
1

 1
The following part will be added to the Section 6 of the SDMX Standards (“SDMX 2
Technical Notes”) as the last Section (n.10), before the Annex 3
 4

2

10 Validation and Transformation Language (VTL) 5

10.1 Introduction 6
The Validation and Transformation Language (VTL) supports the definition of 7
Transformations, which are algorithms to calculate new data starting from already 8
existing ones1. 9
 10
The purpose of the VTL in the SDMX context is to enable the: 11
 12

• definition of validation and transformation algorithms, in order to specify how 13
to calculate new data from existing ones; 14

• exchange of the definition of VTL algorithms, also together the definition of 15
the data structures of the involved data (for example, exchange the data 16
structures of a reporting framework together with the validation rules to be 17
applied, exchange the input and output data structures of a calculation task 18
together with the VTL transformations describing the calculation algorithms); 19

• compilation and execution of VTL algorithms, either interpreting the VTL 20
transformations or translating them in whatever other computer language is 21
deemed as appropriate. 22

 23
It is important to note that the VTL has its own information model (IM), derived from 24
the Generic Statistical Information Model (GSIM) and described in the VTL User 25
Guide. The VTL IM is designed to be compatible with more standards, like SDMX, 26
DDI (Data Documentation Initiative) and GSIM (Generic Statistical Information 27
Model), and includes the model artefacts that can be manipulated (inputs and/or 28
outputs of transformations) and the model artefacts that allow the definition of the 29
transformation algorithms. 30
 31
The VTL language can be applied to SDMX artefacts by mapping the SDMX IM 32
model artefacts to the model artefacts that VTL can manipulate. Thus, the SDMX 33
artefacts can be used in VTL as inputs and/or outputs of transformations. It is 34
important to be aware that the artefacts do not always have the same names in the 35
SDMX and VTL IMs, nor do they always have the same meaning. The more evident 36
example is given by the SDMX “dataset” and the VTL “dataset”, which do not 37
correspond one another: as a matter of fact, the VTL “dataset” maps to the SDMX 38
“dataflow”, while the SDMX “dataset” has no explicit mapping to VTL (such an 39
abstraction is not needed in the definition of VTL transformations). A SDMX 40
“dataset”, however, is an instance of a SDMX “dataflow” and can be the artefact on 41
which the VTL transformations are executed (i.e., the transformations are defined on 42
“dataflows” and are applied to dataflow instances, that can be SDMX datasets). 43
 44
The VTL expressions are accessed through the maintainable artefact 45
“Transformation Scheme” which is composed of “Transformation” nameable 46
artefacts. Each Transformation contains a VTL expression. 47
 48
This section does not explain the VTL language or any of the content published in the 49
VTL guides. Rather, this is a description of how the VTL can be used in the SDMX 50
context and applied to SDMX artefacts. 51
 52

1 The Validation and Transformation Language is a standard language designed and published under
the SDMX initiative. VTL is described in the VTL User and Reference Guides available on the SDMX
website https://sdmx.org.

https://sdmx.org/

3

 53
 54
 55
 56
 57

10.2 References to SDMX artefacts from VTL statements 58

10.2.1 Introduction 59
The VTL transformations can manipulate SDMX artefacts (or objects) by referencing 60
them through pre-defined conventional names (aliases). 61

The alias of a SDMX artefact can be its URN (Universal Resource Name), an 62
abbreviation of its URN or another user-defined name. 63

In any case, the aliases used in the VTL transformations have to mapped to the 64
SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see 65
the section of the SDMX IM relevant to the VTL). 66

A VtlMapping allow specifying the aliases to be used in the VTL expressions to 67
reference SDMX artefacts. The VtlMappingScheme is a container for zero or more 68
VtlMapping. The correspondence between an alias and a SDMX artefact must be 69
one-to-one, meaning that a generic alias identifies one and just one SDMX artefact 70
while a SDMX artefact is identified by one and just one alias. In other words, within a 71
VtlMappingScheme an artefact can have just one alias and different artefacts 72
cannot have the same alias. 73

The references through the URN and the abbreviated URN are described in the 74
following paragraphs. 75
 76

10.2.2 References through the URN 77
The SDMX URN2 is the concatenation of the following parts, separated by special 78
symbols like dot, equal, asterisk, comma, and parenthesis: 79

• SDMXprefix 80
• SDMX-IM-package-name 81
• class-name 82
• agency-id 83
• maintainedobject-id 84
• maintainedobject-version 85
• container-object-id 3 86
• object-id 87

The generic structure of the URN is the following: 88
 89

SDMXprefix.SDMX-IM-package-name.class-name=agency-id:maintainedobject-id 90
(maintainedobject-version).*container-object-id.object-id 91

2 For a complete description of the structure of the URN see the SDMX 2.1 Standards - Section 5 -
Registry Specifications, paragraph 6.2.2 (“Universal Resource Name (URN)”).
3 The container-object-id can repeat and may not be present

4

The SDMX prefix is “urn:sdmx:org”, always the same for all SDMX artefacts. 92

The SDMX-IM-package-name is the concatenation of the string “sdmx.infomodel.” 93
with the package-name which the artefact belongs to. For example, for referencing a 94
dataflow the SDMX-IM-package-name is “sdmx.infomodel.datastructure”, because 95
the class “Dataflow” belongs to the package “datastructure”. 96

The class-name is the name of the SDMX object class which the SDMX object 97
belongs to (e.g., for referencing a dataflow the class-name is “Dataflow”). The VTL 98
can reference SDMX artefacts that belong to the classes dataflow, dimension, 99
measureDimension, timeDimension, primaryMeasure, dataAttribute, 100
concept, conceptScheme, codelist. 101

The agency-id is the acronym of the agency that owns the definition of the artefact, 102
for example for the Eurostat artefacts the agency-id is “ESTAT”). The agency-id can 103
be composite (for example AgencyA.Dept1.Unit2). 104

The maintainedobject-id is the name of the maintained object which the artefact 105
belongs to, and in case the artefact itself is maintainable4, coincides with the name of 106
the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 107

• if the artefact is a dataflow, which is a maintainable class, the 108
maintainedobject-id is the dataflow name (dataflow-id); 109

• if the artefact is a dimension, measureDimension, timeDimension, 110
primaryMeasure or dataAttribute, which are not maintainable and belong 111
to the dataStructure maintainable class, the maintainedobject-id is the 112
name of the dataStructure (dataStructure-id) which the artefact belongs to; 113

• if the artefact is a concept, which is not maintainable and belongs to the 114
conceptScheme maintainable class, the maintainedobject-id is the name of 115
the conceptScheme (conceptScheme-id) which the artefact belongs to; 116

• if the artefact is a conceptScheme, which is a maintainable class, the 117
maintainedobject-id is the name of the conceptScheme (conceptScheme-id); 118

• if the artefact is a codelist, which is a maintainable class, the 119
maintainedobject-id is the codelist name (codelist-id). 120

The maintainedobject-version is the version of the maintained object which the 121
artefact belongs to (for example, possible versions are 1.0, 2.1, 3.1.2). 122

The container-object-id does not apply to the classes that can be referenced in 123
VTL transformations, therefore is not present in their URN 124

The object-id is the name of the non-maintainable artefact (when the artefact is 125
maintainable its name is already specified as the maintainedobject-id, see above), 126
in particular it has to be specified: 127

• if the artefact is a dimension, measureDimension, timeDimension, 128
primaryMeasure or dataAttribute (the object-id is the name of one of 129
the artefacts above, which are data structure components) 130

• if the artefact is a concept (the object-id is the name of the concept) 131

4 i.e., the artefact belongs to a maintainable class

5

For example, by using the URN, the VTL transformation that sums two SDMX 132
dataflows DF1 and DF2 and assigns the result to a third persistent dataflow DFR, 133
assuming that DF1, DF2 and DFR are the maintainedobject-id of the three 134
dataflows, that their version is 1.0 and their Agency is AG, would be written as5: 135
 136

‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’ <- 137
‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0)’ + 138
‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0)’ 139

 140

10.2.3 Abbreviation of the URN 141
 142
The complete formulation of the URN described above is exhaustive but verbose, 143
even for very simple statements. In order to reduce the verbosity through a simplified 144
identifier and make the work of transformation definers easier, proper abbreviations 145
of the URN are allowed. The URN can be abbreviated by omitting the parts that are 146
not essential for the identification of the artefact or that can be deduced from other 147
available information, including the context in which the invocation is made. The 148
possible abbreviations are described below. 149

• The SDMXPrefix can be omitted for all the SDMX objects, because it is a 150
prefixed string (urn:sdmx:org), always the same for SDMX objects. 151

• The SDMX-IM-package-name can be omitted as well because it can be 152
deduced from the class-name that follows it (the table of the SDMX-IM 153
packages and classes that allows this deduction is in the SDMX 2.1 154
Standards - Section 5 - Registry Specifications, paragraph 6.2.3). In 155
particular, considering the object classes of the artefacts that VTL can 156
reference, the package is: 157

o datastructure for the classes dataflow, dimension, 158
measureDimension, timeDimension, primaryMeasure, 159
dataAttribute, 160

o conceptscheme for the classes concept and conceptScheme 161
o codelist for the class codelist. 162

• The class-name can be omitted as it can be deduced from the VTL 163
invocation. In particular, starting from the VTL class of the invoked artefact 164
(e.g. dataset, component, identifier, measure, attribute, variable, 165
valuedomain), which is known given the syntax of the invoking VTL 166
operator6, the SDMX class can be deduced from the mapping rules between 167
VTL and SDMX (see the section “Mapping between VTL and SDMX” 168
hereinafter)7. 169

5 Since these references to SDMX objects include non-permitted characters as per the VTL ID notation,
they need to be included between single quotes, according to the VTL rules for irregular names.
6 For the syntax of the VTL operators see the VTL Reference Manual
7 In case the invoked artefact is a VTL component, that can be invoked only within the invocation of a
VTL data set (SDMX dataflow), the specific SDMX class-name (e.g. dimension,
measureDimension, timeDimension, primaryMeasure or dataAttribute) can be deduced
from the data structure of the SDMX dataflow which the component belongs to.

6

• If the agency-id is not specified, it is assumed by default equal to the agency-170
id of the transformationScheme from which the artefact is invoked. 171
Therefore the agency-id can be omitted if it is the same as the invoking 172
transformationScheme and cannot be omitted if the artefact comes from 173
another agency.8 Take also into account that, according to the VTL 174
consistency rules, the agency of the result of a transformation must be the 175
same as its transformationScheme, therefore the agency-id can be omitted 176
for all the results (left part of transformation statements). 177

• As for the maintainedobject-id, this is essential in some cases while in other 178
cases it can be omitted: 179

o if the referenced artefact is a dataflow, which is a maintainable class, 180
the maintainedobject-id is the dataflow-id and obviously cannot be 181
omitted; 182

o if the referenced artefact is a dimension, measureDimension, 183
timeDimension, primaryMeasure, dataAttribute, which are not 184
maintainable and belong to the dataStructure maintainable class, 185
the maintainedobject-id is the dataStructure-id and can be omitted, 186
given that these components are always invoked within the invocation 187
of a dataflow, whose dataStructure-id can be deduced from the 188
SDMX structural definitions; 189

o if the referenced artefact is a concept, which is not maintainable and 190
belong to the conceptScheme maintainable class, the maintained 191
object is the conceptScheme-id and cannot be omitted; 192

o if the referenced artefact is a conceptScheme, which is a 193
maintainable class, the maintained object is the conceptScheme-id 194
and obviously cannot be omitted; 195

o if the referenced artefact is a codelist, which is a maintainable 196
class, the maintainedobject-id is the codelist-id and obviously cannot 197
be omitted. 198

• When the maintainedobject-id is omitted, the maintainedobject-version is 199
omitted too. When the maintainedobject-id is not omitted and the 200
maintainedobject-version is omitted, the version 1.0 is assumed by default. 201

• As said, the container-object-id does not apply to the classes that can be 202
referenced in VTL transformations, therefore is not present in their URN 203

• The object-id does not exist for the artefacts belonging to the dataflow, 204
conceptScheme and codelist classes, while it exists and cannot be omitted 205
for the artefacts belonging to the classes dimension, measureDimension, 206
timeDimension, primaryMeasure, dataAttribute and concept, as for 207
them the object-id is the main identifier of the artefact 208

The simplified object identifier is obtained by omitting all the first part of the URN, 209
including the special characters, till the first part not omitted. 210

8 If the Agency is composite (for example AgencyA.Dept1.Unit2), the agency is considered different
even if only part of the composite name is different (for example AgencyA.Dept1.Unit3 is a different
Agency than the previous one). Moreover the agency-id cannot be omitted in part (i.e., if a
transformationScheme owned by AgencyA.Dept1.Unit2 references an artefact coming from
AgencyA.Dept1.Unit3, the specification of the agency-id becomes mandatory and must be complete,
without omitting the possibly equal parts like AgencyA.Dept1)

7

 211
For example, the full formulation that uses the complete URN shown at the end of the 212
previous paragraph: 213
 214
‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0)’ := 215
‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0)’ + 216
‘urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0)’ 217
 218
by omitting all the non-essential parts would become simply: 219

DFR := DF1 + DF2 220

The references to the codelists can be simplified similarly. For example, given the 221
non-abbreviated reference to the codelist AG:CL_FREQ(1.0), which is: 222

‘urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0)’ 223

if the codelist is referenced from a transformation scheme belonging to the agency 224
AG, omitting all the optional parts, the abbreviated reference would become simply9: 225

CL_FREQ 226

As for the references to the components, it can be enough to specify the component-227
Id, given that the dataStructure-Id can be omitted. An example of non-abbreviated 228
reference, if the data structure is DST1 and the component is SECTOR, is the 229
following: 230

‘urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0).SECTOR’ 231

The corresponding fully abbreviated reference, if made from a transformation 232
scheme belonging to AG, would become simply: 233

SECTOR 234

For example, the transformation for renaming the component SECTOR of the 235
dataflow DF1 into SEC can be written as10: 236

‘DFR(1.0)’ := ‘DF1(1.0)’ [rename SECTOR to SEC] 237

The Codes and in general all the Values can be written without any other 238
specification, for example, the transformation to check if the values of the dataflow 239
DF1 are between 0 and 25000 can be written like follows: 240

‘DFR(1.0)’ := between (‘DF1(1.0)’, 0, 25000) 241

 242

9 Single quotes are not needed in this case because CL_FREQ is a VTL regular name.
10 The result DFR(1.0) is be equal to DF1(1.0) save that the component SECTOR is called SEC

8

10.3 Mapping between SDMX and VTL 243

10.3.1 When the mapping occurs 244
The mapping methods between the VTL and SDMX object classes allow 245
transforming a SDMX definition in a VTL one and vice-versa. 246

The VTL expressions are accessed through the maintainable artefact 247
“Transformation Scheme” which is composed of “Transformation” nameable 248
artefacts. Each Transformation contains a VTL expression. 249
 250
Every time a SDMX object is referenced in a VTL Transformation as an input 251
operand, there is the need to generate a VTL definition of the object, so that the VTL 252
operations can take place. This can be made starting from the SDMX definition and 253
applying a SDMX-VTL mapping method in the direction from SDMX to VTL. The 254
possible mapping methods from SDMX to VTL are described in the following 255
paragraphs and are conceived to allow the automatic deduction of the VTL definition 256
of the object from the knowledge of the SDMX definition. 257

In the opposite direction, every time an object calculated by means of VTL must be 258
treated as a SDMX object (for example for exchanging it through SDMX), there is the 259
need of a SDMX definition of the object, so that the SDMX operations can take place. 260
The SDMX definition is needed for the VTL objects for which a SDMX use is 261
envisaged11. 262
 263
The mapping methods from VTL to SDMX are described in the following paragraphs 264
as well, however they do not allow the complete SDMX definition to be automatically 265
deduced from the VTL definition, more than all because the former typically contains 266
additional information in respect to the latter. For example, the definition of a SDMX 267
DSD includes also some mandatory information not available in VTL (like the concept 268
scheme to which the SDMX components refer, the assignmentStatus and 269
attributeRelationship for the DataAttributes and so on). Therefore the mapping 270
methods from VTL to SDMX provide only a general guidance for generating SDMX 271
definitions properly starting from the information available in VTL, independently of 272
how the SDMX definition it is actually generated (manually, automatically or part and 273
part). 274
 275

10.3.2 General mapping of VTL and SDMX data structures 276
This section makes reference to the VTL “model for data and their structure” and the 277
correspondent SDMX “Data Structure Definition”. 278

The main type of artefact that the VTL can manipulate is the VTL Data Set, which in 279
general is mapped to the SDMX Dataflow. This means that a VTL Transformation, in 280
the SDMX context, expresses the algorithm for calculating a derived Dataflow 281
starting from some already existing Dataflows (either collected or derived).12 282

11 If a calculated artefact is persistent, it needs a persistent definition, i.e. a SDMX definition in a SDMX
environment. Also possible calculated artefact that are not persistent may require a SDMX definition, for
example when the result of a non-persistent calculation is disseminated through SDMX tools.
12 Besides the mapping between one SMDX dataflow and one VTL dataset, it is also possible to map
distinct parts of a SDMX dataflow to different VTL datasets, as explained in a following paragraph.

9

While the VTL transformations are defined in term of Dataflow definitions, they are 283
assumed to be executed on instances of such Dataflows, provided at runtime to the 284
VTL engine (the mechanism for identifying the instances to be processed are not part 285
of the VTL specifications and depend on the implementation of the VTL-based 286
systems). As already said, the SDMX datasets can be considered as instances of 287
SDMX dataflows, therefore a VTL Transformation defined on some SDMX dataflows 288
can be applied on some corresponding SDMX datasets. 289

A VTL Data Set is structured by one and just one Data Structure and a VTL Data 290
Structure can structure any number of Data Sets. Correspondingly, in the SDMX 291
context a SDMX Dataflow is structured by one and just one DataStructureDefinition 292
and one DataStructureDefinition can structure any number of Dataflows. 293

A VTL Data Set has a Data Structure made of Components, which in turn can be 294
Identifiers, Measures and Attributes. Similarly, a SDMX DataflowDefinition has a 295
DataStructureDefinition made of components that can be DimensionComponents, 296
PrimaryMeasure and DataAttributes. In turn, a SDMX DimensionComponent can be 297
a Dimension, a TimeDimension or a MeasureDimension. Correspondingly, in the 298
SDMX implementation of the VTL, the VTL Identifiers can be distinguished in three 299
sub-classes (Simple Identifier, Time Identifier or Measure Identifier) even if such a 300
distinction is not evidenced in the VTL IM. 301

However, a VTL Data Structure can have any number of Identifiers, Measures and 302
Attributes, while a SDMX DataStructureDefinition can have any number of 303
Dimensions and DataAttributes but just one PrimaryMeasure13. This is due to a 304
difference between SDMX and VTL in the possible representation methods of the 305
data that contain more measures. 306

As for SDMX, because the data structure cannot contain more than one measure 307
component (i.e., the primaryMeasure), the representation of data having more 308
measures is possible only by means of a particular dimension, called 309
MeasureDimension, which is aimed at containing the name of the measure concept, 310
so that for each observation the value contained in the PrimaryMeasure component 311
is the value of the measure concept reported in the MeasureDimension component. 312

Instead VTL allows either the method above (an identifier containing the name of the 313
measure together with just one measure component) or a more generic method that 314
consists in defining more measure components in the data structure, one for each 315
measure. 316

Therefore for multi-measure data more mapping options are possible, as described in 317
more detail in the following sections. 318

10.3.3 Mapping from SDMX to VTL data structures 319

10.3.3.1 Basic Mapping 320
The main mapping method from SDMX to VTL is called Basic mapping. This is 321
considered as the default mapping method, applied unless a different method is 322
specified through the VtlMappingScheme and VtlDataflowMapping classes. 323

13 The SDMX community is evaluating the opportunity of allowing more than one measure component in
a DataStructureDefinition in the next SDMX version.

10

When transforming from SDMX to VTL, this method consists in leaving the 324
components unchanged and maintaining their names and roles, according to the 325
following table: 326

SDMX VTL
Dimension Simple Identifier

Time Dimension Time Identifier
Measure Dimension Measure Identifier

Primary Measure Measure
Data Attribute Attribute

 327
According to this method, the resulting VTL structures are always mono-measure 328
(i.e., they have just one measure component) and their Measure is the SDMX 329
PrimaryMeasure. Nevertheless, if the SDMX data structure has a 330
MeasureDimension, which can convey the name of one or more measure concepts, 331
such unique measure component can contain the value of more measures (one for 332
each observation). 333

As for the SDMX Data Attributes, in VTL they are all considered “at data point / 334
observation level” (i.e. dependent on all the VTL Identifiers), because VTL does not 335
have the SDMX Attribute Relationships, which defines the construct to which the 336
Attribute is related (e.g. observation, dimension or set or group of dimensions, whole 337
data set). 338

With the Basic mapping, one SDMX observation generates one VTL data point. 339

10.3.3.2 Pivot Mapping 340
An alternative mapping method from SDMX to VTL is the Pivot mapping, which is 341
different from the Basic method only for the SDMX data structures that contain a 342
MeasureDimension, which are mapped to multi-measure VTL data structures. 343

The SDMX structures that do not contain a MeasureDimension are mapped like in 344
the Basic mapping (see the previous paragraph). 345

The SDMX structures that contain a MeasureDimension are mapped as follows (this 346
mapping is equivalent to a pivoting operation): 347

• A SDMX simple dimension becomes a VTL simple identifier and a SDMX time 348
dimension becomes a VTL time identifier; 349

• Each possible Concept Cj of the SDMX MeasureDimension is mapped to a 350
VTL Measure, having the same name as the SDMX Concept (i.e. Cj, the VTL 351
Measure is a new component that does not correspond to any component of 352
the SDMX data structure) 353

• The SDMX MeasureDimension is not mapped to VTL (it disappears in the 354
VTL Data Structure) 355

• The SDMX PrimaryMeasure is not mapped to VTL as well (it disappears in 356
the VTL Data Structure) 357

• A SDMX DataAttribute is mapped in different ways according to its 358
AttributeRelationship: 359

o If, according to the SDMX attributeRelationship, the values of the 360
DataAttribute do not depend on the values of the MeasureDimension, 361
the SDMX DataAttribute becomes a VTL Attribute having the same 362
name. This happens if the attributeRelationship is not specified (i.e. 363
the Attribute does not depend on any DimensionComponent and 364

11

therefore is at data set level), or if it refers to a set (or a group) of 365
dimensions which does not include the MeasureDimension; 366

o Otherwise if, according to the SDMX attributeRelationship, the values 367
of the DataAttribute depend on the MeasureDimension, the SDMX 368
Data Attribute is mapped to one VTL Attribute for each possible 369
Concept of the SDMX MeasureDimension; by default, the names of 370
the VTL Attributes are obtained by concatenating the name of the 371
SDMX DataAttribute and the names of the correspondent Concept of 372
the MeasureDimension separated by underscore; for example, if the 373
SDMX DataAttribute is named DA and the possible concepts of the 374
SDMX MeasureDimension are named C1, C2, …, Cn, the 375
corresponding VTL Attributes will be named DA_C1, DA_C2, …, 376
DA_Cn (if different names are desired, they can be achieved 377
afterwards by renaming the Attributes through VTL). 378

Like in the Basic mapping, the resulting VTL Attributes are considered as dependent 379
on all the VTL identifiers (i.e. “at data point / observation level”), because VTL does 380
not have the SDMX notion of Attribute Relationships. 381

The summary mapping table from SDMX to VTL for the SDMX data structures that 382
contain a MeasureDimension is the following: 383

 384
Using this mapping method the components of the data structure can change in the 385
conversion from SDMX to VTL and it must be taken into account that the VTL 386
statements can reference only the components of the VTL data structure. 387
 388
At observation / data point level, calling Cj (j=1, … n) the jth Concept of the 389
MeasureDimension: 390

• The set of SDMX observations having the same values for all the Dimensions 391
except than the MeasureDimension become one multi-measure VTL Data 392
Point, having one Measure for each Concept Cj of the SDMX 393
MeasureDimension; 394

• The values of the SDMX simple Dimensions, TimeDimension and 395
DataAttributes not depending on the MeasureDimension (these components 396
by definition have always the same values for all the observations of the set 397
above) become the values of the corresponding VTL simple Identifiers, time 398
Identifier and Attributes. 399

• The value of the PrimaryMeasure of the SDMX observation belonging to the 400
set above and having MeasureDimension=Cj becomes the value of the VTL 401
Measure Cj 402

• For the SDMX DataAttributes depending on the MeasureDimension, the value 403
of the DataAttribute DA of the SDMX observation belonging to the set above 404

SDMX VTL
Dimension Simple Identifier

Time Dimension Time Identifier
Measure Dimension &

Primary Measure
One Measure for each Concept of the

SDMX Measure Dimension
Data Attribute not depending on the

Measure Dimension
Attribute

Data Attribute depending on the
Measure Dimension

One Attribute for each Concept of the
SDMX Measure Dimension

12

and having MeasureDimension=Cj becomes the value of the VTL Attribute 405
DA_Cj 406

10.3.3.3 From SDMX DataAttributes to VTL Measures 407
In some cases it may happen that the DataAttributes of the SDMX DataStructure 408
need to be managed as Measures in VTL. Therefore a variant of both the methods 409
above consists in transforming all the SDMX DataAttributes in VTL Measures. When 410
DataAttributes are converted to Measures, the two methods above are called 411
Basic_A2M and Pivot_A2M (the suffix “A2M” stands for Attributes to Measures). As 412
obvious, the resulting VTL data structure is in general multi-measure and does not 413
contain Attributes. 414

The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot 415
methods, except that the final VTL components which according to the Basic and 416
Pivot methods would have had the role of Attribute assume instead the role of 417
Measure. 418

Proper VTL features allow changing the role of specific attributes even after the 419
SDMX to VTL mapping: they can be useful when only some of the DataAttributes 420
need to be managed as VTL Measures. 421

10.3.4 Mapping from VTL to SDMX data structures 422

10.3.4.1 Basic Mapping 423
The main mapping method from VTL to SDMX is called Basic mapping as well. 424

This is considered as the default mapping method and is applied unless a different 425
method is specified through the VtlMappingScheme and VtlDataflowMapping 426
classes. 427

The method consists in leaving the components unchanged and maintaining their 428
names and roles in SDMX, according to the following mapping table, which is the 429
same as the basic mapping from SDMX to VTL, only seen in the opposite direction. 430
 431
This mapping method cannot be applied if the VTL data structure has more than one 432
measure component, given that the SDMX data structure definition allows just one 433
measure component (the PrimaryMeasure). In this case it becomes mandatory to 434
specify a different mapping method through the VtlMappingScheme and 435
VtlDataflowMapping classes. 436
 437
Mapping table: 438
 439

VTL SDMX
Simple Identifier Dimension
Time Identifier Time Dimension

Measure Identifier Measure Dimension
Measure Primary Measure
Attribute Data Attribute

 440
 441
If the distinction between simple identifier, time identifier and measure identifier is not 442
maintained in the VTL environment, the classification between Dimension, 443
TimeDimension and MeasureDimension exists only in SDMX, as declared in the 444
DataStructureDefinition. 445
 446

13

Regarding the Attributes, because VTL considers all of them “at observation level” as 447
said before, the corresponding SDMX DataAttributes should be put “at observation 448
level” as well (AttributeRelationships referred to the PrimaryMeasure), unless some 449
other information about their AttributeRelationship is available. 450
 451
Note that the basic mappings in the two directions (from SDMX to VTL and vice-452
versa) are (almost completely) reversible. In fact, if a SDMX structure is mapped to a 453
VTL structure and then the latter is mapped back to SDMX, the resulting data 454
structure is like the original one (apart for the Attribute relationship, that can be 455
different if the original SDMX structure contains Attributes that are not at observation 456
level). In reverse order, if a VTL structure is mapped to SDMX and then the latter is 457
mapped back to VTL, the original data structure is obtained. 458
 459
As said, the resulting SDMX definitions must be compliant with the SDMX 460
consistency rules. For example, the SDMX DSD must have the assignmentStatus, 461
which does not exist in VTL, the attributeRelationship for the DataAttributes and so 462
on. 463

10.3.4.2 Unpivot Mapping 464
 465
An alternative mapping method from VTL to SDMX is the Unpivot mapping. 466
 467
This mapping method makes sense in case the VTL data structure has more than 468
one measure component (multi-measures VTL structure). For such VTL structures, in 469
fact, the basic method cannot be applied, given that by maintaining the data structure 470
unchanged the resulting SDMX data structure would have more than one measure 471
component, which is not allowed (currently SDMX allows just one measure 472
component, the PrimaryMeasure). 473
 474
The multi-measures VTL structures have not a Measure Identifier (because the 475
Measures are separate components) and need to be converted to SDMX dataflows 476
having an added MeasureDimension which disambiguates the multiple measures, 477
whose values are all maintained in the primaryMeasure. 478
 479
The unpivot mapping behaves like follows: 480

• Like in the basic mapping, a VTL simple identifier becomes a SDMX 481
dimension and a VTL time identifier becomes a SDMX time dimension (as 482
said, a measure identifier cannot exist in multi-measure VTL structures); 483

• a MeasureDimension Component called “measure_name” is added to the 484
SDMX DataStructure; 485

• a PrimaryMeasure Component called “obs_value” is added to the SDMX 486
DataStructure 487

• Each VTL Measure is mapped to a Concept of the SDMX MeasureDimension 488
having the same name as the VTL Measure (therefore all the VTL Measure 489
Components disappear in the SDMX DataStructure) 490

• A VTL Attribute becomes a SDMX DataAttribute having AttributeRelationship 491
referred to all the SDMX Dimensions including the TimeDimension and 492
except the MeasureDimension. 493

 494
The summary mapping table of the unpivot mapping method is the following: 495

VTL SDMX
Identifier Dimension

Time Identifier Time Dimension

14

 496
 497
At observation / data point level: 498

• a multi-measure VTL Data Point becomes a set of SDMX observations, one 499
for each VTL measure 500

• the values of the VTL identifiers become the values of the corresponding 501
SDMX Dimensions, for all the observations of the set above 502

• the name of the jth VTL measure (e.g. “Cj”) becomes the value of the SDMX 503
MeasureDimension of the jth observation of the set (i.e. the concept Cj) 504

• the value of the jth VTL measure becomes the value of the SDMX 505
PrimaryMeasure of the jth observation of the set 506

• the values of the VTL Attributes become the values of the corresponding 507
SDMX DataAttributes (in principle for all the observations of the set above) 508

If desired, this method can be applied also to mono-measure VTL structures, 509
provided that none of the VTL components is mapped to the SDMX 510
measureDimension. Like in the general case, a measureDimension Component 511
called “measure_name” would be added to the SDMX DataStructure and would have 512
just one possible measure concept, corresponding to the unique VTL measure. 513

In any case, the resulting SDMX definitions must be compliant with the SDMX 514
consistency rules. For example, the possible Concepts of the SDMX 515
MeasureDimension need to be listed in a SDMX ConceptScheme, with proper id, 516
agency and version; moreover the SDMX DSD must have the assignmentStatus, 517
which does not exist in VTL, the attributeRelationship for the DataAttributes and so 518
on. 519

10.3.4.3 From VTL Measures to SDMX Data Attributes 520
For the multi-measure VTL structures (having more than one Measure Component), 521
it may happen that the Measures of the VTL DataStructure need to be managed as 522
DataAttributes in SDMX. Therefore a third mapping method consists in transforming 523
one VTL measure in the SDMX primaryMeasure and all the other VTL Measures in 524
SDMX DataAttributes. This method is called M2A (“M2A” stands for “Measures to 525
DataAttributes”). 526

When applied to mono-measure VTL structures (having one Measure component), 527
the M2A method behaves like the Basic mapping (the VTL Measure component 528
becomes the SDMX primary measure, there is no additional VTL measure to be 529
converted to SDMX DataAttribute). Therefore the mapping table is the same as for 530
the Basic method: 531

VTL SDMX
Simple Identifier Dimension
Time Identifier Time Dimension

Measure Identifier (if any) Measure Dimension
Measure Primary Measure

All Measure Components Measure Dimension (having one
Measure Concept for each VTL measure

component) &
Primary Measure

Attribute Data Attribute depending on all SDMX
dimensions including the TimeDimension

and except the MeasureDimension

15

Attribute Data Attribute
 532

For multi-measure VTL structures (having more than one Measure component), one 533
VTL Measure becomes the SDMX Primary Measure while the other VTL Measures 534
maintain their names and values but assume the role of DataAttribute in SDMX. The 535
choice of the VTL Measure that correspond to the SDMX primaryMeasure is left to 536
the definer of the SDMX data structure definition. 537

Taking into account that the multi-measure VTL structures do not have a measure 538
identifier, the mapping table is the following: 539

VTL SDMX
Simple Identifier Dimension
Time Identifier Time Dimension

One of the Measures Primary Measure
Other Measures Data Attribute

Attribute Data Attribute
 540

Even in this case, the resulting SDMX definitions must be compliant with the SDMX 541
consistency rules. For example, the SDMX DSD must have the assignmentStatus, 542
which does not exist in VTL, the attributeRelationship for the DataAttributes and so 543
on. In particular, the primaryMeasure of the SDMX DSD must be one of the VTL 544
Measures, chosen by the DSD definer. 545

10.3.5 Declaration of the mapping methods between data structures 546
In order to define and understand properly VTL transformations, the applied mapping 547
method must be specified. If the default mapping method (Basic) is applied, no 548
specification is needed. 549
 550
A customized mapping can be defined through the VtlMappingScheme and 551
VtlDataflowMapping classes (see the section of the SDMX IM relevant to the 552
VTL). A VtlDataflowMapping allows specifying the mapping methods to be used 553
for a specific dataflow, both in the direction from SDMX to VTL 554
(toVtlMappingMethod) and from VTL to SDMX (fromVtlMappingMethod). 555

It is possible to specify the toVtlMappingMethod and fromVtlMappingMethod 556
also for the conventional dataflow called “generic_dataflow”: in this case the 557
specified mapping methods are intended to become the default ones, overriding the 558
Basic methods. In turn, the toVtlMappingMethod and fromVtlMappingMethod 559
declared for a real artefactName are intended to override the default ones for 560
such an artefact. 561

 The VtlMappingScheme is a container for zero or more VtlDataflowMapping 562
(besides the mappings to artefacts other than the dataflow). 563

A VtlDataflowMapping allows associating the URN that identifies a SDMX 564
dataflow to the mapping methods used for it. 14 565

14 The URN can be written either without simplifications or with the simplifications explained in the
paragraph “Abbreviations of the URN” below.

16

10.3.6 Mapping dataflow subsets to distinct VTL data sets 566
Until now it has been assumed to map one SMDX dataflow to one VTL dataset and 567
vice-versa. This mapping one-to-one is not mandatory according to VTL because a 568
VTL data set is meant to be a set of observations (data points) on a logical plane, 569
having the same logical data structure and the same general meaning, independently 570
of the possible physical representation or storage (see VTL 2.0 User Manual page 571
24), therefore a SDMX dataflow can be seen either as a unique set of data 572
observations (corresponding to one VTL data set) or as the union of many sets of 573
data observations (each one corresponding to a distinct VTL data set). 574

As a matter of fact, in some cases it can be useful to define VTL operations involving 575
definite parts of a SDMX dataflow instead than the whole. A typical example of this 576
kind is the validation, and more in general the manipulation, of individual time series 577
belonging to the same dataflow, identifiable through the dimension components of 578
the dataflow except the time dimension. In many cases, these kind of operations can 579
be simplified by mapping, for example, distinct time series (i.e. different parts of a 580
SDMX dataflow) to distinct VTL data sets. 581

Therefore, in order to make VTL operations simpler when applied on parts of SDMX 582
dataflows, it is allowed to map distinct parts of a SDMX dataflow to distinct VTL data 583
sets according to the following rules and conventions. This kind of mapping is 584
allowed both from SDMX to VTL and from VTL to SDMX, as better explained 585
below.15 586

Hereinafter it has been taken into account that the parts of the SDMX dataflow that 587
map to different VTL datasets must never overlap one another in order to comply 588
with the VTL consistency rules (see also “Transformation Consistency” in the VTL 589
User Manual page 46), i.e. no observation can belong to more than one of these 590
parts. 591

Given a SDMX dataflow, it is allowed to map to different VTL datasets the groups of 592
observations that have different combination of values for some predefined 593
dimensions, while the observations that have the same combination of values for 594
those dimensions are mapped to the same VTL dataset. For example, assuming that 595
the SDMX dataflow DF1(1.0) has the dimensions INDICATOR, TIME_PERIOD and 596
COUNTRY, and that the user defines the dimensions INDICATOR and COUNTRY 597
as basis for the mapping, all the observations that have the same values for 598
INDICATOR and COUNTRY will be mapped to a specific VTL dataset. This ensures 599
that the different VTL datasets do not overlap one another. 600

In practice the mapping is obtained like follows: 601

• For a given SDMX dataflow, the user (VTL definer) defines the dimension 602
components on which the mapping will be based, in a certain order,.16 603
Following the example above, imagine that the user declares the dimensions 604
INDICATOR and COUNTRY. 605

15 This is an option at disposal of the definer of VTL Transformations; it remains always possible to map
one SDMX dataflow to one VTL dataflow and extract the desired parts (e.g. time-series) by means of
VTL operators (e.g. “sub”, “filter” …).
16 This definition is made through the ToVtlSubspace and ToVtlSpaceKey classes and/or in the
FromVtlSuperspace and FromVtlSpaceKey classes, depending on the direction of the mapping. When
no dimension is declared in such classes, it means that the option of mapping different parts of a SDMX
dataflow to different VTL datasets is not used.

17

• The VTL dataset is given a name composed of the following parts: 606
o The reference to a SDMX dataflow (expressed according to the rules 607

described in the previous paragraphs, i.e. URN, abbreviated URN or 608
another alias); for example DF1(1.0); 609

o a slash (“/”) as a separator; 610
o The reference to a specific part of the SDMX dataflow above, 611

expressed as the concatenation of the values that the predefined 612
SDMX dimensions must have, separated by dots (“.”) and expressed 613
in the order in which the dimensions are defined17 . For example 614
POPULATION.USA would mean that such a VTL dataset is mapped 615
to the SDMX observations for which INDICATOR is equal to 616
POPULATION and COUNTRY is equal to USA. 617

In the VTL transformations, this kind of name must be referenced between single 618
quotes because the slash (“/”) is not a regular character according to the VTL rules. 619

Therefore, the generic name of this kind of VTL datasets would be: 620

‘DF1(1.0)/INDICATORValue.COUNTRYValue’ 621

Where INDICATORValue and COUNTRYValue are placeholders for one value of the 622
INDICATOR and COUNTRY dimensions. 623

Instead the specific name of one of these VTL datasets would be: 624

‘DF1(1.0)/POPULATION.USA’ 625

In particular, this is the VTL dataset that contains all the observations of the dataflow 626
DF1 for which MeasureName = POPULATION and COUNTRY = USA. 627

Let us analyse now what happens in the two directions of the mapping, i.e. from 628
SDMX to VTL and from VTL to SDMX. 629

As already said, the mapping from SDMX to VTL happens when the VTL dataset is 630
operand of a VTL transformation, instead the mapping from VTL to SDMX happens 631
when the VTL dataset is result of a VTL transformation18 and need to be treated as a 632
SDMX object. The dimensions on which the mapping is based can be different in the 633
two directions, as defined in the ToVtlSpaceKey class and in the FromVtlSpaceKey 634
class . 635

First, let us see what happens in the mapping direction from SDMX to VTL, when 636
distinct parts of a SDMX dataflow need to be mapped to distinct VTL datasets that 637
are operand of some VTL transformations. 638

In order to obtain the VTL data structure from the SDMX one, the SDMX dimensions 639
on which the mapping is based are dropped, then the specified mapping method 640
from SDMX to VTL is applied (i.e. basic, pivot …). The SDMX dimensions on which 641
the mapping is based are not maintained in the VTL data structure because their 642

17 This is the order in which the dimensions are defined in the ToVtlSpaceKey class or in the
FromVtlSpaceKey clase, depending on the direction of the mapping.
18 It should be remembered that, according to the VTL consistency rules, a given VTL dataset can be
the result of no more than one VTL transformation

18

values are fixed19. Naturally, all the VTL datasets obtained from the same SDMX 643
dataflow would have the same VTL data structure. 644

Taking the example above, for all the datasets of the kind 645
‘DF1(1.0)/INDICATORValue.COUNTRYValue’, the dimensions INDICATOR and 646
COUNTRY would be dropped so that the resulting VTL data structure would have 647
only the identifier TIME_PERIOD. 648

As already said, each VTL dataset is assumed to contain all the observations of the 649
SDMX dataflow having INDICATOR=INDICATORValue and COUNTRY= 650
COUNTRYValue. For example, the VTL dataset ‘DF1(1.0)/POPULATION.USA’ 651
would contain all the observations of DF1(1.0) having INDICATOR = POPULATION 652
and COUNTRY = USA. 653

It should be noted that the desired VTL datasets can be obtained also by applying 654
the VTL operator “sub” (subspace) to the dataflow DF1(1.0), like in the following VTL 655
expression: 656

‘DF1(1.0)/POPULATION.USA’ := 657
DF1(1.0) [sub INDICATOR=“POPULATION”, COUNTRY=“USA”] 658

 659
Therefore, the use of the operator “sub” on a dataflow is a valid alternative to the 660
mapping of different parts of a SDMX dataflow to different VTL datasets in the 661
direction from SDMX to VTL. 662

Let us now analyse the mapping direction from VTL to SDMX. 663

In this situation distinct parts of a SDMX dataflow are calculated as distinct VTL 664
datasets, under the constraint that they must have the same VTL data structure. 665

in order to obtain the SDMX data structure from the VTL one, first the desired 666
mapping method from VTL to SDMX is applied (i.e. basic, unpivot …), then the 667
dimensions on which the mapping is based are added and assigned the 668
corresponding values. 669

For example, assume that one wants to calculate the dataflow DF2(1.0) with the 670
dimensions INDICATOR, TIME_PERIOD and COUNTRY and that distinct parts of 671
this dataflow, identified through the dimensions INDICATOR and COUNTRY, are 672
calculated through different VTL transformations as distinct VTL datasets, each one 673
having the TIME_PERIOD as the only identifier. The relevant VTL transformations 674
would be of this kind: 675

‘DF2(1.0)/INDICATORValue.COUNTRYValue’ := expression 676
 677

The two values INDICATORValue and COUNTRYValue would be assigned to the 678
dimensions INDICATOR and COUNTRY respectively, which are in the SDMX data 679
structure but not in the VTL one. 680
 681

19 Given the VTL consistency rules on the identifiers of the operands, dropping the dimensions having
fixed values allows to compose parts of SMDX dataflows coming from different dataflows and having in
origin different dimensions, provided that their identifiers become the same in VTL. For example, it
becomes possible to compose time series whichever dimensions they originally have, provided that all
the dimensions except the date are assigned a fixed value and eliminated.

19

A specific example of calculation of one of these VTL datasets is the following: 682

 ‘DF2(1.0)/GDPPERCAPITA.USA’ := expression 683
 684

It has been assumed that the expression results in a VTL datasets having the 685
TIME_PERIOD as the only identifier and that, in the mapping from VTL to SMDX, the 686
dimensions INDICATOR and COUNTRY are added to the SDMX data structure and 687
assume the values GDPPERCAPITA and USA respectively. 688
 689
Assuming that DF1 contains also the GDP in the dimension INDICATOR, the 690
GDPPERCAPITA could be calculated through VTL as follows: 691

‘DF2(1.0)/GDPPERCAPITA.USA’ := 692
‘DF1(1.0)/GDP.USA’ / ‘DF1(1.0)/POPULATION.USA’ 693

‘DF2(1.0)/GDPPERCAPITA.CANADA’ := 694
‘DF1(1.0)/GDP.CANADA’ / ‘DF1(1.0)/POPULATION.CANADA’ 695

… … … 696

All the VTL calculated datasets above will be part of the same calculated SDMX 697
dataflow DF2(1.0). 698

As an alternative to mapping different parts of a SDMX dataflow to different VTL 699
datasets in the direction from VTL to SDMX, it is possible to use of the VTL operator 700
“union”, like in the following example: 701

DF2(1.0) := union (DF2_1(1.0), … … … , DF2_N(1.0)) 702
 703

In this transformation it has been assumed that the VTL datasets DF2_j(1.0), with 704
j=1…N, have the identifiers TIME_PERIOD, INDICATOR and COUNTRY and have 705
been previously calculated by means of other VTL transformations. If these datasets 706
are calculated without the identifiers INDICATOR and COUNTRY, these can be 707
added by using the VTL operator “calc”, for example: 708

DF2.j(1.0) := 709
(‘DF1(1.0)/GDP.USA’ / ‘DF1(1.0)/POPULATION.USA’) 710
[calc identifier INDICATOR=GDPPERCAPITA, identifier COUNTRY=USA] 711

When this kind of mapping is used from VTL to SDMX, particular attention has to be 712
given to the consistency of the VTL operations, ensuring that the various parts 713
calculated through different transformations and mapped to the same SDMX dataflow 714
do not overlap and have the same structure. 715

 716

10.3.7 Mapping variables and value domains between VTL and SDMX 717
With reference to the VTL “model for Variables and Value domains”, the following 718
additional mappings have to be considered: 719

VTL SDMX
Data Set Component Although this abstraction exists in

SDMX, it does not have an explicit

20

definition and correspond to a
Component (either a Dimension or a
PrimaryMeasure or a DataAttribute)
belonging to one specific Dataflow20

Represented Variable Concept (having a Representation)

Value Domain Representation (see the Structure
Pattern in the Base Package)

Enumerated Value Domain / Code List Codelist (for enumerated Dimension,
PrimaryMeasure, DataAttribute) or
ConceptScheme (for
MeasureDimension)

Code Code (for enumerated Dimension,
PrimaryMeasure, DataAttribute) or
Concept (for MeasureDimension)

Described Value Domain non-enumerated Representation
(having Facets / ExtendedFacets, see
the Structure Pattern in the Base
Package)

Value Although this abstraction exists in
SDMX, it does not have an explicit
definition and correspond to a Code of
the Codelist (for enumerated
Representations) or to a valid value (for
non-enumerated Representations)or to
a Concept (for MeasureDimension)

Value Domain Subset / Set This abstraction does not exist in SDMX

Enumerated Value Domain Subset /
Enumerated Set

This abstraction does not exist in SDMX

Described Value Domain Subset /
Described Set

This abstraction does not exist in SDMX

Set list This abstraction does not exist in SDMX

 720

The main difference between VTL and SDMX relies on the fact that the VTL artefacts 721
for defining subsets do not exist in SDMX, therefore the VTL features for referring to 722
predefined subsets are not available in SDMX. These artefacts are the Value Domain 723
Subset (or Set), either enumerated or described, the Set List (list of values belonging 724
to enumerated subsets) and the Data Set Component (aimed at defining the set of 725
values that the Component of a Data Set can take, possibly a subset of the codelist). 726

20 Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow can
assume

21

Another difference consists in the fact that a Value Domain is an identifiable object in 727
VTL either if enumerated or not, while in SDMX the Codelist (corresponding to a VTL 728
enumerated Value Domain) is identifiable, while the SDMX non-enumerated 729
Representation (corresponding to a VTL non-enumerated Value Domain) is not 730
identifiable. As a consequence, the definition of the VTL rulesets, which in VTL can 731
refer either to enumerated or non-enumerated value domains, in SDMX can refer 732
only to enumerated Value Domains (i.e. to SDMX Codelists). 733

Moreover, it is important to be aware that some VTL operations (for example the 734
binary operations at data set level) are consistent only if the components having the 735
same names in the operated VTL data sets have the same representation (i.e. the 736
same Value Domain as for VTL). For example, it is possible to obtain correct results 737
from the VTL expression 738

DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 739

if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector, 740
obs_value, obs_status in DS_a and in DS_b) refer to the same general 741
representation. In simpler words, DS_a and DS_b must use the same values/codes 742
for the same ref_date, geo_area, sector, obs_value, obs_status in DS_a and in 743
DS_b, otherwise the relevant values would not match and the result of the operation 744
would be wrong. 745

The property above is not enforced by construction in SDMX, in fact a Component 746
can have different LocalRepresentations in different Data Structure Definitions, even 747
not compatible one another (for example, it may happen that the component 748
geo_area is represented by ISO-alpha-3 codes in DS_a and by ISO alpha-2 codes in 749
DS_b). Therefore, it will be up to the definer of VTL transformations to ensure that 750
the VTL expressions are consistent with the actual representations of the SDMX 751
Components. 752

 753

10.4 Mapping between SDMX and VTL Data Types 754

10.4.1 VTL Data types 755
According to the VTL User Guide the possible operations in VTL depend on the data 756
types of the artefacts. For example, numbers can be multiplied but text strings 757
cannot. In the VTL Transformations, the compliance between the operators and the 758
data types of their operands is statically checked, i.e., violations result in compile-759
time errors. 760

The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which 761
are the types of the scalar values, and compound types (like data sets, components, 762
rulesets, etc.), which are the types of the compound structures. See below the 763
diagram of the VTL data types, taken from the VTL User Manual: 764

22

 765
 Figure 1 – VTL Data Types 766

 767

The VTL scalar types are in turn subdivided in basic scalar types, which are 768
elementary (not defined in term of other data types) and Value Domain and Set 769
Scalar types, which are defined in terms of the basic scalar types. 770

The VTL basic scalar types are listed below and follow a hierarchical structure in 771
terms of supersets/subsets (e.g. “scalar” is the superset of all the basic scalar types: 772

23

 773

 Figure 2 – VTL Basic Scalar Types 774

 775

10.4.2 VTL basic scalar types and SDMX data types 776
The VTL assumes that a basic scalar type has a unique internal representation and 777
can have more external representations. 778

The internal representation is the format used within a VTL system to represent (and 779
process) all the scalar values of a certain type. In principle, this format is hidden and 780
not necessarily known by users. The external representations are instead the 781
external formats of the values of a certain basic scalar type, i.e. the formats known by 782
the users. For example, the internal representation of the dates can be an integer 783
counting the days since a predefined date (e.g. from 01/01/4713 BC up to 784
31/12/5874897 AD like in Postgres) while two possible external representations are 785
the formats YYYY-MM-GG and MM-GG-YYYY (e.g. respectively 2010-12-31 and 12-786
31-2010). 787

The internal representation is the reference format that allows VTL to operate on 788
more values of the same type (for example on more dates) even if such values have 789
different external formats: these values are all converted to the unique internal 790
representation so that they can be composed together (e.g. to find the more recent 791
date, to find the time span between these dates and so on). 792

The VTL assumes that a unique internal representation exists for each basic scalar 793
type but does not prescribe any particular format for it, leaving the VTL systems free 794
to using they preferred or already existing internal format. By consequence, in VTL 795
the basic scalar types are abstractions not associated to a specific format. 796

SDMX data types are conceived instead to support the data exchange, therefore they 797
do have a format, which is known by the users and correspond, in VTL terms, to 798
external representations. Therefore, for each VTL basic scalar type there can be 799
more SDMX data types (the latter are explained in the section “General Notes for 800
Implementers” of this document and are actually much more numerous than the 801
former). 802
 803
The following paragraphs describe the mapping between the SDMX data types and 804
the VTL basic scalar types. This mapping shall be presented in the two directions of 805
possible conversion, i.e. from SDMX to VTL and vice-versa. 806
 807

24

The conversion from SDMX to VTL happens when an SDMX artefact acts as inputs 808
of a VTL transformation. As already said, in fact, at compile time the VTL needs to 809
know the VTL type of the operands in order to check their compliance with the VTL 810
operators and at runtime it must convert the values from their external (SDMX) 811
representations to the corresponding internal (VTL) ones. 812
 813
The opposite conversion, i.e. from VTL to SDMX, happens when a VTL result, i.e. a 814
VTL data set output of a transformation, must become a SDMX artefact (or part of it). 815
The values of the VTL result must be converted into the desired (SDMX) external 816
representations (data types) of the SDMX artefact. 817
 818

10.4.3 Mapping SDMX data types to VTL basic scalar types 819
The following table describes the default mapping for converting from the SDMX data 820
types to the VTL basic scalar types. 821

SDMX data type (BasicComponentDataType) Default VTL basic scalar type

String
(string allowing any character)

string

Alpha
(string which only allows A-z)

string

AlphaNumeric
(string which only allows A-z and 0-9)

string

Numeric
(string which only allows 0-9, but is not numeric so that
is can having leading zeros)

string

BigInteger
(corresponds to XML Schema xs:integer datatype;
infinite set of integer values)

integer

Integer
(corresponds to XML Schema xs:int datatype; between
-2147483648 and +2147483647 (inclusive))

integer

Long
(corresponds to XML Schema xs:long datatype;
between -9223372036854775808 and
+9223372036854775807 (inclusive))

integer

Short
(corresponds to XML Schema xs:short datatype;
between -32768 and -32767 (inclusive))

integer

Decimal
(corresponds to XML Schema xs:decimal datatype;
subset of real numbers that can be represented as
decimals)

number

Float
(corresponds to XML Schema xs:float datatype;
patterned after the IEEE single-precision 32-bit floating
point type)

number

Double
(corresponds to XML Schema xs:double datatype;
patterned after the IEEE double-precision 64-bit floating
point type)

number

Boolean
(corresponds to the XML Schema xs:boolean datatype;
support the mathematical concept of binary-valued logic:
{true, false})

boolean

URI
(corresponds to the XML Schema xs:anyURI; absolute

string

25

or relative Uniform Resource Identifier Reference)
Count
(an integer following a sequential pattern, increasing by
1 for each occurrence)

integer

InclusiveValueRange
(decimal number within a closed interval, whose bounds
are specified in the SDMX representation by the facets
minValue and maxValue)

number

ExclusiveValueRange
(decimal number within an open interval, whose bounds
are specified in the SDMX representation by the facets
minValue and maxValue)

number

Incremental
(decimal number the increased by a specific interval
(defined by the interval facet), which is typically enforced
outside of the XML validation)

number

ObservationalTimePeriod
(superset of StandardTimePeriod and TimeRange)

time

StandardTimePeriod
(superset of BasicTimePeriod and
ReportingTimePeriod)

time

BasicTimePeriod
(superset of GregorianTimePeriod and DateTime)

date

GregorianTimePeriod
(superset of GregorianYear, GregorianYearMonth,
and GregorianDay)

date

GregorianYear
(YYYY)

date

GregorianYearMonth / GregorianMonth
(YYYY-MM)

date

GregorianDay
(YYYY-MM-DD)

date

ReportingTimePeriod
(superset of RepostingYear, ReportingSemester,
ReportingTrimester, ReportingQuarter, ReportingMonth,
ReportingWeek, ReportingDay)

time_period

ReportingYear
(YYYY-A1 – 1 year period)

time_period

ReportingSemester
(YYYY-Ss – 6 month period)

time_period

ReportingTrimester
(YYYY-Tt – 4 month period)

time_period

ReportingQuarter
(YYYY-Qq – 3 month period)

time_period

ReportingMonth
(YYYY-Mmm – 1 month period)

time_period

ReportingWeek
(YYYY-Www – 7 day period; following ISO 8601
definition of a week in a year)

time_period

ReportingDay
(YYYY-Dddd – 1 day period)

time_period

DateTime
(YYYY-MM-DDThh:mm:ss)

date

TimeRange
(YYYY-MM-DD(Thh:mm:ss)?/<duration>)

time

Month
(--MM; speicifies a month independent of a year; e.g.
February is black history month in the United States)

string

26

MonthDay
(--MM-DD; specifies a day within a month independent
of a year; e.g. Christmas is December 25th; used to
specify reporting year start day)

string

Day
(---DD; specifies a day independent of a month or year;
e.g. the 15th is payday)

string

Time
(hh:mm:ss; time independent of a date; e.g. coffee
break is at 10:00 AM)

string

Duration
(corresponds to XML Schema xs:duration datatype)

duration

XHTML Metadata type – not applicable
KeyValues Metadata type – not applicable
IdentifiableReference Metadata type – not applicable
DataSetReference Metadata type – not applicable
AttachmentConstraintReference Metadata type – not applicable

Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types 822

When VTL takes in input SDMX artefacts, it is assumed that a type conversion 823
according to the table above always happens. In case a different VTL basic scalar 824
type is desired, it can be achieved in the VTL program taking in input the default VTL 825
basic scalar type above and applying to it the VTL type conversion features (see the 826
implicit and explicit type conversion and the “cast” operator in the VTL Reference 827
Manual). 828

10.4.4 Mapping VTL basic scalar types to SDMX data types 829
The following table describes the default conversion from the SDMX data types to the 830
VTL basic scalar types. 831

VTL basic
scalar type

Default SDMX data type
(BasicComponentDataType)

Default output format

string String Like XML (xs:string)

number Float Like XML (xs:float)

integer Integer Like XML (xs:int)

date DateTime YYYY-MM-DDT00:00:00Z

time StandardTimePeriod <date>/<date> (as defined above)

time_period ReportingTimePeriod
(StandardReportingPeriod)

 YYYY-Pppp
(according to SDMX)

duration Duration Like XML (xs:duration)
PnYnMnDTnHnMnS

boolean Boolean Like XML (xs:boolean) with the values
“true” or “false”

Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types 832

In case a different default conversion is desired, it can be achieved through the 833
CustomTypeScheme and CustomType artefacts (see also the section 834
Transformations and Expressions of the SDMX information model). 835

The custom output formats can be specified by means of the VTL formatting mask 836
described in the section “Type Conversion and Formatting Mask” of the VTL 837

27

Reference Manual. Such a section describes the masks for the VTL basic scalar 838
types “number”, “integer”, “date”, “time”, “time_period” and “duration”. As for the types 839
“string” and “boolean” the VTL conventions are extended with some other special 840
characters as follows. 841

VTL special characters for the formatting masks

Number

D one numeric digit (if the scientific notation is adopted, D is only for
the mantissa)

E one numeric digit (for the exponent of the scientific notation)
. (dot) possible separator between the integer and the decimal parts.

, (comma) possible separator between the integer and the decimal parts.

Time and Duration
C century
Y year
S semester
Q quarter
M month
W week
D day
h hour digit (by default on 24 hours)
m minute
s second
d decimal of second
P period indicator (see the “duration” codes below)
p number of periods

AM/PM indicator of AM / PM (e.g. am/pm for “am” or “pm”)
MONTH textual representation of the month (e.g., JANUARY for January)

DAY textual representation of the day (e.g., MONDAY for Monday)

String
X any string character
Z any string character from “A” to “z”
9 any string character from “0” to “9”

Boolean
B Boolean using “true” for True and “false” for False
1 Boolean using “1” for True and “0” for False
0 Boolean using “0” for True and “1” for False

 842
The default conversion, either standard or customized, can be used to deduce 843
automatically the representation of the components of the result of a VTL 844
transformation. In alternative, the representation of the resulting SDMX dataflow can 845
be given explicitly by providing its DataStructureDefinition. In other words, the 846
representation specified in the DSD, if available, overrides any default conversion21. 847

21 The representation given in the DSD, if available, must be compatible with the VTL data type,
otherwise an error must be raised.

28

10.4.5 Null Values 848
The VTL programs can produce in output Null values for Measures and Attributes 849
(Null values are not allowed in the Dimensions). 850

In the conversions from SDMX to VTL it is assumed by default that a missing value in 851
SDMX becomes a NULL in VTL. Correspondingly, in the conversion from VTL to 852
SDMX it is assumed that a NULL in VTL becomes a missing value in SDMX. 853

This default assumption can be overridden, separately for each VTL basic scalar 854
type, by specifying which the value that represents the NULL in SDMX is. This can 855
be done through the attribute “nullValue” of the CustomType artefact (see also the 856
section Transformations and Expressions of the SDMX information model). 857

10.4.6 Format of the literals used in VTL transformations 858
The VTL programs can contain literals, i.e. specific values of certain data types 859
written directly in the VTL definitions or expressions. The VTL does not prescribe a 860
specific format for the literals and leave the specific VTL systems and the definers of 861
VTL transformations free of using their preferred formats. 862

Given this discretion, it is essential to know which are the external representations 863
adopted for the literals in a VTL program, in order to interpret them correctly. For 864
example, if the external format for the dates is YYYY-MM-DD the date literal 2010-865
01-02 has the meaning of 2nd January 2010, instead if the external format for the 866
dates is YYYY-DD-MM the same literal has the meaning of 1st February 2010. 867

Hereinafter, i.e. in the SDMX implementation of the VTL, it is assumed that the 868
literals are expressed according to the “default output format” of the table of the 869
previous paragraph (“Mapping VTL basic scalar types to SDMX data types”) unless 870
otherwise specified. 871

A different format can be specified in the attribute “vtlLiteralFormat” of the 872
CustomType artefact (see also the section Transformations and Expressions of the 873
SDMX information model). 874

In case a literal is operand of a VTL Cast operation, the format specified in the Cast 875
overrides all the possible otherwise specified formats. 876

	10 Validation and Transformation Language (VTL)
	10.1 Introduction
	10.2 References to SDMX artefacts from VTL statements
	10.2.1 Introduction
	10.2.2 References through the URN
	10.2.3 Abbreviation of the URN

	10.3 Mapping between SDMX and VTL
	10.3.1 When the mapping occurs
	10.3.2 General mapping of VTL and SDMX data structures
	10.3.3 Mapping from SDMX to VTL data structures
	10.3.3.1 Basic Mapping
	10.3.3.2 Pivot Mapping
	10.3.3.3 From SDMX DataAttributes to VTL Measures

	10.3.4 Mapping from VTL to SDMX data structures
	10.3.4.1 Basic Mapping
	10.3.4.2 Unpivot Mapping
	10.3.4.3 From VTL Measures to SDMX Data Attributes

	10.3.5 Declaration of the mapping methods between data structures
	10.3.6 Mapping dataflow subsets to distinct VTL data sets
	10.3.7 Mapping variables and value domains between VTL and SDMX

	10.4 Mapping between SDMX and VTL Data Types
	10.4.1 VTL Data types
	10.4.2 VTL basic scalar types and SDMX data types
	10.4.3 Mapping SDMX data types to VTL basic scalar types
	10.4.4 Mapping VTL basic scalar types to SDMX data types
	10.4.5 Null Values
	10.4.6 Format of the literals used in VTL transformations

