404
The following parameters are used for identifying resources: 405

Parameter Type Description

context One of the following:
datastructure,
metadatastructure, dataflow,
metadataflow or
provisionagreement.

The value of this parameter determines the
constraints that need to be taken into account,
when generating the schema. If datastructure or
metadatastructure is used, constraints attached
to the DSD or MSD must be applied when
generating the schema. If dataflow or
metadataflow is used, constraints attached to the
dataflow or metadataflow and to the DSD or
MSD used in the dataflow or metadataflow must
be applied when generating the schema. If
provisionagreement is used, constraints attached
to the provision agreement, as well as to the
dataflow or metadafalow used in the agreement
and the DSD or MSD used in the dataflow or
metadataflow must be applied when generating
the schema.

agencyID A string compliant with the
SDMX
common:NCNameIDType

The agency maintaining the artefact used to
generate the schema to be returned.

http://ws-entry-point/data/ECB_EXR1_WEB/D.USD.EUR.SP00.A?startPeriod=2009-05-01&endPeriod=2009-05-31
http://ws-entry-point/data/ECB_EXR1_WEB/D.USD.EUR.SP00.A?startPeriod=2009-05-01&endPeriod=2009-05-31
http://ws-entry-point/data/ECB_EXR1_WEB/D.USD.EUR.SP00.A?startPeriod=2009-05-01&endPeriod=2009-05-31

19

resourceID A string compliant with the
SDMX common: IDType

The id of the artefact used to generate the
schema to be returned.

version A string compliant with the
SDMX
common:VersionType

The version of the artefact used to generate the
schema to be returned.

The parameters mentioned above are specified using the following syntax: 406

protocol:// ws-entry-point/schema/context/agencyID/resourceID/version 407

Furthermore, a keyword may be used20: 408

Keyword Scope Description

latest version Returns the latest version in production of the resource8

 409

The following rules apply: 410

• If no version attribute is specified, the version currently used in production should be 411
returned. It is therefore equivalent to using the keyword “latest”. 412

4.5.2.2 Parameters used to further describe the desired results 413
The following parameters are used to further describe the desired results, once the resource 414
has been identified: 415

Parameter Type Description

dimensionAtObservation A string
compliant with
the SDMX
common:
NCNameIDType

The ID of the dimension to be attached at
the observation level.

explicitMeasure Boolean For cross-sectional data validation,
indicates whether observations are strongly
typed (defaults to false).

4.5.3 Examples 416
 417

- To retrieve the schema for data supplied within the context of version 1.0 of the provision 418
agreement EXR_WEB maintained by the ECB: 419
http://ws-entry-point/schema/provisionagreement/ECB/ EXR_WEB/1.0/ 420

In this case, the schema returned by the service must take into account the 421
constraints attached to the provision agreement, the dataflow used in the provision 422
agreement and the data structure definition used in the dataflow. 423

20 As the query for schema must match one artefact only, the keyword “all” is not supported for
agencyId and resourceId.

http://ws-entry-point/schema/provisionagreement/ECB/ EXR_WEB/1.0/

20

4.6 Selection of the Appropriate Representation 424
Selection of the appropriate formats for the response message is made using the 425
mechanisms defined for HTTP Content Negotiation21. Using the HTTP Content Negotiation 426
mechanism, the client specifies the desired format and version of the resource using the 427
Accept HTTP header22. 428

Along with official mime types (e.g.: text/html, application/xml, etc), the standard also defines 429
a syntax allowing a service to define its own types. The SDMX Restful API makes use of this 430
functionality and the syntax is as follows: 431

application/vnd.sdmx.[format]+xml;version=[version23], where [format] should be replaced with 432
the desired format (i.e. : genericdata, structurespecificdata, structure, etc) and [version] 433
should be replaced with one of the versions of the SDMX standard, starting with SDMX 2.1 434
(e.g.: 2.1, future SDMX versions, etc). 435

A few examples are listed below 436

• SDMX-ML Generic Data Format, version 2.1: 437
application/vnd.sdmx.genericdata+xml;version=2.1 438

• SDMX-ML Structure Specific Data Format, version 2.1: 439
application/vnd.sdmx.structurespecificdata+xml;version=2.1 440

• SDMX-ML Structure Format, version 2.1: 441
application/vnd.sdmx.structure+xml;version=2.1 442

 443

In case the client does not specify the desired format and version of the response message, 444
or only specifies the generic application/xml format, the SDMX RESTful web service should 445
return: 446

• The most recent version, that the service support, of the SDMX-ML Structure format 447
for structural metadata queries; 448

• The most recent version, that the service support, of the SDMX-ML Generic Data 449
format for data queries; 450

• The most recent version, that the service support, of the SDMX-ML Generic Metadata 451
format for metadata queries. 452

 453

The list below indicates the valid formats for SDMX RESTful web services, compliant with 454
version 2.1 of the SDMX standard: 455

• application/vnd.sdmx.genericdata+xml;version=2.1 456
• application/vnd.sdmx.structurespecificdata+xml;version=2.1 457
• application/vnd.sdmx.generictimeseriesdata+xml;version=2.1 458
• application/vnd.sdmx.structurespecifictimeseriesdata+xml;version=2.1 459
• application/vnd.sdmx.genericmetadata+xml;version=2.1 460
• application/vnd.sdmx.structurespecificmetadata+xml;version=2.1 461
• application/vnd.sdmx.structure+xml;version=2.1 462
• application/vnd.sdmx.schema+xml;version=2.1 463

21 For additional information, please refer to http://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html
22 For additional information, please refer to http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
23 For the time being, only version 2.1 is supported as version number.

21

4.7 Enabling data compression 464
Compression should be enabled using the appropriate HTTP Header field (Accept-465
Encoding). 466

5 Standard Errors for SDMX Web Services 467

5.1 Introduction 468
In SDMX-ML version 2.1 an error element has been implemented in all messages that would 469
normally be a response to a query, that is: Structure, MetadataStructure, GenericData, 470
DSDData and Metadata. In case of an error the error element will be added to the 471
structure:Structures | generic:GenericDataSet | message:DataSet | 472
genericmetadata:MetadataSet | metadatareport:MetadataSet element in the response 473
message. 474

The element belongs to Message schemas and use the StatusTextType from the Common 475
schema file. In the end of this document is an extract from the schema files showing the error 476
element. 477

The error part of the XML message supports the 2 following use cases: 478

• Any error which is detected before SDMX data is streamed to the client will be 479
returned in the Error element defined in the SDMX message namespace. 480

• If the error occurs after some SDMX data has already been streamed to the client, 481
the error information will be supplied via a “footer” element in the SDMX payload. 482

5.2 Error handling in REST Web Service 483
RESTful web services should indicate errors using the proper HTTP status code. In addition, 484
whenever appropriate, the error should also be returned using the error message offered 485
starting with version 2.1 of SDMX-ML. 486

5.3 SOAP Web Service 487
SOAP web services should indicate errors using the standard SOAP error mechanism, using 488
the specific namespace created for this purpose. In addition, whenever appropriate24, the 489
error should also be returned using the error message offered starting with version 2.1 of 490
SDMX-ML. 491

In case of error, the following elements should be set in the SOAP Envelope: 492

• the <faultcode> element for the error number 493
• the <faultstring> element for the description 494
• the <faultactor> element for the webservice method with the url for the webservice 495

prefixed 496
• The <detail> element is optional, and can be used by the service provider to provide 497

any additional information deemed useful 498

5.4 Error categories 499
The numbering of error messages divides the three types of messages up, and provides for 500
web services to implement custom messages as well: 501

24 According to the SOAP version Framework 1.2, it is not possible to place both a <faultcode>
element and return other information.

22

• 000 – 499: Client-caused "errors" 502
• 500 – 999: Server-caused "errors" 503
• 1000 and up: Custom Messages 504

5.5 Client-Caused Errors 505

5.5.1 No results found – 100 506
There is no difference between SOAP and REST webservices for this message. If the result 507
from the query is empty the webservice should return this message. This is a way to inform 508
the client that the result is empty. 509

5.5.2 Unauthorized – 110 510
For use when authentication is needed but has failed or has not yet been provided. 511

5.5.3 Response Too Large Due to Client Request 130 512
The request results in a response that is larger than the client is willing or able to process. 513
The client has the possibility, using SDMX-ML query, to limit the size of the response returned 514
by the server. In case the response is larger than the limit set by the client, the server should 515
return this error code. 516

5.5.4 Syntax error – 140 517
This error code is used when: 518

 - SOAP: The supplied SDMX-ML Query message is invalid (XML validation fails) 519

 - REST: The query string doesn’t comply with the SDMX RESTful interface. 520

5.5.5 Semantic error – 150 521
A web service should return this error when a request is syntactically correct but fails a 522
semantic validation or violates agreed business rules. 523

5.6 Server-Caused Errors 524

5.6.1 Internal Server Error – 500 525
The webservice should return this error code when none of the other error codes better 526
describes the reason for the failure of the service to provide a meaningful response. 527

5.6.2 Not implemented – 501 528
If the webservice has not yet implemented one of the methods defined in the API, then the 529
webservice should return this error. 530

Note: All SDMX web services should implement all the standard interfaces, even if their only 531
function is to return this error message. This eases interoperability between SDMX-compliant 532
web services and it also eases the development of generic SDMX web services clients. 533

23

5.6.3 Service unavailable – 503 534
If a web service is temporarily unavailable because of maintenance or for some other similar 535
reasons, then the webservice should return this error code. 536

5.6.4 Response size exceeds service limit - 510 537
The request results in a response that is larger than the server is willing or able to process. 538

In case the service offers the possibility to users to download the results of large queries at a 539
later stage (for instance, using asynchronous web services), the web service may choose to 540
indicate the (future) location of the file, as part of the error message. In SOAP, this can be 541
done using the error element <faultstring>. 542

5.7 Custom Errors – 1000+ 543
Web services can use codes 1000 and above for the transmission of service-specific error 544
messages. However, it should be understood that different services may use the same 545
numbers for different errors, so the documentation provided by the specific service should be 546
consulted when implementing this class of errors. 547

5.8 SDMX to HTTP Error Mapping 548
The following table maps the SDMX error codes with the HTTP status code for RESTful web 549
services and indicates how the errors should be returned in SOAP. 550

SDMX error HTTP error usage in REST SOAP usage

Client errors

100 No results found 404 Not found SOAP Fault

110 Unauthorized 401 Unauthorized SOAP Fault

130 Response too large due to
client request

413 Request entity too large SOAP Fault

140 Syntax error 400 Bad syntax SOAP Fault

150 Semantic error 400 Bad syntax SOAP Fault

Server errors

500 Internal Server error 500 Internal server error SOAP Fault

501 Not implemented 501 Not implemented SOAP Fault

503 Service unavailable 503 Service unavailable SOAP Fault

510 Response size exceeds
service limit

413 Request entity too large Payload

24

1000+ 500 Internal server error SOAP Fault

6 Annex: Examples 551

6.1 Sample Queries for a Web Services Client 552

6.1.1 Step 1: Browsing an SDMX data source, using a list of subject-matter domains 553

6.1.1.1 Use case 554
The web client offers the possibility to retrieve data by browsing a list of subject matter 555
domains. The client requests the version currently in production of the SDW_ECON category 556
scheme, maintained by the ECB. 557

 558

6.1.1.2 Request using the RESTful API 559
http://ws-entry-point/categoryscheme/ECB/SDW_ECON?references=categorisation 560

Note: Using the references attribute with a value of “categorisation”, the categorisations used 561
by the category scheme will also be returned and these will contain references to the 562
dataflows attached to the categories. 563

6.1.1.3 Request using the SOAP API 564
<query:CategorySchemeQuery referenceResolution=”Shallow”> 565

<query:References> 566
 <query:Default/> 567

</query:References> 568
<query:CategorySchemeWhere> 569

http://ws-entry-point/CategoryScheme/?detail=ReferenceStubs

25

 <query:ID>SDW_ECON</query:ID> 570
 <query:AgencyID>ECB</query:AgencyID> 571

</query:CategorySchemeWhere> 572
</query:CategorySchemeQuery> 573
 574

Note: For the sake of clarity, the SOAP envelop has been omitted. 575

6.1.1.4 Response 576
An SDMX-ML Structure message containing the category schemes, as well as the 577
categorisations with references to the dataflows will be returned. The structure of the SDMX-578
ML Structure message will be as follow (root element, header and repeated elements omitted 579
for the sake of clarity): 580

<structure:Structures> 581
<structure:CategorySchemes> 582

 <structure:CategoryScheme> 583
 </structure:CategoryScheme> 584
 </structure:CategorySchemes> 585
 <structure:Categorisations> 586
 <structure:DataflowCategorisation> 587
 </structure:DataflowCategorisation> 588
 </structure:Categorisations> 589
</structure:Structures> 590

6.1.2 STEP 2: Selecting a dataflow 591

6.1.2.1 Use case 592
Once a subject-matter domain and a dataflow have been selected, a filter box needs to be 593
populated, to allow users to select data. In order to only create queries for data that actually 594
exist in the database, the dataflow constraints will also be requested. 595

26

 596

6.1.2.2 Request using the RESTful API 597
In this sample query, the dataflow id is 123456, the agency id is ECB and the version is 1.2. 598
Using the references attribute, the data structure definition and the constraints will also be 599
returned. 600

http://ws-entry-point/dataflow/ECB/123456/1.2?references=all 601

6.1.2.3 Request using the SOAP API 602
<query:DataflowQuery> 603

<query:References> 604
 <query:Default/> 605

</query:References> 606
<query:DataflowWhere> 607

 <query:ID>123456</query:ID> 608
 <query:Version>1.2</query:Version> 609
 <query:AgencyID>ECB</query:AgencyID> 610

</query:DataflowWhere> 611
</ query:DataflowQuery> 612

6.1.2.4 Response 613
An SDMX-ML Structure message containing the requested dataflow, as well as the data 614
structure definition and the dataflow constraints attached. The structure of the SDMX-ML 615
Structure message will be as follows (root element and header omitted): 616

27

<structure:Structures> 617
<structure:Dataflows> 618

<structure:Dataflow> 619
</structure:Dataflow> 620

</structure:Dataflows> 621
<structure:Codelists> 622
</structure:Codelists> 623
<structure:Concepts> 624
</structure:Concepts> 625

 <structure:DataStructures> 626
</structure:DataStructures> 627
<structure:Constraints> 628

<structure:ContentConstraint> 629
</structure:ContentConstraint> 630

</structure:Constraints> 631
</structure:Structures> 632
 633
If, before selecting data, the user wants to review the data structure definition used by the 634
dataflow, this can be done without sending an additional query, as this information has 635
already been included in the response. 636

 637

28

6.1.3 STEP 3: Data selection 638

6.1.3.1 Use case 639
The user uses the dimension filters, to retrieve the data he is interested in. 640

 641

6.1.3.2 Request using the RESTful API 642
http://ws-entry-point/data/123456/M.I4.N.9.339+340+341.N.A1.A/ECB?startPeriod=2009-643
01&endPeriod=2009-12&detail=dataonly 644

Note: Apart from the dataflow id (123456), the data provider is set to ECB, and the series key 645
uses the OR operator for the 5th dimension. Furthermore, only data for 2009 should be 646
returned. As the purpose of the returned data is to be displayed on a graph, the detail level is 647
set to data only. Therefore, attributes and groups will be excluded from the returned message. 648
Regarding the references to the dataflow, the short form is used, as, for this particular web 649
service, the dataflow id and the data provider id are sufficient to uniquely identify the dataflow 650
and the data provider respectively. Should this not be the case, the full reference must be 651
supplied (for example, ECB+123456+1.2 instead of 123456). 652

6.1.3.3 Request using the SOAP API 653
<query:Query> 654
 <query:DataWhere> 655
 <query:DataProvider> 656
 <common:OrganisationSchemeRef> 657
 <common:AgencyID>ECB</common:AgencyID> 658
 <common:ID>DataProviderScheme</common:ID> 659

29

 </common:OrganisationSchemeRef> 660
 <common:DataProviderRef> 661
 <common:ID>ECB</common:ID> 662
 </common:DataProviderRef> 663
 </query:DataProvider> 664
 <query:StructureUsage> 665
 <common:DataflowReference> 666
 <common:Ref> 667
 <common:AgencyID>ECB</common:AgencyID> 668
 <common:ID>123456</common:ID> 669
 <common:Version>1.2</common:Version> 670
 </common:Ref> 671
 </common:DataflowReference> 672
 </query:StructureUsage> 673
 <query:DimensionValue> 674
 <query:ID>FREQ</query:ID> 675
 <query:Value>M</query:Value> 676
 </query:DimensionValue> 677
 <query:DimensionValue> 678
 <query:ID>REF_AREA</query:ID> 679
 <query:Value>I4</query:Value> 680
 </query:DimensionValue> 681
 <query:DimensionValue> 682
 <query:ID>ADJUSTMENT</query:ID> 683
 <query:Value>N</query:Value> 684
 </query:DimensionValue> 685
 <query:DimensionValue> 686
 <query:ID>DATA_TYPE_BOP</query:ID> 687
 <query:Value>9</query:Value> 688
 </query:DimensionValue> 689
 <query:DimensionValue> 690
 <query:ID>CURR_BRKDWN</query:ID> 691
 <query:Value>N</query:Value> 692
 </query:DimensionValue> 693
 <query:DimensionValue> 694
 <query:ID>COUNT_AREA</query:ID> 695
 <query:Value>A1</query:Value> 696
 </query:DimensionValue> 697
 <query:DimensionValue> 698
 <query:ID>SERIES_DENOM</query:ID> 699
 <query:Value>A</query:Value> 700
 </query:DimensionValue> 701
 <query:TimeDimensionValue> 702
 <query:ID>TIME_PERIOD</query:ID> 703
 <query:TimeValue 704
operator="GreaterThanOrEqualTo">2009-01</query:TimeValue> 705
 <query:TimeValue 706
operator="LessThanOrEqualTo">2010-12</query:TimeValue> 707
 </query:TimeDimensionValue> 708
 <query:Or> 709
 <query:DimensionValue> 710
 <query:ID>BOP_ITEM</query:ID> 711

30

 <query:Value>339</query:Value> 712
 </query:DimensionValue> 713
 <query:DimensionValue> 714
 <query:ID>BOP_ITEM</query:ID> 715
 <query:Value>340</query:Value> 716
 </query:DimensionValue> 717
 <query:DimensionValue> 718
 <query:ID>BOP_ITEM</query:ID> 719
 <query:Value>341</query:Value> 720
 </query:DimensionValue> 721
 </query:Or> 722
 </query:DataWhere> 723
 </query:Query> 724

6.1.3.4 Response 725
An SDMX-ML Generic data message containing the requested time series. 726

The structure of the SDMX-ML Data message will be as follows (root element and header 727
omitted): 728

<message:DataSet> 729
<generic:Series> 730
</generic:Series> 731

</message:DataSet> 732

6.2 Sample Error Element in an SDMX message 733
<xs:element name="Error" type="ErrorType"> 734

<xs:annotation> 735
<xs:documentation>Error is used to communicate 736

 that an error has occurred when responding to a 737
 request in an non-registry environment. The 738
 content will be a collection of error messages. 739

</xs:documentation> 740
 </xs:annotation> 741
</xs:element> 742
<xs:complexType name="ErrorType"> 743

<xs:annotation> 744
<xs:documentation>ErrorType describes the 745
structure of an error response. 746
</xs:documentation> 747

 </xs:annotation> 748
<xs:sequence> 749

<xs:element name="ErrorMessage" 750
type="common:StatusTextType" maxOccurs="unbounded"> 751

 <xs:annotation> 752
 <xs:documentation>ErrorMessage 753
 contains the error message. It can 754
 occur multiple times to communicate 755
 message for multiple errors, or to 756
 communicate the error message in 757

31

 parallel languages. If both messages 758
 for multiple errors and parallel 759
 language messages are used, then each 760
 error message should be given a code 761
 in order to distinguish message for 762
 unique errors. 763

</xs:documentation> 764
</xs:annotation> 765

</xs:element> 766
</xs:sequence> 767

</xs:complexType> 768

6.3 Soap Fault example 769
<?xml version = "1.0" encoding = "UTF-8" ?> 770
<soapenv:Envelope 771
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 772
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 773
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 774
xmlns:sdmxerror="http://www.SDMX.org/resources/SDMXML/webservice/iso/v_775
2_0_draft/error" 776

 777
xmlns:sdmxws="http://www.SDMX.org/resources/SDMXML/webservice/iso/v_2_778
0_draft"> 779
<soapenv:Body> 780
<soapenv:Fault> 781
<faultcode>sdmxerror:500</faultcode> 782
<faultstring>Internal server error</faultstring> 783
<faultactor>sdmxws:GetCodelist</faultactor> 784
<detail> 785
<sdmxws:composite> 786
<sdmxws:code>1028</sdmxws:code> 787
<sdmxws:titles> 788
<sdmxws:title lang="de">Could not get connection from pool</sdmxws:title> 789
<sdmxws:title lang="en">Could not get connection from pool</sdmxws:title> 790
<sdmxws:title lang="fr">Could not get connection from pool</sdmxws:title> 791
</sdmxws:titles> 792
<sdmxws:source>SdmxRegistryService error: could not get connection from 793
pool</sdmxws:source> 794
</sdmxws:composite> 795
</detail> 796
</soapenv:Fault> 797
</soapenv:Body> 798
</soapenv:Envelope> 799

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

	1 Introduction
	2 Web Services and SDMX-ML
	3 SOAP-Based SDMX Web Services: WSDL Operations and Behaviours
	3.1 Introduction
	3.2 The SDMX Web-Services Namespace
	3.3 Support for WSDL Operations
	3.4 List of WSDL Operations
	3.4.1 Data
	3.4.1.1 GetStructureSpecificData
	3.4.1.2 GetGenericData
	3.4.1.3 GetStructureSpecificTimeSeriesData
	3.4.1.4 GetGenericTimeSeriesData

	3.4.2 Metadata
	3.4.2.1 GetGenericMetadata
	3.4.2.2 GetStructureSpecificMetadata

	3.4.3 Structure usage
	3.4.3.1 GetDataflow
	3.4.3.2 GetMetadataflow

	3.4.4 Structure
	3.4.4.1 GetDataStructure
	3.4.4.2 GetMetadataStructure

	3.4.5 Item scheme
	3.4.5.1 GetCategoryScheme
	3.4.5.2 GetConceptScheme
	3.4.5.3 GetCodelist
	3.4.5.4 GetHierarchicalCodelist
	3.4.5.5 GetOrganisationScheme
	3.4.5.6 GetReportingTaxonomy

	3.4.6 Other maintainable artefacts
	3.4.6.1 GetStructureSet
	3.4.6.2 GetProcess
	3.4.6.3 GetCategorisation
	3.4.6.4 GetProvisionAgreement
	3.4.6.5 GetConstraint

	3.4.7 XML Schemas (XSD)
	3.4.7.1 GetDataSchema
	3.4.7.2 GetMetadataSchema

	3.4.8 Generic query for structural metadata
	3.4.8.1 GetStructures

	3.5 Other Behaviours
	3.5.1 Versioning Defaults
	3.5.2 Resolving References and Specifying Returned Objects
	3.5.3 Enabling compression
	3.5.4 Implementation of the SOAP based SDMX Web Services
	3.5.5 Compliance with WS-I

	4 SDMX RESTful API
	4.1 A Brief Introduction to REST
	4.2 Scope of the API
	4.3 Structural Metadata Queries
	4.3.1 Resources
	4.3.2 Parameters
	4.3.2.1 Parameters used for identifying a resource
	4.3.2.2 Parameters used to further describe the desired results
	4.3.2.3 Applicability and meaning of references attribute

	4.3.3 Examples

	4.4 Data and Metadata Queries
	4.4.1 Resources
	4.4.2 Parameters
	4.4.2.1 Parameters used for identifying a resource
	4.4.2.2 Parameters used to further filter the desired results

	4.4.3 Examples

	4.5 Schema queries
	4.5.1 Resources
	4.5.2 Parameters
	4.5.2.1 Parameters used for identifying a resource
	4.5.2.2 Parameters used to further describe the desired results

	4.5.3 Examples

	4.6 Selection of the Appropriate Representation
	4.7 Enabling data compression

	5 Standard Errors for SDMX Web Services
	5.1 Introduction
	5.2 Error handling in REST Web Service
	5.3 SOAP Web Service
	5.4 Error categories
	5.5 Client-Caused Errors
	5.5.1 No results found – 100
	5.5.2 Unauthorized – 110
	5.5.3 Response Too Large Due to Client Request 130
	5.5.4 Syntax error – 140
	5.5.5 Semantic error – 150

	5.6 Server-Caused Errors
	5.6.1 Internal Server Error – 500
	5.6.2 Not implemented – 501
	5.6.3 Service unavailable – 503
	5.6.4 Response size exceeds service limit - 510

	5.7 Custom Errors – 1000+
	5.8 SDMX to HTTP Error Mapping

	6 Annex: Examples
	6.1 Sample Queries for a Web Services Client
	6.1.1 Step 1: Browsing an SDMX data source, using a list of subject-matter domains
	6.1.1.1 Use case
	6.1.1.2 Request using the RESTful API
	6.1.1.3 Request using the SOAP API
	6.1.1.4 Response

	6.1.2 STEP 2: Selecting a dataflow
	6.1.2.1 Use case
	6.1.2.2 Request using the RESTful API
	6.1.2.3 Request using the SOAP API
	6.1.2.4 Response

	6.1.3 STEP 3: Data selection
	6.1.3.1 Use case
	6.1.3.2 Request using the RESTful API
	6.1.3.3 Request using the SOAP API
	6.1.3.4 Response

	6.2 Sample Error Element in an SDMX message
	6.3 Soap Fault example

