

SDMX STANDARDS: SECTION 5

SDMX REGISTRY SPECIFICATION:
LOGICAL FUNCTIONALITY AND

LOGICAL INTERFACES

VERSION 3.0

October 2021

© SDMX 2021
http://www.sdmx.org/

Revision History

Revision Date Contents

DRAFT 1.0 May 2021 Draft release updated for SDMX 3.0 for public consultation

1.0 October 2021 Public release for SDMX 3.0

1

http://www.sdmx.org/

3

Contents

1 Introduction ... 6

2 Scope and Normative Status .. 8

3 Scope of the SDMX Registry/Repository ... 9

3.1 Objective ... 9

3.2 Structural Metadata... 9

3.3 Registration .. 11

3.4 Notification .. 11

3.5 Discovery .. 12

4 SDMX Registry/Repository Architecture ... 13

4.1 Architectural Schematic .. 13

4.2 Structural Metadata Repository ... 13

4.3 Provisioning Metadata Repository ... 14

5 Registry Interfaces and Services ... 15

5.1 Registry Interfaces .. 15

5.2 Registry Services .. 15

5.2.1 Introduction .. 15

5.2.2 Structure Submission Service ... 16

5.2.3 Structure Query Service ... 16

5.2.4 Data and Reference Metadata Registration Service ... 17

5.2.5 Data and Reference Metadata Discovery ... 19

5.2.6 Subscription and Notification .. 19

5.2.7 Registry Behaviour ... 20

6 Identification of SDMX Objects .. 22

6.1 Identification, Versioning, and Maintenance .. 22

6.1.1 Identification, Naming, Versioning, and Maintenance Model 23

6.2 Unique identification of SDMX objects .. 25

4

6.2.1 Agencies and Metadata Providers .. 25

6.2.2 Universal Resource Name (URN) ... 28

6.2.3 Table of SDMX-IM Packages and Classes ... 32

6.2.4 URN Identification components of SDMX objects ... 35

7 Implementation Notes ... 42

7.1 Structural Definition Metadata ... 42

7.1.1 Introduction .. 42

7.1.2 Item Scheme, Structure .. 44

7.1.3 Structure Usage ... 44

7.2 Data and Metadata Provisioning ... 47

7.2.1 Provisioning Agreement: Basic concepts .. 47

7.2.2 Provisioning Agreement Model – pull use case .. 47

7.3 Data and Metadata Constraints .. 50

7.3.1 Data and Metadata Constraints: Basic Concepts .. 50

7.3.2 Data and Metadata Constraints: Schematic .. 51

7.3.3 Data and Metadata Constraints: Model .. 52

7.4 Data and Metadata Registration.. 53

7.4.1 Basic Concepts .. 53

7.4.2 The Registration Request ... 54

7.4.3 Registration Response ... 57

7.5 Subscription and Notification Service .. 58

7.5.1 Subscription Logical Class Diagram ... 59

7.5.2 Subscription Information ... 59

7.5.3 Wildcard Facility ... 60

7.5.4 Structural Repository Events .. 62

7.5.5 Registration Events .. 62

5

7.6 Notification .. 63

7.6.1 Logical Class Diagram .. 63

7.6.2 Structural Event Component ... 63

7.6.3 Registration Event Component ... 64

6

1 Introduction 2

The business vision for SDMX envisages the promotion of a “data sharing” model to facilitate 3

low-cost, high-quality statistical data and metadata exchange. Data sharing reduces the 4

reporting burden of organisations by allowing them to publish data once and let their 5

counterparties “pull” data and related metadata as required. The scenario is based on: 6

• the availability of an abstract information model capable of supporting time series and 7

cross-sectional data, structural metadata, and reference metadata (SDMX-IM) 8

• standardised XML and JSON schemas for the SDMX-ML and SDMX-JSON formats 9

derived from the model (XSD, JSON) 10

• the use of web-services technology (XML, JSON, Open API) 11

Such an architecture needs to be well organised, and the SDMX Registry/Repository (SDMX-12

RR) is tasked with providing structure, organisation, and maintenance and query interfaces for 13

most of the SDMX components required to support the data sharing vision. 14

However, it is important to emphasise that the SDMX-RR provides support for the submission 15

and retrieval of all SDMX structural metadata and provisioning metadata. Therefore, the 16

Registry not only supports the data-sharing scenario, but this metadata is also vital in order to 17

provide support for data and metadata reporting/collection, and dissemination scenarios. 18

Standard formats for the exchange of aggregated statistical data and metadata as prescribed 19

in SDMX v3.0 are envisaged to bring benefits to the statistical community because data 20

reporting and dissemination processes can be made more efficient. 21

As organisations migrate to SDMX enabled systems, many XML, JSON (and conventional) 22

artefacts will be produced (e.g., Data Structure, Metadata Structure, Code List and Concept 23

definitions – often collectively called structural metadata – XML schemas generated from data 24

structure definitions, XSLT stylesheets for transformation and display of data and metadata, 25

terminology references, etc.). The SDMX model supports interoperability, and it is important to 26

be able to discover and share these artefacts between parties in a controlled and organized 27

way. 28

This is the role of the registry. 29

With the fundamental SDMX standards in place, a set of architectural standards are needed to 30

address some of the processes involved in statistical data and metadata exchange, with an 31

emphasis on maintenance, retrieval and sharing of the structural metadata. In addition, the 32

architectural standards support the registration and discovery of data and referential metadata. 33

These architectural standards address the ‘how’, rather than the ‘what’, and are aimed at 34

enabling existing SDMX standards to achieve their mission. The architectural standards 35

address registry services, which initially comprise: 36

• structural metadata repository 37

7

• data and metadata registration 38

• query 39

The registry services outlined in this specification are designed to help the SDMX community 40

manage the proliferation of SDMX assets and to support data sharing for reporting and 41

dissemination. 42

8

2 Scope and Normative Status 43

The scope of this document is to specify the logical interfaces for the SDMX registry in terms 44

of the functions required and the data that may be present in the function call, and the behaviour 45

expected of the registry. 46

In this document, functions and behaviours of the Registry Interfaces are described in four 47

ways: 48

• in text 49

• with tables 50

• with UML diagrams excerpted from the SDMX Information Model (SDMX-IM) 51

• with UML diagrams that are not a part of the SDMX-IM but are included here for clarity 52

and to aid implementations (these diagrams are clearly marked as “Logical Class 53

Diagram ...”) 54

Whilst the introductory section contains some information on the role of the registry, it is 55

assumed that the reader is familiar with the uses of a registry in providing shared metadata 56

across a community of counterparties. 57

Note that chapters 5 and 6 below contain normative rules regarding the Registry Interface and 58

the identification of registry objects. Further, the minimum standard for access to the registry is 59

via a REST interface (HTTP or HTTPS), as described in the appropriate sections. The 60

notification mechanism must support e-mail and HTTP/HTTPS protocols as described. 61

Normative registry interfaces are specified in the SDMX-ML specification (Section 3 of the 62

SDMX Standard). All other sections of this document are informative. 63

Note that although the term “authorised user” is used in this document, the SDMX standards 64

do not define an access control mechanism. Such a mechanism, if required, must be chosen 65

and implemented by the registry software provider. 66

9

3 Scope of the SDMX Registry/Repository 67

3.1 Objective 68

The objective of the SDMX registry/repository is, in broad terms, to allow organisations to 69

publish statistical data and reference metadata in known formats such that interested third 70

parties can discover these data and interpret them accurately and correctly. The mechanism 71

for doing this is twofold: 72

1. To maintain and publish structural metadata that describes the structure and valid 73

content of data and reference metadata sources such as databases, metadata 74

repositories, data sets, metadata sets. This structural metadata enables software 75

applications to understand and to interpret the data and reference metadata in these 76

sources. 77

2. To enable applications, organisations, and individuals to share and to discover data 78

and reference metadata. This facilitates data and reference metadata dissemination 79

by implementing the data sharing vision of SDMX. 80

3.2 Structural Metadata 81

Setting up structural metadata and the exchange context (referred to as “data provisioning”) 82

involves the following steps for maintenance agencies: 83

• agreeing and creating a specification of the structure of the data (called a Data Structure 84

Definition or DSD in this document but also known as “key family”), which defines the 85

dimensions, measures and attributes of a dataset and their valid value set; 86

• if required, defining a subset or view of a DSD which allows some restriction of content 87

called a “dataflow definition”; 88

• agreeing and creating a specification of the structure of reference metadata (Metadata 89

Structure Definition) which defines the metadata attributes and their presentational 90

arrangement in a Metadataset or as part of a Dataset, and their valid values and content; 91

• if required, defining a subset or view of an MSD which allows some restriction of content 92

called a “metadataflow”; 93

• defining which subject matter domains (specified as a Category Scheme) are related to 94

the Dataflow and Metadataflow to enable browsing; 95

• defining one or more lists of Data and Metadata Providers; 96

• defining which Data/Metadata Providers have agreed to publish a given 97

Dataflow/Metadataflow – this is called a Provision Agreement or Metadata Provision 98

Agreement, respectively. 99

10

 100

Figure 1: Schematic of the Basic Structural Artefacts in the SDMX-IM 101

Note that in Figure 1 (but also most of the relevant subsequent figures) terms that include both 102

data and metadata have been used. For example: 103

• Structure Definition: refers to Data Structure Definition (DSD) and Metadata Structure 104

Definition (MSD) 105

• Flow: refers to Dataflow and Metadataflow 106

• Provision Agreement: refers to Provision Agreement (for data) and Metadata Provision 107

Agreement 108

• Provider Scheme: refers to Data Provider Scheme and Metadata Provider Scheme 109

• Provider: refers to Data Provider and Metadata Provider 110

In that context, the term “Metadata” refers to reference metadata. 111

11

3.3 Registration 112

Publishing the data and reference metadata involves the following steps for a Data/Metadata 113

Provider: 114

• making the reference metadata and data available in SDMX-ML/JSON conformant data 115

files or databases (which respond to an SDMX query with data). The data and reference 116

metadata files or databases must be web accessible, and must conform to an agreed 117

Dataflow or Metadataflow (Data Structure Definition or Metadata Structure Definition 118

subset); 119

• registering the existence of published reference metadata and data files or databases 120

with one or more SDMX registries. 121

 122

Figure 2: Schematic of Registered Data and Metadata Sources in the SDMX-IM 123

3.4 Notification 124

Notifying interested parties of newly published or re-published data, reference metadata or 125

changes in structural metadata involves: 126

• registry support of a subscription-based notification service which sends an email or 127

notifies an HTTP address announcing all published data that meets the criteria contained 128

in the subscription request. 129

12

3.5 Discovery 130

Discovering published data and reference metadata involves interaction with the registry to fulfil 131

the following logical steps that would be carried out by a user interacting with a service that 132

itself interacts with the registry and an SDMX-enabled data or reference metadata resource: 133

• optionally browsing a subject matter domain category scheme to find Dataflows (and 134

hence Data Structure Definitions) and Metadataflows which structure the type of data 135

and/or reference metadata being sought; 136

• build a query, in terms of the selected Data Structure Definition or Metadata Structure 137

Definition, which specifies what data are required and submitting this to a service that 138

can query an SDMX registry which will return a list of (URLs of) data and reference 139

metadata files and databases which satisfy the query; 140

• processing the query result set and retrieving data and/or reference metadata from the 141

supplied URLs. 142

 143

Figure 3: Schematic of Data and Metadata Discovery and Query in the SDMX-IM 144

13

4 SDMX Registry/Repository Architecture 145

4.1 Architectural Schematic 146

The architecture of the SDMX registry/repository is derived from the objectives stated above. 147

It is a layered architecture that is founded by a structural metadata repository which supports 148

a provisioning metadata repository which supports the registry services. These are all 149

supported by the SDMX-ML schemas. Applications can be built on top of these services which 150

support the reporting, storage, retrieval, and dissemination aspects of the statistical lifecycle as 151

well as the maintenance of the structural metadata required to drive these applications. 152

 153

Figure 4: Schematic of the Registry Content and Services 154

4.2 Structural Metadata Repository 155

The basic layer is that of a structural metadata service which supports the lifecycle of SDMX 156

structural metadata artefacts such as Maintenance Agencies, Data Structure Definitions, 157

Metadata Structure Definitions, Provision Agreements, Processes etc. This layer is supported 158

by the Structure Submission and Query Service. 159

Note that the SDMX REST API supports all of the SDMX structural artefacts. The only structural 160

artefacts that are not yet supported are: 161

• Registration of data and metadata sources 162

• Subscription and Notification 163

As of the initial version of SDMX 3.0 no messages are defined to support these artefacts; 164

hence, users may need to use SDMX 2.1 Registry Interface messages, instead. 165

14

4.3 Provisioning Metadata Repository 166

The function of this repository is to support the definition of the structural metadata that 167

describes the various types of data-store which model SDMX-conformant databases or files, 168

and to link to these data sources. These links can be specified for a data/metadata provider, 169

for a specific data or metadata flow. In the SDMX model this is called the Provision or Metadata 170

Provision Agreement. 171

This layer is supported by the Data and Metadata Registration Service. 172

15

5 Registry Interfaces and Services 173

5.1 Registry Interfaces 174

The Registry Interfaces are: 175

• Notify Registry Event 176

• Submit Subscription Request 177

• Submit Subscription Response 178

• Submit Registration Request 179

• Submit Registration Response 180

• Query Registration Request 181

• Query Registration Response 182

• Query Subscription Request 183

• Query Subscription Response 184

The registry interfaces are invoked in one of two ways: 185

1. The interface is the name of the root node of the SDMX-ML document 186

2. The interface is invoked as a child element of the RegistryInterface message 187

where the RegistryInterface is the root node of the SDMX-ML document. 188

In addition to these interfaces the registry must support a mechanism for submitting and 189

querying for structural metadata. This is detailed in sections 5.2.2 and 5.2.3. 190

All these interactions with the Registry – with the exception of NotifyRegistryEvent – are 191

designed in pairs. The first document, the one which invokes the SDMX-RR interface, is a 192

“Request” document. The message returned by the interface is a “Response” document. 193

It should be noted that all interactions are assumed to be synchronous, with the exception of 194

Notify Registry Event. This document is sent by the SDMX-RR to all subscribers whenever an 195

even occurs to which any users have subscribed. Thus, it does not conform to the request-196

response pattern, because it is inherently asynchronous. 197

5.2 Registry Services 198

5.2.1 Introduction 199

The services described in this section do not imply that each is implemented as a discrete web 200

service. 201

16

5.2.2 Structure Submission Service 202

The registry must support a mechanism for submitting structural metadata. This mechanism 203

can be the SDMX REST interface for structural metadata (this is defined in the corresponding 204

GitHub project, dedicated to the SDMX REST API: https://github.com/sdmx-twg/sdmx-rest). In 205

order for the architecture to be scalable, the finest-grained piece of structural metadata that 206

can be processed by the SDMX-RR is a MaintainableArtefact, with the exception of Item 207

Schemes, where changes at an Item level is also possible (see next section on the SDMX 208

Information Model). 209

5.2.3 Structure Query Service 210

The registry must support a mechanism for querying for structural metadata. This mechanism 211

can be the SDMX REST interface for structural metadata (this is defined in the corresponding 212

GitHub project, dedicated to the SDMX REST API: https://github.com/sdmx-twg/sdmx-rest). 213

The registry response to this query mechanism is the SDMX Structure message, which has as 214

its root node: 215

• Structure 216

The SDMX structural artefacts that may be queried are: 217

• data flows and metadata flows 218

• data structure definitions and metadata structure definitions 219

• code lists 220

• value lists 221

• concept schemes 222

• reporting taxonomies 223

• provision agreements and metadata provision agreements 224

• structure maps 225

• representation map 226

• organisation scheme map 227

• concept scheme map 228

• category scheme map 229

• reporting taxonomy map 230

• processes 231

https://github.com/sdmx-twg/sdmx-rest
https://github.com/sdmx-twg/sdmx-rest

17

• hierarchies 232

• constraints 233

• category schemes 234

• categorisations and categorised objects (examples are categorised data flows and 235

metadata flows, data structure definitions, metadata structure definitions, provision 236

agreements registered data sources and metadata sources) 237

• organisation schemes (agency scheme, data provider scheme, data consumer scheme, 238

organisation unit scheme) 239

Due to the VTL implementation the other structural metadata artefacts that may be queried are: 240

• Transformation schemes 241

• Custom type schemes 242

• Name personalisation schemes 243

• VTL mapping schemes 244

• Ruleset schemes 245

• User defined operator schemes 246

 247

5.2.4 Data and Reference Metadata Registration Service 248

This service must implement the following Registry Interfaces: 249

• SubmitRegistrationRequest 250

• SubmitRegistrationResponse 251

• QueryRegistrationRequest 252

• QueryRegistrationResponse 253

The Data and Metadata Registration Service allows SDMX conformant files and web-254

accessible databases containing published data and reference metadata to be registered in the 255

SDMX Registry. The registration process MAY validate the content of the datasets or metadata-256

sets, and MAY extract a concise representation of the contents in terms of concept values (e.g., 257

values of the data attribute, dimension, metadata attribute), or entire keys, and storing this as 258

a record in the registry to enable discovery of the original dataset or metadata-set. These are 259

called Constraints in the SDMX-IM. 260

18

The Data and Metadata Registration Service MAY validate the following, subject to the access 261

control mechanism implemented in the Registry: 262

• that the data/metadata provider is allowed to register the dataset or metadataset; 263

• that the content of the dataset or metadataset meets the validation constraints. This is 264

dependent upon such constraints being defined in the structural repository and which 265

reference the relevant Dataflow, Metadataflow, Data Provider, Metadata Provider, Data 266

Structure Definition, Metadata Structure Definition, Provision Agreement, Metadata 267

Provision Agreement; 268

• that a queryable data source exists – this would necessitate the registration service 269

querying the service to determine its existence; 270

• that a simple data source exists (i.e., a file accessible at a URL); 271

• that the correct Data Structure Definition or Metadata Structure Definition is used by the 272

registered data; 273

• that the components (Dimensions, Attributes, Measures, Metadata Attributes, etc.) are 274

consistent with the Data Structure Definition or Metadata Structure Definition; 275

• that the valid representations of the concepts to which these components correspond 276

conform to the definition in the Data Structure Definition or Metadata Structure Definition. 277

The Registration has an action attribute which takes one of the following values: 278

Action Attribute

Value

Behaviour

Append Add this registration to the registry

Replace Replace the existing Registration with this Registration identified by

the id in the Registration of the Submit Registration Request

Delete Delete the existing Registration identified by the id in the

Registration of the Submit Registration Request

The Registration has three Boolean attributes which may be present to determine how an 279

SDMX compliant dataset or metadataset indexing application must index the datasets or 280

metadatasets upon registration. The indexing application behaviour is as follows: 281

Boolean Attribute Behaviour if Value is “true”

indexTimeSeries A compliant indexing application must index all the time series

keys (for a Dataset registration) or metadata target values (for a

Metadataset registration)

19

indexDataSet A compliant indexing application must index the range of actual

(present) values for each dimension of the Dataset (for a

Dataset registration) or the range of actual (present) values for

each Metadata Attribute which takes an enumerated value.

Note that for data this requires much less storage than full key

indexing, but this method cannot guarantee that a specific

combination of Dimension values (the Key) is actually present in

the Dataset

indexReportingPeriod A compliant indexing application must index the time period

range(s) for which data are present in the Dataset. The validity

period of the Metadatasets may also be indexed.

5.2.5 Data and Reference Metadata Discovery 282

The Data and Metadata Discovery Service implements the following Registry Interfaces: 283

• QueryRegistrationRequest 284

• QueryRegistrationResponse 285

5.2.6 Subscription and Notification 286

The Subscription and Notification Service implements the following Registry Interfaces: 287

• SubmitSubscriptionRequest 288

• SubmitSubscriptionResponse 289

• NotifyRegistryEvent 290

The data sharing paradigm relies upon the consumers of data and metadata being able to pull 291

information from data providers’ dissemination systems. For this to work efficiently, a data 292

consumer needs to know when to pull data, i.e., when something has changed in the registry 293

(e.g., a dataset has been updated and re-registered). Additionally, SDMX systems may also 294

want to know if a new Data Structure Definition, Code List or Metadata Structure Definition has 295

been added. The Subscription and Notification Service comprises two parts: subscription 296

management, and notification. 297

Subscription management involves a user submitting a subscription request which contains: 298

• a query or constraint expression in terms of a filter which defines the events for which 299

the user is interested (e.g., new data for a specific dataflow, or for a domain category, or 300

changes to a Data Structure Definition). 301

• a list of URIs or endpoints to which an XML notification message can be sent. Supported 302

endpoint types will be email (mailto:) and HTTP POST (a normal http:// address); 303

20

• request for a list of submitted subscriptions; 304

• deletion of a subscription; 305

Notification requires that the structural metadata repository and the provisioning metadata 306

repository monitor any event which is of interest to a user (the object of a subscription request 307

query), and to issue an SDMX notification document to the endpoints specified in the relevant 308

subscriptions. 309

5.2.7 Registry Behaviour 310

The following table defines the behaviour of the SDMX Registry for the various Registry 311

Interface messages. It should be noted, though, that as of SDMX 3.0, an extended versioning 312

scheme newly including semantic versioning is foreseen for all Maintainable Artefacts. 313

Moreover, while the old versioning scheme is allowed, given there is no more a "final" flag, 314

there is no way guaranteeing the consistency across version of a Maintainable, unless 315

semantic versioning is used. 316

Given the above, the behaviour described in the following table concerns either draft Artefacts 317

using semantic versioning or any Artefacts using the old versioning scheme. Nevertheless, in 318

the case of semantic versioning the registry must respect the versioning rules when performing 319

the actions below. For example, it is not possible to replace a non-draft Artefact that follows 320

semantic versioning, unless a newer version is introduced according to the semantic versioning 321

rules. Furthermore, even when draft Artefacts are submitted, the registry has to verify semantic 322

versioning is respected against the previous non-draft versions. It is worth noting that the rules 323

for semantic versioning and replacing or maintaining semantically versioned Artefacts applies 324

to externally shared Artefacts. This means that any system may internally perform any change 325

within a version of an Artefact, until the latter is shared outside of that system or becomes 326

public. Then (as also explained in the SDMX Standards Section 6 “Technical Notes”) the 327

Artefacts must adhere to the Semantic Versioning rules. 328

Interface Behaviour

All 1) If the action is set to “replace” (or a

maintainable Artefact is PUT or POSTed) then

the entire contents of the existing

maintainable object in the Registry MUST be

replaced by the object submitted.

2) Cross referenced structures MUST exist in

either the submitted document (in Structures

or Structure Location) or in the registry to

which the request is submitted.

3) If the action is set to “delete” (or a

maintainable Artefact is DELETEd) then the

Registry MUST verify that the object can be

deleted. In order to qualify for deletion, the

object must:

a) Be a draft version.

21

Interface Behaviour

b) Not be explicitly1 referenced from any

other object in the Registry.

4) The semantic versioning rules in the SDMX

documentation MUST be obeyed.

Structure submission Structures are submitted at the level of the

Maintainable Artefact and the behaviour in “All” above

is therefore at the level of the Maintainable Artefact.

SubmitRegistrationRequest If the datasource is a file (simple datasource) then the

file MAY be retrieved and indexed according to the

Boolean attributes set in the Registration.

For a queryable datasource the Registry MAY

validate that the source exists and can accept an

SDMX data query.

1 With semantic versioning, it is allowed to reference a range of artefacts, e.g., a DSD referencing a
Codelist with version 1.2.3+ means all patch versions greater than 1.2.3. This means that deleting 1.2.4-
draft does not break integrity of the aforementioned DSD.

22

6 Identification of SDMX Objects 329

6.1 Identification, Versioning, and Maintenance 330

All major classes of the SDMX Information model inherit from one of: 331

• IdentifiableArtefact – this gives an object the ability to be uniquely identified (see 332

following section on identification), to have a user-defined URI, and to have multi-lingual 333

annotations. 334

• NameableArtefact – this has all of the features of IdentifiableArtefact plus 335

the ability to have a multi-lingual name and description. 336

• VersionableArtefact – this has all of the above features plus a version number, 337

according to the SDMX versioning rules in SDMX Standards Section 6 “Technical 338

Notes”, paragraph “4.3 Versioning”, and a validity period. 339

• MaintainableArtefact – this has all of the above features, plus registry and 340

structure URIs, and an association to the maintenance organisation of the object. 341

23

6.1.1 Identification, Naming, Versioning, and Maintenance Model 342

 343

Figure 5: Class diagram of fundamental artefacts in the SDMX-IM 344

The table below shows the identification and related data attributes to be stored in a registry 345

for objects that are one of: 346

• Annotable 347

• Identifiable 348

24

• Nameable 349

• Versionable 350

• Maintainable 351

Object Type Data Attributes Status Data type Notes

Annotable AnnotationTitle C string

AnnotationType C string

AnnotationURN C string

AnnotationText in the

form of
InternationalString

C

This can have language-
specific variants

Identifiable All content as for
Annotable plus

id M string

uri C string

urn C string Although the urn is
computable and
therefore may not be
submitted or stored
physically, the Registry
must return the urn for
each object, and must
be able to service a
query on an object
referenced solely by its
urn.

Nameable

All content as for
Identifiable plus

Name in the form of
InternationalString

M string This can have language
specific variants.

Description in the form

of
InternationalString

C string This can have language
specific variants.

Versionable

All content as for
Identifiable plus

version M string This is the version
number according to
SDMX versioning rules.

validFrom C Date/time

validTo C Date/time

25

Maintainable

All content as for
Versionable plus

isExternalReference C boolean Value of “true” indicates
that the actual resource
is held outside of this
registry. The actual
reference is given in the
registry URI or the
structureURL, each of
which must return a valid
SDMX-ML file.

serviceURL C string The url of the service
that can be queried for
this resource.

structureURL C string The url of the resource.

(Maintenance)
organisationId

M string The object must be
linked to a maintenance
organisation, i.e.,
Agency or Metadata
Provider.

Table 1: Common Attributes of Object Types 352

6.2 Unique identification of SDMX objects 353

6.2.1 Agencies and Metadata Providers 354

The Maintenance Agency in SDMX is maintained in an Agency Scheme which itself is a sub 355

class of Organisation Scheme – this is shown in the class diagram below. 356

26

 357

Figure 6: Agency Scheme Model 358

The Agency in SDMX is extremely important. The Agency Id system used in SDMX is an n-359

level structure. The top level of this structure is maintained by SDMX. Any Agency in this top 360

level can declare sub agencies and any sub agency can also declare sub agencies. The 361

Agency Scheme has a fixed id and version (version ‘1.0’) and is never declared explicitly in the 362

SDMX object identification mechanism. 363

In order to achieve this SDMX adopts the following rules: 364

 365

• Agencies are maintained in an Agency Scheme (which is a sub class of Organisation 366

Scheme). 367

• The agency of the Agency Scheme must also be declared in a (different) Agency 368

Scheme. 369

• The “top-level” agency is SDMX and maintains the “top-level” Agency Scheme. 370

• Agencies registered in the top-level scheme can themselves maintain a single Agency 371

Scheme. Agencies in these second-tier schemes can themselves maintain a single 372

Agency Scheme and so on. 373

• The AgencyScheme has a fixed version, i.e., ‘1.0’, hence it is an exception from the 374

Semantic Versioning that other Artefacts follow. 375

• There can be only one AgencyScheme maintained by any one Agency. It has a fixed 376

id of AGENCIES. 377

27

• The /hierarchy of Organisation is not inherited by Maintenance Agency – thus each 378

Agency Scheme is a flat list of Maintenance Agencies. 379

• The format of the agency identifier is agencyID.agencyID etc. The top-level agency 380

in this identification mechanism is the agency registered in the SDMX agency scheme. 381

In other words, SDMX is not a part of the hierarchical ID structure for agencies. However, 382

SDMX is, itself, a maintenance agency and is contained in the top-level Agency Scheme. 383

This supports a hierarchical structure of agencyID. 384

An example is shown below. 385

 386

The following organizations maintain an Agency Scheme. 387

• SDMX – contains Agencies AA, BB 388

• AA – contains Agencies CC, DD 389

• BB – contains Agencies CC, DD 390

• DD – Contains Agency EE 391

Each agency is identified by its full hierarchy excluding SDMX. 392

e.g., the id of EE as an agencyID is AA.DD.EE 393

An example of this is shown in the XML snippet below: 394

<str:Codelists> 395

 <str:Codelist id="CL_FREQ" agencyID="SDMX" version="1.0.0"> 396

 <com:Name xml:lang="en">Standard frequency Codelist</com:Name> 397

 </str:Codelist> 398

Figure 7: Example of Hierarchic Structure of Agencies

28

 <str:Codelist id="CL_FREQ" agencyID="AA" version="1.0.0"> 399

 <com:Name xml:lang="en">Codelist maintained by agency AA</com:Name> 400

 </str:Codelist> 401

 <str:Codelist id="CL_FREQ" agencyID="AA.CC" version="1.0.0"> 402

 <com:Name xml:lang="en">Codelist maintained by the AA unit CC</com:Name> 403

 </str:Codelist> 404

 <str:Codelist id="CL_FREQ" agencyID="BB.CC" version="1.0.0"> 405

 <com:Name xml:lang="en">Codelist maintained by the BB unit CC</com:Name> 406

 </str:Codelist> 407

Figure 8: Example Showing Use of Agency Identifiers 408

Each of these maintenance agencies has an identical Code list with the Id CL_BOP. However, 409

each is uniquely identified by means of the hierarchic agency structure. 410

Following the same principles, the Metadata Provider is the maintenance organisation for a 411

special subset of Maintainable Artefacts, i.e., the Metadatasets; the latter are the containers of 412

reference metadata combined with a target that those metadata refer to. 413

6.2.2 Universal Resource Name (URN) 414

6.2.2.1 Introduction 415

To provide interoperability between SDMX Registry/Repositories in a distributed network 416

environment, it is important to have a scheme for uniquely identifying (and thus accessing) all 417

first-class (Identifiable) SDMX-IM objects. Most of these unique identifiers are composite 418

(containing maintenance agency, or parent object identifiers), and there is a need to be able to 419

construct a unique reference as a single string. This is achieved by having a globally unique 420

identifier called a universal resource name (URN) which is generated from the actual 421

identification components in the SDMX-RR APIs. In other words, the URN for any Identifiable 422

Artefact is constructed from its component identifiers (agency, id, version etc.). 423

6.2.2.2 URN Structure 424

Case Rules for URN 425

For the URN, all parts of the string are case sensitive. The generic structure of the URN is as 426

follows: 427

SDMXprefix.SDMX-IM-package-name.class-name=agencyid:maintainedobject-428

id(maintainedobject-version).*containerobject-id.object-id 429

* this can repeat and may not be present (see explanation below) 430

Note that in the SDMX Information Model there are no concrete Versionable Artefacts that are 431

not a Maintainable Artefact. For this reason, the only version information that is allowed is for 432

the maintainable object. 433

The Maintenance agency identifier is separated from the maintainable artefact identifier by a 434

colon ‘:’. All other identifiers in the SDMX URN syntax are separated by a period ‘.’. The version 435

29

information is encapsulated in parentheses ‘()’ and adheres to the SDMX versioning rules, as 436

explained in SDMX Standards Section 6 “Technical Notes”, paragraph “4.3 Versioning. 437

6.2.2.3 Explanation of the generic structure 438

In the explanation below the actual object that is the target of the URN is called the actual 439

object. 440

SDMXPrefix: urn:sdmx:org 441

SDMX-IM-package-name: sdmx.infomodel.package= 442

The packages are: 443

base 444

codelist 445

conceptscheme 446

datastructure 447

categoryscheme 448

registry 449

metadatastructure 450

process 451

structuremapping 452

transformation 453

maintainable-object-id is the identifier of the maintainable object. This will always be 454

present as all identifiable objects are either a maintainable object or contained in a maintainable 455

object. 456

maintainable-object-version is the version, according to the SDMX versioning rules, 457

of the maintainable object and is enclosed in parentheses ‘()’, which are always present. 458

container-object-id is the identifier of an intermediary object that contains the actual 459

object which the URN is identifying. It is not mandatory as many actual objects do not have an 460
intermediary container object. For instance, a Code is in a maintained object (Codelist) and 461

has no intermediary container object, whereas a MetadataAttribute has an intermediary 462

container object (MetadataAttributeDescriptor) and may have an intermediary 463

container object, which is its parent MetadataAttribute. For this reason, the container 464

object id may repeat, with each repetition identifying the object at the next-lower level in its 465

hierarchy. Note that if there is only a single containing object in the model then it is NOT 466

30

included in the URN structure. This applies to AttributeDescriptor, 467

DimensionDescriptor, and MeasureDescriptor where there can be only one such 468

object and this object has a fixed id. Therefore, whilst each of these has a URN, the id of the 469

AttributeDescriptor, DimensionDescriptor, and MeasureDescriptor is not 470

included when the actual object is a DataAttribute or a Dimension/ TimeDimension, or 471

a Measure. 472

Note that although a Code can have a parent Code and a Concept can have a parent 473

Concept these are maintained in a flat structure and therefore do not have a container-474

object-id. 475

For example, the sequence is agency:DSDid(version).DimensionId and not 476

agency:DSDid(version).DimensionDescriptorId.DimensionId. 477

object-id is the identifier of the actual object unless the actual object is a Maintainable 478

object. If present it is always the last id and is not followed by any other character. 479

Generic Examples of the URN Structure 480

Actual object is a maintainable 481

SDMXPrefix.SDMX-IM-package-name.classname=agencyid:maintained-object-482

id(version) 483

Actual object is contained in a maintained object with no intermediate containing object 484

SDMXPrefix.SDMX-IM-package-name.classname=agencyid:maintained-object-485

id(version).object-id 486

Actual object is contained in a maintained object with an intermediate containing object 487

SDMXPrefix.SDMX-IM-package-name.classname=agencyid:maintained-object-488

id(version).contained-object-id.object-id 489

Actual object is contained in a maintained object with no intermediate containing object but 490

the object type itself is hierarchical 491

In this case the object id may not be unique in itself but only within the context of the hierarchy. 492

In the general syntax of the URN all intermediary objects in the structure (with the exception, 493

of course, of the maintained object) are shown as a contained object. An example here would 494
be a Category in a CategoryScheme. The Category is hierarchical, and all intermediate 495

Categories are shown as a contained object. The example below shows the generic 496

structure for CategoryScheme/ Category/ Category. 497

SDMXPrefix.SDMX-IM-package-name.classname=agencyid:maintained-object-498

id(version).contained-object-id.object-id 499

Actual object is contained in a maintained object with an intermediate containing object and the 500

object type itself is hierarchical 501

31

In this case the generic syntax is the same as for the example above as the parent object is 502

regarded as a containing object, even if it is of the same type. An example here is a 503

MetadataAttribute where the contained objects are MetadataAttributeDescriptor 504

(first contained object id) and MetadataAttribute (subsequent contained object ids). The 505

example below shows the generic structure for MSD/ MetadataAttributeDescriptor/ 506

MetadataAttribute/ MetadataAttribute 507

SDMXPrefix.SDMX-IM-package-name.classname=agencyid:maintained-object-508

id(version).contained-object-id.contained-object-id contained-object-509

id.object-id 510

Concrete Examples of the URN Structure 511

The Data Structure Definition CRED_EXT_DEBT of legacy version 2.1 maintained by the top-512

level Agency TFFS would have the URN: 513

urn:sdmx:org.sdmx.infomodel.datastructure.DataStucture=TFFS:CRED_EXT_ 514

DEBT(2.1) 515

The URN for a code for Argentina maintained by ISO in the code list CL_3166A2 of semantic 516

version 1.0.0 would be: 517

urn:sdmx:org.sdmx.infomodel.codelist.Code=ISO:CL_3166A2(1.0.0).AR 518

The URN for a category (id of 1) which has parent category (id of 2) maintained by SDMX in 519

the category scheme SUBJECT_MATTER_DOMAINS of the semantic extended version 1.0.0-520

draft would be: 521

urn:sdmx:org.sdmx.infomodel.categoryscheme.Category=SDMX:SUBJECT_MATT522

ER_DOMAINS(1.0.0-draft).1.2 523

The URN for a Metadata Attribute maintained by SDMX in the MSD CONTACT_METADATA 524

of semantic version 1.0.0 where the hierarchy of the Metadata Attribute is 525

CONTACT_DETAILS/CONTACT_NAME would be: 526

urn:sdmx:org.sdmx.infomodel.metadatastructure.MetadataAttribute=SDMX:527

CONTACT_METADATA(1.0.0).CONTACT_DETAILS.CONTACT_NAME 528

The TFFS defines ABC as a sub-Agency of TFFS then the URN of a Dataflow maintained by 529

ABC and identified as EXTERNAL_DEBT of semantic version 1.0.0 would be: 530

urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=TFFS.ABC:EXTERNAL_531

DEBT(1.0.0) 532

The SDMX-RR MUST support this globally unique identification scheme. The SDMX-RR MUST 533

be able to create the URN from the individual identification attributes submitted and to transform 534

the URN to these identification attributes. The identification attributes are: 535

• Identifiable and Nameable Artefacts: id (in some cases this id may be hierarchic) 536

32

• Maintainable Artefacts: id, version, agencyId 537

The SDMX-RR MUST be able to resolve the unique identifier of an SDMX artefact and to 538

produce an SDMX-ML rendering of that artefact if it is located in the Registry. 539

6.2.3 Table of SDMX-IM Packages and Classes 540

The table below lists all of the packages in the SDMX-IM together with the concrete classes 541

that are in these packages and whose objects have a URN. 542

Package URN class name (model class name where this is

different)

base Agency

 AgencyScheme

 DataConsumer

 DataConsumerScheme

 DataProvider

 DataProviderScheme

 MetadataProvider

 MetadataProviderScheme

 OrganisationUnit

 OrganisationUnitScheme

datastructure AttributeDescriptor

 DataAttribute

 Dataflow

 DataStructure (DataStructureDefinition)

 Dimension

 DimensionDescriptor

 GroupDimensionDescriptor

 Measure

 MeasureDescriptor

 TimeDimension

metadatastructure MetadataAttribute

 MetadataAttributeDescriptor

 MetadataStructure

(MetadataStructureDefinition)

33

Package URN class name (model class name where this is

different)

 Metadataflow

 MetadataSet

process Process

 ProcessStep

 Transition

registry DataConstraint

 MetadataConstraint

 MetadataProvisionAgreement

 ProvisionAgreement

 Subscription

structuremapping CategorySchemeMap

 ConceptSchemeMap

 OrganisationSchemeMap

 ReportingTaxonomyMap

 RepresentationMap

 StructureMap

codelist Code

 Codelist

 HierarchicalCode

 Hierarchy

 HierarchyAssociation

 Level

 ValueList

categoryscheme Categorisation

 Category

 CategoryScheme

 ReportingCategory

 ReportingTaxonomy

34

Package URN class name (model class name where this is

different)

conceptscheme Concept

 ConceptScheme

transformation CustomType

 CustomTypeScheme

 NamePersonalisation

 NamePersonalisationScheme

 Ruleset

 RulesetScheme

 Transformation

 TransformationScheme

 UserDefinedOperator

 UserDefinedOperatorScheme

 VtlCodelistMapping

 VtlConceptMapping

 VtlDataflowMapping

 VtlMappingScheme

Table 2: SDMX-IM Packages and Contained Classes 543

35

6.2.4 URN Identification components of SDMX objects 544

The table below describes the identification components for all SDMX object types that have identification. Note the actual attributes are all ‘id’ 545

but have been prefixed by their class name or multiple class names to show navigation, e.g., ‘conceptSchemeAgencyId’ is really the ‘Id’ attribute 546

of the Agency class that is associated to the ConceptScheme. 547

Note that for brevity the URN examples omit the prefix (classnames in italics indicate maintainable objects, keywords in bold indicate fixed value) 548

All URNs have the prefix: 549

urn:sdmx.org.sdmx.infomodel.{package}.{classname}= 550

Classname Ending URN pattern Example

Agency2 agencySchemeAgencyId:AGENCIES(1.0).agencyId ECB:AGENCIES(1.0).AA

AgencyScheme agencySchemeAgencyId:AGENCIES(1.0) ECB:AGENCIES(1.0)

Categorisation categorisationAgencyId:categorisationId(version) IMF:cat001(1.0.0)

Category categorySchemeAgencyId:categorySchemeId(versi
on).categoryId.categoryId.categoryId etc.

IMF:SDDS(1.0.0):level_1_category.level_2_category …

CategoryScheme categorySchemeAgencyId:categorySchemeId(versi
on)

IMF:SDDS(1.0.0)

2 The identification of an Agency in the URN structure for the maintainable object is by means of the agencyId. The AgencyScheme is not identified as SDMX
has a mechanism for identifying an Agency uniquely by its Id. Note that this Id may be hierarchical. For example, a sub-agency of IMF is referred like this:
IMF.SubAgency1

36

Classname Ending URN pattern Example

CategorySchemeMap catSchemeMapAgencyId:catSchemeMapId(version
)

SDMX:EUROSTAT_SUBJECT_DOMAIN(1.0.0)

Code codeListAgencyId:codelistId(version).codeId SDMX:CL_FREQ(1.0.0).Q

Codelist codeListAgencyId:codeListId(version) SDMX:CL_FREQ(1.0.0)

ComponentMap structureMapAgencyId:structureMap(version).com
ponentMapId

SDMX:BOP_STRUCTURES(1.0.0).REF_AREA_TO_COUNT
RY

Concept conceptSchemeAgencyId:conceptSchemeId(versio
n).conceptId

SDMX:CROSS_DOMAIN_CONCEPTS(1.0.0).FREQ

ConceptScheme conceptSchemeAgencyId:conceptSchemeId(versio
n)

SDMX:CROSS_DOMAIN_CONCEPTS(1.0.0)

ConceptSchemeMap conceptSchemeMapAgencyId:conceptSchemeMap
Id(version)

SDMX:CONCEPT_MAP(1.0.0)

CustomType customTypeSchemeAgencyId
customTypeSchemeId(version)
customTypeId

ECB: CUSTOM_TYPE_SCHEME(1.0.0).CUSTOM_TYPE_1

CustomTypeScheme customTypeSchemeAgencyId
customTypeSchemeId(version)

ECB:CUSTOM_TYPE_SCHEME(1.0.0)

DataAttrribute dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).dataAttributeId

TFFS:EXT_DEBT(1.0.0).OBS_STATUS

DataConstraint dataConstraintAgencyId:dataConstraintId(version) TFFS:CREDITOR_DATA_CONTENT(1.0.0)

37

Classname Ending URN pattern Example

DataConsumer dataConsumerSchemeAgencyId:DATA_CONSUME
RS(1.0).dataConsumerId

SDMX:DATA_CONSUMERS(1.0).CONSUMER_1

DataConsumerScheme dataConsumerSchemeAgencyId:DATA_CONSUME
RS(1.0)

SDMX:DATA_CONSUMERS(1.0)

Dataflow dataflowAgencyId:dataflowId(version) TFFS:CRED_EXT_DEBT(1.0.0)

DataProvider dataProviderSchemeAgencyId:DATA_PROVIDERS(
1.0).dataProviderId

SDMX:DATA_PROVIDERS(1.0).PROVIDER_1

DataProviderScheme dataProviderSchemeAgencyId:DATA_PROVIDERS(
1.0)

SDMX:DATA_PROVIDERS(1.0)

DataStructure dataStructureDefinitionAgencyId:dataStructureDef
initionId(version)

TFFS:EXT_DEBT(1.0.0)

Dimension dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).dimensionId

TFFS:EXT_DEBT(1.0.0).FREQ

DimensionDescriptor
MeasureDescriptor
AttributeDescriptor

dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).componentListId
where the componentListId is the name of the
class (there is only one occurrence of each in the
Data Structure Definition)

TFFS:EXT_DEBT(1.0.0).DimensionDescriptor
TFFS:EXT_DEBT(1.0.0).MeasureDescriptor
TFFS:EXT_DEBT(1.0.0).AttributeDescriptor

GroupDimensionDescriptor dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).groupDimensionDescriptorId

TFFS:EXT_DEBT(1.0.0).SIBLING

HierarchicalCode hierarchyAgencyId:hierarchyId(version).hierarchica
lCode.hierarchicalCode

UNESCO:H-C-GOV(1.0.0).GOV_CODE1.GOV_CODE1_1

38

Classname Ending URN pattern Example

Hierarchy hierarchyAgencyId:hierarchyId(version) UNESCO:H-C-GOV(1.0.0)

HierarchyAssociation hierarchyAssociationAgencyId:hierarchyAssociatio
nId(version)

UNESCO:CL_EXP_SOURCE(1.0.0)

Level hierarchyAgencyId:hierarchyId(version).level UNESCO:H-C-GOV(1.0.0).LVL1

Measure dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).measureId

TFFS:EXT_DEBT(1.0.0).OBS_VALUE

MetadataAttribute msdAgencyId:msdId(version).metadataAttributeId.
metadataAttributeId

IMF:SDDS_MSD(1.0.0).COMPILATION.METHOD

MetadataAttributeDescriptor msdAgencyId:msdId(version).metadataAttributeDe
scriptorId

IMF:SDDS_MSD(1.0.0).MetadataAttributeDescriptor

MetadataConstraint metadataConstraintAgencyId:metadataConstraintI
d(version)

TFFS:CREDITOR_METADATA_CONTENT(1.0.0)

Metadataflow metadataflowAgencyId:metadataflowId(version) IMF:SDDS_MDF(1.0.0)

MetadataProvider metadataProviderSchemeAgencyId:METADATA_P
ROVIDERS(1.0).metadataProviderId

SDMX:METADATA_PROVIDERS(1.0).MD_PROVIDER_1

MetadataProviderScheme metadataProviderSchemeAgencyId:METADATA_P
ROVIDERS(1.0)

SDMX:METADATA_PROVIDERS(1.0)

MetadataProvisionAgreement metadataProvisionAgreementAgencyId:metadataP
rovisionAgreementId(version)

IMF:SDDS_MDF_AB(1.0.0)

MetadataSet metadataProviderId:metadataSetId(version) MD_PROVIDER:METADATASET(1.0.0)

MetadataStructure msdAgencyId:msdId(version) IMF:SDDS_MSD(1.0.0)

39

Classname Ending URN pattern Example

NamePersonalisation namePersonalisationSchemeAgencyId
namePersonalisationSchemeId(version)
namePersonalisationId

ECB:PSN_SCHEME(1.0.0).PSN1234

NamePersonalisationScheme namePersonalisationSchemeAgencyId
namePersonalisationSchemeId(version)

ECB:PSN_SCHEME(1.0.0)

OrganisationSchemeMap orgSchemeMapAgencyId:orgSchemeMapId(versio
n)

SDMX:AGENCIES_PROVIDERS(1.0.0)

OrganisationUnit organisationUnitSchemeAgencyId:organisationUni
tSchemeId(version).organisationUnitId

ECB:ORGANISATIONS(1.0.0).1F

OrganisationUnitScheme organisationUnitSchemeAgencyId:organisationUni
tSchemeId(version)

ECB:ORGANISATIONS(1.0.0)

Process processAgencyId:processId{version) BIS:PROCESS1(1.0.0)

ProcessStep processAgencyId:processId(version).processStepId.
processStepId

BIS:PROCESS1(1.0.0).STEP1.STEP1_1

ProvisionAgreement provisionAgreementAgencyId:provisionAgreement
Id(version)

TFFS:CRED_EXT_DEBT_AB(1.0.0)

ReportingCategory reportingTaxonomyAgencyId:
reportingTaxonomyId(version).reportingCategoryI
d.reportingCategoryId

IMF:REP_1(1.0.0):LVL1_REP_CAT.LVL2_REP_CAT

ReportingTaxonomy reportingTaxonomyAgencyId:reportingTaxonomyI
d(version)

IMF:REP_1(1.0.0)

ReportingTaxonomyMap repTaxonomyAgencyId:repTaxonomyId(version) SDMX:RT_MAP(1.0.0)

40

Classname Ending URN pattern Example

RepresentationMap repMapAgencyId:repMapId(version) SDMX:REF_AREA_MAPPING(1.0.0)

Ruleset rulesetSchemeAgencyId
rulesetSchemeId(version)
rulesetId

ECB:RULESET_23(1.0.0).SET111

RulesetScheme rulesetSchemeAgencyId
rulesetSchemeId(version)

ECB:RULESET_23(1.0.0)

StructureMap structureMapAgencyId:structureMap(version) SDMX:BOP_STRUCTURES(1.0.0)

Subscription The Subscription is not itself an Identifiable
Artefact and therefore it does not follow the rules
for URN structure.
The name of the URN is registryURN
There is no pre-determined format.

This cannot be generated by a common mechanism as
subscriptions, although maintainable in the sense that
they can be submitted and deleted, are not mandated
to be created by a maintenance agency and have no
versioning mechanism. It is therefore the responsibility
of the target registry to generate a unique Id for the
Subscription, and for the application creating the
subscription to store the registry URN that is returned
from the registry in the subscription response message.

TimeDimension dataStructureDefinitionAgencyId:dataStructureDef
initionId(version).timeDimensionId

TFFS:EXT_DEBT(1.0.0).TIME_PERIOD

Transformation transformationSchemeAgencyId
transformationSchemeId(version)
transformationId

ECB:TRANSFORMATION_SCHEME(1.0.0).TRANS_1

TransformationScheme transformationSchemeAgencyId
transformationSchemeId(version)

ECB: TRANSFORMATION_SCHEME(1.0.0)

41

Classname Ending URN pattern Example

Transition processAgencyId:processId(version).processStepId.
transitionId

BIS:PROCESS1(1.0.0).STEP1.TRANSITION1

UserDefinedOperator userDefinedOperatorSchemeAgencyId
userDefinedOperatorSchemeId(version)
usserDefinedOperatorId

ECB:OS_CALC(1.2.0).OS267

UserDefinedOperatorScheme userDefinedOperatorSchemeAgencyId
userDefinedOperatorSchemeId(version)

ECB:OS_CALC(1.2.0)

ValueList valuelistAgencyId:valuelistId(version) SDMX:VLIST(1.0.0)

VtlCodelistMapping vtlMappingSchemeAgencyId
vtlMappingSchemeId(version)
vtlCodelistMappingId

ECB:CLIST_MP(2.0.0).ABZ

VtlConceptMapping vtlMappingSchemeAgencyId
vtlMappingSchemeId(version)
vtlConceptMappingId

ECB:CLIST_MP(1.0.0).XYA

VtlDataflowMapping vtlMappingSchemeAgencyId
vtlMappingSchemeId(version)
vtlDataflowMappingId

ECB:CLIST_MP(1.0.0).MOQ

VtlMappingScheme vtlMappingSchemeAgencyId
VtlMappingSchemeId(version)

ECB:CLIST_MP(2.0.0)

Table 3: Table of identification components for SDMX Identifiable Artefacts 551

42

7 Implementation Notes 552

7.1 Structural Definition Metadata 553

7.1.1 Introduction 554

The SDMX Registry must have the ability to support agencies in their role of defining and 555

disseminating structural metadata artefacts. These artefacts include data structure 556

definitions, code lists, concepts etc. and are fully defined in the SDMX-IM. An authenticated 557

agency may submit valid structural metadata definitions which must be stored in the 558

registry. Note that the term “structural metadata” refers as a general term to all structural 559

components (Data Structure Definitions, Metadata Structure Definitions, Code Lists, 560

Concept Schemes, etc.) 561

At a minimum, structural metadata definitions may be submitted to and queried from the 562

registry via an HTTP/HTTPS POST in the form of one of the SDMX-ML messages for 563

structural metadata and the SDMX RESTful API for structure queries. The message may 564

contain all structural metadata items for the whole registry, structural metadata items for 565

one maintenance agency, or individual structural metadata items. 566

Structural metadata items 567

• may only be modified by the maintenance agency which created them; 568

• may only be deleted by the agency which created them; 569

• may not be deleted if they are referenced from other constructs in the Registry. 570

The level of granularity for the maintenance of SDMX Structural Metadata objects in the 571

registry is the Maintainable Artefact. Especially for Item Schemes, though, partial 572

maintenance may be performed, i.e., at the level of the Item, by submitting an Item Scheme 573

with the 'isPartial' flag set and a reduced set of Items. 574

The following table lists the Maintainable Artefacts. 575

Maintainable Artefacts Content

Abstract Class Concrete Class

Item Scheme Codelist Code

 Concept Scheme Concept

 Category Scheme Category

 Organisation Unit Scheme Organisation Unit

 Agency Scheme Agency

 Data Provider Scheme Data Provider

 Metadata Provider Scheme Metadata Provider

43

 Data Consumer Scheme Data Consumer

 Reporting Taxonomy Reporting Category

 Transformation Scheme Transformation

 Custom Type Scheme Custom Type

 Name Personalisation Scheme Name Personalisation

 Vtl Mapping Scheme Vtl Codelist Mapping

Vtl Concept Mapping

 Ruleset Scheme Ruleset

 User Defined Operator Scheme User Defined Operator

Enumerated List ValueList Value Item

Structure Data Structure Definition Dimension Descriptor

Group Dimension Descriptor

Dimension

Time Dimension

Attribute Descriptor

Data Attribute

Measure Descriptor

Measure

 Metadata Structure Definition Metadata Attribute Descriptor

Metadata Attribute

Structure Usage Dataflow

 Metadataflow

None Process Process Step

None Structure Map Component Map

Epoch Map

Date Pattern Map

None Representation Map Representation Mapping

Item Scheme Map Organisation Scheme Map Item Map

 Concept Scheme Map Item Map

 Category Scheme Map Item Map

 Reporting Taxonomy Map Item Map

None Provision Agreement

None Metadata Provision Agreement

None Hierarchy Hierarchical Code

None Hierarchy Association

None Categorisation

Table 4: Table of Maintainable Artefacts for Structural Definition Metadata 576

44

7.1.2 Item Scheme, Structure 577

The artefacts included in the structural definitions are: 578

• All types of Item Scheme (Codelist, Concept Scheme, Category Scheme, 579

Organisation Scheme, Agency Scheme, Data Provider Scheme, Metadata Provider 580

Scheme, Data Consumer Scheme, Organisation Unit Scheme, Transformation 581

Scheme, Name Personalisation Scheme, Custom Type Scheme, Vtl Mapping 582

Scheme, Ruleset Scheme, User Defined Operator Scheme) 583

• All types of Enumerated List (ValueList)3 584

• All types of Structure (Data Structure Definition, Metadata Structure Definition) 585

• All types of Structure Usage (Dataflow, Metadataflow) 586

7.1.3 Structure Usage 587

7.1.3.1 Structure Usage: Basic Concepts 588

The Structure Usage defines, in its concrete classes of Dataflow and Metadataflow, which 589

flows of data and metadata use which specific Structure, and importantly for the support 590

of data and metadata discovery, the Structure Usage can be linked to one or more 591

Category in one or more Category Scheme using the Categorisation mechanism. This 592

gives the ability for an application to discover data and metadata by “drilling down” the 593

Category Schemes. 594

3 Note that Codelist is also an EnumeratedList.

45

7.1.3.2 Structure Usage Schematic 595

 596

Figure 9: Schematic of Linking the Data and Metadata Flows to Categories and Structure 597
Definitions 598

 599

46

7.1.3.3 Structure Usage Model 600

 601

Figure 10: SDMX-IM of links from Structure Usage to Category 602

In addition to the maintenance of the Dataflow and the Metadataflow, the following links 603

must be maintained in the registry: 604

• Dataflow to Data Structure Definition 605

• Metadataflow to Metadata Structure Definition 606

The following links may be created by means of a Categorisation 607

• Categorisation to Dataflow and Category 608

• Categorisation to Metadataflow and Category 609

47

7.2 Data and Metadata Provisioning 610

7.2.1 Provisioning Agreement: Basic concepts 611

Data/Metadata provisioning defines a framework in which the provision of different types 612

of statistical data and metadata by various data/metadata providers can be specified and 613

controlled. This framework is the basis on which the existence of data can be made known 614

to the SDMX-enabled community and hence the basis on which data can subsequently be 615

discovered. Such a framework can be used to regulate the data content to facilitate the 616

building of intelligent applications. It can also be used to facilitate the processing implied 617

by service level agreements, or other provisioning agreements in those scenarios that are 618

based on legal directives. Additionally, quality and timeliness metadata can be supported 619

by this framework which makes it practical to implement information supply chain 620

monitoring. 621

Note that the term “data provisioning” here includes both the provisioning of data and 622

metadata. 623

Although the Provision Agreement directly supports the data-sharing “pull” model, it is also 624

useful in “push” exchanges (bilateral and gateway scenarios), or in a dissemination 625

environment. It should be noted, too, that in any exchange scenario, the registry functions 626

as a repository of structural metadata. 627

7.2.2 Provisioning Agreement Model – pull use case 628

An organisation which publishes statistical data or reference metadata and wishes to make 629

it available to an SDMX enabled community is called a Data Provider. In terms of the 630

SDMX Information Model, the Data Provider is maintained in a Data Provider Scheme. 631

48

 632

Figure 11: SDMX-IM of the Data Provider 633

Note that the Data Provider does not inherit the hierarchy association. The diagram below 634

shows a logical schematic of the data model classes required to maintain provision 635

agreements. 636

49

 637

Figure 12: Schematic of the Provision Agreement 638

The diagram below is a logical representation of the data required in order to maintain 639

Provision Agreements. 640

 641

Figure 13: Logical class diagram of the information contained in the Provision Agreement 642

A Provision Agreement is structural metadata. Each Provision Agreement must reference 643

a Data Provider or Metadata Provider and a Dataflow or Metadataflow Definition. The 644

Data/Metadata Provider and the Dataflow/Metadataflow must exist already in order to set 645

up a Metadata Provision or Provision Agreement. 646

50

7.3 Data and Metadata Constraints 647

7.3.1 Data and Metadata Constraints: Basic Concepts 648

Constraints are, effectively, lists of the valid or actual content of data and metadata. 649

Constraints can be used to specify a subset of the theoretical content of data set or 650

metadata set which can be derived from the specification of the DSD or MSD. A Constraint 651

can comprise a list of keys or a list of content (usually code values) of a specific component 652

such as a dimension or attribute. 653

Constraints comprise the specification of subsets of key or attribute values that are 654

contained in a data source, or is to be provided for a Dataflow or Metadataflow, or directly 655

attached to a Data Structure Definition or Metadata Structure Definition. This is important 656

metadata because, for example, the full range of possibilities which is implied by the Data 657

Structure Definition (e.g., the complete set of valid keys is the Cartesian product of all the 658

values in the code lists for each of the Dimensions) is often more than is actually present 659

in any specific data source, or more than is intended to be supplied according to a specific 660

Dataflow. 661

Often a Data Provider will not be able to provide data for all key combinations, either 662

because the combination itself is not meaningful, or simply because the provider does not 663

have the data for that combination. In this case the Data Provider could constrain the data 664

source (at the level of the Provision Agreement or the Data Provider) by supplying 665

metadata that defines the key combinations or cube regions that are available. This is done 666

by means of a Constraint. The Constraint is also used to define a code list subset which is 667

used to populate a partial code list. 668

Furthermore, it is often useful to define subsets or views of the Data Structure Definition 669

which restrict values in some code lists, especially where many such subsets restrict the 670

same Data Structure Definition. Such a view is called a Dataflow, and there can be one or 671

more defined for any Data Structure Definition. 672

Whenever data is published or made available by a Data Provider, it must conform to a 673

Dataflow (and hence to a Data Structure Definition). The Dataflow is thus a means of 674

enabling content based processing. 675

In addition, Constraints can be extremely useful in a data visualisation system, such as 676

dissemination of statistics on a website. In such a system a Cube Region can be used to 677

specify the Dimension codes that actually exist in a data source (these can be used to 678

build relevant selection tables), and the Key Set can be used to specify the keys that exist 679

in a data source (these can be used to guide the user to select only those Dimension code 680

values that will return data based on the Dimension values already selected). 681

51

7.3.2 Data and Metadata Constraints: Schematic 682

 683

Figure 14: Schematic of the Constraint and the Artefacts that can be constrained 684

 685

52

7.3.3 Data and Metadata Constraints: Model 686

 687

Figure 15: Logical class diagram showing inheritance between and reference to 688
constrainable artefacts 689

 690

Logical class diagram showing inheritance between and reference to constrainable 691

artefacts 692

The class diagram above shows that Data Provider, Metadata Provider, Dataflow, 693

Metadataflow, Provision Agreement, Metadata Provision Agreement, Data Structure 694

Definition, Metadata Structure Definition, Simple Datasource and REST Datasource (via 695

the abstract Query Datasource) are all concrete sub-classes of Constrainable Artefact and 696

can therefore have Constraints specified. Note that the actual Constraint as submitted is 697

53

associated to the reference classes which inherit from ConstrainableRef: these are used 698

to refer to the classes to which the Constraint applies. 699

The content of the Constraint can be found in the SDMX Information Model document. 700

7.4 Data and Metadata Registration 701

7.4.1 Basic Concepts 702

A Data Provider has published a new dataset conforming to an existing Dataflow (and 703

hence Data Structure Definition). This is implemented as either a web-accessible SDMX-704

ML file, or in a database which has a web-services interface capable of responding to an 705

SDMX RESTful query with an SDMX-ML data stream. 706

The Data Provider wishes to make this new data available to one or more data collectors 707

in a “pull” scenario, or to make the data available to data consumers. To do this, the Data 708

Provider registers the new dataset with one or more SDMX conformant registries that have 709

been configured with structural and provisioning metadata. In other words, the registry 710

“knows” the Data Provider and “knows” what data flows the data provider has agreed to 711

make available. 712

The same mechanism can be used to report or make available a metadata set. 713

SDMX-RR supports dataset and metadata set registration via the Registration Request, 714

which can be created by the Data/Metadata Provider (giving the Data Provider maximum 715

control). The registry responds to the registration request with a registration response 716

which indicates if the registration was successful. In the event of an error, the error 717

messages are returned as a registry exception within the response. 718

54

7.4.2 The Registration Request 719

7.4.2.1 Registration Request Schematic 720

 721

Figure 16: Schematic of the Objects Concerned with Registration 722

 723

7.4.2.2 Registration Request Model 724

The following UML diagram shows the composition of the registration request. Each 725

request is made up of one or more Registrations, one per dataset or metadata set to be 726

registered. The Registration can optionally have information, which has been extracted 727

from the Registration: 728

• validFrom 729

• validTo 730

• lastUpdated 731

The last updated date is useful during the discovery process to make sure the client knows 732

which data is freshest. 733

The Registration has an action attribute which takes one of the following values: 734

Action Attribute

Value

Behaviour

55

Append Add this Registration to the registry

Replace Replace the existing Registration with identified by the id in the

Registration of the SubmitRegistrationRequest

Delete Delete the existing Registration identified by the id in the Registration

of the SubmitRegistrationRequest

 735

Figure 17: Logical Class Diagram of Registration of Data and Metadata 736

The QueryDatasource is an abstract class that represents a data source, which can 737

understand an API query (i.e., a RESTful query – RESTDatasource) and respond 738

appropriately. Each data source inherits the dataURL from Datasource, and the 739

QueryDatasource has an additional URL to locate the specification of the service 740

56

(specURL) to describe how to access it. All other supported protocols are assumed to use 741

the SimpleDatasource URL. 742

A SimpleDatasource is used to reference a physical SDMX-ML file that is available at 743

a URL. 744

The RegistrationRequest has an action attribute which defines whether this is a 745

new (append) or updated (replace) Registration, or that the Registration is to be 746

deleted (delete). The id is only provided for the replace and delete actions, as the Registry 747

will allocate the unique id of the (new) Registration. 748

The Registration includes attributes that state how a SimpleDatasource is to be 749

indexed when registered. The Registry registration process must act as follows: 750

Information in the data or metadata set is extracted and placed in one or more 751
Constraints (see the Constraint model in the SDMX Information Model – Section 2 752

of the SDMX Standards). The information to be extracted is indicated by the Boolean 753

values set on the ProvisionAgreement or MetadataProvisionAgreement as 754

shown in the table below. 755

Indexing Required Registration Process Activity

indexTimeSeries Extract all the series keys and create a KeySet(s)

Constraint.

indexDataSet Extract all the codes and other content of the Key

value of the Series Key in a Data Set and create

one or more Cube Regions containing Member

Selections of Dimension Components of the

Constraints model in the SDMX-IM, and the

associated Selection Value.

indexReportingPeriod This applies only to a registered dataset.

Extract the Reporting Begin and Reporting End

from the Header of the Message containing the

data set, and create a Reference Period

constraint.

57

Indexing Required Registration Process Activity

indexAttributes Data Set

Extract the content of the Attribute Values in a
Data Set and create one or more Cube Regions
containing Member Selections of Data Attribute
Components of the Constraints model in the
SDMXIM, and the associated Selection Value

Metadata Set

Indicate the presence of a Reported Attribute by

creating one or more Cube Regions containing

Member Selections of Metadata Attribute

Components of the Constraints model in the

SDMX-IM. Note that the content is not stored in

the Selection Value.

 756

Constraints that specify the contents of a QueryDatasource are submitted to the 757

Registry via the structure submission service (i.e., the RESTful API). 758

The Registration must reference the ProvisionAgreement or 759

MetadataProvisionAgreement to which it relates. 760

7.4.3 Registration Response 761

After a registration request has been submitted to the registry, a response is returned to 762

the submitter indicating success or failure. Given that a registration request can hold many 763

Registrations, then there must be a registration status for each Registration. The 764

SubmitRegistration class has a status field, which is either set to “Success”, 765

“Warning” or “Failure”. 766

If the registration has succeeded, a Registration will be returned – this holds the 767

Registry-allocated Id of the newly registered Datasource plus a Datasource holding 768

the URL to access the dataset, metadataset, or query service. 769

The RegistrationResponse returns set of registration status (one for each registration 770

submitted) in terms of a StatusMessage (this is common to all Registry responses) that 771

indicates success or failure. In the event of registration failure, a set of MessageText are 772

returned, giving the error messages that occurred during registration. It is entirely possible 773

when registering a batch of datasets, that the response will contain some successful and 774

some failed statuses. The logical model for the RegistrationResponse is shown below: 775

58

 776

Figure 18: Logical class diagram showing the registration response 777

 778

7.5 Subscription and Notification Service 779

The contents of the SDMX Registry/Repository will change regularly: new code lists and 780

key families will be published and new datasets and metadata-sets will be registered. To 781

obviate the need for users to repeatedly query the registry to see when new information is 782

available, a mechanism is provided to allow users to be notified when these events happen. 783

A user can submit a subscription in the registry that defines which events are of interest, 784

and either an email and/or an HTTP address to which a notification of qualifying events will 785

be delivered. The subscription will be identified in the registry by a URN, which is returned 786

to the user when the subscription is created. If the user wants to delete the subscription at 787

a later point, the subscription URN is used as identification. Subscriptions have a validity 788

period expressed as a date range (startDate, endDate) and the registry may delete any 789

expired subscriptions, and will notify the subscriber on expiry. 790

When a registry/repository artefact is modified, any subscriptions which are observing the 791

object are activated, and either an email or HTTP POST is instigated to report details of 792

the changes to the user specified in the subscription. This is called a “notification”. 793

59

 7.5.1 Subscription Logical Class Diagram 794

 795

Figure 19: Logical Class Diagram of the Subscription 796

 7.5.2 Subscription Information 797

 Regardless of the type of registry/repository events being observed, a subscription798

 always contains: 799

60

1. A set of URIs describing the end-points to which notifications must be sent if the 800

subscription is activated. The URIs can be either mailto: or http: protocol. In the former 801

case an email notification is sent; in the latter an HTTP POST notification is sent. 802

2. A user-defined identifier, which is returned in the response to the subscription request. 803

This helps with asynchronous processing and is NOT stored in the Registry. 804

3. A validity period which defines both when the subscription becomes active and 805

expires. The subscriber may be sent a notification on expiration of the subscription. 806

4. A selector which specifies which type of events are of interest. The set of event types 807

is: 808

Event Type Comment

STRUCTURAL_REPOSITORY_EVENTS Life-cycle changes to Maintainable Artefacts

in the structural metadata repository.

DATA_REGISTRATION_EVENTS Whenever a published dataset is registered.

This can be either a SDMXML data file or an

SDMX conformant database.

METADATA_REGISTRATION_EVENTS Whenever a published metadataset is

registered. This can be either a SDMXML

reference metadata file or an SDMX

conformant database.

ALL_EVENTS All events of the specified EventType

 7.5.3 Wildcard Facility 809

Subscription notification supports wildcarded identifier components URNs, which are 810

identifiers which have some or all of their component parts replaced by the wildcard 811

character `*`. Identifier components comprise: 812

• agencyID 813

• id 814

• version 815

Examples of wildcarded identifier components for an identified object type of Codelist 816

are shown below: 817

AgencyID = * 818

Id = * 819

61

Version = * 820

This subscribes to all Codelists of all versions for all agencies. 821

 822

AgencyID = AGENCY1 823

Id = CODELIST1 824

Version = * 825

This subscribes to all versions of Codelist CODELIST1 maintained by the agency 826

AGENCY1. 827

 828

AgencyID = AGENCY1 829

Id = * 830

Version = * 831

This subscribes to all versions of all Codelist objects maintained by the agency 832

AGENCY1. 833

 834

AgencyID = * 835

Id = CODELIST1 836

Version = * 837

This subscribes to all versions of Codelist CODELIST1 maintained by any agency. 838

Note that if the subscription is to the latest stable version then this can be achieved by the 839

+ character, i.e.: 840

Version = + 841

A subscription to the latest version (whether stable, draft or non-versioned) can be 842

achieved by the ~ character, i.e.: 843

Version = ~ 844

A subscription to the latest stable version within major version 2 starting with version 2.3.1 845

can be achieved by adding the + character after the minor version number, i.e.: 846

Version = 2.3+.1 847

62

The complete SDMX versioning syntax can be found in the SDMX Standards Section 6 848

“Technical Notes”, paragraph “4.3 Versioning”. 849

7.5.4 Structural Repository Events 850

Whenever a maintainable artefact (data structure definition, concept scheme, codelist, 851

metadata structure definition, category scheme, etc.) is added to, deleted from, or modified 852

in the structural metadata repository, a structural metadata event is triggered. 853

Subscriptions may be set up to monitor all such events, or focus on specific artefacts such 854

as a Data Structure Definition. 855

7.5.5 Registration Events 856

Whenever a dataset or metadata-set is registered a registration event is created. A 857

subscription may be observing all data or metadata registrations, or it may focus on specific 858

registrations as shown in the table below: 859

Selector Comment

DataProvider & MetadataProvider Any datasets or metadata sets

registered by the specified data or

metadata provider will activate the

notification.

ProvisionAgreement &

MetadataProvisionAgreement

Any datasets or metadata sets

registered for the agreement will activate

the notification.

Dataflow & Metadataflow Any datasets or metadata sets

registered for the specified dataflow (or

metadataflow) will activate the

notification.

DataStructureDefinition &

MetadataStructureDefinition

Any datasets or metadata sets

registered for those dataflows (or

metadataflows) that are based on the

specified Data Structure Definition will

activate the notification

Category Any datasets or metadata sets

registered for those dataflows,

metadataflows, provision agreements

that are categorised by the category.

The event will also capture the semantic of the registration: deletion or replacement of an 860

existing registration or a new registration. 861

63

7.6 Notification 862

7.6.1 Logical Class Diagram 863

 864

Figure 20: Logical Class Diagram of the Notification 865

A notification is an XML document that is sent to a user via email or http POST whenever 866

a subscription is activated. It is an asynchronous one-way message. 867

Regardless of the registry component that caused the event to be triggered, the following 868

common information is in the message: 869

• Date and time that the event occurred 870

• The URN of the artefact that caused the event 871

• The URN of the Subscription that produced the notification 872

• Event Action: Add, Replace, or Delete. 873

Additionally, supplementary information may be contained in the notification as detailed 874

below. 875

7.6.2 Structural Event Component 876

The notification will contain the MaintainableArtefact that triggered the event in a 877

form similar to the SDMX-ML structural message (using elements from that namespace). 878

64

 7.6.3 Registration Event Component 879

The notification will contain the Registration. 880

 881

