

SDMX STANDARDS: SECTION 5

SDMX REGISTRY SPECIFICATION:
LOGICAL FUNCTIONALITY AND LOGICAL

INTERFACES

VERSION 3.0
DRAFT

May 2021

2

Revision History

Revision Date Contents

DRAFT 1.0 May 2021 Draft release updated for SDMX 3.0 for public consultation

© SDMX 2021
http://www.sdmx.org/

3

Contents

1 Introduction ... 5

2 Scope and Normative Status .. 7

3 Scope of the SDMX Registry/Repository ... 8

3.1 Objective ... 8

3.2 Structural Metadata... 8

3.3 Registration .. 10

3.4 Notification .. 10

3.5 Discovery .. 11

4 SDMX Registry/Repository Architecture ... 12

4.1 Architectural Schematic .. 12

4.2 Structural Metadata Repository ... 12

4.3 Provisioning Metadata Repository ... 13

5 Registry Interfaces and Services ... 14

5.1 Registry Interfaces .. 14

5.2 Registry Services .. 14

5.2.1 Introduction .. 14

5.2.2 Structure Submission Service ... 15

5.2.3 Structure Query Service ... 15

5.2.4 Data and Reference Metadata Registration Service ... 16

5.2.5 Data and Reference Metadata Discovery ... 18

5.2.6 Subscription and Notification .. 18

5.2.7 Registry Behaviour ... 19

6 Identification of SDMX Objects .. 21

6.1 Identification, Versioning, and Maintenance .. 21

6.1.1 Identification, Naming, Versioning, and Maintenance Model 22

6.2 Unique identification of SDMX objects .. 24

6.2.1 Agencies and Metadata Providers .. 24

6.2.2 Universal Resource Name (URN) ... 27

6.2.3 Table of SDMX-IM Packages and Classes ... 30

6.2.4 URN Identification components of SDMX objects ... 34

7 Implementation Notes ... 41

7.1 Structural Definition Metadata ... 41

7.1.1 Introduction .. 41

7.1.2 Item Scheme, Structure .. 43

7.1.3 Structure Usage ... 43

7.2 Data and Metadata Provisioning ... 46

7.2.1 Provisioning Agreement: Basic concepts .. 46

7.2.2 Provisioning Agreement Model – pull use case .. 46

7.3 Data and Metadata Constraints .. 49

7.3.1 Data and Metadata Constraints: Basic Concepts .. 49

7.3.2 Data and Metadata Constraints: Schematic .. 50

4

7.3.3 Data and Metadata Constraints: Model .. 51

7.4 Data and Metadata Registration.. 52

7.4.1 Basic Concepts .. 52

7.4.2 The Registration Request ... 53

7.4.3 Registration Response ... 56

7.5 Subscription and Notification Service .. 57

7.5.1 Subscription Logical Class Diagram ... 58

7.5.2 Subscription Information ... 58

7.5.3 Wildcard Facility ... 59

7.5.4 Structural Repository Events .. 60

7.5.5 Registration Events .. 61

7.6 Notification .. 62

7.6.1 Logical Class Diagram .. 62

7.6.2 Structural Event Component... 62

7.6.3 Registration Event Component ... 63

Corrigendum

5

1 Introduction 1

The business vision for SDMX envisages the promotion of a “data sharing” model to facilitate 2

low-cost, high-quality statistical data and metadata exchange. Data sharing reduces the 3

reporting burden of organisations by allowing them to publish data once and let their 4

counterparties “pull” data and related metadata as required. The scenario is based on: 5

• the availability of an abstract information model capable of supporting time series and 6

cross-sectional data, structural metadata, and reference metadata (SDMX-IM) 7

• standardised XML and JSON schemas derived from the model (XSD, SDMX-ML, JSON) 8

• the use of web-services technology (XML, JSON, Open API) 9

Such an architecture needs to be well organised, and the SDMX Registry/Repository (SDMX-10

RR) is tasked with providing structure, organisation, and maintenance and query interfaces for 11

most of the SDMX components required to support the data sharing vision. 12

However, it is important to emphasise that the SDMX-RR provides support for the submission 13

and retrieval of all SDMX structural metadata and provisioning metadata. Therefore, the 14

Registry not only supports the data-sharing scenario, but this metadata is also vital in order to 15

provide support for data and metadata reporting/collection, and dissemination scenarios. 16

Standard formats for the exchange of aggregated statistical data and metadata as prescribed 17

in SDMX v3.0 are envisaged to bring benefits to the statistical community because data 18

reporting and dissemination processes can be made more efficient. 19

As organisations migrate to SDMX enabled systems, many XML, JSON (and conventional) 20

artefacts will be produced (e.g., Data Structure, Metadata Structure, Code List and Concept 21

definitions – often collectively called structural metadata – XML/JSON schemas generated from 22

data and metadata structure definitions, XSLT stylesheets for transformation and display of 23

data and metadata, terminology references, etc.). The SDMX model supports interoperability, 24

and it is important to be able to discover and share these artefacts between parties in a 25

controlled and organized way. 26

This is the role of the registry. 27

With the fundamental SDMX standards in place, a set of architectural standards are needed to 28

address some of the processes involved in statistical data and metadata exchange, with an 29

emphasis on maintenance, retrieval and sharing of the structural metadata. In addition, the 30

architectural standards support the registration and discovery of data and referential metadata. 31

These architectural standards address the ‘how’, rather than the ‘what’, and are aimed at 32

enabling existing SDMX standards to achieve their mission. The architectural standards 33

address registry services, which initially comprise: 34

• structural metadata repository 35

6

• data and metadata registration 36

• query 37

The registry services outlined in this specification are designed to help the SDMX community 38

manage the proliferation of SDMX assets and to support data sharing for reporting and 39

dissemination. 40

7

2 Scope and Normative Status 41

The scope of this document is to specify the logical interfaces for the SDMX registry in terms 42

of the functions required and the data that may be present in the function call, and the behaviour 43

expected of the registry. 44

In this document, functions and behaviours of the Registry Interfaces are described in four 45

ways: 46

• in text 47

• with tables 48

• with UML diagrams excerpted from the SDMX Information Model (SDMX-IM) 49

• with UML diagrams that are not a part of the SDMX-IM but are included here for clarity 50

and to aid implementations (these diagrams are clearly marked as “Logical Class 51

Diagram ...”) 52

Whilst the introductory section contains some information on the role of the registry, it is 53

assumed that the reader is familiar with the uses of a registry in providing shared metadata 54

across a community of counterparties. 55

Note that sections 5 and 6 contain normative rules regarding the Registry Interface and the 56

identification of registry objects. Further, the minimum standard for access to the registry is via 57

a REST interface (HTTP or HTTPS), as described in the appropriate sections. The notification 58

mechanism must support e-mail and HTTP/HTTPS protocols as described. Normative registry 59

interfaces are specified in the SDMX-ML specification (Part 03 of the SDMX Standard). All 60

other sections of this document are informative. 61

Note that although the term “authorised user” is used in this document, the SDMX standards 62

do not define an access control mechanism. Such a mechanism, if required, must be chosen 63

and implemented by the registry software provider. 64

8

3 Scope of the SDMX Registry/Repository 65

3.1 Objective 66

The objective of the SDMX registry/repository is, in broad terms, to allow organisations to 67

publish statistical data and reference metadata in known formats such that interested third 68

parties can discover these data and interpret them accurately and correctly. The mechanism 69

for doing this is twofold: 70

1. To maintain and publish structural metadata that describes the structure and valid 71

content of data and reference metadata sources such as databases, metadata 72

repositories, data sets, metadata sets. This structural metadata enables software 73

applications to understand and to interpret the data and reference metadata in these 74

sources. 75

2. To enable applications, organisations, and individuals to share and to discover data 76

and reference metadata. This facilitates data and reference metadata dissemination 77

by implementing the data sharing vision of SDMX. 78

3.2 Structural Metadata 79

Setting up structural metadata and the exchange context (referred to as “data provisioning”) 80

involves the following steps for maintenance agencies: 81

• agreeing and creating a specification of the structure of the data (called a Data Structure 82

Definition or DSD in this document but also known as “key family”), which defines the 83

dimensions, measures and attributes of a dataset and their valid value set; 84

• if required, defining a subset or view of a DSD which allows some restriction of content 85

called a “dataflow definition”; 86

• agreeing and creating a specification of the structure of reference metadata (Metadata 87

Structure Definition) which defines the attributes and presentational arrangement of a 88

Metadataset and their valid values and content; 89

• if required, defining a subset or view of an MSD which allows some restriction of content 90

called a “metadataflow”; 91

• defining which subject matter domains (specified as a Category Scheme) are related to 92

the Dataflow and Metadataflow to enable browsing; 93

• defining one or more lists of Data and Metadata Providers; 94

• defining which Data/Metadata Providers have agreed to publish a given 95

Dataflow/Metadataflow – this is called a Provision Agreement or Metadata Provision 96

Agreement, respectively. 97

9

 98

Figure 1: Schematic of the Basic Structural Artefacts in the SDMX-IM 99

Note that in Figure 1 (but also most of the relevant subsequent figures) terms that include both 100

data and metadata have been used. For example: 101

• Structure Definition: refers to Data Structure Definition (DSD) and Metadata Structure 102

Definition (MSD) 103

• Flow: refers to Dataflow and Metadataflow 104

• Provision Agreement: refers to Provision Agreement (for data) and Metadata Provision 105

Agreement 106

• Provider Scheme: refers to Data Provider Scheme and Metadata Provider Scheme 107

• Provider: refers to Data Provider and Metadata Provider 108

In that context, the term “Metadata” refers to reference metadata. 109

10

3.3 Registration 110

Publishing the data and reference metadata involves the following steps for a Data/Metadata 111

Provider: 112

• making the reference metadata and data available in SDMX-ML/JSON conformant data 113

files or databases (which respond to an SDMX query with data). The data and reference 114

metadata files or databases must be web accessible, and must conform to an agreed 115

Dataflow or Metadataflow (Data Structure Definition or Metadata Structure Definition 116

subset); 117

• registering the existence of published reference metadata and data files or databases 118

with one or more SDMX registries. 119

 120

Figure 2: Schematic of Registered Data and Metadata Sources in the SDMX-IM 121

3.4 Notification 122

Notifying interested parties of newly published or re-published data, reference metadata or 123

changes in structural metadata involves: 124

• registry support of a subscription-based notification service which sends an email or 125

notifies an HTTP address announcing all published data that meets the criteria contained 126

in the subscription request. 127

11

3.5 Discovery 128

Discovering published data and reference metadata involves interaction with the registry to fulfil 129

the following logical steps that would be carried out by a user interacting with a service that 130

itself interacts with the registry and an SDMX-enabled data or reference metadata resource: 131

• optionally browsing a subject matter domain category scheme to find Dataflows (and 132

hence Data Structure Definitions) and Metadataflows which structure the type of data 133

and/or reference metadata being sought; 134

• build a query, in terms of the selected Data Structure Definition or Metadata Structure 135

Definition, which specifies what data are required and submitting this to a service that 136

can query an SDMX registry which will return a list of (URLs of) data and reference 137

metadata files and databases which satisfy the query; 138

• processing the query result set and retrieving data and/or reference metadata from the 139

supplied URLs. 140

 141

Figure 3: Schematic of Data and Metadata Discovery and Query in the SDMX-IM 142

12

4 SDMX Registry/Repository Architecture 143

4.1 Architectural Schematic 144

The architecture of the SDMX registry/repository is derived from the objectives stated above. 145

It is a layered architecture that is founded by a structural metadata repository which supports 146

a provisioning metadata repository which supports the registry services. These are all 147

supported by the SDMX-ML schemas. Applications can be built on top of these services which 148

support the reporting, storage, retrieval, and dissemination aspects of the statistical lifecycle as 149

well as the maintenance of the structural metadata required to drive these applications. 150

 151

Figure 4: Schematic of the Registry Content and Services 152

4.2 Structural Metadata Repository 153

The basic layer is that of a structural metadata service which supports the lifecycle of SDMX 154

structural metadata artefacts such as Maintenance Agencies, Data Structure Definitions, 155

Metadata Structure Definitions, Provision Agreements, Processes etc. This layer is supported 156

by the Structure Submission and Query Service. 157

Note that the SDMX REST API supports all of the SDMX structural artefacts. The only structural 158

artefacts that are not yet supported are: 159

• Registration of data and metadata sources 160

• Subscription and Notification 161

As of the initial version of SDMX 3.0 no messages are defined to support these artefacts; 162

hence, users may need to use SDMX 2.1 Registry Interface messages, instead. 163

13

4.3 Provisioning Metadata Repository 164

The function of this repository is to support the definition of the structural metadata that 165

describes the various types of data-store which model SDMX-conformant databases or files, 166

and to link to these data sources. These links can be specified for a data/metadata provider, 167

for a specific data or metadata flow. In the SDMX model this is called the Provision or Metadata 168

Provision Agreement. 169

This layer is supported by the Data and Metadata Registration Service. 170

14

5 Registry Interfaces and Services 171

5.1 Registry Interfaces 172

The Registry Interfaces are: 173

• Notify Registry Event 174

• Submit Subscription Request 175

• Submit Subscription Response 176

• Submit Registration Request 177

• Submit Registration Response 178

• Query Registration Request 179

• Query Registration Response 180

• Query Subscription Request 181

• Query Subscription Response 182

The registry interfaces are invoked in one of two ways: 183

1. The interface is the name of the root node of the SDMX-ML document 184

2. The interface is invoked as a child element of the RegistryInterface message 185

where the RegistryInterface is the root node of the SDMX-ML document. 186

In addition to these interfaces the registry must support a mechanism for submitting and 187

querying for structural metadata. This is detailed in sections 5.2.2 and 5.2.3. 188

All these interactions with the Registry – with the exception of NotifyRegistryEvent – are 189

designed in pairs. The first document, the one which invokes the SDMX-RR interface, is a 190

“Request” document. The message returned by the interface is a “Response” document. 191

It should be noted that all interactions are assumed to be synchronous, with the exception of 192

Notify Registry Event. This document is sent by the SDMX-RR to all subscribers whenever an 193

even occurs to which any users have subscribed. Thus, it does not conform to the request-194

response pattern, because it is inherently asynchronous. 195

5.2 Registry Services 196

5.2.1 Introduction 197

The services described in this section do not imply that each is implemented as a discrete web 198

service. 199

15

5.2.2 Structure Submission Service 200

The registry must support a mechanism for submitting structural metadata. This mechanism 201

can be the SDMX REST interface for structural metadata (this is defined in the corresponding 202

GitHub project, dedicated to the SDMX REST API: https://github.com/sdmx-twg/sdmx-rest). In 203

order for the architecture to be scalable, the finest-grained piece of structural metadata that 204

can be processed by the SDMX-RR is a MaintainableArtefact, with the exception of Item 205

Schemes, where changes at an Item level is also possible (see next section on the SDMX 206

Information Model). 207

5.2.3 Structure Query Service 208

The registry must support a mechanism for querying for structural metadata. This mechanism 209

can be the SDMX REST interface for structural metadata (this is defined in the corresponding 210

GitHub project, dedicated to the SDMX REST API: https://github.com/sdmx-twg/sdmx-rest). 211

The registry response to this query mechanism is the SDMX Structure message, which has as 212

its root node: 213

• Structure 214

The SDMX structural artefacts that may be queried are: 215

• data flows and metadata flows 216

• data structure definitions and metadata structure definitions 217

• code lists 218

• value lists 219

• concept schemes 220

• reporting taxonomies 221

• provision agreements and metadata provision agreements 222

• structure maps 223

• representation map 224

• organisation scheme map 225

• concept scheme map 226

• category scheme map 227

• reporting taxonomy map 228

• processes 229

https://github.com/sdmx-twg/sdmx-rest
https://github.com/sdmx-twg/sdmx-rest

16

• hierarchies 230

• constraints 231

• category schemes 232

• categorisations and categorised objects (examples are categorised data flows and 233

metadata flows, data structure definitions, metadata structure definitions, provision 234

agreements registered data sources and metadata sources) 235

• organisation schemes (agency scheme, data provider scheme, data consumer scheme, 236

organisation unit scheme) 237

Due to the VTL implementation the other structural metadata artefacts that may be queried are: 238

• Transformation schemes 239

• Custom type schemes 240

• Name personalisation schemes 241

• VTL mapping schemes 242

• Ruleset schemes 243

• User defined operator schemes 244

 245

5.2.4 Data and Reference Metadata Registration Service 246

This service must implement the following Registry Interfaces: 247

• SubmitRegistrationRequest 248

• SubmitRegistrationResponse 249

• QueryRegistrationRequest 250

• QueryRegistrationResponse 251

The Data and Metadata Registration Service allows SDMX conformant files and web-252

accessible databases containing published data and reference metadata to be registered in the 253

SDMX Registry. The registration process MAY validate the content of the datasets or metadata-254

sets, and MAY extract a concise representation of the contents in terms of concept values (e.g., 255

values of the data attribute, dimension, metadata attribute), or entire keys, and storing this as 256

a record in the registry to enable discovery of the original dataset or metadata-set. These are 257

called Constraints in the SDMX-IM. 258

17

The Data and Metadata Registration Service MAY validate the following, subject to the access 259

control mechanism implemented in the Registry: 260

• that the data/metadata provider is allowed to register the dataset or metadataset; 261

• that the content of the dataset or metadataset meets the validation constraints. This is 262

dependent upon such constraints being defined in the structural repository and which 263

reference the relevant Dataflow, Metadataflow, Data Provider, Metadata Provider, Data 264

Structure Definition, Metadata Structure Definition, Provision Agreement, Metadata 265

Provision Agreement; 266

• that a queryable data source exists – this would necessitate the registration service 267

querying the service to determine its existence; 268

• that a simple data source exists (i.e., a file accessible at a URL); 269

• that the correct Data Structure Definition or Metadata Structure Definition is used by the 270

registered data; 271

• that the components (Dimensions, Attributes, Measures, Metadata Attributes, etc.) are 272

consistent with the Data Structure Definition or Metadata Structure Definition; 273

• that the valid representations of the concepts to which these components correspond 274

conform to the definition in the Data Structure Definition or Metadata Structure Definition. 275

The Registration has an action attribute which takes one of the following values: 276

Action Attribute

Value

Behaviour

Append Add this registration to the registry

Replace Replace the existing Registration with this Registration identified by

the id in the Registration of the Submit Registration Request

Delete Delete the existing Registration identified by the id in the

Registration of the Submit Registration Request

The Registration has three Boolean attributes which may be present to determine how an 277

SDMX compliant dataset or metadataset indexing application must index the datasets or 278

metadatasets upon registration. The indexing application behaviour is as follows: 279

Boolean Attribute Behaviour if Value is “true”

indexTimeSeries A compliant indexing application must index all the time series

keys (for a Dataset registration) or metadata target values (for a

Metadataset registration)

18

indexDataSet A compliant indexing application must index the range of actual

(present) values for each dimension of the Dataset (for a

Dataset registration) or the range of actual (present) values for

each Metadata Attribute which takes an enumerated value.

Note that for data this requires much less storage than full key

indexing, but this method cannot guarantee that a specific

combination of Dimension values (the Key) is actually present in

the Dataset

indexReportingPeriod A compliant indexing application must index the time period

range(s) for which data are present in the Dataset. For

Metadatasets, the validity period of the Reports may be

indexed.

5.2.5 Data and Reference Metadata Discovery 280

The Data and Metadata Discovery Service implements the following Registry Interfaces: 281

• QueryRegistrationRequest 282

• QueryRegistrationResponse 283

5.2.6 Subscription and Notification 284

The Subscription and Notification Service implements the following Registry Interfaces: 285

• SubmitSubscriptionRequest 286

• SubmitSubscriptionResponse 287

• NotifyRegistryEvent 288

The data sharing paradigm relies upon the consumers of data and metadata being able to pull 289

information from data providers’ dissemination systems. For this to work efficiently, a data 290

consumer needs to know when to pull data, i.e., when something has changed in the registry 291

(e.g., a dataset has been updated and re-registered). Additionally, SDMX systems may also 292

want to know if a new Data Structure Definition, Code List or Metadata Structure Definition has 293

been added. The Subscription and Notification Service comprises two parts: subscription 294

management, and notification. 295

Subscription management involves a user submitting a subscription request which contains: 296

• a query or constraint expression in terms of a filter which defines the events for which 297

the user is interested (e.g., new data for a specific dataflow, or for a domain category, or 298

changes to a Data Structure Definition). 299

• a list of URIs or endpoints to which an XML notification message can be sent. Supported 300

endpoint types will be email (mailto:) and HTTP POST (a normal http:// address); 301

19

• request for a list of submitted subscriptions; 302

• deletion of a subscription; 303

Notification requires that the structural metadata repository and the provisioning metadata 304

repository monitor any event which is of interest to a user (the object of a subscription request 305

query), and to issue an SDMX notification document to the endpoints specified in the relevant 306

subscriptions. 307

5.2.7 Registry Behaviour 308

The following table defines the behaviour of the SDMX Registry for the various Registry 309

Interface messages. It should be noted, though, that as of SDMX 3.0, semantic versioning is 310

foreseen for all Maintainable Artefacts. Moreover, while the old versioning scheme is allowed, 311

given there is no more a "final" flag, there is no way guaranteeing the consistency across 312

version of a Maintainable, unless semantic versioning is used. 313

Given the above, the behaviour described in the following table concerns either draft Artefacts 314

using semantic versioning or any Artefacts using the old versioning scheme. Nevertheless, in 315

the case of semantic versioning the registry must respect the versioning rules when performing 316

the actions below. For example, it is not possible to replace a non-draft Artefact that follows 317

semantic versioning, unless a newer version is introduced according to the semantic versioning 318

rules. Furthermore, even when draft Artefacts are submitted, the registry has to verify semantic 319

versioning is respected against the previous non-draft versions. It is worth noting that the rules 320

for semantic versioning and replacing or maintaining semantically versioned Artefacts applies 321

to public Artefacts. This means that any system may internally perform any change within a 322

version of an Artefact, until the latter becomes public. Then (as also explained in the Technical 323

Notes) the Artefacts must adhere to the Semantic Versioning rules. 324

Interface Behaviour

All 1) If the action is set to “replace” then the entire

contents of the existing maintainable object in

the Registry MUST be replaced by the object

submitted.

2) Cross referenced structures MUST exist in

either the submitted document (in Structures

or Structure Location) or in the registry to

which the request is submitted.

3) If the action is set to “delete” then the Registry

MUST verify that the object can be deleted. In

order to qualify for deletion, the object must:

a) Be a draft version.

20

Interface Behaviour

b) Not be explicitly1 referenced from any

other object in the Registry.

4) The semantic versioning rules in the SDMX

documentation MUST be obeyed.

Structure submission Structures are submitted at the level of the

Maintainable Artefact and the behaviour in “All” above

is therefore at the level of the Maintainable Artefact.

SubmitRegistrationRequest If the datasource is a file (simple datasource) then the

file MAY be retrieved and indexed according to the

Boolean attributes set in the Registration.

For a queryable datasource the Registry MAY

validate that the source exists and can accept an

SDMX data query.

1 With semantic versioning, it is allowed to reference a range of artefacts, e.g., a DSD referencing a
Codelist with version 1.2.3+ means all patch versions greater than 1.2.3. This means that deleting 1.2.4-
draft does not break integrity of the aforementioned DSD.

21

6 Identification of SDMX Objects 325

6.1 Identification, Versioning, and Maintenance 326

All major classes of the SDMX Information model inherit from one of: 327

• IdentifiableArtefact – this gives an object the ability to be uniquely identified (see 328

following section on identification), to have a user-defined URI, and to have multi-lingual 329

annotations. 330

• NameableArtefact – this has all of the features of IdentifiableArtefact plus 331

the ability to have a multi-lingual name and description. 332

• VersionableArtefact – this has all of the above features plus a version number and 333

a validity period. 334

• MaintainableArtefact – this has all of the above features, plus registry and 335

structure URIs, and an association to the maintenance organisation of the object. 336

22

6.1.1 Identification, Naming, Versioning, and Maintenance Model 337

 338

Figure 5: Class diagram of fundamental artefacts in the SDMX-IM 339

The table below shows the identification and related data attributes to be stored in a registry 340

for objects that are one of: 341

• Annotable 342

• Identifiable 343

• Nameable 344

23

• Versionable 345

• Maintainable 346

Object Type Data Attributes Status Data type Notes

Annotable AnnotationTitle C string

AnnotationType C string

AnnotationURN C string

AnnotationText in the

form of
InternationalString

C

This can have language-
specific variants

Identifiable All content as for
Annotable plus

id M string

uri C string

urn C string Although the urn is
computable and
therefore may not be
submitted or stored
physically, the Registry
must return the urn for
each object, and must
be able to service a
query on an object
referenced solely by its
urn.

Nameable

All content as for
Identifiable plus

Name in the form of
InternationalString

M string This can have language
specific variants.

Description in the form

of
InternationalString

C string This can have language
specific variants.

Versionable

All content as for
Identifiable plus

version M string This is the version
number according to
Semantic Versioning.

validFrom C Date/time

validTo C Date/time

Maintainable

All content as for
Versionable plus

24

isExternalReference C boolean Value of “true” indicates
that the actual resource
is held outside of this
registry. The actual
reference is given in the
registry URI or the
structureURL, each of
which must return a valid
SDMX-ML file.

serviceURL C string The url of the service
that can be queried for
this resource.

structureURL C string The url of the resource.

(Maintenance)
organisationId

M string The object must be
linked to a maintenance
organisation, i.e.,
Agency or Metadata
Provider.

Table 1: Common Attributes of Object Types 347

6.2 Unique identification of SDMX objects 348

6.2.1 Agencies and Metadata Providers 349

The Maintenance Agency in SDMX is maintained in an Agency Scheme which itself is a sub 350

class of Organisation Scheme – this is shown in the class diagram below. 351

 352

Figure 6: Agency Scheme Model 353

25

The Agency in SDMX is extremely important. The Agency Id system used in SDMX is an n-354

level structure. The top level of this structure is maintained by SDMX. Any Agency in this top 355

level can declare sub agencies and any sub agency can also declare sub agencies. The 356

Agency Scheme has a fixed id and version and is never declared explicitly in the SDMX object 357

identification mechanism. 358

In order to achieve this SDMX adopts the following rules: 359

 360

• Agencies are maintained in an Agency Scheme (which is a sub class of Organisation 361

Scheme). 362

• The agency of the Agency Scheme must also be declared in a (different) Agency 363

Scheme. 364

• The “top-level” agency is SDMX and maintains the “top-level” Agency Scheme. 365

• Agencies registered in the top-level scheme can themselves maintain a single Agency 366

Scheme. Agencies in these second-tier schemes can themselves maintain a single 367

Agency Scheme and so on. 368

• The AgencyScheme cannot be versioned, hence it is an exception from the Semantic 369

Versioning that other Artefacts follow. 370

• There can be only one AgencyScheme maintained by any one Agency. It has a fixed 371

id of AGENCIES. 372

• The /hierarchy of Organisation is not inherited by Maintenance Agency – thus each 373

Agency Scheme is a flat list of Maintenance Agencies. 374

• The format of the agency identifier is agencyID.agencyID etc. The top-level agency 375

in this identification mechanism is the agency registered in the SDMX agency scheme. 376

In other words, SDMX is not a part of the hierarchical ID structure for agencies. However, 377

SDMX is, itself, a maintenance agency and is contained in the top-level Agency Scheme. 378

This supports a hierarchical structure of agencyID. 379

An example is shown below. 380

26

 381

The following organizations maintain an Agency Scheme. 382

• SDMX – contains Agencies AA, BB 383

• AA – contains Agencies CC, DD 384

• BB – contains Agencies CC, DD 385

• DD – Contains Agency EE 386

Each agency is identified by its full hierarchy excluding SDMX. 387

e.g., the id of EE as an agencyID is AA.DD.EE 388

An example of this is shown in the XML snippet below: 389

 390

Figure 8: Example Showing Use of Agency Identifiers 391

Figure 7: Example of Hierarchic Structure of Agencies

27

Each of these maintenance agencies has an identical Code list with the Id CL_BOP. However, 392

each is uniquely identified by means of the hierarchic agency structure. 393

Following the same principles, the Metadata Provider is the maintenance organisation for a 394

special subset of Maintainable Artefacts, i.e., the Metadatasets; the latter are the containers of 395

reference metadata combined with a target that those metadata refer to. 396

6.2.2 Universal Resource Name (URN) 397

6.2.2.1 Introduction 398

To provide interoperability between SDMX Registry/Repositories in a distributed network 399

environment, it is important to have a scheme for uniquely identifying (and thus accessing) all 400

first-class (Identifiable) SDMX-IM objects. Most of these unique identifiers are composite 401

(containing maintenance agency, or parent object identifiers), and there is a need to be able to 402

construct a unique reference as a single string. This is achieved by having a globally unique 403

identifier called a universal resource name (URN) which is generated from the actual 404

identification components in the SDMX-RR APIs. In other words, the URN for any Identifiable 405

Artefact is constructed from its component identifiers (agency, id, version etc.). 406

6.2.2.2 URN Structure 407

Case Rules for URN 408

For the URN, all parts of the string are case sensitive. The generic structure of the URN is as 409

follows: 410

SDMXprefix.SDMX-IM-package-name.class-name=agencyid:maintainedobject-411

id(maintainedobject-version).*containerobject-id.object-id 412

* this can repeat and may not be present (see explanation below) 413

Note that in the SDMX Information Model there are no concrete Versionable Artefacts that are 414

not a Maintainable Artefact. For this reason, the only version information that is allowed is for 415

the maintainable object. 416

The Maintenance agency identifier is separated from the maintainable artefact identifier by a 417

colon ‘:’. All other identifiers in the SDMX URN syntax are separated by a period(.). 418

6.2.2.3 Explanation of the generic structure 419

In the explanation below the actual object that is the target of the URN is called the actual 420

object. 421

SDMXPrefix: urn:sdmx:org 422

SDMX-IM-package-name: sdmx.infomodel.package= 423

The packages are: 424

28

base 425

codelist 426

conceptscheme 427

datastructure 428

categoryscheme 429

registry 430

metadatastructure 431

process 432

structuremapping 433

transformation 434

maintainable-object-id is the identifier of the maintainable object. This will always be 435

present as all identifiable objects are either a maintainable object or contained in a maintainable 436

object. 437

maintainable-object-version is the version of the maintainable object and is enclosed 438

in round brackets (). It will always be present. 439

container-object-id is the identifier of an intermediary object that contains the actual 440

object which the URN is identifying. It is not mandatory as many actual objects do not have an 441

intermediary container object. For instance, a Code is in a maintained object (Codelist) and 442

has no intermediary container object, whereas a MetadataAttribute has an intermediary 443

container object (MetadataAttributeDescriptor) and may have an intermediary 444

container object, which is its parent MetadataAttribute. For this reason, the container 445

object id may repeat, with each repetition identifying the object at the next-lower level in its 446

hierarchy. Note that if there is only a single containing object in the model then it is NOT 447

included in the URN structure. This applies to AttributeDescriptor, 448

DimensionDescriptor, and MeasureDescriptor where there can be only one such 449

object and this object has a fixed id. Therefore, whilst each of these has a URN, the id of the 450

AttributeDescriptor, DimensionDescriptor, and MeasureDescriptor is not 451

included when the actual object is a DataAttribute or a Dimension/ TimeDimension, or 452

a Measure. 453

Note that although a Code can have a parent Code and a Concept can have a parent 454

Concept these are maintained in a flat structure and therefore do not have a container-455

object-id. 456

For example, the sequence is agency:DSDid(version).DimensionId and not 457

agency:DSDid(version).DimensionDescriptorId.DimensionId. 458

29

object-id is the identifier of the actual object unless the actual object is a Maintainable 459

object. If present it is always the last id and is not followed by any other character. 460

Generic Examples of the URN Structure 461

Actual object is a maintainable 462

SDMXPrefix.SDMX-IM-package-name.classname=agencyid:maintained-object-463

id(version) 464

Actual object is contained in a maintained object with no intermediate containing object 465

SDMXPrefix.SDMX-IM-package-name.classname=agencyid:maintained-object-466

id(version).object-id 467

Actual object is contained in a maintained object with an intermediate containing object 468

SDMXPrefix.SDMX-IM-package-name.classname=agencyid:maintained-object-469

id(version).contained-object-id.object-id 470

Actual object is contained in a maintained object with no intermediate containing object but 471

the object type itself is hierarchical 472

In this case the object id may not be unique in itself but only within the context of the hierarchy. 473

In the general syntax of the URN all intermediary objects in the structure (with the exception, 474

of course, of the maintained object) are shown as a contained object. An example here would 475

be a Category in a CategoryScheme. The Category is hierarchical, and all intermediate 476

Categories are shown as a contained object. The example below shows the generic 477

structure for CategoryScheme/ Category/ Category. 478

SDMXPrefix.SDMX-IM-package-name.classname=agencyid:maintained-object-479

id(version).contained-object-id.object-id 480

Actual object is contained in a maintained object with an intermediate containing object and the 481

object type itself is hierarchical 482

In this case the generic syntax is the same as for the example above as the parent object is 483

regarded as a containing object, even if it is of the same type. An example here is a 484

MetadataAttribute where the contained objects are MetadataAttributeDescriptor 485

(first contained object id) and MetadataAttribute (subsequent contained object ids). The 486

example below shows the generic structure for MSD/ MetadataAttributeDescriptor/ 487

MetadataAttribute/ MetadataAttribute 488

SDMXPrefix.SDMX-IM-package-name.classname=agencyid:maintained-object-489

id(version).contained-object-id.contained-object-id contained-object-490

id.object-id 491

30

Concrete Examples of the URN Structure 492

The Data Structure Definition CRED_EXT_DEBT version 1.0.0 maintained by the top-level 493

Agency TFFS would have the URN: 494

urn:sdmx:org.sdmx.infomodel.datastructure.DataStucture=TFFS:CRED_EXT_ 495

DEBT(1.0.0) 496

The URN for a code for Argentina maintained by ISO in the code list CL_3166A2 version 1.0.0 497

would be: 498

urn:sdmx:org.sdmx.infomodel.codelist.Code=ISO:CL_3166A2(1.0.0).AR 499

The URN for a category (id of 1) which has parent category (id of 2) maintained by SDMX in 500

the category scheme SUBJECT_MATTER_DOMAINS version 1.0.0 would be: 501

urn:sdmx:org.sdmx.infomodel.categoryscheme.Category=SDMX:SUBJECT_MATT502

ER_DOMAINS(1.0.0).1.2 503

The URN for a Metadata Attribute maintained by SDMX in the MSD CONTACT_METADATA 504

version 1.0.0 in the Report Structure CONTACT_REPORT where the hierarchy of the Metadata 505

Attribute is CONTACT_DETAILS/CONTACT_NAME would be: 506

urn:sdmx:org.sdmx.infomodel.metadatastructure.MetadataAttribute=SDMX:507

CONTACT_METADATA(1.0.0).CONTACT_REPORT.CONTACT_DETAILS.CONTACT_NAME 508

The TFFS defines ABC as a sub-Agency of TFFS then the URN of a Dataflow maintained by 509

ABC and identified as EXTERNAL_DEBT version 1.0.0 would be: 510

urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=TFFS.ABC:EXTERNAL_511

DEBT(1.0.0) 512

The SDMX-RR MUST support this globally unique identification scheme. The SDMX-RR MUST 513

be able to create the URN from the individual identification attributes submitted and to transform 514

the URN to these identification attributes. The identification attributes are: 515

• Identifiable and Nameable Artefacts: id (in some cases this id may be hierarchic) 516

• Maintainable Artefacts: id, version, agencyId 517

The SDMX-RR MUST be able to resolve the unique identifier of an SDMX artefact and to 518

produce an SDMX-ML rendering of that artefact if it is located in the Registry. 519

6.2.3 Table of SDMX-IM Packages and Classes 520

The table below lists all of the packages in the SDMX-IM together with the concrete classes 521

that are in these packages and whose objects have a URN. 522

31

Package URN class name (model class name where this is

different)

base Agency

 OrganisationUnitScheme

 AgencyScheme

 DataProviderScheme

 MetadataProviderScheme

 DataConsumerScheme

 OrganisationUnit

 DataProvider

 MetadataProvider

 DataConsumer

datastructure DataStructure (DataStructureDefinition)

 AttributeDescriptor

 DataAttribute

 GroupDimensionDescriptor

 DimensionDescriptor

 Dimension

 TimeDimension

 MeasureDescriptor

 Measure

 Dataflow

metadatastructure IdentifiableObjectTarget

 ReportStructure

 MetadataAttribute

 MetadataStructure

(MetadataStructureDefinition)

 Metadataflow

process Process

 ProcessStep

 Transition

32

Package URN class name (model class name where this is

different)

registry ProvisionAgreement

 MetadataProvisionAgreement

 DataConstraint

 MetadataConstraint

 Subscription

structuremapping StructureMap

 ComponentMap

 EpochMap

 DatePatternMap

 ConceptSchemeMap

 OrganisationSchemeMap

 CodelistMap

 CategorySchemeMap

 ReportingTaxonomyMap

 ItemMap

 RepresentationMap

 FrequencyFormatMapping

codelist Codelist

 Valuelist

 Hierarchy

 HierarchyAssociation

 Code

 HierarchicalCode

 Level

categoryscheme CategoryScheme

 Category

 Categorisation

 ReportingTaxonomy

 ReportingCategory

33

Package URN class name (model class name where this is

different)

conceptscheme ConceptScheme

 Concept

transformation TransformationScheme

 Transformation

 CustomTypeScheme

 CustomType

 NamePersonalisationScheme

 NamePersonalisation

 VtlMappingScheme

 VtlCodelistMapping

 VtlConceptMapping

 VtlDataflowMapping

 RulesetScheme

 Ruleset

 UserDefinedOperatorScheme

 UserDefinedOperator

Table 2: SDMX-IM Packages and Contained Classes 523

34

6.2.4 URN Identification components of SDMX objects 524

The table below describes the identification components for all SDMX object types that have identification. Note the actual attributes are all Id 525

but have been prefixed by their class name or multiple class names to show navigation, e.g., conceptSchemeAgencyId is really the Id attribute 526

of the Agency class that is associated to the ConceptScheme. 527

* indicates that the object is maintainable. 528

Note that for brevity the URN examples omit the prefix. All URNs have the prefix 529

urn:sdmx.org.sdmx.infomodel.{package}.{classname}= 530

Agency The URN for an Agency is shown later in this table.
The identification of an Agency in the URN
structure for the maintainable object is by means
of the agencyId. The AgencyScheme is not
identified as SDMX has a mechanism for
identifying an Agency uniquely by its Id. Note that
this Id may be hierarchical.

IMF
Sub agency in the IMF AGENCIES
IMF.SubAgency1

*ConceptScheme conceptSchemeAgencyId:conceptSchemeId(versio
n)

SDMX:CROSS_DOMAIN_CONCEPTS(1.0.0)

Concept conceptSchemeAgencyId:conceptSchemeId(versio
n).conceptId

SDMX:CROSS_DOMAIN_CONCEPTS(1.0.0).FREQ

*Codelist codeListAgencyId:codeListId(version) SDMX:CL_FREQ(1.0.0)

Code codeListAgencyId:codelistId(version).codeId SDMX:CL_FREQ(1.0.0).Q

*Hierarchy hierarchyAgencyId:hierarchyId(version) UNESCO:H-C-GOV(1.0.0)

35

Level hierarchyAgencyId:hierarchyId(version).level UNESCO:H-C-GOV(1.0.0).LVL1

HierarchicalCode hierarchyAgencyId:hierarchyId(version).hierarchica
lCode

UNESCO:H-C-GOV(1.0.0).GOV_CODE1

*HierarchyAssociation hierarchyAssociationAgencyId:hierarchyAssociatio
nId(version)

UNESCO:CL_EXP_SOURCE(1.0.0)

*DataStructure dataStructureDefinitionAgencyId:dataStructureDef
initionId(version)

TFFS:EXT_DEBT(1.0.0)

DimensionDescriptor
MeasureDescriptor
AttributeDescriptor

dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).componentListId
where the componentListId is the name of the
class (there is only one occurrence of each in the
Data Structure Definition)

TFFS:EXT_DEBT(1.0.0).DimensionDescriptor
TFFS:EXT_DEBT(1.0.0).MeasureDescriptor
TFFS:EXT_DEBT(1.0.0).AttributeDescriptor

GroupDimensionDescriptor dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).groupDimensionDescriptorId

TFFS:EXT_DEBT(1.0.0).SIBLING

Dimension dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).dimensionId

TFFS:EXT_DEBT(1.0.0).FREQ

TimeDimension dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).timeDimensionId

TFFS:EXT_DEBT(1.0.0).TIME_PERIOD

DataAttrribute dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).dataAttributeId

TFFS:EXT_DEBT(1.0.0).OBS_STATUS

Measure dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).measureId

TFFS:EXT_DEBT(1.0.0).OBS_VALUE

*CategoryScheme categorySchemeAgencyId:categorySchemeId(versi
on)

IMF:SDDS(1.0.0)

36

Category categorySchemeAgencyId:categorySchemeId(versi
on).categoryId.categoryId.categoryId etc.

IMF:SDDS(1.0.0):level_1_category.level_2_category …

*Categorisation categorisationAgencyId:categorisationId(version) IMF:cat001(1.0.0)

*ReportingTaxonomy reportingTaxonomyAgencyId:reportingTaxonomyI
d(version)

IMF:REP_1(1.0.0)

ReportingCategory reportingTaxonomyAgencyId:
reportingTaxonomyId(version).reportingCategoryI
d.reportingCategoryId

IMF:REP_1(1.0.0):level_1_repcategory.level_2_repcate
gory …

*OrganisationUnitScheme organisationUnitSchemeAgencyId:organisationUni
tSchemeId(version)

ECB:ORGANISATIONS(1.0.0)

OrganisationUnit organisationUnitSchemeAgencyId:organisationUni
tSchemeId(version).organisationUnitId

ECB:ORGANISATIONS(1.0.0).1F

*AgencyScheme agencySchemeAgencyId:agencySchemeId(version) ECB:AGENCIES(1.0.0)

Agency agencySchemeAgencyId:agencySchemeId(version).
agencyId

ECB:AGENCIES(1.0.0).AA

*DataProviderScheme dataProviderSchemeAgencyId:dataProviderSchem
eId(version)

SDMX:DATA_PROVIDERS(1.0.0)

DataProvider dataProviderSchemeAgencyId:dataProviderSchem
eId(version).dataProviderId

SDMX:DATA_PROVIDERS(1.0.0).PROVIDER_1

*MetadataProviderScheme metadataProviderSchemeAgencyId:metadataProvi
derSchemeId(version)

SDMX:DATA_PROVIDERS(1.0.0)

MetadataProvider metadataProviderSchemeAgencyId:metadataProvi
derSchemeId(version).metadataProviderId

SDMX:METADATA_PROVIDERS(1.0.0).MD_PROVIDER_1

37

*DataConsumerScheme dataConsumerSchemeAgencyId:dataConsumerSch
emeId(version)

SDMX:DATA_CONSUMERS(1.0.0)

Data Consumer dataConsumerSchemeAgencyId:dataConsumerSch
emeId(version).dataConsumerId

SDMX:DATA_CONSUMERS(1.0.0).CONSUMER_1

*MetadataStructure msdAgencyId:msdId(version) IMF:SDDS_MSD(1.0.0)

MetadataAttributeDescriptor msdAgencyId:msdId(version).metadataAttributeDe
scriptorId

IMF:SDDS_MSD(1.0.0).REPORT

MetadataAttribute msdAgencyId:msdId(version).
metadataAttributeDescriptorId.metadataAttribute
Id

IMF:SDDS_MSD(1.0.0).REPORT.COMPILATION

*Dataflow dataflowAgencyId:dataflowId(version) TFFS:CRED_EXT_DEBT(1.0.0)

*Metadataflow metadataflowAgencyId:metadataflowId(version) IMF:SDDS_MDF(1.0.0)

*ProvisionAgreement provisionAgreementAgencyId:provisionAgreement
Id(version)

TFFS:CRED_EXT_DEBT_AB(1.0.0)

*MetadataProvisionAgreement metadataProvisionAgreementAgencyId:metadataP
rovisionAgreementId(version)

IMF:SDDS_MDF_AB(1.0.0)

*DataConstraint dataConstraintAgencyId:dataConstraintId(version) TFFS:CREDITOR_DATA_CONTENT(1.0.0)

*MetadataConstraint metadataConstraintAgencyId:metadataConstraintI
d(version)

TFFS:CREDITOR_METADATA_CONTENT(1.0.0)

*StructureMap structureMapAgencyId:structureMap(version) SDMX:BOP_STRUCTURES(1.0.0)

ComponentMap structureMapAgencyId:structureMap(version).com
ponentMapId

SDMX:BOP_STRUCTURES(1.0.0).REF_AREA_TO_COUNT
RY

38

EpochMap structureMapAgencyId:structureMap(version).unix
time

SDMX:BOP_STRUCTURES(1.0.0).UNIX_MAP

DatePatternMap structureMapAgencyId:structureMap(version).exc
eltime

SDMX:BOP_STRUCTURES(1.0.0).EXCEL_TIME

FrequencyFormatMapping structureMapAgencyId:structureMap(version).for
matmap

SDMX:BOP_STRUCTURES(1.0.0).LOCAL_FREQ

*RepresentationMap repMapAgencyId:repMapId(version) SDMX:REF_AREA_MAPPING(1.0.0)

*OrganisationSchemeMap orgSchemeMapAgencyId:orgSchemeMapId(versio
n)

SDMX:AGENCIES_PROVIDERS(1.0.0)

*CategorySchemeMap catSchemeMapAgencyId:catSchemeMapId(version
)

SDMX:EUROSTAT_SUBJECT_DOMAIN(1.0.0)

*ConceptSchemeMap conceptSchemeMapAgencyId:conceptSchemeMap
Id(version)

SDMX:CONCEPT_MAP(1.0.0)

*ReportingTaxonomyMap repTaxonomyAgencyId:repTaxonomyId(version) SDMX:RT_MAP(1.0.0)

*Valuelist valuelistAgencyId:valuelistId(version) SDMX:VLIST(1.0.0)

*Process processAgencyId:processId{version) BIS:PROCESS1(1.0.0)

ProcessStep processAgencyId:processId(version).processStepId BIS:PROCESS1(1.0.0).STEP1

Transition processAgencyId:processId(version).processStepId.
transitionId

BIS:PROCESS1(1.0.0).STEP1.TRANSITION1

*TransformationScheme transformationSchemeAgencyId
transformationSchemeId(version)

ECB: TRANSFORMATION_SCHEME(1.0.0)

39

Transformation transformationSchemeAgencyId
transformationSchemeId(version)
transformationId

ECB:TRANSFORMATION_SCHEME(1.0.0).TRANS_1

CustomTypeScheme customTypeSchemeAgencyId
customTypeSchemeId(version)

ECB:CUSTOM_TYPE_SCHEME(1.0.0)

CustomType customTypeSchemeAgencyId
customTypeSchemeId(version)
customTypeId

ECB: CUSTOM_TYPE_SCHEME(1.0.0).CUSTOM_TYPE_1

NamePersonalisationScheme namePersonalisationSchemeAgencyId
namePersonalisationSchemeId(version)

ECB:PSN_SCHEME(1.0.0)

NamePersonalisation namePersonalisationSchemeAgencyId
namePersonalisationSchemeId(version)
namePersonalisationId

ECB:PSN_SCHEME(1.0.0).PSN1234

VtlMappingScheme vtlMappingSchemeAgencyId
VtlMappingSchemeId(version)

ECB:CLIST_MP(2.0.0)

VtlCodelistMapping vtlMappingSchemeAgencyId
vtlMappingSchemeId(version)
vtlCodelistMappingId

ECB:CLIST_MP(2.0.0).ABZ

VtlConceptMapping vtlMappingSchemeAgencyId
vtlMappingSchemeId(version)
vtlConceptMappingId

ECB:CLIST_MP(1.0.0).XYA

VtlDataflowMapping vtlMappingSchemeAgencyId
vtlMappingSchemeId(version)
vtlDataflowMappingId

ECB:CLIST_MP(1.0.0).MOQ

40

RulesetScheme rulesetSchemeAgencyId
rulesetSchemeId(version)

ECB:RULESET_23(1.0.0)

Ruleset rulesetSchemeAgencyId
rulesetSchemeId(version)
rulesetId

ECB:RULESET_23(1.0.0).SET111

UserDefinedOperatorScheme userDefinedOperatorSchemeAgencyId
userDefinedOperatorSchemeId(version)

ECB:OS_CALC(1.2.0)

UserDefinedOperator userDefinedOperatorSchemeAgencyId
userDefinedOperatorSchemeId(version)
usserDefinedOperatorId

ECB:OS_CALC(1.2.0).OS267

Subscription The Subscription is not itself an Identifiable
Artefact and therefore it does not follow the rules
for URN structure.
The name of the URN is registryURN
There is no pre-determined format.

This cannot be generated by a common mechanism as
subscriptions, although maintainable in the sense that
they can be submitted and deleted, are not mandated
to be created by a maintenance agency and have no
versioning mechanism. It is therefore the responsibility
of the target registry to generate a unique Id for the
Subscription, and for the application creating the
subscription to store the registry URN that is returned
from the registry in the subscription response message.

 531

Table 3: Table of identification components for SDMX Identifiable Artefacts 532

41

7 Implementation Notes 533

7.1 Structural Definition Metadata 534

7.1.1 Introduction 535

The SDMX Registry must have the ability to support agencies in their role of defining and 536

disseminating structural metadata artefacts. These artefacts include data structure 537

definitions, code lists, concepts etc. and are fully defined in the SDMX-IM. An authenticated 538

agency may submit valid structural metadata definitions which must be stored in the 539

registry. Note that the term “structural metadata” refers as a general term to all structural 540

components (Data Structure Definitions, Metadata Structure Definitions, Code Lists, 541

Concept Schemes, etc.) 542

At a minimum, structural metadata definitions may be submitted to and queried from the 543

registry via an HTTP/HTTPS POST in the form of one of the SDMX-ML messages for 544

structural metadata and the SDMX RESTful API for structure queries. The message may 545

contain all structural metadata items for the whole registry, structural metadata items for 546

one maintenance agency, or individual structural metadata items. 547

Structural metadata items 548

• may only be modified by the maintenance agency which created them; 549

• may only be deleted by the agency which created them; 550

• may not be deleted if they are referenced from other constructs in the Registry. 551

The level of granularity for the maintenance of SDMX Structural Metadata objects in the 552

registry is the Maintainable Artefact. Especially for Item Schemes, though, partial 553

maintenance may be performed, i.e., at the level of the Item, by submitting an Item Scheme 554

with the 'isPartial' flag set and a reduced set of Items. 555

The following table lists the Maintainable Artefacts. 556

Maintainable Artefacts Content

Abstract Class Concrete Class

Item Scheme Codelist Code

 Concept Scheme Concept

 Category Scheme Category

 Organisation Unit Scheme Organisation Unit

 Agency Scheme Agency

 Data Provider Scheme Data Provider

 Metadata Provider Scheme Metadata Provider

42

 Data Consumer Scheme Data Consumer

 Reporting Taxonomy Reporting Category

 Transformation Scheme Transformation

 Custom Type Scheme Custom Type

 Name Personalisation Scheme Name Personalisation

 Vtl Mapping Scheme Vtl Codelist Mapping

 Vtl Concept Mapping

 Ruleset Scheme Ruleset

 User Defined Operator Scheme User Defined Operator

Enumerated List Valuelist Value Item

Structure Data Structure Definition Dimension Descriptor

Group Dimension Descriptor

Dimension

Time Dimension

Attribute Descriptor

Data Attribute

Measure Descriptor

Measure

 Metadata Structure Definition Metadata Attribute Descriptor

Metadata Attribute

Structure Usage Dataflow

 Metadataflow

None Process Process Step

None Structure Map Component Map

Epoch Map

Date Pattern Map

None Representation Map Representation Mapping

Item Scheme Map Organisation Scheme Map Item Map

 Concept Scheme Map Item Map

 Category Scheme Map Item Map

 Reporting Taxonomy Map Item Map

None Provision Agreement

None Metadata Provision Agreement

None Hierarchy Hierarchical Code

None Hierarchy Association

None Categorisation

Table 4: Table of Maintainable Artefacts for Structural Definition Metadata 557

43

7.1.2 Item Scheme, Structure 558

The artefacts included in the structural definitions are: 559

• All types of Item Scheme (Codelist, Concept Scheme, Category Scheme, 560

Organisation Scheme, Agency Scheme, Data Provider Scheme, Metadata Provider 561

Scheme, Data Consumer Scheme, Organisation Unit Scheme, Transformation 562

Scheme, Name Personalisation Scheme, Custom Type Scheme, Vtl Mapping 563

Scheme, Ruleset Scheme, User Defined Operator Scheme) 564

• All types of Enumerated List (Valuelist)2 565

• All types of Structure (Data Structure Definition, Metadata Structure Definition) 566

• All types of Structure Usage (Dataflow, Metadataflow) 567

7.1.3 Structure Usage 568

7.1.3.1 Structure Usage: Basic Concepts 569

The Structure Usage defines, in its concrete classes of Dataflow and Metadataflow, which 570

flows of data and metadata use which specific Structure, and importantly for the support 571

of data and metadata discovery, the Structure Usage can be linked to one or more 572

Category in one or more Category Scheme using the Categorisation mechanism. This 573

gives the ability for an application to discover data and metadata by “drilling down” the 574

Category Schemes. 575

2 Note that Codelist is also an EnumeratedList.

44

7.1.3.2 Structure Usage Schematic 576

 577

Figure 9: Schematic of Linking the Data and Metadata Flows to Categories and Structure 578
Definitions 579

 580

45

7.1.3.3 Structure Usage Model 581

 582

Figure 10: SDMX-IM of links from Structure Usage to Category 583

In addition to the maintenance of the Dataflow and the Metadataflow, the following links 584

must be maintained in the registry: 585

• Dataflow to Data Structure Definition 586

• Metadataflow to Metadata Structure Definition 587

The following links may be created by means of a Categorisation 588

• Categorisation to Dataflow and Category 589

• Categorisation to Metadataflow and Category 590

46

7.2 Data and Metadata Provisioning 591

7.2.1 Provisioning Agreement: Basic concepts 592

Data/Metadata provisioning defines a framework in which the provision of different types 593

of statistical data and metadata by various data/metadata providers can be specified and 594

controlled. This framework is the basis on which the existence of data can be made known 595

to the SDMX-enabled community and hence the basis on which data can subsequently be 596

discovered. Such a framework can be used to regulate the data content to facilitate the 597

building of intelligent applications. It can also be used to facilitate the processing implied 598

by service level agreements, or other provisioning agreements in those scenarios that are 599

based on legal directives. Additionally, quality and timeliness metadata can be supported 600

by this framework which makes it practical to implement information supply chain 601

monitoring. 602

Note that the term “data provisioning” here includes both the provisioning of data and 603

metadata. 604

Although the Provision Agreement directly supports the data-sharing “pull” model, it is also 605

useful in “push” exchanges (bilateral and gateway scenarios), or in a dissemination 606

environment. It should be noted, too, that in any exchange scenario, the registry functions 607

as a repository of structural metadata. 608

7.2.2 Provisioning Agreement Model – pull use case 609

An organisation which publishes statistical data or reference metadata and wishes to make 610

it available to an SDMX enabled community is called a Data Provider. In terms of the 611

SDMX Information Model, the Data Provider is maintained in a Data Provider Scheme. 612

47

 613

Figure 11: SDMX-IM of the Data Provider 614

Note that the Data Provider does not inherit the hierarchy association. The diagram below 615

shows a logical schematic of the data model classes required to maintain provision 616

agreements. 617

48

 618

Figure 12: Schematic of the Provision Agreement 619

The diagram below is a logical representation of the data required in order to maintain 620

Provision Agreements. 621

 622

Figure 13: Logical class diagram of the information contained in the Provision Agreement 623

A Provision Agreement is structural metadata. Each Provision Agreement must reference 624

a Data Provider or Metadata Provider and a Dataflow or Metadataflow Definition. The 625

Data/Metadata Provider and the Dataflow/Metadataflow must exist already in order to set 626

up a Metadata Provision or Provision Agreement. 627

49

7.3 Data and Metadata Constraints 628

7.3.1 Data and Metadata Constraints: Basic Concepts 629

Constraints are, effectively, lists of the valid or actual content of data and metadata. 630

Constraints can be used to specify a subset of the theoretical content of data set or 631

metadata set which can be derived from the specification of the DSD or MSD. A Constraint 632

can comprise a list of keys or a list of content (usually code values) of a specific component 633

such as a dimension or attribute. 634

Constraints comprise the specification of subsets of key or attribute values that are 635

contained in a data source, or is to be provided for a Dataflow or Metadataflow, or directly 636

attached to a Data Structure Definition or Metadata Structure Definition. This is important 637

metadata because, for example, the full range of possibilities which is implied by the Data 638

Structure Definition (e.g., the complete set of valid keys is the Cartesian product of all the 639

values in the code lists for each of the Dimensions) is often more than is actually present 640

in any specific data source, or more than is intended to be supplied according to a specific 641

Dataflow. 642

Often a Data Provider will not be able to provide data for all key combinations, either 643

because the combination itself is not meaningful, or simply because the provider does not 644

have the data for that combination. In this case the Data Provider could constrain the data 645

source (at the level of the Provision Agreement or the Data Provider) by supplying 646

metadata that defines the key combinations or cube regions that are available. This is done 647

by means of a Constraint. The Constraint is also used to define a code list subset which is 648

used to populate a partial code list. 649

Furthermore, it is often useful to define subsets or views of the Data Structure Definition 650

which restrict values in some code lists, especially where many such subsets restrict the 651

same Data Structure Definition. Such a view is called a Dataflow, and there can be one or 652

more defined for any Data Structure Definition. 653

Whenever data is published or made available by a Data Provider, it must conform to a 654

Dataflow (and hence to a Data Structure Definition). The Dataflow is thus a means of 655

enabling content based processing. 656

In addition, Constraints can be extremely useful in a data visualisation system, such as 657

dissemination of statistics on a website. In such a system a Cube Region can be used to 658

specify the Dimension codes that actually exist in a data source (these can be used to 659

build relevant selection tables), and the Key Set can be used to specify the keys that exist 660

in a data source (these can be used to guide the user to select only those Dimension code 661

values that will return data based on the Dimension values already selected). 662

50

7.3.2 Data and Metadata Constraints: Schematic 663

 664

Figure 14: Schematic of the Constraint and the Artefacts that can be constrained 665

 666

51

7.3.3 Data and Metadata Constraints: Model 667

 668

Figure 15: Logical class diagram showing inheritance between and reference to 669
constrainable artefacts 670

 671

Logical class diagram showing inheritance between and reference to constrainable 672

artefacts 673

The class diagram above shows that Data Provider, Metadata Provider, Dataflow, 674

Metadataflow, Provision Agreement, Metadata Provision Agreement, Data Structure 675

Definition, Metadata Structure Definition, Simple Datasource and REST Datasource (via 676

the abstract Query Datasource) are all concrete sub-classes of Constrainable Artefact and 677

can therefore have Constraints specified. Note that the actual Constraint as submitted is 678

52

associated to the reference classes which inherit from ConstrainableRef: these are used 679

to refer to the classes to which the Constraint applies. 680

The content of the Constraint can be found in the SDMX Information Model document. 681

7.4 Data and Metadata Registration 682

7.4.1 Basic Concepts 683

A Data Provider has published a new dataset conforming to an existing Dataflow (and 684

hence Data Structure Definition). This is implemented as either a web-accessible SDMX-685

ML file, or in a database which has a web-services interface capable of responding to an 686

SDMX RESTful query with an SDMX-ML data stream. 687

The Data Provider wishes to make this new data available to one or more data collectors 688

in a “pull” scenario, or to make the data available to data consumers. To do this, the Data 689

Provider registers the new dataset with one or more SDMX conformant registries that have 690

been configured with structural and provisioning metadata. In other words, the registry 691

“knows” the Data Provider and “knows” what data flows the data provider has agreed to 692

make available. 693

The same mechanism can be used to report or make available a metadata set. 694

SDMX-RR supports dataset and metadata set registration via the Registration Request, 695

which can be created by the Data/Metadata Provider (giving the Data Provider maximum 696

control). The registry responds to the registration request with a registration response 697

which indicates if the registration was successful. In the event of an error, the error 698

messages are returned as a registry exception within the response. 699

53

7.4.2 The Registration Request 700

7.4.2.1 Registration Request Schematic 701

 702

Figure 16: Schematic of the Objects Concerned with Registration 703

 704

7.4.2.2 Registration Request Model 705

The following UML diagram shows the composition of the registration request. Each 706

request is made up of one or more Registrations, one per dataset or metadata set to be 707

registered. The Registration can optionally have information, which has been extracted 708

from the Registration: 709

• validFrom 710

• validTo 711

• lastUpdated 712

The last updated date is useful during the discovery process to make sure the client knows 713

which data is freshest. 714

The Registration has an action attribute which takes one of the following values: 715

Action Attribute

Value

Behaviour

54

Append Add this Registration to the registry

Replace Replace the existing Registration with identified by the id in the

Registration of the SubmitRegistrationRequest

Delete Delete the existing Registration identified by the id in the Registration

of the SubmitRegistrationRequest

 716

Figure 17: Logical Class Diagram of Registration of Data and Metadata 717

The QueryDatasource is an abstract class that represents a data source, which can 718

understand an API query (i.e., a RESTful query – RESTDatasource) and respond 719

appropriately. Each data source inherits the dataURL from Datasource, and the 720

QueryDatasource has an additional URL to locate the specification of the service 721

55

(specURL) to describe how to access it. All other supported protocols are assumed to use 722

the SimpleDatasource URL. 723

A SimpleDatasource is used to reference a physical SDMX-ML file that is available at 724

a URL. 725

The RegistrationRequest has an action attribute which defines whether this is a 726

new (append) or updated (replace) Registration, or that the Registration is to be 727

deleted (delete). The id is only provided for the replace and delete actions, as the Registry 728

will allocate the unique id of the (new) Registration. 729

The Registration includes attributes that state how a SimpleDatasource is to be 730

indexed when registered. The Registry registration process must act as follows: 731

Information in the data or metadata set is extracted and placed in one or more 732
Constraints (see the Constraint model in the SDMX Information Model – Section 2 733

of the SDMX Standards). The information to be extracted is indicated by the Boolean 734

values set on the ProvisionAgreement or MetadataProvisionAgreement as 735

shown in the table below. 736

Indexing Required Registration Process Activity

indexTimeSeries Extract all the series keys and create a KeySet(s)

Constraint.

indexDataSet Extract all the codes and other content of the Key

value of the Series Key in a Data Set and create

one or more Cube Regions containing Member

Selections of Dimension Components of the

Constraints model in the SDMX-IM, and the

associated Selection Value.

indexReportingPeriod This applies only to a registered dataset.

Extract the Reporting Begin and Reporting End

from the Header of the Message containing the

data set, and create a Reference Period

constraint.

56

Indexing Required Registration Process Activity

indexAttributes Data Set

Extract the content of the Attribute Values in a
Data Set and create one or more Cube Regions
containing Member Selections of Data Attribute
Components of the Constraints model in the
SDMXIM, and the associated Selection Value

Metadata Set

Indicate the presence of a Reported Attribute by

creating one or more Cube Regions containing

Member Selections of Metadata Attribute

Components of the Constraints model in the

SDMX-IM. Note that the content is not stored in

the Selection Value.

 737

Constraints that specify the contents of a QueryDatasource are submitted to the 738

Registry via the structure submission service (i.e., the RESTful API). 739

The Registration must reference the ProvisionAgreement or 740

MetadataProvisionAgreement to which it relates. 741

7.4.3 Registration Response 742

After a registration request has been submitted to the registry, a response is returned to 743

the submitter indicating success or failure. Given that a registration request can hold many 744

Registrations, then there must be a registration status for each Registration. The 745

SubmitRegistration class has a status field, which is either set to “Success”, 746

“Warning” or “Failure”. 747

If the registration has succeeded, a Registration will be returned – this holds the 748

Registry-allocated Id of the newly registered Datasource plus a Datasource holding 749

the URL to access the dataset, metadataset, or query service. 750

The RegistrationResponse returns set of registration status (one for each registration 751

submitted) in terms of a StatusMessage (this is common to all Registry responses) that 752

indicates success or failure. In the event of registration failure, a set of MessageText are 753

returned, giving the error messages that occurred during registration. It is entirely possible 754

when registering a batch of datasets, that the response will contain some successful and 755

some failed statuses. The logical model for the RegistrationResponse is shown below: 756

57

 757

Figure 18: Logical class diagram showing the registration response 758

 759

7.5 Subscription and Notification Service 760

The contents of the SDMX Registry/Repository will change regularly: new code lists and 761

key families will be published and new datasets and metadata-sets will be registered. To 762

obviate the need for users to repeatedly query the registry to see when new information is 763

available, a mechanism is provided to allow users to be notified when these events happen. 764

A user can submit a subscription in the registry that defines which events are of interest, 765

and either an email and/or an HTTP address to which a notification of qualifying events will 766

be delivered. The subscription will be identified in the registry by a URN, which is returned 767

to the user when the subscription is created. If the user wants to delete the subscription at 768

a later point, the subscription URN is used as identification. Subscriptions have a validity 769

period expressed as a date range (startDate, endDate) and the registry may delete any 770

expired subscriptions, and will notify the subscriber on expiry. 771

When a registry/repository artefact is modified, any subscriptions which are observing the 772

object are activated, and either an email or HTTP POST is instigated to report details of 773

the changes to the user specified in the subscription. This is called a “notification”. 774

58

 7.5.1 Subscription Logical Class Diagram 775

 776

Figure 19: Logical Class Diagram of the Subscription 777

 7.5.2 Subscription Information 778

 Regardless of the type of registry/repository events being observed, a subscription779

 always contains: 780

59

1. A set of URIs describing the end-points to which notifications must be sent if the 781

subscription is activated. The URIs can be either mailto: or http: protocol. In the former 782

case an email notification is sent; in the latter an HTTP POST notification is sent. 783

2. A user-defined identifier, which is returned in the response to the subscription request. 784

This helps with asynchronous processing and is NOT stored in the Registry. 785

3. A validity period which defines both when the subscription becomes active and 786

expires. The subscriber may be sent a notification on expiration of the subscription. 787

4. A selector which specifies which type of events are of interest. The set of event types 788

is: 789

Event Type Comment

STRUCTURAL_REPOSITORY_EVENTS Life-cycle changes to Maintainable Artefacts

in the structural metadata repository.

DATA_REGISTRATION_EVENTS Whenever a published dataset is registered.

This can be either a SDMXML data file or an

SDMX conformant database.

METADATA_REGISTRATION_EVENTS Whenever a published metadataset is

registered. This can be either a SDMXML

reference metadata file or an SDMX

conformant database.

ALL_EVENTS All events of the specified EventType

 7.5.3 Wildcard Facility 790

Subscription notification supports wildcarded identifier components URNs, which are 791

identifiers which have some or all of their component parts replaced by the wildcard 792

character `%`. Identifier components comprise: 793

• agencyID 794

• id 795

• version 796

Examples of wildcarded identifier components for an identified object type of Codelist 797

are shown below: 798

AgencyID = % 799

Id = % 800

60

Version = % 801

This subscribes to all Codelists of all versions for all agencies. 802

 803

AgencyID = AGENCY1 804

Id = CODELIST1 805

Version = % 806

This subscribes to all versions of Codelist CODELIST1 maintained by the agency 807

AGENCY1. 808

 809

AgencyID = AGENCY1 810

Id = % 811

Version = % 812

This subscribes to all versions of all Codelist objects maintained by the agency 813

AGENCY1. 814

 815

AgencyID = % 816

Id = CODELIST1 817

Version = % 818

This subscribes to all versions of Codelist CODELIST1 maintained by any agency. 819

Note that if the subscription is to the latest version then this can be achieved by the * 820

character, i.e.: 821

Version = * 822

Note that a subscription using the URN mechanism cannot use wildcard characters. 823

7.5.4 Structural Repository Events 824

Whenever a maintainable artefact (data structure definition, concept scheme, codelist, 825

metadata structure definition, category scheme, etc.) is added to, deleted from, or modified 826

in the structural metadata repository, a structural metadata event is triggered. 827

Subscriptions may be set up to monitor all such events, or focus on specific artefacts such 828

as a Data Structure Definition. 829

61

7.5.5 Registration Events 830

Whenever a dataset or metadata-set is registered a registration event is created. A 831

subscription may be observing all data or metadata registrations, or it may focus on specific 832

registrations as shown in the table below: 833

Selector Comment

DataProvider & MetadataProvider Any datasets or metadata sets

registered by the specified data or

metadata provider will activate the

notification.

ProvisionAgreement &

MetadataProvisionAgreement

Any datasets or metadata sets

registered for the agreement will activate

the notification.

Dataflow & Metadataflow Any datasets or metadata sets

registered for the specified dataflow (or

metadataflow) will activate the

notification.

DataStructureDefinition &

MetadataStructureDefinition

Any datasets or metadata sets

registered for those dataflows (or

metadataflows) that are based on the

specified Data Structure Definition will

activate the notification

Category Any datasets or metadata sets

registered for those dataflows,

metadataflows, provision agreements

that are categorised by the category.

The event will also capture the semantic of the registration: deletion or replacement of an 834

existing registration or a new registration. 835

62

7.6 Notification 836

7.6.1 Logical Class Diagram 837

 838

Figure 20: Logical Class Diagram of the Notification 839

A notification is an XML document that is sent to a user via email or http POST whenever 840

a subscription is activated. It is an asynchronous one-way message. 841

Regardless of the registry component that caused the event to be triggered, the following 842

common information is in the message: 843

• Date and time that the event occurred 844

• The URN of the artefact that caused the event 845

• The URN of the Subscription that produced the notification 846

• Event Action: Add, Replace, or Delete. 847

Additionally, supplementary information may be contained in the notification as detailed 848

below. 849

7.6.2 Structural Event Component 850

The notification will contain the MaintainableArtefact that triggered the event in a 851

form similar to the SDMX-ML structural message (using elements from that namespace). 852

63

 7.6.3 Registration Event Component 853

The notification will contain the Registration. 854

 855

