

SDMX STANDARDS: SECTION 6

TECHNICAL NOTES

Version 3.0
DRAFT

May 2021

© SDMX 2021
http://www.sdmx.org/

Revision History

Revision Date Contents

DRAFT 1.0 May 2021 Draft release updated for SDMX 3.0 for public consultation

http://www.sdmx.org/

3

Contents

1 Purpose and Structure .. 6

1.1 Purpose .. 6

1.2 Structure ... 6

2 General Notes on This Document ... 7

3 Guide for SDMX Format Standards .. 8

3.1 Introduction ... 8

3.2 SDMX Information Model for Format Implementers 8

3.2.1 Introduction .. 8

3.3 SDMX Formats: Expressive Capabilities and Function 8

3.3.1 Format Optimizations and Differences ... 8

3.4 SDMX Best Practices .. 10

3.4.1 Reporting and Dissemination Guidelines .. 10

3.4.2 Best Practices for Batch Data Exchange .. 13

4 General Notes for Implementers ... 15

4.1 Representations .. 15

4.1.1 Data Types... 17

4.2 Time and Time Format .. 18

4.2.1 Introduction .. 18

4.2.2 Observational Time Period ... 18

4.2.3 Standard Time Period .. 18

4.2.4 Gregorian Time Period ... 19

4.2.5 Date Time .. 19

4.2.6 Standard Reporting Period ... 19

4.2.7 Distinct Range .. 22

4.2.8 Time Format ... 22

4.2.9 Time Zones .. 23

4.2.10 Representing Time Spans Elsewhere .. 24

4.2.11 Notes on Formats... 24

4.2.12 Effect on Time Ranges ... 24

4.2.13 Time in Query Messages ... 24

4.3 Structural Metadata Querying Best Practices .. 26

4.4 Versioning ... 27

5 Reference Metadata ... 29

5.1 Scope of the Metadata Structure Definition (MSD) 29

5.2 Identification of the Object(s) to which the Metadata is to be attached 29

5.3 Metadata Structure Definition .. 30

5.4 Metadata Set ... 31

5.5 Reference Metadata in Data Structure Definition and Dataset 32

6 Codelist... 33

6.1 Geospatial Codelist ... 33

6.1.1 Indirect Reference to Geospatial Information. 33

6.1.2 Geographic Coordinates .. 34

6.1.3 A Geographic Code List ... 37

4

6.2 Codelist extension and discriminated unions ... 39

6.2.1 Prefixing Code Ids .. 40

6.2.2 Including / Excluding Specific Codes .. 40

6.2.3 Parent Ids .. 41

6.2.4 Discriminated Unions ... 43

6.3 Linking Hierarchies .. 44

7 Maintenance Agencies and Metadata Providers .. 46

8 Concept Roles .. 49

8.1 Overview ... 49

8.2 Information Model ... 49

8.3 Technical Mechanism ... 49

8.4 SDMX-ML Examples in a DSD .. 50

8.5 SDMX standard roles Concept Scheme .. 51

9 Constraints ... 53

9.1 Introduction ... 53

9.2 Types of Constraint ... 53

9.3 Rules for a Constraint ... 54

9.3.1 Scope of a Constraint ... 54

9.3.2 Multiple Content Constraints .. 54

9.3.3 Inheritance of a Content Constraint .. 55

9.3.4 Constraints Examples .. 57

10 Transforming between versions of SDMX ... 65

10.1 Scope .. 65

10.2 Compatibility and new DSD features ... 65

11 Validation and Transformation Language (VTL).. 66

11.1 Introduction ... 66

11.2 References to SDMX artefacts from VTL statements 67

11.2.1 Introduction .. 67

11.2.2 References through the URN ... 67

11.2.3 Abbreviation of the URN... 69

11.2.4 User-defined alias .. 72

11.2.5 References to SDMX artefacts from VTL Rulesets 72

11.3 Mapping between SDMX and VTL artefacts .. 73

11.3.1 When the mapping occurs .. 73

11.3.2 General mapping of VTL and SDMX data structures 74

11.3.3 Mapping from SDMX to VTL data structures 74

11.3.4 Mapping from VTL to SDMX data structures 77

11.3.5 Declaration of the mapping methods between data structures 80

11.3.6 Mapping dataflow subsets to distinct VTL Data Sets 81

11.3.7 Mapping variables and value domains between VTL and SDMX 86

11.4 Mapping between SDMX and VTL Data Types ... 88

11.4.1 VTL Data types .. 88

11.4.2 VTL basic scalar types and SDMX data types 90

11.4.3 Mapping SDMX data types to VTL basic scalar types 91

11.4.4 Mapping VTL basic scalar types to SDMX data types 93

5

11.4.5 Null Values ... 95

11.4.6 Format of the literals used in VTL Transformations 96

12 Structure Mapping ... 97

12.1 Introduction ... 97

12.2 1-1 structure maps .. 97

12.3 N-n structure maps .. 98

12.4 Ambiguous mapping rules ... 99

12.5 Representation maps .. 99

12.6 Regular expression and substring rules .. 100

12.6.1 Regular expressions .. 101

12.6.2 Substrings .. 101

12.7 Mapping non-SDMX time formats to SDMX formats 102

12.7.1 Pattern based dates ... 103

12.7.2 Numerical based datetime .. 106

12.7.3 Mapping more complex time inputs .. 107

12.8 Using TIME_PERIOD in mapping rules ... 107

12.9 Time span mapping rules using validity periods 107

12.10 Mapping examples... 108

12.10.1 Many to one mapping (N-1) .. 108

12.10.2 Mapping other data types to Code Id .. 108

12.10.3 Observation Attributes for Time Period ... 109

12.10.4 Time mapping ... 109

13 ANNEX Semantic Versioning .. 111

13.1 Introduction to Semantic Versioning .. 111

13.2 Semantic Versioning Specification for SDMX 3.0(.0) 111

13.3 Backus–Naur Form Grammar for Valid SDMX 3.0(.0) Semantic Versions 113

13.4 Dependency Management in SDMX 3.0(.0): ... 114

13.5 Upgrade and conversions of artefacts defined with previous SDMX standard
versions to Semantic Versioning .. 115

13.6 FAQ for Semantic Versioning .. 116

6

1 Purpose and Structure 1

1.1 Purpose 2

The intention of this document is to document certain aspects of SDMX that are 3
important to understand and will aid implementation decisions. The explanations here 4
supplement the information documented in the SDMX XML/JSON schemas and the 5
Information Model. 6

1.2 Structure 7

This document is organized into the following major parts: 8
 9

• A guide to the SDMX Information Model relating to Data Structure Definitions and 10
Data Sets, statement of differences in functionality supported by the different 11
formats and syntaxes for Data Structure Definitions and Data Sets, and best 12
practices for use of SDMX formats, including the representation for time period. 13

• A guide to the SDMX Information Model relating to Metadata Structure 14
Definitions, and Metadata Sets. 15

• Other structural artefacts of interest: Agencies, Concept Role, Constraint, 16
Codelist. 17

7

2 General Notes on This Document 18

As of version SDMX 2.1, the term "Key family" has been replaced by Data Structure 19
Definition (also known and referred to as DSD) both in the XML schemas and the 20
Information Model. The term "Key family" is not familiar to many people and its name 21
was taken from the model of SDMX-EDI (previously known as GESMES/TS). The 22
more familiar name "Data Structure Definition" which was used in many documents is 23
now also the technical artefact in the SDMX-ML and Information Model technical 24
specifications. The SDMX-EDI specification, that was using the term "Key family", is 25
deprecated in this version of the specification. 26
 27
There has been much work within the SDMX community on the creation of user guides, 28
tutorials, and other aides to implementation and understanding of the standard. This 29
document is not intended to duplicate the function of these documents, but instead 30
represents a short set of technical notes not generally covered elsewhere. 31
 32

8

3 Guide for SDMX Format Standards 33

3.1 Introduction 34

This guide exists to provide information to implementers of the SDMX format standards 35
– SDMX-ML, SDMX-JSON and SDMX-CSV – that are concerned with data, i.e., Data 36
Structure Definitions and Data Sets. This section is intended to provide information that 37
will help users of SDMX understand and implement the standards. It is not normative, 38
and it does not provide any rules for the use of the standards, such as those found in 39
SDMX-ML: Schema and Documentation. 40
 41

3.2 SDMX Information Model for Format Implementers 42

3.2.1 Introduction 43

The purpose of this sub-section is to provide an introduction to the SDMX-IM relating 44
to Data Structure Definitions and Data Sets for those whose primary interest is in the 45
use of the XML, JSON or CSV formats. For those wishing to have a deeper 46
understanding of the Information Model, the full SDMX-IM document, and other 47
sections in this guide provide a more in-depth view, along with UML diagrams and 48
supporting explanation. For those who are unfamiliar with DSDs, an appendix to the 49
SDMX-IM provides a tutorial which may serve as a useful introduction. 50
 51
The SDMX-IM is used to describe the basic data and metadata structures used in all 52
of the SDMX data formats. The Information Model concerns itself with statistical data 53
and its structural metadata, and that is what is described here. Both structural 54
metadata and data have some additional metadata in common, related to their 55
management and administration. These aspects of the data model are not addressed 56
in this section and covered elsewhere in this guide or in the full SDMX-IM document. 57
 58
Note that in the descriptions below, text in courier and italics are the names used in 59
the information model (e.g., DataSet). 60

3.3 SDMX Formats: Expressive Capabilities and Function 61

SDMX offers several equivalent formats for describing data and structural metadata, 62
optimized for use in different applications. Although all of these formats are derived 63
directly from the SDMX-IM, and are thus equivalent, the syntaxes used to express the 64
model place some restrictions on their use. Also, different optimizations provide 65
different capabilities. This section describes these differences and provides some rules 66
for applications which may need to support more than one SDMX format or syntax. 67
This section is constrained to the Data Structure Definition and the Date Set. 68

3.3.1 Format Optimizations and Differences 69

The following section provides a brief overview of the differences between the various 70
SDMX formats. 71
 72
Version 2.0 was characterised by 4 data messages, each with a distinct format: 73
Generic, Compact, Cross-Sectional and Utility. Because of the design, data in some 74
formats could not always be related to another format. In version 2.1, this issue has 75
been addressed by merging some formats and eliminating others. As a result, in SDMX 76
2.1 there were just two types of data formats: GenericData and StructureSpecificData 77

9

(i.e., specific to one Data Structure Definition). As of SDMX 3.0, based also on the real-78
life usage of 2.1 XML formats but also the new formats introduced (JSON and CSV), 79
only one XML format remains, i.e., StructureSpecificData. Furthermore, the time 80
specific sub-formats have also been deprecated due to the lack of usage. 81
 82
SDMX-JSON and SDMX-CSV feature also only one flavour, each. It should be noted, 83
though, that both XML and JSON messages allow for series oriented as well as flat 84
representations. 85
 86
Structure Definition 87

• The SDMX-ML Structure Message is currently the main way of modelling a DSD. 88
The SDMX-JSON version follows the same principles, while the SDMX-CSV does 89
not support structures, yet. 90

• The SDMX-ML Structure Message allows for the structures on which a Data 91
Structure Definition depends – that is, codelists and concepts – to be either 92
included in the message or to be referenced by the message containing the data 93
structure definition. XML syntax is designed to leverage URIs and other Internet-94
based referencing mechanisms, and these are used in the SDMX-ML message. 95
This option is also available in SDMX-JSON. The latter, though, further supports 96
conveying data with some structural metadata within a single message. 97

Validation 98

• The SDMX-ML structure specific messages will allow validation of XML syntax 99
and data typing to be performed with a generic XML parser and enforce 100
agreement between the structural definition and the data to a moderate degree 101
with the same tool. 102

• Similarly the SDMX-JSON message can be validated using JSON Schema and 103
hence may also be generically parsed and validated. 104

• The SDMX-CSV format cannot be validated by generic tools. 105

Update and Delete Messages and Documentation Messages 106

• All messages allow for both append/replace/delete messages and messages 107
consisting of only data or only documentation. 108

Character Encodings 109
All formats use the UTF-8 encoding. The SDMX-CSV may use a different encoding if 110
this is reported properly in the mime type of a web service response. 111
 112
Data Typing 113
The XML syntax and JSON syntax have similar data-typing mechanisms. Hence, there 114
is no need for conventions in order to allow transition from one format to another, like 115
those required for EDIFACT in SDMX 2.1. On the other hand, JSON schema has a 116
simpler set of data types (as explained in section 2, paragraph “3.6.3.3 Representation 117
Constructs”) but complements its data types with a fixed set of formats or regular 118
expressions. In addition, the JSON schema has also types that are not natively 119
supported in XML schema and need to be implemented as complex types in the latter. 120
The section below provides examples of those cases that are not natively supported 121
by either the XML or JSON data types. More details on the data mapping between 122
XML and JSON schemas are also explained in section “4.1.1 Data Types”. 123
 124

10

3.4 SDMX Best Practices 125

3.4.1 Reporting and Dissemination Guidelines 126

3.4.1.1 Central Institutions and Their Role in Statistical Data Exchanges 127

Central institutions are the organisations to which other partner institutions "report" 128
statistics. These statistics are used by central institutions either to compile aggregates 129
and/or they are put together and made available in a uniform manner (e.g., on-line or 130
on a CD-ROM or through file transfers). Therefore, central institutions receive data 131
from other institutions and, usually, they also "disseminate" data to individual and/or 132
institutions for end-use. Within a country, a NSI or a national central bank (NCB) plays, 133
of course, a central institution role as it collects data from other entities and it 134
disseminates statistical information to end users. In SDMX the role of central institution 135
is very important: every statistical message is based on underlying structural definitions 136
(statistical concepts, code lists, DSDs) which have been devised by a particular 137
agency, usually a central institution. Such an institution plays the role of the reference 138
"structural definitions maintenance agency" for the corresponding messages which are 139
exchanged. Of course, two institutions could exchange data using/referring to 140
structural information devised by a third institution. 141
 142
Central institutions can play a double role: 143

• collecting and further disseminating statistics; 144

• devising structural definitions for use in data exchanges. 145

3.4.1.2 Defining Data Structure Definitions (DSDs) 146

The following guidelines are suggested for building a DSD. However, it is expected 147
that these guidelines will be considered by central institutions when devising new 148
DSDs. 149
 150
Dimensions, Attributes and Codelists 151
 152

• Avoid dimensions that are not appropriate for all the series in the data 153
structure definition. If some dimensions are not applicable (this is evident from 154
the need to have a code in a code list which is marked as "not applicable", "not 155
relevant" or "total") for some series then consider moving these series to a new 156
data structure definition in which these dimensions are dropped from the key 157
structure. This is a judgement call as it is sometimes difficult to achieve this 158
without increasing considerably the number of DSDs. 159

• Devise DSDs with a small number of Dimensions for public viewing of data. 160
A DSD with the number dimensions in excess 6 or 7 is often difficult for non-161
specialist users to understand. In these cases, it is better to have a larger number 162
of DSDs with smaller "cubes" of data, or to eliminate dimensions and aggregate 163
the data at a higher level. Dissemination of data on the web is a growing use case 164
for the SDMX standards: the differentiation of observations by dimensionality, 165
which are necessary for statisticians and economists, are often obscure to public 166
consumers who may not always understand the semantic of the differentiation. 167

• Avoid composite dimensions. Each dimension should correspond to a single 168
characteristic of the data, not to a combination of characteristics. 169

11

• Consider the inclusion of the following attributes. Once the key structure of a data 170
structure definition has been decided, then the set of (preferably mandatory) 171
attributes of this data structure definition has to be defined. In general, some 172
statistical concepts are deemed necessary across all Data Structure Definitions 173
to qualify the contained information. Examples of these are: 174

o A descriptive title for the series (this is most useful for dissemination of data for 175
viewing e.g., on the web). 176

o Collection (e.g., end of period, averaged or summed over period). 177

o Unit (e.g., currency of denomination). 178

o Unit multiplier (e.g., expressed in millions). 179

o Availability (which institutions can a series become available to). 180

o Decimals (i.e., number of decimal digits used in numerical observations). 181

o Observation Status (e.g., estimate, provisional, normal). 182

 183
Moreover, additional attributes may be considered as mandatory when a specific data 184
structure definition is defined. 185
 186

• Avoid creating a new code list where one already exists. It is highly 187
recommended that structural definitions and code lists be consistent with 188
internationally agreed standard methodologies, wherever they exist, e.g., System 189
of National Accounts 1993; Balance of Payments Manual, Fifth Edition; Monetary 190
and Financial Statistics Manual; Government Finance Statistics Manual, etc. 191
When setting-up a new data exchange, the following order of priority is suggested 192
when considering the use of code lists: 193

o international standard code lists; 194

o international code lists supplemented by other international and/or regional 195
institutions; 196

o standardised lists used already by international institutions; 197

o new code lists agreed between two international or regional institutions; 198

o new code lists which extend existing code lists, by adding only missing codes; 199

o new specific code lists. 200

 201
The same code list can be used for several statistical concepts, within a data structure 202
definition or across DSDs. Note that SDMX has recognised that these classifications 203
are often quite large and the usage of codes in any one DSD is only a small extract of 204
the full code list. In this version of the standard, it is possible to exchange and 205
disseminate a partial code list which is extracted from the full code list and which 206
supports the dimension values valid for a particular DSD. 207
 208
Data Structure Definition Structure 209

• The following items have to be specified by a structural definitions maintenance 210
agency when defining a new data structure definition: 211

• Data structure definition (DSD) identification: 212

12

• DSD identifier 213

• DSD name 214

• A list of metadata concepts assigned as dimensions of the data structure 215
definition. For each: 216

• (statistical) concept identifier 217

• code list identifier (id, version, maintenance agency) if the 218
representation is coded 219

• A list of (statistical) concepts assigned as attributes for the data structure 220
definition. For each: 221

• (statistical) concept identifier 222

• code list identifier if the concept is coded 223

• assignment status: mandatory, conditional 224

• relationship to dimensions and measures 225

• maximum text length for the uncoded concepts 226

• maximum code length for the coded concepts 227

• A list of the code lists used in the data structure definition. For each: 228

• code list identifier 229

• code list name 230

• code values and descriptions 231

• Definition of Dataflow. Two (or more) partners performing data exchanges in a 232
certain context need to agree on: 233

• the list of dataset identifiers they will be using; 234

• for each Dataflow: 235

o its content (e.g., by Constraints) and description 236

o the relevant DSD that defines the structure of the data reported or 237
disseminated according the Dataflow 238

3.4.1.3 Exchanging Attributes 239

 Attributes on series and group levels 240

• Static properties. 241

• Upon creation of a series the sender has to provide to the receiver values for all 242
mandatory attributes. In case they are available, values for conditional attributes 243
should also be provided. Whereas initially this information may be provided by 244
means other than SDMX-ML/JSON/CSV messages (e.g., paper, telephone) it is 245
expected that partner institutions will be in a position to provide this information in 246
the available formats over time. 247

• A centre may agree with its data exchange partners special procedures for 248
authorising the setting of attributes' initial values. 249

13

• Communication of changes to the centre. 250

• Following the creation of a series, the attribute values do not have to be reported 251
again by senders, as long as they do not change. 252

• Whenever changes in attribute values for a series (or group) occur, the reporting 253
institutions should report either all attribute values again (this is the recommended 254
option) or only the attribute values which have changed. This applies both to the 255
mandatory and the conditional attributes. For example, if a previously reported 256
value for a conditional attribute is no longer valid, this has to be reported to the 257
centre. 258

• A centre may agree with its data exchange partners special procedures for 259
authorising modifications in the attribute values. 260

• Communication of observation level attributes "observation status", "observation 261
confidentiality", "observation pre-break" is recommended. 262

• Whenever an observation is exchanged, the corresponding observation status is 263
recommended to also be exchanged attached to the observation, regardless of 264
whether it has changed or not since the previous data exchange. 265

• If the "observation status" changes and the observation remains unchanged, both 266
components would have to be reported (unless the observation is deleted). 267

For Data Structure Definitions having also the observation level attributes 268
"observation confidentiality" and "observation pre-break" defined, this rule 269
applies to these attributes as well: if an institution receives from another 270
institution an observation with an observation status attribute only attached, this 271
means that the associated observation confidentiality and pre-break 272
observation attributes either never existed or from now they do not have a value 273
for this observation. 274

3.4.2 Best Practices for Batch Data Exchange 275

3.4.2.1 Introduction 276

Batch data exchange is the exchange and maintenance of entire databases between 277
counterparties. It is an activity that often employs SDMX-CSV format, and might also 278
use the SDMX-ML dataset. The following points apply equally to both formats. 279

3.4.2.2 Positioning of the Dimension "Frequency" 280

The position of the "frequency" dimension is unambiguously identified in the data 281
structure definition. Moreover, most central institutions devising structural definitions 282
have decided to assign to this dimension the first position in the key structure. 283
Nevertheless, a standard role (i.e., that of ‘Frequency’) would facilitate the easy 284
identification of this dimension, something that it is necessary to frequency's crucial 285
role in several database systems and in attaching attributes at the "sibling" group level. 286

3.4.2.3 Identification of Data Structure Definitions (DSDs) 287

In order to facilitate the easy and immediate recognition of the structural definition 288
maintenance agency that defined a data structure definition, most central institutions 289
devising structural definitions use the first characters of the data structure definition 290
identifiers to identify their institution: e.g., BIS_EER, EUROSTAT_BOP_01, 291
ECB_BOP1, etc. 292

14

3.4.2.4 Identification of the Dataflows 293

In order to facilitate the easy and immediate recognition of the institution administrating 294
a Dataflow, many central institutions prefer to use the first characters of the Dataflow 295
identifiers to identify their institution: e.g. BIS_EER, ECB_BOP1, ECB_BOP1, etc. 296
 297
The statistical information in SDMX is broken down into two fundamental parts – 298
structural metadata (comprising the DataStructureDefinition, and associated 299

Concepts and Codelists) – see Framework for Standards – and observational data 300

(the DataSet). This is an important distinction, with specific terminology associated 301

with each part. Data, which is typically a set of numeric observations at specific points 302
in time, is organised into data sets (DataSet). These data sets are structured 303

according to a specific DataStructureDefinition and are described in the 304

Dataflow (via Constraints). The DataStructureDefinition describes the 305

metadata that allows an understanding of what is expressed in the DataSet, whilst 306

the Dataflow provides the identifier and other important information (such as the 307

periodicity of reporting) that is common to all of its Components. 308

 309
Note that the role of the Dataflow and DataSet is very specific in the model, and the 310

terminology used may not be the same as used in all organisations, and specifically 311
the term DataSet is used differently in SDMX than in GESMES/TS. Essentially the 312

GESMES/TS term "Data Set" is, in SDMX, the "Dataflow" whilst the term "Data Set" in 313
SDMX is used to describe the "container" for an instance of the data. 314

3.4.2.5 Special Issues 315

 "Frequency" related issues 316

• Special frequencies. The issue of data collected at special (regular or irregular) 317
intervals at a lower than daily frequency (e.g., 24 or 36 or 48 observations per 318
year, on irregular days during the year) is not extensively discussed here. 319
However, for data exchange purposes: 320

• such data can be mapped into a series with daily frequency; this daily series 321
will only hold observations for those days on which the measured event takes 322
place; 323

• if the collection intervals are regular, additional values to the existing 324
frequency code list(s) could be added in the future. 325

• Tick data. The issue of data collected at irregular intervals at a higher than daily 326
frequency (e.g., tick-by-tick data) is not discussed here either. 327

15

4 General Notes for Implementers 328

This section discusses a number of topics other than the exchange of data sets in 329
SDMX formats. Supported only in SDMX-ML (and some in SDMX-JSON), these topics 330
include the use of the reference metadata mechanism in SDMX, the use of Structure 331
Sets and Reporting Taxonomies, the use of Processes, a discussion of time and data-332
typing, and some of the conventional mechanisms within the SDMX-ML Structure 333
message regarding versioning and external referencing. 334
 335
This section does not go into great detail on these topics but provides a useful overview 336
of these features to assist implementors in further use of the parts of the specification 337
which are relevant to them. 338

4.1 Representations 339

There are several different representations in SDMX-ML, taken from XML Schemas 340
and common programming languages. The table below describes the various 341
representations, which are found in SDMX-ML, and their equivalents. 342
 343

SDMX-ML Data
Type

XML Schema
Data Type

.NET Framework
Type

Java Data Type

String xsd:string System.String java.lang.String

Big Integer xsd:integer System.Decimal java.math.BigInteger

Integer xsd:int System.Int32 int

Long xsd.long System.Int64 long

Short xsd:short System.Int16 short

Decimal xsd:decimal System.Decimal java.math.BigDecimal

Float xsd:float System.Single float

Double xsd:double System.Double double

Boolean xsd:boolean System.Boolean boolean

URI xsd:anyURI System.Uri Java.net.URI or

java.lang.String

DateTime xsd:dateTime System.DateTime javax.xml.datatype.XMLG

regorianCalendar

Time xsd:time System.DateTime javax.xml.datatype.XMLG

regorianCalendar

GregorianYear xsd:gYear System.DateTime javax.xml.datatype.XMLG

regorianCalendar

GregorianMonth xsd:gYearMonth System.DateTime javax.xml.datatype.XMLG

regorianCalendar

GregorianDay xsd:date System.DateTime javax.xml.datatype.XMLG

regorianCalendar

Day, MonthDay,

Month

xsd:g* System.DateTime javax.xml.datatype.XMLG

regorianCalendar

Duration xsd:duration System.TimeSpan javax.xml.datatype.Dura

tion

 344
There are also a number of SDMX-ML data types which do not have these direct 345
correspondences, often because they are composite representations or restrictions of 346
a broader data type. For most of these, there are simple types which can be referenced 347
from the SDMX schemas, for others a derived simple type will be necessary: 348

16

 349

• AlphaNumeric (common:AlphaNumericType, string which only allows A-z and 0-350

9) 351

• Alpha (common:AlphaType, string which only allows A-z) 352

• Numeric (common:NumericType, string which only allows 0-9, but is not numeric 353

so that is can having leading zeros) 354

• Count (xs:integer, a sequence with an interval of "1") 355

• InclusiveValueRange (xs:decimal with the minValue and maxValue facets 356

supplying the bounds) 357

• ExclusiveValueRange (xs:decimal with the minValue and maxValue facets 358

supplying the bounds) 359

• Incremental (xs:decimal with a specified interval; the interval is typically 360

enforced outside of the XML validation) 361

• TimeRange (common:TimeRangeType, startDateTime + Duration) 362

• ObservationalTimePeriod (common:ObservationalTimePeriodType, a union of 363

StandardTimePeriod and TimeRange). 364

• StandardTimePeriod (common:StandardTimePeriodType, a union of 365

BasicTimePeriod and ReportingTimePeriod). 366

• BasicTimePeriod (common:BasicTimePeriodType, a union of 367

GregorianTimePeriod and DateTime) 368

• GregorianTimePeriod (common:GregorianTimePeriodType, a union of 369

GregorianYear, GregorianMonth, and GregorianDay) 370

• ReportingTimePeriod (common:ReportingTimePeriodType, a union of 371

ReportingYear, ReportingSemester, ReportingTrimester, ReportingQuarter, 372

ReportingMonth, ReportingWeek, and ReportingDay). 373

• ReportingYear (common:ReportingYearType) 374

• ReportingSemester (common:ReportingSemesterType) 375

• ReportingTrimester (common:ReportingTrimesterType) 376

• ReportingQuarter (common:ReportingQuarterType) 377

• ReportingMonth (common:ReportingMonthType) 378

• ReportingWeek (common:ReportingWeekType) 379

• ReportingDay (common:ReportingDayType) 380

• XHTML (common:StructuredText, allows for multi-lingual text content that has 381

XHTML markup) 382

• KeyValues (common:DataKeyType) 383

• IdentifiableReference (types for each IdentifiableObject) 384

• GeographicalInformation (a geo feature set, according to the pattern in 385

section 6.1.2) 386
 387
Data types also have a set of facets: 388
 389

• isSequence = true | false (indicates a sequentially increasing value) 390

• minLength = positive integer (# of characters/digits) 391

• maxLength = positive integer (# of characters/digits) 392

• startValue = decimal (for numeric sequence) 393

• endValue = decimal (for numeric sequence) 394

• interval = decimal (for numeric sequence) 395
• timeInterval = duration 396

• startTime = BasicTimePeriod (for time range) 397

17

• endTime = BasicTimePeriod (for time range) 398

• minValue = decimal (for numeric range) 399

• maxValue = decimal (for numeric range) 400

• decimal = Integer (# of digits to right of decimal point) 401

• pattern = (a regular expression, as per W3C XML Schema) 402

• isMultiLingual = boolean (for specifying text can occur in more than one 403

language) 404
 405
Note that code lists may also have textual representations assigned to them, in addition 406
to their enumeration of codes. 407

4.1.1 Data Types 408

XML and JSON schemas support a variety of data types that, although rich, are not 409
mapped one-to-one in all cases. This section provides an explanation of the mapping 410
performed in SDMX 3.0, between such cases. 411
 412
For identifiers, text fields and Codes there are no restriction from either side, since a 413
generic type (e.g., that of string) accompanied by the proper regular expression works 414
equally well for both XML and JSON. 415
 416
For example, for the id type, this is the XML schema definition: 417
<xs:simpleType name="IDType"> 418
 <xs:restriction base="NestedIDType"> 419
 <xs:pattern value="[A-Za-z0-9_@$\-]+"/> 420
 </xs:restriction> 421
</xs:simpleType> 422

Where the NestedIDType is also a restriction of string. 423

 424
The above looks like this, in JSON schema: 425
"idType": { 426
 "type": "string", 427
 "pattern": "^[A-Za-z0-9_@$-]+$" 428
} 429

 430
There are also cases, though, that data types cannot be mapped like above. One such 431
case is the array data type, which was introduced in SDMX 3.0 as a new 432
representation. In JSON schema an array is already natively foreseen, while in the 433
XML schema, this has to be defined as a complex type, with an SDMX specific 434
definition (i.e., specific element/attribute names for SDMX). Beyond that, the minimum 435
and/or maximum number of items within an array is possible in both cases. 436
 437
Further to the above, the mapping between the non-native data types is presented in 438
the table below: 439
SDMX Facet XML Schema JSON schema "pattern"1 for "string" type

GregorianYear xsd:gYear "^-?([1-9][0-9]{3,}|0[0-9]{3})(Z|(\+|-)((0[0-

9]|1[0-3]):[0-5][0-9]|14:00))?$"

GregorianMonth xsd:gYearMonth "^-?([1-9][0-9]{3,}|0[0-9]{3})-(0[1-9]|1[0-

2])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-

9]|14:00))?$"

1 Regular expressions, as specified in W3C XML Schema Definition Language (XSD)
1.1 Part 2: Datatypes.

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/

18

GregorianDay xsd:date "^-?([1-9][0-9]{3,}|0[0-9]{3})-(0[1-9]|1[0-2])-

(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-

3]):[0-5][0-9]|14:00))?$"

Day xsd:gDay "^---(0[1-9]|[12][0-9]|3[01])(Z|(\+|-

)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?$"

MonthDay xsd:gMonthDay "^--(0[1-9]|1[0-2])-(0[1-9]|[12][0-

9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-

9]|14:00))?$"

Month xsd:Month "^--(0[1-9]|1[0-2])(Z|(\+|-)((0[0-9]|1[0-

3]):[0-5][0-9]|14:00))?$"

Duration xsd:duration "^-?P[0-9]+Y?([0-9]+M)?([0-9]+D)?(T([0-

9]+H)?([0-9]+M)?([0-9]+(\.[0-9]+)?S)?)?$"

 440
 441

4.2 Time and Time Format 442

4.2.1 Introduction 443

First, it is important to recognize that most observation times are a period. SDMX 444
specifies precisely how Time is handled. 445
 446
The representation of time is broken into a hierarchical collection of representations. A 447
data structure definition can use of any of the representations in the hierarchy as the 448
representation of time. This allows for the time dimension of a particular data structure 449
definition allow for only a subset of the default representation. 450
 451
The hierarchy of time formats is as follows (bold indicates a category which is made 452
up of multiple formats, italic indicates a distinct format): 453
 454

• Observational Time Period 455
o Standard Time Period 456

▪ Basic Time Period 457

• Gregorian Time Period 458

• Date Time 459
▪ Reporting Time Period 460

o Time Range 461
 462
The details of these time period categories and of the distinct formats which make them 463
up are detailed in the sections to follow. 464

4.2.2 Observational Time Period 465

This is the superset of all time representations in SDMX. This allows for time to be 466
expressed as any of the allowable formats. 467

4.2.3 Standard Time Period 468

This is the superset of any predefined time period or a distinct point in time. A time 469
period consists of a distinct start and end point. If the start and end of a period are 470
expressed as date instead of a complete date time, then it is implied that the start of 471
the period is the beginning of the start day (i.e. 00:00:00) and the end of the period is 472
the end of the end day (i.e. 23:59:59). 473

19

4.2.4 Gregorian Time Period 474

A Gregorian time period is always represented by a Gregorian year, year-month, or 475
day. These are all based on ISO 8601 dates. The representation in SDMX-ML 476
messages and the period covered by each of the Gregorian time periods are as follows: 477
 478

Gregorian Year: 479
Representation: xs:gYear (YYYY) 480
Period: the start of January 1 to the end of December 31 481

Gregorian Year Month: 482
Representation: xs:gYearMonth (YYYY-MM) 483
Period: the start of the first day of the month to end of the last day of the month 484

Gregorian Day: 485
Representation: xs:date (YYYY-MM-DD) 486
Period: the start of the day (00:00:00) to the end of the day (23:59:59) 487

4.2.5 Date Time 488

This is used to unambiguously state that a date-time represents an observation at a 489
single point in time. Therefore, if one wants to use SDMX for data which is measured 490
at a distinct point in time rather than being reported over a period, the date-time 491
representation can be used. 492

Representation: xs:dateTime (YYYY-MM-DDThh:mm:ss)2 493

4.2.6 Standard Reporting Period 494

Standard reporting periods are periods of time in relation to a reporting year. Each of 495
these standard reporting periods has a duration (based on the ISO 8601 definition) 496
associated with it. The general format of a reporting period is as follows: 497
 498

[REPORTING_YEAR]-[PERIOD_INDICATOR][PERIOD_VALUE] 499
 500
Where: 501

REPORTING_YEAR represents the reporting year as four digits (YYYY) 502
PERIOD_INDICATOR identifies the type of period which determines the duration 503
of the period 504
PERIOD_VALUE indicates the actual period within the year 505

 506
The following section details each of the standard reporting periods defined in SDMX: 507
 508

Reporting Year: 509
 Period Indicator: A 510

Period Duration: P1Y (one year) 511
Limit per year: 1 512
Representation: common:ReportingYearType (YYYY-A1, e.g. 2000-A1) 513

Reporting Semester: 514
 Period Indicator: S 515

Period Duration: P6M (six months) 516
Limit per year: 2 517
Representation: common:ReportingSemesterType (YYYY-Ss, e.g. 2000-S2) 518

Reporting Trimester: 519
 Period Indicator: T 520

2 The seconds can be reported fractionally

20

Period Duration: P4M (four months) 521
Limit per year: 3 522
Representation: common:ReportingTrimesterType (YYYY-Tt, e.g. 2000-T3) 523

Reporting Quarter: 524
 Period Indicator: Q 525

Period Duration: P3M (three months) 526
Limit per year: 4 527
Representation: common:ReportingQuarterType (YYYY-Qq, e.g. 2000-Q4) 528

Reporting Month: 529
Period Indicator: M 530
Period Duration: P1M (one month) 531
Limit per year: 1 532
Representation: common:ReportingMonthType (YYYY-Mmm, e.g. 2000-M12) 533
Notes: The reporting month is always represented as two digits, therefore 1-9 534
are 0 padded (e.g. 01). This allows the values to be sorted chronologically using 535
textual sorting methods. 536

Reporting Week: 537
Period Indicator: W 538
Period Duration: P7D (seven days) 539
Limit per year: 53 540
Representation: common:ReportingWeekType (YYYY-Www, e.g. 2000-W53) 541
Notes: There are either 52 or 53 weeks in a reporting year. This is based on the 542
ISO 8601 definition of a week (Monday - Saturday), where the first week of a 543
reporting year is defined as the week with the first Thursday on or after the 544
reporting year start day.3 The reporting week is always represented as two digits, 545
therefore 1-9 are 0 padded (e.g. 01). This allows the values to be sorted 546
chronologically using textual sorting methods. 547

Reporting Day: 548
Period Indicator: D 549
Period Duration: P1D (one day) 550
Limit per year: 366 551
Representation: common:ReportingDayType (YYYY-Dddd, e.g. 2000-D366) 552
Notes: There are either 365 or 366 days in a reporting year, depending on 553
whether the reporting year includes leap day (February 29). The reporting day is 554
always represented as three digits, therefore 1-99 are 0 padded (e.g. 001). This 555
allows the values to be sorted chronologically using textual sorting methods. 556

 557
The meaning of a reporting year is always based on the start day of the year and 558
requires that the reporting year is expressed as the year at the start of the period. This 559
start day is always the same for a reporting year, and is expressed as a day and a 560
month (e.g. July 1). Therefore, the reporting year 2000 with a start day of July 1 begins 561
on July 1, 2000. 562
 563
A specialized attribute (reporting year start day) exists for the purpose of 564
communicating the reporting year start day. This attribute has a fixed identifier 565
(REPORTING_YEAR_START_DAY) and a fixed representation (xs:gMonthDay) so 566
that it can always be easily identified and processed in a data message. Although this 567
attribute exists in specialized sub-class, it functions the same as any other attribute 568

3 ISO 8601 defines alternative definitions for the first week, all of which produce
equivalent results. Any of these definitions could be substituted so long as they are in
relation to the reporting year start day.

21

outside of its identification and representation. It must takes its identity from a concept 569
and state its relationship with other components of the data structure definition. The 570
ability to state this relationship allows this reporting year start day attribute to exist at 571
the appropriate levels of a data message. In the absence of this attribute, the reporting 572
year start date is assumed to be January 1; therefore if the reporting year coincides 573
with the calendar year, this Attribute is not necessary. 574
 575
Since the duration and the reporting year start day are known for any reporting period, 576
it is possible to relate any reporting period to a distinct calendar period. The actual 577
Gregorian calendar period covered by the reporting period can be computed as follows 578
(based on the standard format of [REPROTING_YEAR]-579
[PERIOD_INDICATOR][PERIOD_VALUE] and the reporting year start day as 580
[REPORTING_YEAR_START_DAY]): 581
 582

1. Determine [REPORTING_YEAR_BASE]: 583
Combine [REPORTING_YEAR] of the reporting period value (YYYY) with 584
[REPORTING_YEAR_START_DAY] (MM-DD) to get a date (YYYY-MM-DD). 585
This is the [REPORTING_YEAR_START_DATE] 586

a) If the [PERIOD_INDICATOR] is W: 587
1. If [REPORTING_YEAR_START_DATE] is a Friday, 588

Saturday, or Sunday: 589
Add4 (P3D, P2D, or P1D respectively) to the 590
[REPORTING_YEAR_START_DATE]. The result is the 591
[REPORTING_YEAR_BASE]. 592

2. If [REPORTING_YEAR_START_DATE] is a Monday, 593
Tuesday, Wednesday, or Thursday: 594
Add4 (P0D, -P1D, -P2D, or -P3D respectively) to the 595
[REPORTING_YEAR_START_DATE]. The result is the 596
[REPORTING_YEAR_BASE]. 597

b) Else: 598
The [REPORTING_YEAR_START_DATE] is the 599
[REPORTING_YEAR_BASE]. 600

2. Determine [PERIOD_DURATION]: 601
a) If the [PERIOD_INDICATOR] is A, the [PERIOD_DURATION] is P1Y. 602
b) If the [PERIOD_INDICATOR] is S, the [PERIOD_DURATION] is P6M. 603
c) If the [PERIOD_INDICATOR] is T, the [PERIOD_DURATION] is P4M. 604
d) If the [PERIOD_INDICATOR] is Q, the [PERIOD_DURATION] is P3M. 605
e) If the [PERIOD_INDICATOR] is M, the [PERIOD_DURATION] is P1M. 606
f) If the [PERIOD_INDICATOR] is W, the [PERIOD_DURATION] is P7D. 607
g) If the [PERIOD_INDICATOR] is D, the [PERIOD_DURATION] is P1D. 608

3. Determine [PERIOD_START]: 609
Subtract one from the [PERIOD_VALUE] and multiply this by the 610
[PERIOD_DURATION]. Add4 this to the [REPORTING_YEAR_BASE]. The 611
result is the [PERIOD_START]. 612

4. Determine the [PERIOD_END]: 613
Multiply the [PERIOD_VALUE] by the [PERIOD_DURATION]. Add4 this to 614
the [REPORTING_YEAR_BASE] add4 -P1D. The result is the 615
[PERIOD_END]. 616

4 The rules for adding durations to a date time are described in the W3C XML Schema
specification. See http://www.w3.org/TR/xmlschema-2/#adding-durations-to-
dateTimes for further details.

http://www.w3.org/TR/xmlschema-2/#adding-durations-to-dateTimes
http://www.w3.org/TR/xmlschema-2/#adding-durations-to-dateTimes

22

 617
For all of these ranges, the bounds include the beginning of the [PERIOD_START] 618
(i.e. 00:00:00) and the end of the [PERIOD_END] (i.e. 23:59:59). 619

 620
Examples: 621
 622
2010-Q2, REPORTING_YEAR_START_DAY = --07-01 (July 1) 623

1. [REPORTING_YEAR_START_DATE] = 2010-07-01 624
b) [REPORTING_YEAR_BASE] = 2010-07-01 625

2. [PERIOD_DURATION] = P3M 626
3. (2-1) * P3M = P3M 627

2010-07-01 + P3M = 2010-10-01 628
[PERIOD_START] = 2010-10-01 629

4. 2 * P3M = P6M 630
2010-07-01 + P6M = 2010-13-01 = 2011-01-01 631
2011-01-01 + -P1D = 2010-12-31 632
[PERIOD_END] = 2010-12-31 633
 634
The actual calendar range covered by 2010-Q2 (assuming the reporting year 635
begins July 1) is 2010-10-01T00:00:00/2010-12-31T23:59:59 636

 637
2011-W36, REPORTING_YEAR_START_DAY = --07-01 (July 1) 638

1. [REPORTING_YEAR_START_DATE] = 2010-07-01 639
a) 2011-07-01 = Friday 640

2011-07-01 + P3D = 2011-07-04 641
[REPORTING_YEAR_BASE] = 2011-07-04 642

2. [PERIOD_DURATION] = P7D 643
3. (36-1) * P7D = P245D 644

2011-07-04 + P245D = 2012-03-05 645
[PERIOD_START] = 2012-03-05 646

4. 36 * P7D = P252D 647
2011-07-04 + P252D =2012-03-12 648
2012-03-12 + -P1D = 2012-03-11 649
[PERIOD_END] = 2012-03-11 650
 651
The actual calendar range covered by 2011-W36 (assuming the reporting year 652
begins July 1) is 2012-03-05T00:00:00/2012-03-11T23:59:59 653

 654

4.2.7 Distinct Range 655

In the case that the reporting period does not fit into one of the prescribe periods above, 656
a distinct time range can be used. The value of these ranges is based on the ISO 8601 657
time interval format of start/duration. Start can be expressed as either an ISO 8601 658
date or a date-time, and duration is expressed as an ISO 8601 duration. However, the 659
duration can only be positive. 660
 661

4.2.8 Time Format 662

In version 2.0 of SDMX there is a recommendation to use the time format attribute to 663
gives additional information on the way time is represented in the message. Following 664
an appraisal of its usefulness this is no longer required. However, it is still possible, if 665
required , to include the time format attribute in SDMX-ML. 666

23

 667

Code Format

OTP Observational Time Period: Superset of all SDMX time formats (Gregorian
Time Period, Reporting Time Period, and Time Range)

STP Standard Time Period: Superset of Gregorian and Reporting Time Periods

GTP Superset of all Gregorian Time Periods and date-time

RTP Superset of all Reporting Time Periods

TR Time Range: Start time and duration (YYYY-MM-
DD(Thh:mm:ss)?/<duration>)

GY Gregorian Year (YYYY)

GTM Gregorian Year Month (YYYY-MM)

GD Gregorian Day (YYYY-MM-DD)

DT Distinct Point: date-time (YYYY-MM-DDThh:mm:ss)

RY Reporting Year (YYYY-A1)

RS Reporting Semester (YYYY-Ss)

RT Reporting Trimester (YYYY-Tt)

RQ Reporting Quarter (YYYY-Qq)

RM Reporting Month (YYYY-Mmm)

RW Reporting Week (YYYY-Www)

RD Reporting Day (YYYY-Dddd)

Table 1: SDMX-ML Time Format Codes 668

4.2.9 Time Zones 669

In alignment with ISO 8601, SDMX allows the specification of a time zone on all time 670
periods and on the reporting year start day. If a time zone is provided on a reporting 671
year start day, then the same time zone (or none) should be reported for each reporting 672
time period. If the reporting year start day and the reporting period time zone differ, the 673
time zone of the reporting period will take precedence. Examples of each format with 674
time zones are as follows (time zone indicated in bold): 675
 676

• Time Range (start date): 2006-06-05-05:00/P5D 677

• Time Range (start date-time): 2006-06-05T00:00:00-05:00/P5D 678

• Gregorian Year: 2006-05:00 679

• Gregorian Month: 2006-06-05:00 680

• Gregorian Day: 2006-06-05-05:00 681

• Distinct Point: 2006-06-05T00:00:00-05:00 682

• Reporting Year: 2006-A1-05:00 683

• Reporting Semester: 2006-S2-05:00 684

• Reporting Trimester: 2006-T2-05:00 685

• Reporting Quarter: 2006-Q3-05:00 686

• Reporting Month: 2006-M06-05:00 687

• Reporting Week: 2006-W23-05:00 688

24

• Reporting Day: 2006-D156-05:00 689

• Reporting Year Start Day: --07-01-05:00 690

According to ISO 8601, a date without a time-zone is considered "local time". SDMX 691
assumes that local time is that of the sender of the message. In this version of SDMX, 692
an optional field is added to the sender definition in the header for specifying a time 693
zone. This field has a default value of 'Z' (UTC). This determination of local time applies 694
for all dates in a message. 695

4.2.10 Representing Time Spans Elsewhere 696

It has been possible since SDMX 2.0 for a Component to specify a representation of a 697
time span. Depending on the format of the data message, this resulted in either an 698
element with 2 XML attributes for holding the start time and the duration or two 699
separate XML attributes based on the underlying Component identifier. For example, 700
if REF_PERIOD were given a representation of time span, then in the Compact data 701
format, it would be represented by two XML attributes; REF_PERIODStartTime 702
(holding the start) and REF_PERIOD (holding the duration). If a new simple type is 703
introduced in the SDMX schemas that can hold ISO 8601 time intervals, then this will 704
no longer be necessary. What was represented as this: 705
 706

 <Series REF_PERIODStartTime="2000-01-01T00:00:00" REF_PERIOD="P2M"/> 707
 708
can now be represented with this: 709
 710

<Series REF_PERIOD="2000-01-01T00:00:00/P2M"/> 711

4.2.11 Notes on Formats 712

There is no ambiguity in these formats so that for any given value of time, the category 713
of the period (and thus the intended time period range) is always clear. It should also 714
be noted that by utilizing the ISO 8601 format, and a format loosely based on it for the 715
report periods, the values of time can easily be sorted chronologically without 716
additional parsing. 717

4.2.12 Effect on Time Ranges 718

All SDMX-ML data messages are capable of functioning in a manner similar to SDMX-719
EDI if the Dimension at the observation level is time: the time period for the first 720
observation can be stated and the rest of the observations can omit the time value as 721
it can be derived from the start time and the frequency. Since the frequency can be 722
determined based on the actual format of the time value for everything but distinct 723
points in time and time ranges, this makes is even simpler to process as the interval 724
between time ranges is known directly from the time value. 725

4.2.13 Time in Query Messages 726

When querying for time values, the value of a time parameter can be provided as any 727
of the Observational Time Period formats and must be paired with an operator. This 728
section will detail how systems processing query messages should interpret these 729
parameters. 730
 731
Fundamental to processing a time value parameter in a query message is 732
understanding that all time periods should be handled as a distinct range of time. Since 733
the time parameter in the query is paired with an operator, this also effectively 734

25

represents a distinct range of time. Therefore, a system processing the query must 735
simply match the data where the time period for requested parameter is encompassed 736
by the time period resulting from value of the query parameter. The following table 737
details how the operators should be interpreted for any time period provided as a 738
parameter. 739
 740

Operator Rule

Greater Than Any data after the last moment of the period

Less Than Any data before the first moment of the period

Greater Than or Equal To Any data on or after the first moment of the period

Less Than or Equal To Any data on or before the last moment of the period

Equal To Any data which falls on or after the first moment of the
period and before or on the last moment of the period

 741
Reporting Time Periods as query parameters are handled like this: any data within the 742
bounds of the reporting period for the year is matched, regardless of the actual start 743
day of the reporting year. In addition, data reported against a normal calendar period 744
is matched if it falls within the bounds of the time parameter based on a reporting year 745
start day of January 1. When determining whether another reporting period falls within 746
the bounds of a report period query parameter, one will have to take into account the 747
actual time period to compare weeks and days to higher order report periods. This will 748
be demonstrated in the examples to follow. 749
 750
Note that the reportingYearStartDay attribute on the time value parameter is only 751

used to qualify a reporting period value for the given time value parameter. The usage 752
of this is different than using the attribute value parameter for the actual reporting year 753
start day attribute. In the case that the attribute value parameters is used for the 754
reporting year start day data structure attribute, it will be treated as any other attribute 755
value parameter; data will be filtered to that which matches the values specified for the 756
given attribute. For example, if the attribute value parameter references the reporting 757
year start day attribute and specifies a value of "--07-01", then only data which has this 758
attribute with the value "--07-01" will be returned. In terms of processing any time value 759
parameters, the value supplied in the attribute value parameter will be irrelevant. 760

 761
Examples: 762
 763
Gregorian Period 764

Query Parameter: Greater than 2010 765
Literal Interpretation: Any data where the start period occurs after 2010-12-766
31T23:59:59. 767
Example Matches: 768

• 2011 or later 769

• 2011-01 or later 770

• 2011-01-01 or later 771

• 2011-01-01/P[Any Duration] or any later start date 772

• 2011-[Any reporting period] (any reporting year start day) 773

• 2010-S2 (reporting year start day --07-01 or later) 774

• 2010-T3 (reporting year start day --07-01 or later) 775

• 2010-Q3 or later (reporting year start day --07-01 or later) 776

26

• 2010-M07 or later (reporting year start day --07-01 or later) 777

• 2010-W28 or later (reporting year start day --07-01 or later) 778

• 2010-D185 or later (reporting year start day --07-01 or later) 779
 780
Reporting Period 781

Query Parameter: Greater than or equal to 2010-Q3 782
Literal Interpretation: Any data with a reporting period where the start period is on 783
or after the start period of 2010-Q3 for the same reporting year start day, or and 784
data where the start period is on or after 2010-07-01. 785
Example Matches: 786

• 2011 or later 787

• 2010-07 or later 788

• 2010-07-01 or later 789

• 2010-07-01/P[Any Duration] or any later start date 790

• 2011-[Any reporting period] (any reporting year start day) 791

• 2010-S2 (any reporting year start day) 792

• 2010-T3 (any reporting year start day) 793

• 2010-Q3 or later (any reporting year start day) 794

• 2010-M07 or later (any reporting year start day) 795

• 2010-W27 or later (reporting year start day --01-01)5 796

• 2010-D182 or later (reporting year start day --01-01) 797

• 2010-W28 or later (reporting year start day --07-01)6 798

• 2010-D185 or later (reporting year start day --07-01) 799

4.3 Structural Metadata Querying Best Practices 800

When querying for structural metadata, the ability to state how references should be 801
resolved is quite powerful. However, this mechanism is not always necessary and can 802
create an undue burden on the systems processing the queries if it is not used properly. 803
 804
Any structural metadata object which contains a reference to an object can be queried 805
based on that reference. For example, a categorisation references both a category and 806
the object is it categorising. As this is the case, one can query for categorisations which 807
categorise a particular object or which categorise against a particular category or 808
category scheme. This mechanism should be used when the referenced object is 809
known. 810
 811
When the referenced object is not known, then the reference resolution mechanism 812
could be used. For example, suppose one wanted to find all category schemes and 813
the related categorisations for a given maintenance agency. In this case, one could 814
query for the category scheme by the maintenance agency and specify that parent and 815
sibling references should be resolved. This would result in the categorisations which 816
reference the categories in the matched schemes to be returned, as well as the object 817
which they categorise. 818

5 2010-Q3 (with a reporting year start day of --01-01) starts on 2010-07-01. This is day
4 of week 26, therefore the first week matched is week 27.
6 2010-Q3 (with a reporting year start day of --07-01) starts on 2011-01-01. This is day
6 of week 27, therefore the first week matched is week 28.

27

4.4 Versioning 819

Within the SDMX Structure Message and Medataset, there is a pattern for versioning 820
and external referencing, which should be pointed out. The identifiers are qualified by 821
their version numbers – that is, an object with an Agency of "A", and ID of "X" and a 822
version of "1.0.0" is a different object than one with an Agency of "A", an ID of "X", and 823
a version of "1.1.0". 824
 825
As of SDMX 3.0, versioning following the rules of the well-known practice called 826
"Semantic Versioning". Despite that, some use cases do not need or are incompatible 827
with versioning for some or all of their structural artefacts. Therefore, SDMX 3.0 allows 828
the 'version' property being nulled for non-versioned artefacts. This means that 829
whenever a structural artefact has no version number than it is not versioned and vice-830
versa. Non-versioned structural artefacts are allowed changing in any way. SDMX 3.0 831
ceases to define a default for the version number, which then needs to be provided by 832
the modeller, even if it is nulled. The OrganisationScheme family of artefacts 833

become truly non-versioned. In addition, the "isFinal" property is removed from 834

MaintainableArtefact. 835

 836
Since the purpose of SDMX versioning is to allow communicating the structural artefact 837
changes to data exchange partners and connected systems, SDMX 3.0 offers 838
Semantic Versioning (aka SemVer) with a clear and unambiguous syntax to all 839
semantically versioned SDMX 3.0 structural artefacts. 840
 841
The semantic version number consists of four parts: MAJOR, MINOR, PATCH and 842

EXTENSION, the first three parts being separated by a dot (.), the last two parts being 843

separated by a hyphen (-): MAJOR.MINOR.PATCH-EXTENSION. All versions are 844

ordered. 845
 846
Given a version number MAJOR.MINOR.PATCH (without EXTENSION), when making 847

changes to that semantically versioned SDMX artefact, then one must increment the: 848

1. MAJOR version when backwards incompatible artefact changes are 849

made, 850

2. MINOR version when artefact elements are added in a backwards 851

compatible manner, or 852

3. PATCH version when backwards compatible artefact property changes 853

are made. 854

 855
When incrementing a version part, the right-hand side parts are 0-ed. Extensions can 856
be added, changed or dropped. 857
 858
Given a version number MAJOR.MINOR.PATCH-EXTENSION, when making changes 859

to that semantically versioned SDMX artefact, then one is not required to increment 860
the version if those changes are within the allowed scope of the version increment from 861
the previous version (if that existed); otherwise, the above version increment rules 862
apply. EXTENSIONs can be used e.g., for drafting or a pre-release. 863

 864
New flexible dependency specifications through wildcarding allow for easier data 865
model maintenance and enhancements for semantically versioned SDMX artefacts. 866
 867

28

Semantically versioned SDMX artefacts will be safe to use. Specific version patterns 868
allow them to become either immutable, i.e., the maintainer commits to never change 869
their content, or changeable only within a well-defined scope. If any further change is 870
required, a new version must be created first. Furthermore, the impact of the further 871
change is communicated using a clear version increment. This allows implementing a 872
smart referencing mechanism, whereby an artefact may reference, for example, any 873
backward compatible version of another artefact. The built-in version extension facility 874
allows for eased drafting of new SDMX artefact versions. 875
 876
Organisations wishing to keep a maximum of backwards compatibility can continue 877
using the previous 2-digit convention for version numbers (MAJOR.MINOR), such as 878

'2.3'. The new SDMX 3.0 standard, though, does not add any guarantees about 879
changes in those artefacts. 880
 881
The production versions of identifiable objects/resources are assumed to be those that 882
are stable, i.e., they do not have an EXTENSION. This is because once in production, 883

an object cannot change in any way, or it must be versioned. For cases where an 884
object is not static, the version must indicate this by including an EXTENSION. Details 885

on the rules may be found in the section 13. Draft objects should not be used outside 886
of a specific system designed to accommodate them. For most purposes, all objects 887
should become stable before use in production. 888
 889
This mechanism is an "early binding" one – everything with a versioned identity is a 890
known quantity and will not change. Nevertheless, Semantic Versioning allows also a 891
"late binding" mechanism where wildcards may be used in references (more in §13). It 892
is worth pointing out that in some cases relationships are essentially one-way 893
references: an illustrative case is that of Constraints and flows. While a Constraint may 894
reference many Dataflows or Metadataflows, the addition of more references to flow 895
objects does not version the Constraint. This is because the Constraints are not 896
properties of the flows – they merely make references to them. 897
 898
Versioning operates at the level of versionable and maintainable objects in the SDMX 899
information model. The Semantic Versioning rules apply here, in order to identify the 900
version change of an Artefact, as explained in section “13 ANNEX Semantic 901
Versioning”. 902
 903
One area which is much impacted by this versioning scheme is the ability to reference 904
external objects. With the many dependencies within the various structural objects in 905
SDMX, it is useful to have a scheme for external referencing. This is done at the level 906
of maintainable objects (DSDs, Codelists, Concept Schemes, etc.) In an SDMX 907
Structure Message, whenever an "isExternalReference" attribute is set to true, 908

then the application must resolve the address provided in the associated "uri" 909

attribute and use the SDMX Structure Message stored at that location for the full 910
definition of the object in question. Alternately, if a registry "urn" attribute has been 911

provided, the registry can be used to supply the full details of the object. 912
 913
Because the version number is part of the identifier for an object, versions are a 914
necessary part of determining that a given resource is the one which was called for. It 915
should be noted that whenever a version number is not supplied, this indicates a non-916
versioned Artefact. 917
 918

29

5 Reference Metadata 919

5.1 Scope of the Metadata Structure Definition (MSD) 920

The scope of the MSD is reduced in SDMX 3.0, by means of simplifying its structure, 921
but also in the way referenced Artefacts are targeted. In fact, the MSD is restricted to 922
play the role of a single container, without targeting any specific Artefact. The possible 923
targets of Metadata Set are specified in the Metadataflows or Metadata Provision 924
Agreements relating to that MSD. To achieve that, the structure of the Metadataflow 925
has changed in this version of the standard. Moreover, the Metadata Provision 926
Agreement Artefact is introduced to include this feature. 927
 928
Two more changes, introduced in this version, are the following: 929

• The Metadata Set becomes a Maintainable Artefact but maintained by a Metadata 930
Provider (another new Artefact in this version). 931

• Metadata Attributes may also be used in Data Structure Definitions, as long as 932
the latter reference the Metadata Structure Definition that specify those Metadata 933
Attributes. 934

 935

5.2 Identification of the Object(s) to which the Metadata is to 936

be attached 937

The following example shows the structure and naming of the MSD and related 938
components for creating reference metadata. 939
 940
The schematic structure of an MSD is shown below. 941
 942

 943
Figure 1: Schematic of the Metadata Structure Definition 944

The MSD contains one Metadata Attribute Descriptor comprising the Metadata 945
Attributes that identify the Concepts for which metadata may be reported in the 946
Metadata Set. The Metadataflow and Metadata Provision Agreement comprise the 947

30

specification of the objects to which metadata can be reported in a Metadata Set 948
(Metadata Target(s)). 949
 950
The high-level view of the MSD, as well as the way the Metadataflow and Metadata 951
Provision Agreement specify the Targets: 952
 953
<str:MetadataStructure agencyID="SDMX" id="MSD" version="1.0.0-draft"> 954
 <com:Name>MSD 3.0 sample</com:Name> 955
 <str:MetadataAttributeDescriptor id="MetadataAttributeDescriptor"> 956
 ... 957
 </str: MetadataAttributeDescriptor> 958
</str:MetadataStructure> 959

Figure 2: The high-level view of the MSD containing one Metadata Attribute Descriptor 960

 961
<str:Metadataflow agencyID="OECD" id="GENERAL_METADATA" version="1.0.0-962
draft"> 963
 <com:Name xml:lang="en">Metadataflow 3.0 sample</com:Name> 964
 <str:Structure> 965
 <Ref agencyID="OECD" id="MSD" version="1.0.0-draft" /> 966
 </str:Structure> 967
 <str:Targets> <!-- Attach to any Dataflows maintained by the OECD --> 968
 <Ref package="dataflow" class="Dataflow" agencyID="OECD" /> 969
 </str:Targets> 970
</str:Metadataflow> 971

Figure 3: Wildcarded Target Objects as specified in a Metadataflow 972

 973
<str:MetadataProvisionAgreement agencyID="OECD" id="ABS_INDICATORS" 974
version="1.0.0-draft"> 975
 <com:Name xml:lang="en">Metadata Provision Agreement 3.0 sample</com:Name> 976
 <str:StructureUsage> 977
 <Ref package="metadatastructure" class="Metadataflow" agencyID="OECD" 978
id="GENERAL_METADATA" version="1.0.0-draft" /> 979
 </str:StructureUsage> 980
 <str:MetadataProvider> 981
 <Ref maintainableParentID="METADATA_PROVIDERS" agencyID="OECD" id="ABS" 982
/> 983
 </str:MetadataProvider> 984
 <str:Targets> <!-- Attach to specific Dataflows maintained by the OECD --> 985
 <Ref package="dataflow" class="Dataflow" agencyID="OECD" id="GDP" /> 986
 <Ref package="dataflow" class="Dataflow" agencyID="OECD" id="EXR" /> 987
 <Ref package="dataflow" class="Dataflow" agencyID="OECD" id="ABC" /> 988
 </str:Targets> 989
</str:MetadataProvisionAgreement> 990

Figure 4: Specific Target Objects as specified in a Metadata Provision Agreement 991

Note that the SDMX-ML schemas have specific XML elements for each identifiable 992
object type because identifying, for instance, a Maintainable Object has different 993
properties from an Identifiable Object which must also include the agencyId, version, 994
and id of the Maintainable Object in which it resides. 995

5.3 Metadata Structure Definition 996

An example is shown below. 997
 998
<str:MetadataStructure agencyID="SDMX" id="MSD" version="1.0.0-draft"> 999
 <com:Name>MSD 3.0 sample</com:Name> 1000
 <str:MetadataAttributeDescriptor id="MetadataAttributeDescriptor"> 1001
 <str:MetadataAttribute id="CONTACT" isPresentational="true"> 1002

31

 <str:ConceptIdentity> 1003
 <Ref maintainableParentID="CONCEPTS" agencyID="SDMX" id="CONTACT" 1004
maintainableParentVersion="1.0.0"/> 1005
 </str:ConceptIdentity> 1006
 <str:MetadataAttribute id="CONTACT_NAME" minOccurs="1" maxOccurs="1"> 1007
 <str:ConceptIdentity> 1008
 <Ref maintainableParentID="CONCEPTS" agencyID="SDMX" 1009
id="CONTACT_NAME" maintainableParentVersion="1.0.0"/> 1010
 </str:ConceptIdentity> 1011
 <str:LocalRepresentation> 1012
 <str:TextFormat textType="String"/> 1013
 </str:LocalRepresentation> 1014
 </str:MetadataAttribute> 1015
 <str:MetadataAttribute id="ADDRESS" minOccurs="1" maxOccurs="3" 1016
isPresentational="true"> 1017
 <str:ConceptIdentity> 1018
 <Ref maintainableParentID="CONCEPTS" agencyID="SDMX" id="ADDRESS" 1019
maintainableParentVersion="1.0.0"/> 1020
 </str:ConceptIdentity> 1021
 <str:MetadataAttribute id="HOUSE_NUMBER" minOccurs="1" 1022
maxOccurs="1"> 1023
 <str:ConceptIdentity> 1024
 <Ref maintainableParentID="CONCEPTS" agencyID="SDMX" 1025
id="HOUSE_NUMBER" maintainableParentVersion="1.0.0"/> 1026
 </str:ConceptIdentity> 1027
 <str:LocalRepresentation> 1028
 <str:TextFormat textType="Integer"/> 1029
 </str:LocalRepresentation> 1030
 </str:MetadataAttribute> 1031
 </str:MetadataAttribute> 1032
 </str:MetadataAttribute> 1033
 </str:MetadataAttributeDescriptor> 1034
</str:MetadataStructure> 1035

Figure 5: Example MSD showing specification of some Metadata Attributes 1036

This example shows the following hierarchy of Metadata Attributes: 1037

• Contact – this is presentational; no metadata is expected to be reported at this 1038
level 1039

o Contact Name 1040

o Address – this is also presentational; up to 3 addresses are allowed 1041

▪ House Number 1042

5.4 Metadata Set 1043

An example of reporting metadata according to the MSD described above, is shown 1044
below. 1045
 1046
<msg:MetadataSet id="ALB" metadataProviderID="OECD" version="1.0.0"> 1047
 <str:MetadataProvision> 1048
 <Ref agencyID="OECD" id="ABS_INDICATORS" version="1.0.0-draft" /> 1049
 </str:MetadataProvision> 1050
 <str:Target> 1051
 <Ref package="dataflow" class="Dataflow" agencyID="OECD" id="GDP" 1052
version="1.0.0" /> 1053
 </str:Target> 1054
 <md:AttributeSet> 1055
 <md:ReportedAttribute id="CONTACT"> 1056
 <md:AttributeSet> 1057
 <md:ReportedAttribute id="CONTACT_NAME">John Doe 1058

32

</md:ReportedAttribute> 1059
 <md:ReportedAttribute id="ADDRESS"> 1060
 <md:AttributeSet> 1061
 <md:ReportedAttribute id="STREET_NAME"> 1062
 <com:Text xml:lang="en">5th Avenue</com:Text> 1063
 </md:ReportedAttribute> 1064
 <md:ReportedAttribute id="HOUSE_NUMBER">12 1065
</md:ReportedAttribute> 1066
 </md:AttributeSet> 1067
 </md:ReportedAttribute> 1068
 <md:ReportedAttribute id="HTML_ATTR"> 1069
 <com:StructuredText xml:lang="en"> 1070
 <div xmlns="http://www.w3.org/1999/xhtml"> 1071
 <p>Lorem Ipsum</p> 1072
 </div> 1073
 </com:StructuredText> 1074
 </md:ReportedAttribute> 1075
 </md:AttributeSet> 1076
 </md:ReportedAttribute> 1077
 </md:AttributeSet> 1078
</msg:MetadataSet> 1079

Figure 6: Example Metadata Set 1080

This example shows: 1081
1. The reference to the Metadata Provision Agreement and Metadata Target 1082
2. The reported metadata attributes (AttributeSet) 1083

5.5 Reference Metadata in Data Structure Definition and 1084

Dataset 1085

An important change of SDMX 3.0 is the ability to reference an MSD within a DSD, in 1086
order to report any Metadata Attributes defined in the former to Datasets of the latter. 1087
This is achieved by the following: 1088

• In a DSD, the user may add a reference to one MSD. 1089

• In the Attribute Descriptor of the DSD, the user may include any Metadata 1090
Attributes defined in the linked MSD. 1091

o For each link to a Metadata Attribute, an Attribute Relationship may be 1092
specified (similarly to that for Data Attributes). 1093

• In any Dataset complying with this DSD, Metadata Attributes may be reported 1094
according to the specified Attribute Relationship. 1095

o Any hierarchy of the Metadata Attributes defined in the MSD is ignored; 1096
Metadata Attributes are reported as Data Attributes. 1097

• In Data Constraints, the user is allowed to restrict values for Metadata 1098
Attributes, in the same way as Data Attributes (more on this in section “9 1099
Constraints”). 1100

33

6 Codelist 1101

As of SDMX 3.0, Codelists have gained new features like geospatial properties, 1102
inheritance and extension. Moreover, hierarchies (used to build complex hierarchies 1103
of one or more Codelists) are now linked to other Artefacts in order to facilitate the 1104
formers' usage in dissemination or other scenarios. 1105
 1106

6.1 Geospatial Codelist 1107

SDMX recognizes that statistics refers to units or facts sited in places or areas that 1108
may be referenced to geodesic coordinates. This section presents the technical 1109
specifications to "geo-reference" those objects and facts in SDMX, by establishing 1110
ways to make relations to geographic features over the Earth using a defined 1111
coordinates system. 1112
 1113
SDMX can support three different ways for referencing geospatial data: 1114

1. Indirect Reference to Geospatial Information. Including a link to an external file 1115
containing the geospatial information. This is the only backwards compatible 1116
approach. Since this representation of geospatial information is not included 1117
inside the data message, the main use case would be connecting 1118
dissemination systems for making use of external tools, like GIS software. 1119

4. Geographic Coordinates. Including the coordinates of a specific 1120
geospatial feature as a set of coordinates. This is suitable for any 1121
statistical information that needs to be georeferenced especially for the 1122
exchange of microdata. 1123

5. A Geographic Codelist. Includes a type of Codelist, listing predefined 1124
geographies that are represented by geospatial information. These 1125
geographies could be administrative (including administrative 1126
boundaries or enumeration areas), lines, points, or gridded 1127
geographies. Regardless, the geospatial information used to represent 1128
the geography would contain both dimensions and/or attributes; 1129
therefore, representing an advantage for the data modellers as it 1130
provides a clear way to identify those dimensions developing a 1131
"Geospatial" role. 1132

6.1.1 Indirect Reference to Geospatial Information. 1133

This option provides a way to include external references to geospatial information 1134
through a file containing it. The external content may be geographical or thematic maps 1135
with different levels of precision. All the processing of geospatial data is made through 1136
external applications that can interpret the information in different formats. 1137
 1138
The reference to the external files containing geospatial information is made using 1139
some recommended SDMX Attributes, with the following content: 1140

• GEO_INFO_TEXT. A description of the kind of information being referenced. 1141

• GEO_INFO_URL. A URL which points to the resource containing the referred 1142
geospatial information. The resource might be a file with static geodesic 1143
information or a web service providing dynamic construction of geometries. 1144

• GEO_INFO_TYPE. Coded information describing a standard format of the file 1145
that contains the geospatial information. The format types are taken from the list 1146

34

of Format descriptions for Geospatial Data managed by the US Library of the 1147
Congress (https://www.loc.gov/preservation/digital/formats/fdd/gis_fdd.shtml). 1148
Allowed types in SDMX are listed in the Geographical Formats code list 1149
(CL_GEO_FORMATS). Examples of the codes contained in the document are: 1150

Code Description

GML Geography Markup Language

GeoTIFF GeoTIFF

KML_2_2 KML Version 2.2

GEOJSON_1_1 GeoJSON Version 1.1

 1151
Depending on the intended use, these attributes may be attached at the dataflow level, 1152
the series level or the observation level. 1153
 1154
The indirect reference to geospatial information in SDMX is recommended to be used 1155
for dissemination purposes, where the statistical information is complemented by 1156
geographical representations of places or regions. 1157
 1158

6.1.2 Geographic Coordinates 1159

This option to represent geospatial information in SDMX provides an efficient way for 1160
including geographic information with different levels of granularity, due to its flexibility. 1161
Geospatial information is represented using the GeospatialInformation type, as 1162

defined in the data types of the SDMX Information Model. A "GEO_FEATURE_SET" role 1163

should be assigned to any Component of this type. 1164
 1165
The GeospatialInformation data type can be assigned to a Dimension, 1166

DataAttribute, MetadataAttribute or a Measure with the 1167

"GEO_FEATURE_SET" role assigned; it can be included in a data message or a 1168

metadata report. 1169
 1170
Any Component used for representing a Geographical Feature Set, i.e., used to 1171

describe geographical characteristics, must have a “GEO_FEATURE_SET” role. Its 1172

Representation would be of textType="GeospatialInformation". The 1173

GeospatialInformation type is not intended to replace standard geospatial 1174

information formats, but instead provide a simple way to describe precise geographical 1175
characteristics in SDMX data sets agnostic of any particular geospatial software 1176
product or use case. 1177
 1178
The GeospatialInformation type should be used to describe geographical 1179

features like points (e.g., locations of places, landmarks, buildings, etc.), lines (e.g., 1180
rivers, roads, streets, etc.), or areas (e.g., geographical regions, countries, islands, 1181
land lots, etc.). A mix of different features is possible too, e.g., combining polygons and 1182
geographical points to describe a country and the location of its capital. 1183
 1184
The components that conform to the structure of the GeospatialInformation type 1185

are: 1186

https://www.loc.gov/preservation/digital/formats/fdd/gis_fdd.shtml

35

• X_COORDINATE: The horizontal (longitude) value of a pair of coordinates 1187

expressed in the Coordinate Reference System (CRS), mandatory. 1188

• Y_COORDINATE: The vertical value (latitude) of a pair of coordinates expressed 1189

in the CRS units, mandatory. 1190

• ALT: The height (altitude) from the reference surface is expressed in meters, 1191

optional. 1192

• CRS: The code of the Coordinate Reference System is used to reference the 1193

coordinates in the flow, optional. 1194

The code of the CRS will be as it appears in the EPSG Geodetic Parameter 1195
Registry (http://www.epsg-registry.org/) maintained by the International 1196
Association of Oil and Gas Producers. If this element is omitted, by default, the 1197
CRS will be the World Geodetic System 1984 (WGS 84, EPSG:4326). 1198

• PRECISION: Precision of the coordinates, expressing the possible deviation in 1199

meters from the exact geodesic point, optional. 1200

This component is only allowed if the CRS is specified too. If omitted, it will be 1201
interpreted as limited it to the expected measurement accuracy (e. g. a 1202
standard GPS has an accuracy of ~ 10m). 1203

• GEO_DESCRIPTION: Text for additional information about the place, 1204

geographical feature, or set of geographical features, optional. 1205

 1206
Geographical features (GEO_FEATURES) are collections of geographical features 1207
intended to be used to represent geographical areas like countries, regions, etc., or 1208
objects, like water bodies (e. g. rivers, lakes, oceans, etc.), roads (streets, highways, 1209
etc.), hospitals, schools, and the like. They are represented in the following way: 1210
 1211
(GEO_FEATURE, GEO_FEATURE): GEO_DESCRIPTION 1212
 1213

• GEO_FEATURE represents a set of points defining a feature following the 1214

ISO/IEC 13249-3:2016 standard to conform Well-known Text (WKT) for the 1215
representation of geometries in a format defined in the following way: 1216
 1217
GEOMETY_TYPE (GEOMETRY_REP) 1218

 1219

• GEOMETRY_TYPE: A string with a closed vocabulary defining the type of the 1220

geometry that represents a geographical component of the GEO_FEATURES 1221

collection, mandatory. 1222
 1223
Three types are allowed: 1224

1. Point, a specific geodesic point, like the centroid of a city or a hospital. 1225

It is represented with the string “POINT” 1226

2. Line, a feature defining a line like a road, a river, or similar. It is 1227

represented with the string “LINESTRING” 1228

3. Area, a polygon defining a closed area. It is represented with the string 1229

“POLYGON” 1230

 1231

http://www.epsg-registry.org/

36

If the GEOMETRY_REP is going to be including the height (ALT) component, a 1232

“Z” must be added after the string qualifying the GEOMETRY_TYPE. In this way, 1233

we will have: “POINT Z”, “LINESTRING Z” and “POLYGON Z” 1234

 1235
Other feature types (e.g. Triangular irregular networks, “TIN”) are not supported 1236
yet directly, except grids that are detailed in 6.1.3. 1237
 1238

• GEOMETRY_REP: Representation of each of the types The way to represent 1239

each GEO_FEATURE_TYPE will be: 1240

o A point (POINT): “COORDINATES” 1241

o A line (LINESTRING): “COORDINATES, COORDINATES, …” 1242

o An area (POLYGON): “(COORDINATES, COORDINATES, …), 1243

(COORDINATES, COORDINATES, …)” 1244

Where: 1245

• COORDINATES: Represents an individual set of coordinates composed by the 1246

X_COORDINATE (X), Y_COORDINATE (Y), and ALT (Z) in the following 1247

way “X Y Z” or “X Y” defining a single point of the polygon. Altitude is to be 1248

reported in meters. 1249
 1250
In an expanded way, GEO_FEATURE may be represented in the following ways: 1251

 1252
POINT (X_COORDINATE Y_COORDINATE): GEO_DESCRIPTION 1253
POINT Z (X_COORDINATE Y_COORDINATE ALT): GEO_DESCRIPTION 1254
LINESTRING (X_COORDINATE Y_COORDINATE, X_COORDINATE 1255
Y_COORDINATE, …): GEO_DESCRIPTION 1256
LINESTRING Z (X_COORDINATE Y_COORDINATE ALT, X_COORDINATE 1257
Y_COORDINATE ALT, …): GEO_DESCRIPTION 1258
POLYGON ((X_COORDINATE Y_COORDINATE, X_COORDINATE 1259
Y_COORDINATE, …), (X_COORDINATE Y_COORDINATE, X_COORDINATE 1260
Y_COORDINATE, …), …): GEO_DESCRIPTION 1261
POLYGON Z ((X_COORDINATE Y_COORDINATE ALT, X_COORDINATE 1262
Y_COORDINATE ALT, …), (X_COORDINATE Y_COORDINATE ALT, 1263
X_COORDINATE Y_COORDINATE ALT, …), …): GEO_DESCRIPTION 1264

 1265
An example of how GEO_FEATURES may be represented in an expanded way would 1266

be: 1267
 1268
(POLYGON Z ((X_COORDINATE Y_COORDINATE ALT, X_COORDINATE 1269
Y_COORDINATE ALT, …), (X_COORDINATE Y_COORDINATE ALT, 1270
X_COORDINATE Y_COORDINATE ALT, …), …), POLYGON Z 1271
((X_COORDINATE Y_COORDINATE ALT, X_COORDINATE Y_COORDINATE 1272
ALT, …), (X_COORDINATE Y_COORDINATE ALT, X_COORDINATE 1273
Y_COORDINATE ALT, …), …), POLYGON Z ((X_COORDINATE 1274
Y_COORDINATE ALT, X_COORDINATE Y_COORDINATE ALT, …), 1275
(X_COORDINATE Y_COORDINATE ALT, X_COORDINATE Y_COORDINATE ALT, 1276
…), …), …): GEO_DESCRIPTION 1277

 1278
Accordingly to this logic, an example of an expanded expression representing a value 1279
of the GeospatialInformation may be the following: 1280

 1281

37

“CRS, PRECISION: {(POLYGON Z ((X_COORDINATE Y_COORDINATE ALT, 1282
X_COORDINATE Y_COORDINATE ALT, …), (X_COORDINATE Y_COORDINATE 1283
ALT, X_COORDINATE Y_COORDINATE ALT, …), …), POLYGON Z 1284
((X_COORDINATE Y_COORDINATE ALT, X_COORDINATE Y_COORDINATE 1285
ALT, …), (X_COORDINATE Y_COORDINATE ALT, X_COORDINATE 1286
Y_COORDINATE ALT, …), …), POLYGON Z ((X_COORDINATE 1287
Y_COORDINATE ALT, X_COORDINATE Y_COORDINATE ALT, …), 1288
(X_COORDINATE Y_COORDINATE ALT, X_COORDINATE Y_COORDINATE ALT, 1289
…), …), …): GEO _DESCRIPTION}, {(POLYGON Z ((X_COORDINATE 1290
Y_COORDINATE ALT, X_COORDINATE Y_COORDINATE ALT, …), 1291
(X_COORDINATE Y_COORDINATE ALT, X_COORDINATE Y_COORDINATE ALT, 1292
…), …), POLYGON Z ((X_COORDINATE Y_COORDINATE ALT, 1293
X_COORDINATE Y_COORDINATE ALT, …), (X_COORDINATE Y_COORDINATE 1294
ALT, X_COORDINATE Y_COORDINATE ALT, …), …), POLYGON Z 1295
((X_COORDINATE Y_COORDINATE ALT, X_COORDINATE Y_COORDINATE 1296
ALT, …), (X_COORDINATE Y_COORDINATE ALT, X_COORDINATE 1297
Y_COORDINATE ALT, …), …), …): GEO _DESCRIPTION}, …: 1298
GEO_DESCRIPTION” 1299

 1300
Validation rules must be added to the XML Schema to ensure the integrity of the 1301
specification according to the proposed syntax. 1302
 1303

6.1.3 A Geographic Code List 1304

Geography is represented by geospatial information. Within SDMX, geospatial 1305
information is conceptually represented by the "GEO_FEATURE_SET" 1306

role/specification. This approach uses a specialized form of SDMX Codelist, named 1307
"GeoCodelist", which is a Codelist containing the Geography used to demarcate the 1308

geographic extent. This is implemented in two ways: 1309
1. Geographic. It is a regular codelist that has been extended to add a 1310

geographical feature set to each of its items, typically, this would include all 1311

types of administrative geographies; 1312

2. Grid. As a codelist that has defined a geographical grid composed of cells 1313

representing regular squared portions of the Earth. 1314

A GeoCodelist is a Codelist as defined in the SDMX Information Model that has the 1315

GeoType property added. GeoType can take one of two values "Geographic" or 1316

"GeoGrid". 1317

 1318
"Geographic" corresponds to the first way to implement a GeoCodelist. When the 1319

GeoCodelist includes a GeoType="Geographic" property, a GeoFeatureSet 1320

property is added to each of the items in the code list to implement a Geographic 1321
GeoCodelist. 1322

 1323
On the other hand, when GeoType="GeoGrid" it is defining a gridded 1324

GeoCodelist, and it is necessary to add a grid definition to the Codelist identifier 1325

using the gridDefinition property. The components needed to define a 1326

geographical grid are the following: 1327

• CRS: The code of the Coordinate Reference System is used to reference the 1328

coordinates in the flow, optional. The code of the CRS will be as it appears in the 1329
EPSG Geodetic Parameter Registry (http://www.epsg-registry.org/) maintained 1330

http://www.epsg-registry.org/

38

by the International Association of Oil and Gas Producers. If this component is 1331
omitted, by default the CRS will be the World Geodetic System 1984 (WGS 84, 1332
EPSG:4326). 1333

• REFERENCE_CORNER: A code composed of two characters to define the position 1334

of the coordinates that will be used as a starting reference to locate the cells. The 1335
possible values of this code can be UL (Upper Left), UR (Upper Right), LL (Lower 1336

Left), or LR (Lower Right). If this component is omitted the value LL (Lower Left) 1337

will be taken by default. This element is optional. 1338

• REFERENCE_COORDINATES: Represents the starting point to reference the cells 1339

of the grid, accordingly to the CRS and the REFERENCE_CORNER. It is represented 1340

by an individual set of coordinates composed by the X_COORDINATE (X) and 1341

Y_COORDINATE (Y) in the following way "X,Y". This element is mandatory if 1342

GEO_STD is omitted. 1343

• CELL_WIDTH: The size in meters of a horizontal side of the cells in the grid. This 1344

element is mandatory if GEO_STD is omitted. 1345

• CELL_HEIGHT: The size in meters of a vertical side of the cells in the grid. This 1346

element is mandatory if GEO_STD is omitted . 1347

• GEO_STD: A restricted text value expressing that the cells in the grid will provide 1348

information about matching codes existing in another reference system that 1349
establishes a mechanism to define the grid. This element is optional. 1350

Accepted values for this component are included in the Geographical Grids 1351
Codelist (CL_GEO_GRIDS). Examples contained in the mentioned document 1352

are: 1353
 1354

Value Description

GEOHASH GeoHash

GEOREF World Geographic Reference System

MGRS Military Grid Reference System

OLC Open Location Code / Plus Code

QTH Maidenhead Locator System /QTH Locator / IAURU Locator

W3W What3words™

WOEID Where On Earth Identifier

 1355
The GRID_DEFINITION element will contain a regular expression string 1356

corresponding to the following format: 1357
"CRS: REFERENCE_CORNER; REFERENCE_COORDINATES; CELL_WIDTH, 1358
CELL_HEIGHT: GEO_STD" 1359

 1360
In an expanded way we would have: 1361
"CRS:REFERENCE_CORNER; X_COORDINATE, Y_COORDINATE; CELL_WIDTH, 1362

CELL_HEIGHT: GEO_STD" 1363

 1364
If the grid will be fully adhering to a standard declared in the GEO_STD, the definition 1365

of each code in the code list will be optional. In other case, each item in the code list 1366

39

must be assigned to one cell in the grid, which is made by adding the GEO_CELL 1367

element to each item of the code list that will contain a regular expression string 1368
composed of the following components: 1369

• GEO_COL: The number of the column in the grid starting by zero. 1370

• GEO_ROW: The number of the row in the grid starting by zero. 1371

• GEO_TAG: An optional text to include additional information to the cell. 1372

• GEO_CELL will have values with the following format: "GEO_COL, GEO_ROW: 1373

GEO_TAG" 1374

When using a gridded GeoCodelist we may use the GEO_TAG to integrate the cells 1375

in the grid to the codes used by other standard defined grids. As an example, GEO_TAG 1376

can take the values of the Open Location Codes, GeoHash, etc. If this is done, the 1377
GEO_STD component must have been added to the definition of the grid. If the 1378

GEO_STD is omitted, the GEO_TAG contents will be taken just as free text. 1379

 1380

6.2 Codelist extension and discriminated unions 1381

A Codelist can extend one or more Codelists. Codelist extensions are defined 1382

as a list of references to parent Codelists. The order of the references is important 1383

when it comes to conflict resolution on Code Ids. When two Codelists have the 1384

same Code Id, the Codelist referenced later takes priority. In the example below, 1385

the code 'A', exists in both CL_INDICATOR and CL_SERIES. The Codelist 1386

CL_INDICATOR_EX will contain the code 'A' from CL_SERIES as this was the second 1387

Codelist to be referenced in the sequence of references. 1388

 1389
Figure 7: Codelist extension 1390

As the extended Codelist, CL_INDICATOR_EX in this example, may also define its 1391

own Codes, these take the ultimate priority over any referenced Codelists. If 1392

CL_INDICATOR_EX defines Code 'A', then this will be used instead of Code 'A' from 1393

CL_INDICATOR and CL_SERIES, as shown below: 1394

40

 1395
Figure 8: Codelist extension with new Codes 1396

 1397

6.2.1 Prefixing Code Ids 1398

A reference to a Codelist may contain a prefix. If a prefix is provided, this prefix will 1399

be applied to all the codes in the Codelist before they are imported into the extended 1400

Codelist. In the above example if the CL_INDICATOR reference includes a prefix of 1401

'IND_' then the resulting Codelist would contain 6 codes, IND_A, IND_X, IND_Y, A, 1402

B, C. 1403

 1404
Figure 9: Extended Codelist with prefix 1405

6.2.2 Including / Excluding Specific Codes 1406

The default behaviour of extending another Codelist is to import all of the Codes. 1407

However, an explicit list of Code Ids may be provided for explicit inclusion or exclusion. 1408

This list of Ids may contain wildcards using the same notation as Constraints (%). 1409

Cascading values is also supported using the same syntax as the Constraints. The 1410

list of Ids is either a list of excluded items, or included items, exclusion and inclusion 1411

is not supported against a single Codelist. 1412

41

 1413
Figure 10: Extended Codelist with include/exclude terms 1414

6.2.3 Parent Ids 1415

Parent Ids are preserved in the extended Codelist if they can be. If a Code is inherited 1416

but its parent Code is excluded, then the Code's parent Id will be removed. This rule is 1417

also true if the parent Code is excluded because it is overwritten by another Code with the 1418

same Id from another Codelist. This ensures the parent Ids do not inadvertently link to 1419

Codes originating from different Codelists, and also prevents circular references from 1420

occurring. 1421

 1422
Figure 11: Parent Code included 1423

42

 1424
Figure 12: Parent Code from different extended Codelist 1425

 1426
Figure 13: Parent Code overridden by local Code 1427

 1428
Figure 14: Parent Code not included 1429

43

6.2.4 Discriminated Unions 1430

A common use case solved in SDMX 3.0 is that of discriminated unions, i.e., dealing 1431
with classification or breakdown "variants" which are all valid but mutually exclusive. 1432
For example, there are many versions of the international classification for economic 1433
activities "ISIC". In SDMX, classifications are enumerated concepts, normally modelled 1434
as dimensions corresponding to breakdowns. Each enumerated concept is associated 1435
to one and only one code list. 1436
 1437
To support this use case, the following have to be considered: 1438

• Independent Codelists per variant: Having each variant in a separate 1439
Codelist facilitates the maintenance and allows keeping the original codes, 1440

even if different versions of the classification have the same code for different 1441
concepts. For example, in ISIC Rev. 4 the code "A" represents "Agriculture, 1442
forestry and fishing", while in ISIC 3.1 "A" means "Agriculture, hunting and 1443
forestry". 1444

• Prefixing Code Ids: When extending Codelists, the reference to an extension 1445

Codelist may contain a prefix. If a prefix is provided, this prefix will be applied 1446

to all the codes in the Codelist before they are imported into the extended 1447

Codelist. In this case, the reference to CL_ISIC4 includes a prefix of 1448

"ISIC4_" and the reference to ISIC3 includes "ISIC3_", so the resulting 1449

Codelist will have no conflict for the "A" items which will become "ISIC3_A" 1450

and "ISIC4_A". 1451

• Including / Excluding Specific Codes: As explained above, there will be 1452
independent DFs/PAs with specific Constraint attached, in order to keep the 1453

proper items according to the variant in use by each data provider. 1454

For example, assuming: 1455

• DSD DSD_EXDU contains a Dimension: ACTIVITY enumerated by 1456

CL_ACTIVITY. 1457

• CL_ACTIVITY has no items and is extended by: 1458

• CL_ISIC4, prefix="ISIC4_" 1459

• CL_ISIC3, prefix="ISIC3_" 1460

• CL_NACE2, prefix="NACE2_" 1461

• CL_AGGR, prefix="AGGR_" 1462

• Dataflow DF1, with a DataConstraint CC_NACE2, CubeRegion for ACTIVITY 1463

and Value="NACE2_%" 1464

• Dataflow DF2, with a DataConstraint CC_ISIC3, CubeRegion for ACTIVITY 1465

and Value="ISIC3_%" 1466

• Dataflow DF3, with a DataConstraint CC_ISIC4, CubeRegion for ACTIVITY 1467

and Value="ISIC4_%", Value="AGGR_TOTAL", Value="AGGR_Z" 1468

 1469
The discriminated unions are achieved, by requesting any of the above Dataflows 1470

with references="all" and detail="referencepartial": returns 1471

CL_ACTIVITY with the corresponding extensions resolved and the 1472

44

DataConstraint, referencing the Dataflow, applied. Thus, the CL_ACTIVITY will 1473

only include Codes prefixed according to the Dataflow, i.e.: 1474

• Prefix "NACE2_%" for DF1; 1475

• Prefix "ISIC3_%" for DF2; 1476

• Prefix "ISIC4_%" for DF3; note that Codes "AGGR_TOTAL" and "AGGR_Z" are 1477

also included in this case. 1478

 1479

6.3 Linking Hierarchies 1480

To facilitate the usage of Hierarchy within other SDMX Artefacts, the 1481

HierarchyAssociation is defined to link any Hierarchy with any 1482

IdentifiableArtefact within a specific context. 1483

 1484
The HierarchyAssociation is a simple Artefact operating like a 1485

Categorisation. The former specifies three references: 1486

• The link to a Hierarchy; 1487

• The link to the IdentifiableArtefact that the Hierarchy is linked (e.g., a 1488

Dimension); 1489

• The link to the context that the linking is taking place (e.g., a DSD). 1490

As an example, let’s assume: 1491

• A DSD with a COUNTRY Dimension that uses Codelist CL_AREA as 1492

representation. 1493

• A Hierarchy (e.g., EU_COUNTRIES) that builds a hierarchy for the CL_AREA 1494

Codelist. 1495

In order to use this Hierarchy for data of a Dataflow (e.g., EU_INDICATORS), we 1496

need to build the following HierarchyAssociation: 1497

• Links to the Hierarchy EU_COUNTRIES (what is associated?) 1498

• Links to the Dimension COUNTRY (where is it associated?) 1499

• Links to the context: Dataflow EU_INDICATORS (when is it 1500
associated?) 1501

The above are also shown in the schematic below: 1502

45

 1503

Figure 15: Hierarchy Association 1504

 1505

46

7 Maintenance Agencies and Metadata Providers 1506

All structural metadata in SDMX is owned and maintained by a maintenance agency 1507
(Agency identified by agencyID in the schemas). Similarly, all reference metadata 1508

(i.e., MetadataSets) is owned and maintained by a metadata provider organisation 1509
(MetadataProvider identified by metadataProviderID in the schemas). It is vital to 1510

the integrity of the structural metadata that there are no conflicts in agencyID and 1511

metadataProviderID. In order to achieve this, SDMX adopts the following rules: 1512

 1513
1. Agencies are maintained in an AgencyScheme (which is a sub class of 1514

OrganisationScheme); Data Providers are maintained in a 1515

MetadataProviderScheme. 1516

2. The maintenance agency of the Agency/Metadata Provider Scheme must also 1517
be declared in a (different) AgencyScheme. 1518

3. The "top-level" agency is SDMX and this agency scheme is maintained by 1519
SDMX. 1520

4. Agencies registered in the top-level scheme can themselves maintain a single 1521
AgencyScheme and a single MetadataProviderScheme. SDMX is an 1522

agency in the SDMX AgencyScheme. Agencies in any AgencyScheme can 1523

themselves maintain a single AgencyScheme and so on. 1524

5. The AgencyScheme cannot be versioned. 1525

6. There can be only one AgencyScheme maintained by any one Agency. It has 1526

a fixed Id of 'AGENCIES'. Similarly, only one MetadataProvideScheme is 1527

maintained by one Agency and has a fixed id of 'METADATA_PROVIDERS'. 1528

7. The format of the agency identifier is agencyId.agencyID etc. The top-level 1529

agency in this identification mechanism is the agency registered in the SDMX 1530
agency scheme. In other words, SDMX is not a part of the hierarchical ID 1531
structure for agencies. SDMX is, itself, a maintenance agency. 1532

 1533
This supports a hierarchical structure of agencyID. 1534

 1535
An example is shown below. 1536
 1537

 1538

47

Figure 16: Example of Hierarchic Structure of Agencies 1539

Each agency is identified by its full hierarchy excluding SDMX. 1540
 1541
The XML representing this structure is shown below. 1542
 1543
<str:OrganisationSchemes> 1544
 <str:AgencyScheme agencyID="SDMX" id="AGENCIES"> 1545
 <com:Name xml:lang="en">Top-level Agency Scheme</com:Name> 1546
 <str:Agency id="AA"> 1547
 <com:Name xml:lang="en">AA Name</com:Name> 1548
 </str:Agency> 1549
 <str:Agency id="BB"> 1550
 <com:Name xml:lang="en">BB Name</com:Name> 1551
 </str:Agency> 1552
 </str:AgencyScheme> 1553
 1554
 <str:AgencyScheme agencyID="AA" id="AGENCIES"> 1555
 <com:Name xml:lang="en">AA Agencies</com:Name> 1556
 <str:Agency id="CC"> 1557
 <com:Name xml:lang="en">CC Name</com:Name> 1558
 </str:Agency> 1559
 <str:Agency id="DD"> 1560
 <com:Name xml:lang="en">DD Name</com:Name> 1561
 </str:Agency> 1562
 </str:AgencyScheme> 1563
 1564
 <str:AgencyScheme agencyID="BB" id="AGENCIES"> 1565
 <com:Name xml:lang="en">BB Agencies</com:Name> 1566
 <str:Agency id="CC"> 1567
 <com:Name xml:lang="en">CC Name</com:Name> 1568
 </str:Agency> 1569
 <str:Agency id="DD"> 1570
 <com:Name xml:lang="en">DD Name</com:Name> 1571
 </str:Agency> 1572
 </str:AgencyScheme> 1573
 1574
 <str:AgencyScheme agencyID="AA.DD" id="AGENCIES"> 1575
 <com:Name xml:lang="en">AA.DD Agencies</com:Name> 1576
 <str:Agency id="EE"> 1577
 <com:Name xml:lang="en">EE Name</com:Name> 1578
 </str:Agency> 1579
 </str:AgencyScheme> 1580
 1581
</str:OrganisationSchemes> 1582

Figure 17: Example Agency Schemes Showing a Hierarchy 1583

Examples of Structure definitions that show how Agencies are used, are presented 1584
below: 1585
 <str:Codelist agencyID="SDMX" id="CL_FREQ" version="1.0.0" 1586
 urn="urn:sdmx:org.sdmx.infomodel.codelist.Codelist=SDMX:CL_FREQ(1.0.0)"> 1587
 <com:Name xml:lang="en">Frequency</com:Name> 1588
 </str:Codelist> 1589
 <str:Codelist agencyID="AA" id="CL_FREQ" version="1.0.0" 1590
 urn="urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AA:CL_FREQ(1.0.0)"> 1591
 <com:Name xml:lang="en">Frequency</com:Name> 1592
 </str:Codelist> 1593
 <str:Codelist agencyID="AA.CC" id="CL_FREQ" version="1.0.0" 1594
 urn="urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AA.CC:CL_FREQ(1.0.0)"> 1595
 <com:Name xml:lang="en">Frequency</com:Name> 1596
 </str:Codelist> 1597
 <str:Codelist agencyID="BB.CC" id="CL_FREQ" version="1.0.0" 1598
 urn="urn:sdmx:org.sdmx.infomodel.codelist.Codelist=BB.CC:CL_FREQ(1.0.0)"> 1599

48

 <com:Name xml:lang="en">Frequency</com:Name> 1600
 </str:Codelist> 1601

Figure 18: Example Showing Use of Agency Identifiers 1602

 1603
Each of these maintenance agencies has a Codelist with an identical id 'CL_FREQ'. 1604

However, each is uniquely identified by means of the hierarchic agency structure. 1605

49

8 Concept Roles 1606

8.1 Overview 1607

The DSD Components of Dimension and Attribute can play a specific role in the DSD 1608
and it is important to some applications that this role is specified. For instance, the 1609
following roles are some examples: 1610

• Frequency – in a data set the content of this Component contains information on 1611
the frequency of the observation values. 1612

• Geography – in a data set the content of this Component contains information 1613
on the geographic location of the observation values. 1614

8.2 Information Model 1615

The Information Model for this is shown below: 1616
 1617

 1618
Figure 19: Information Model Extract for Concept Role 1619

It is possible to specify zero or more concept roles for a Dimension, Measure and Data 1620
Attribute (but not the ReportingYearStartDay). The Time Dimension and the Attribute 1621
ReportingYearStartDay have explicitly defined roles and cannot be further specified 1622
with additional concept roles. 1623

8.3 Technical Mechanism 1624

The mechanism for maintain and using concept roles is as follows: 1625

6. A standard Concept Scheme maintained in the Global Registry, with the 1626
following identification: SDMX:CONCEPT_ROLES(1.0.0), shall include 1627

the default roles, specified by the SDMX SWG (as detailed in 8.5). 1628

7. Any recognized Agency can have a concept scheme that contains 1629
concepts that identify concept roles. Indeed, from a technical 1630
perspective any agency can have more than one of these schemes, 1631
though this is not recommended. 1632

50

8. The concept scheme that contains the "role" concepts can contain 1633
concepts that do not play a role. 1634

9. There is no explicit indication on the Concept whether it is a 'role' 1635
concept. 1636

10. Therefore, any concept in any concept scheme is capable of being a 1637
'role' concept. 1638

11. It is the responsibility of Agencies to ensure their community knows 1639
which concepts in which concept schemes play a 'role' and the 1640
significance and interpretation of this role. In other words, such 1641
concepts must be known by applications, there is no technical 1642
mechanism that can inform an application on how to process such a 1643
'role'. 1644

12. If the concept referenced in the Concept Identity in a DSD component 1645
(Dimension, Measure Dimension, Attribute) is contained in the concept 1646
scheme containing concept roles then the DSD component could play 1647
the role implied by the concept, if this is understood by the processing 1648
application. 1649

13. If the concept referenced in the Concept Identity in a DSD component 1650
(Dimension, Measure Dimension, Attribute) is not contained in the 1651
concept scheme containing concept roles, and the DSD component is 1652
playing a role, then the concept role is identified by the Concept Role in 1653
the schema. 1654

8.4 SDMX-ML Examples in a DSD 1655

The standard roles Concept Scheme, is still a normal Concept Scheme, thus it may be 1656
used also for the concept identity of a Component, e.g., the 'FREQ': 1657
<str:Dimension id="FREQ"> 1658
 <str:ConceptIdentity> 1659
 <Ref id="FREQ" agencyID="SDMX" maintainableParentID="CONCEPT_ROLES" 1660
maintainableParentVersion="1.0.0"/> 1661
 </str:ConceptIdentity> 1662
</str:Dimension> 1663

 1664
Given this is the standard roles Concept Scheme, any application should interpret the 1665
above Dimension to have the role of Frequency. 1666
 1667
Using a Concept Scheme that is not the standard roles Concept Scheme where it is 1668
required to assign a role using the standard roles Concept Scheme. Again, FREQ is 1669
chosen as the example. 1670
<str:Dimension id="FREQ"> 1671
 <str:ConceptIdentity> 1672
 <Ref id="FREQ" agencyID="SDMX" maintainableParentID="CONCEPTS" 1673
maintainableParentVersion="1.0.0"/> 1674
 </str:ConceptIdentity> 1675
 <str:ConceptRole> 1676
 <Ref id="FREQ" agencyID="SDMX" maintainableParentID="CONCEPT_ROLE" 1677
maintainableParentVersion="1.0.0"/> 1678
 </str:ConceptRole> 1679
</str:Dimension> 1680

 1681

51

This explicitly states that this Dimension is playing a role identified by the FREQ 1682
concept in the standard roles Concept Scheme. Again, the application must interpret 1683
this as a Frequency role. 1684
 1685
In other cases where a role from a non-standard roles Concept Scheme is used, then 1686
the application has to know how to interpret the provided roles, e.g., like in the case 1687
below: 1688
<str:Dimension id="FREQ"> 1689
 <str:ConceptIdentity> 1690
 <Ref id="FREQ" agencyID="SDMX" maintainableParentID="CONCEPTS" 1691
maintainableParentVersion="1.0.0"/> 1692
 </str:ConceptIdentity> 1693
 <str:ConceptRole> 1694
 <Ref id="FREQ" agencyID="SDMX" maintainableParentID="MY_CONCEPT_ROLES" 1695
maintainableParentVersion="1.0.0"/> 1696
 </str:ConceptRole> 1697
</str:Dimension> 1698

 1699
This is all that is required for interoperability within a community. Having a standard 1700
roles Concept Scheme, maintained by the SDMX SWG, allows the SDMX community 1701
to have a common understanding of the roles, while also being able to extend the roles 1702
in bilateral (or multilateral) agreements, by maintaining their own roles Concept 1703
Scheme. This will then ensure there is interoperability between systems that 1704
understand the use of these concepts. 1705
 1706
Note that each of the Components (Data Attribute, Measure, Dimension, Time 1707
Dimension) has a mandatory identity association (Concept Identity) and if this Concept 1708
also identifies the role then it must be interpreted accordingly. 1709
 1710
In order for these roles to be extensible and also to enable user communities to 1711
maintain community-specific roles, the roles are maintained in a controlled vocabulary 1712
which is implemented in SDMX as Concepts in a Concept Scheme. The Component 1713
optionally references this Concept if it is required to declare the role explicitly. Note 1714
that a Component can play more than one role and therefore multiple "role" concepts 1715
can be referenced. 1716

8.5 SDMX standard roles Concept Scheme 1717

As of this version of the specifications, there is a predefined Concept Scheme, with a 1718
set of Concepts that are considered the standard roles for SDMX. Beyond that, a user 1719
is free to add other roles, using custom Concept Schemes. This predefined Concept 1720
Scheme is the result of the SWG guidelines for Concept Roles, plus that for Measure, 1721
and includes the following Concepts: 1722
 1723

COMMENT Comment Descriptive text which can be attached to data or
metadata.

ENTITY Entity Describes the subject of the data set (e.g., a country).

FLAG Flag Coded attribute in a data set that represents
qualitative information for the cell or partial key (e.g.
series) value.

FREQ Frequency Time interval at which the source data are collected.

52

GEO Geographical Geographic area to which the measured statistical
phenomenon relates.

OPERATION Statistical
operation

Signifies statistical operations have been done on the
observations.

VARIABLE Variable Characteristic of a unit being observed that may
assume more than one of a set of values to which a
numerical measure or a category from a classification
can be assigned.

MEASURE Measure Used for emulating the functionality of the deprecated
MeasureDimension.

GEO_FEATU

RE_SET

Geographical
Feature Set

Georeferencing information to describe the location or
the shape of a statistical unit, recognizable object or
geographical area.

PRIMARY Primary
Measure

Used for backwards compatibility with SDMX 2.1 and
back, or when the “Primary Measure” concept is
needed.

 1724

53

9 Constraints 1725

9.1 Introduction 1726

A Constraint is a Maintainable Artefact that can be associated to one or more of: 1727

• Data Structure Definition 1728

• Metadata Structure Definition 1729

• Dataflow 1730

• Metadataflow 1731

• Provision Agreement 1732

• Metadata Provision Agreement 1733

• Data Provider or Metadata Provider (this is restricted to a Release Calendar 1734
Constraint) 1735

• Simple or Queryable Data Sources 1736

Note that regardless of the Artefact to which the Constraint is associated, it is 1737
constraining the contents of code lists in the DSD to which the constrained object is 1738
related. This does not apply, of course, to a Metadata/Data Provider as the latter can 1739
be associated, via the (Metadata) Provision Agreement, to many MSDs/DSDs. Hence 1740
the reason for the restriction on the type of Constraint that can be attached to a 1741
Metadata/Data Provider. 1742

9.2 Types of Constraint 1743

The Constraint can be of one of two types: 1744

• Data constraint 1745

• Metadata constraint 1746

 1747
The Data Constraint may serve two different perspectives, depending on the way the 1748
latter is retrieved. These are: 1749

• Allowed constraint 1750

• Actual constraint 1751

The former (allowed – also valid for Metadata Constraint) is specified by a data or 1752
metadata provider or consumer for sharing the allowed data and metadata in the 1753
context of their DSD or MSD exchanges, e.g., only Monthly data for a specific Dataflow. 1754
The latter (actual) is a dynamic Constraint in response to an availability request (only 1755
possible for data). 1756
 1757
For Actual Data Constraints, there a few characteristics that are worth noting: 1758

• They can only be retrieved by the availability requests (as specified in the REST 1759
API). 1760

• They depend on the data available in an SDMX Web Service and thus they can 1761
only be dynamically generated according to that data. 1762

• Although they are Maintainable Artefacts, they cannot change independently 1763
of data; thus, they cannot be versioned (they are non-versioned, as explained 1764
in section 13). 1765

54

• Their identifier may also be dynamically generated and thus there is no REST 1766
resource based on their identification. 1767

9.3 Rules for a Constraint 1768

9.3.1 Scope of a Constraint 1769

A Constraint is used specify the content of a data or metadata source in terms of the 1770
component values or the keys. 1771
 1772
In terms of data the components are: 1773

• Dimension 1774

• Time Dimension 1775

• Data Attribute 1776

• Measure 1777

• Metadata Attribute 1778

• DataKeySets: the keys are the content of the KeyDescriptor – i.e., the series keys 1779
composed, for each key, by a value for each Dimension. 1780

 1781
In terms of reference metadata the components are: 1782

• Metadata Attribute 1783

 1784
For a Constraint based on a DSD the Constraint can reference one or more of: 1785

• Data Structure Definition 1786

• Dataflow 1787

• Provision Agreement 1788

 1789
For a Constraint based on an MSD the Constraint can reference one or more of: 1790

• Metadata Structure Definition 1791

• Metadataflow 1792

• Metadata Provision Agreement 1793

 1794
Furthermore, there can be more than one Constraint specified for a specific object e.g., 1795
more than one Constraint for a specific DSD. 1796
 1797
In view of the flexibility of constraints attachment, clear rules on their usage are 1798
required. These are elaborated below. 1799

9.3.2 Multiple Content Constraints 1800

There can be many Content Constraints for any Constrainable Artefact (e.g., DSD), 1801
subject to the following restrictions: 1802

55

9.3.2.1 Cube Region 1803

A Constraint can contain multiple Member Selections (e.g., Dimensions). 1804

• A specific Member Selection (e.g., Dimension FREQ) can only be contained in 1805
one Cube Region for any one attached object (e.g., a specific DSD or specific 1806
Dataflow). 1807

• If a validity period is specified for Cube Regions, then a specific Member Selection 1808
may be repeated across Cube Regions, provided their validity periods are not 1809
overlapping. 1810

• For partial reference resolution purposes (as per the SDMX REST API), the latest 1811
non-draft Constraint must be considered. 1812

• A Member Selection may include wildcarding of values (using character ‘%’ to 1813
represent zero or more occurrences of any character), as well as cascading 1814
through hierarchic structures (e.g., parents in Codelist), or localised values (e.g., 1815
text for English only). Lack of locale, means any language may match. Cascading 1816
values are mutual exclusive to localised values, as the former refer to coded 1817
values, while the latter refer to uncoded values. 1818

• Any values included in a Member Selection for Components with an array data 1819
type (i.e., Measures, Attributes or Metadata Attributes), will be applied as single 1820
values and will not be assessed combined with other values to match all possible 1821
array values. For example, including the Code ‘A’ for an Attribute will allow any 1822
instance of the Attribute that includes ‘A’, like [‘A’, ‘B’] or [‘A’, ‘C’, ‘D’]. Similarly, if 1823
Code ‘A’ was excluded, all those arrays of values would also be excluded. 1824

 1825

9.3.2.2 Key Set 1826

Key Sets will be processed in the order they appear in the Constraint and wildcards 1827
can be used (e.g., any key position not reference explicitly is deemed to be "all 1828
values"). As the Key Sets can be "included" or "excluded" it is recommended that Key 1829
Sets with wildcards are declared before KeySets with specific series keys. This will 1830
minimize the risk that keys are inadvertently included or excluded. 1831
 1832
In addition, Attribute, Measure and Metadata Attribute constraints may accompany 1833
KeySets, in order to specify the allowed values per Key. Those are expressed following 1834
the rules for Cube Regions, as explained above. 1835

9.3.3 Inheritance of a Content Constraint 1836

9.3.3.1 Attachment levels of a Constraint 1837

There are three levels of constraint attachment for which these inheritance rules apply: 1838

• DSD/MSD – top level 1839
o Dataflow/Metadataflow – second level 1840

▪ Provision Agreement – third level 1841
 1842
Note that these rules do not apply to the Simple Datasource or Queryable Datasource; 1843
the Constraint(s) attached to these artefacts are resolved for this artefact only and do 1844
not take into account Constraints attached to other artefacts (e.g., Provision 1845
Agreement, Dataflow, DSD). 1846

56

It is not necessary for a Constraint to be attached to a higher level artefact. e.g., it is 1847
valid to have a Constraint for a Provision Agreement where there are no constraints 1848
attached the relevant dataflow or DSD. 1849

9.3.3.2 Cascade rules for processing Constraints 1850

The processing of the constraints on either Dataflow/Metadataflow or Provision 1851
Agreement must take into account the constraints declared at higher levels. The rules 1852
for the lower-level constraints (attached to Dataflow/ Metadataflow and Provision 1853
Agreement) are detailed below. 1854
 1855
Note that there can be a situation where a constraint is specified at a lower level before 1856
a constraint is specified at a higher level. Therefore, it is possible that a higher-level 1857
constraint makes a lower-level constraint invalid. SDMX makes no rules on how such 1858
a conflict should be handled when processing the constraint for attachment. However, 1859
the cascade rules on evaluating constraints for usage are clear – the higher-level 1860
constraint takes precedence in any conflicts that result in a less restrictive specification 1861
at the lower level. 1862

9.3.3.3 Cube Region 1863

It is not necessary to have a Constraint on the higher-level artefact (e.g., DSD 1864
referenced by the Dataflow), but if there is such a Constraint at the higher level(s) then: 1865

• The lower-level Constraint cannot be less restrictive than the Constraint specified 1866
for the same Member Selection (e.g. Dimension) at the next higher level, which 1867
constrains that Member Selection. For example, if the Dimension FREQ is 1868
constrained to A, Q in a DSD, then the Constraint at the Dataflow or Provision 1869
Agreement cannot be A, Q, M or even just M – it can only further constrain A, Q. 1870

• The Constraint at the lower level for any one Member Selection further constrains 1871
the content for the same Member Selection at the higher level(s). 1872

• Any Member Selection, which is not referenced in a Constraint, is deemed to be 1873
constrained according to the Constraint specified at the next higher level which 1874
constraints that Member Selection. 1875

• If there is a conflict when resolving the Constraint in terms of a lower-level 1876
Constraint being less restrictive than a higher-level Constraint, then the 1877
Constraint at the higher-level is used. 1878

 1879
Note that it is possible for a Constraint at a higher level to constrain, say, four 1880
Dimensions in a single Constraint, and a Constraint at a lower level to constrain the 1881
same four in two, three, or four Constraints. 1882
 1883

9.3.3.4 Key Set 1884

It is not necessary to have a Constraint on the higher-level artefact (e.g., DSD 1885
referenced by the Dataflow), but if there is such a Constraint at the higher level(s) then: 1886

• The lower-level Constraint cannot be less restrictive than the Constraint specified 1887
at the higher level. 1888

• The Constraint at the lower level for any one Member Selection further constrains 1889
the keys specified at the higher level(s). 1890

57

• Any Member Selection, which is not referenced in a Constraint, is deemed to be 1891
constrained according to the Constraint specified at the next higher level which 1892
constraints that Member Selection. 1893

• If there is a conflict when resolving the keys in the Constraint at two levels, in 1894
terms of a lower-level constraint being less restrictive than a higher-level 1895
Constraint, then the offending keys specified at the lower level are not deemed 1896
part of the Constraint. 1897

 1898
Note that a Key in a Key Set can have wildcarded Components. For instance, the 1899
Constraint may simply constrain the Dimension FREQ to "A", and all keys where the 1900
FREQ="A" are therefore valid. 1901
 1902
The following logic explains how the inheritance mechanism works. Note that this is 1903
conceptual logic and actual systems may differ in the way this is implemented. 1904
 1905

1. Determine all possible keys that are valid at the higher level. 1906
2. These keys are deemed to be inherited by the lower-level constrained object, 1907

subject to the Constraints specified at the lower level. 1908
3. Determine all possible keys that are possible using the Constraints specified at 1909

the lower level. 1910
4. At the lower level inherit all keys that match with the higher-level Constraint. 1911
5. If there are keys in the lower-level Constraint that are not inherited then the key 1912

is invalid (i.e., it is less restrictive). 1913

9.3.4 Constraints Examples 1914

9.3.4.1 Data Constraint and Cascading 1915

The following scenario is used. 1916
 1917
A DSD contains the following Dimensions: 1918

• GEO – Geography 1919

• SEX – Sex 1920

• AGE – Age 1921

• CAS – Current Activity Status 1922
In the DSD, common code lists are used and the requirement is to restrict these at 1923
various levels to specify the actual code that are valid for the object to which the 1924
Constraint is attached. 1925

58

 1926
Figure 20: Example Scenario for Constraints 1927

Constraints are declared as follows: 1928

 1929
Figure 21: Example Constraints 1930

Notes: 1931
AGE is constrained for the DSD and is further restricted for the Dataflow 1932
CENSUS_CUBE1. 1933

• The same Constraint applies to both Provision Agreements. 1934

59

 1935
The cascade rules elaborated above result as follows: 1936
 1937
DSD 1938

• Constrained by eliminating code 001 from the code list for the AGE Dimension. 1939
 1940
Dataflow CENSUS_CUBE1 1941

• Constrained by restricting the code list for the AGE Dimension to codes 002 1942
and 003 (note that this is a more restrictive constraint than that declared for the 1943
DSD which specifies all codes except code 001). 1944

o Restricts the CAS codes to 003 and 004. 1945
 1946
Dataflow CENSUS_CUBE2 1947

• Restricts the code list for the CAS Dimension to codes TOT and NAP. 1948
o Inherits the AGE constraint applied at the level of the DSD. 1949

 1950
Provision Agreement CENSUS_CUBE1_IT 1951

• Restricts the codes for the GEO Dimension to IT and its children. 1952
o Inherits the constraints from Dataflow CENSUS_CUBE1 for the AGE 1953

and CAS Dimensions. 1954
 1955
Provision Agreement CENSUS_CUBE2_IT 1956

• Restricts the codes for the GEO Dimension to IT and its children. 1957
o Inherits the constraints from Dataflow CENSUS_CUBE2 for the CAS 1958

Dimension. 1959
o Inherits the AGE constraint applied at the level of the DSD. 1960

 1961
The Constraints are defined as follows: 1962
DSD Constraint 1963
<str:DataConstraint agencyID="SDMX" id="DATA_CONSTRAINT" version="1.0.0-1964
draft" type="Allowed"> 1965
 <com:Name xml:lang="en">SDMX 3.0 Data Constraint sample</com:Name> 1966
 <str:ConstraintAttachment> 1967
 <str:DataStructure> 1968
 <Ref agencyID="CENSUSHUB" id="CENSUS" version="1.0.0"/> 1969
 </str:DataStructure> 1970
 </str:ConstraintAttachment> 1971
 <str:CubeRegion include="true"> 1972
 <!-- the ability to exclude values is illustrated – i.e., all values 1973
valid except this one --> 1974
 <com:KeyValue id="AGE" include="false"> 1975
 <com:Value>001</com:Value> 1976
 </com:KeyValue> 1977
 </str:CubeRegion> 1978
</str:DataConstraint> 1979

 1980
Dataflow Constraints 1981
<str:DataConstraint agencyID="SDMX" id="DATA_CONSTRAINT_2" version="1.0.0-1982
draft" type="Allowed"> 1983
 <com:Name xml:lang="en">SDMX 3.0 Data Constraint sample</com:Name> 1984
 <str:ConstraintAttachment> 1985
 <str:Dataflow> 1986
 <Ref agencyID="CENSUSHUB" id="CENSUS_CUBE1" version="1.0.0"/> 1987
 </str:Dataflow> 1988
 </str:ConstraintAttachment> 1989
 <str:CubeRegion include="true"> 1990

60

 <com:KeyValue id="AGE" include="true"> 1991
 <com:Value>002</com:Value> 1992
 <com:Value>003</com:Value> 1993
 </com:KeyValue> 1994
 <com:KeyValue id="CAS"> 1995
 <com:Value>003</com:Value> 1996
 <com:Value>004</com:Value> 1997
 </com:KeyValue> 1998
 </str:CubeRegion> 1999
</str:DataConstraint> 2000
 2001
<str:DataConstraint agencyID="SDMX" id="DATA_CONSTRAINT_3" version="1.0.0-2002
draft" type="Allowed"> 2003
 <com:Name xml:lang="en">SDMX 3.0 Data Constraint sample</com:Name> 2004
 <str:ConstraintAttachment> 2005
 <str:Dataflow> 2006
 <Ref agencyID="CENSUSHUB" id="CENSUS_CUBE2" version="1.0.0"/> 2007
 </str:Dataflow> 2008
 </str:ConstraintAttachment> 2009
 <str:CubeRegion include="true"> 2010
 <com:KeyValue id="CAS" include="true"> 2011
 <com:Value>TOT</com:Value> 2012
 <com:Value>NAP</com:Value> 2013
 </com:KeyValue> 2014
 </str:CubeRegion> 2015
</str:DataConstraint> 2016

 2017
Provision Agreement Constraint 2018
<str:DataConstraint agencyID="SDMX" id="DATA_CONSTRAINT_4" version="1.0.0-2019
draft" type="Allowed"> 2020
 <com:Name xml:lang="en">SDMX 3.0 Data Constraint sample</com:Name> 2021
 <str:ConstraintAttachment> 2022
 <str:ProvisionAgreement> 2023
 <Ref agencyID="CENSUSHUB" id="CENSUS_CUBE1_IT" version="1.0.0"/> 2024
 </str:ProvisionAgreement> 2025
 <str:ProvisionAgreement> 2026
 <Ref agencyID="CENSUSHUB" id="CENSUS_CUBE2_IT" version="1.0.0"/> 2027
 </str:ProvisionAgreement> 2028
 </str:ConstraintAttachment> 2029
 <str:CubeRegion include="true"> 2030
 <com:KeyValue id="GEO" include="true"> 2031
 <com:Value cascadeValues="true">IT</com:Value> 2032
 </com:KeyValue> 2033
 </str:CubeRegion> 2034
</str:DataConstraint 2035

 2036

9.3.4.2 Combination of Constraints 2037

The possible combination of constraining terms are explained in this section, following 2038
a few examples. 2039
 2040
Let’s assume a DSD with the following Components: 2041

Dimension FREQ

Dimension JD_TYPE

Dimension JD_CATEGORY

Dimension VIS_CTY

TimeDimension TIME_PERIOD

Attribute OBS_STATUS

61

Attribute UNIT

Attribute COMMENT

MetadataAttribute CONTACT

Measure MULTISELECT

Measure CHOICE

 2042
On the above, let’s assume the following use cases with their constraining 2043
requirements: 2044

 Use Case 1: A Constraint on allowed values for some Dimensions 2045

R1: Allow monthly and quarterly data 2046

R2: Allow Mexico for vis-à-vis country 2047

 2048
This is expressed with the following CubeRegion: 2049

FREQ M, Q

VIS_CTY MX

 Use Case 2: A Constraint on allowed combinations for some 2050
Dimensions 2051

R1: Allow monthly data for Germany 2052

R2: Allow quarterly data for Mexico 2053

 2054
This is expressed with the following DataKeySet: 2055

Key1 FREQ M

VIS_CTY DE

Key2 FREQ Q

VIS_CTY MX

 Use Case 3: A Constraint on allowed values for some Dimensions 2056
combined with allowed values for some Attributes 2057

R1: Allow monthly and quarterly data 2058

R2: Allow Mexico for vis-à-vis country 2059

R3: Allow present for status 2060

 2061
This may be expressed with the following CubeRegion: 2062

FREQ M, Q

VIS_CTY MX

OBS_STATUS A

 Use Case 4: A Constraint on allowed combinations for some 2063
Dimensions combined with specific Attribute values 2064

R1: Allow monthly data, for Germany, with unit euro 2065

R2: Allow quarterly data, for Mexico, with unit usd 2066

 2067
This is may be expressed with the following DataKeySet: 2068

Key1 FREQ M

62

VIS_CTY DE

UNIT EUR

Key2 FREQ Q

VIS_CTY MX

UNIT USD

 Use Case 5: A Constraint on allowed values for some Dimensions 2069
together with some combination of Dimension values 2070

R1: For annually and quarterly data, for Mexico and Germany, only A status is 2071

allowed 2072
R2: For monthly data, for Mexico and Germany, only F status is allowed 2073

 2074
Considering the above examples, the following CubeRegions would be created: 2075

CubeRegion1 FREQ Q, A

VIS_CTY MX, DE

OBS_STATUS A

CubeRegion2 FREQ M

VIS_CTY MX, DE

OBS_STATUS F

 2076
The problem with this approach is that according to the business rule for 2077
Constraints, only one should be specified per Component. Thus, if a software 2078

would perform some conflict resolution would end up with empty sets for FREQ and 2079

OBS_STATUS (as they do not share any values). 2080

 2081

Nevertheless, there is a much easier approach to that; this is the cascading 2082
mechanism of Constraints (as shown in 9.3.4.1). Hence, these rules would be 2083

expressed into two levels of Constraints, e.g., DSD and Dataflows: 2084

 2085
DSD CubeRegion: 2086

FREQ M, Q, A

VIS_CTY MX, DE

OBS_STATUS A, F

 2087
Dataflow1 CubeRegion: 2088

FREQ Q, A

VIS_CTY MX, DE

OBS_STATUS F

 2089
Dataflow2 CubeRegion: 2090

FREQ M

VIS_CTY MX, DE

OBS_STATUS A

 Use case 6: A Constraint on allowed values for some Dimensions 2091
combined with allowed values for Measures 2092

R1: Allow monthly data, for Germany, with unit euro, and measure choice is 'A' 2093

63

R2: Allow quarterly data, for Mexico, with unit usd, and measure choice is 'B' 2094

 2095
This is may be expressed with the following DataKeySet: 2096

Key1 FREQ M

VIS_CTY DE

UNIT EUR

CHOICE A

Key2 FREQ Q

VIS_CTY MX

UNIT USD

CHOICE B

 2097

 Use Case 7: A Constraint with wildcards for Codes and removePrefix 2098
property 2099

For this example, we assume that the VIS_CTY representation has been prefixed with 2100

prefix ‘AREA_’. In this Constraint, we need to remove the prefix. 2101

R1: Allow monthly and quarterly data 2102

R2: Allow vis-à-vis countries that start with M 2103

R3: Remove the prefix ‘AREA_’ 2104

 2105
This may be expressed with the following CubeRegion: 2106

FREQ M, Q

VIS_CTY (removePrefix=’AREA_’) M%

 2107

 Use Case 8: A Constraint with multilingual support on Attributes 2108

R1: Allow monthly and quarterly data 2109

R2: Allow Mexico for vis-à-vis country 2110

R3: Allow a comment, in English, which includes the term adjusted for status 2111

 2112
This may be expressed with the following CubeRegion: 2113

FREQ M, Q

VIS_CTY MX

COMMENT (lang=’en’) %adjusted%

 2114

 Use Case 9: A Constraint on allowed values for Dimensions combined 2115
with allowed values for Metadata Attributes 2116

R1: Allow monthly and quarterly data 2117

R2: Allow Mexico for vis-à-vis country 2118

R3: Allow John Doe for contact 2119

 2120
This may be expressed with the following CubeRegion: 2121

FREQ M, Q

VIS_CTY MX

64

CONTACT John Doe

 2122

9.3.4.3 Other constraining terms 2123

Beyond the cube regions and keysets, there are two more constraining terms, the 2124
ReleaseCalendar and the ReferencePeriod. The latter only applies to Data 2125

Constraints (and hence datasets), while the former applies both to Data and Metadata 2126
Constraints. 2127
The ReferencePeriod is specifically used for the TimeDimension and is oriented 2128

for time-series datasets. Nevertheless, a Dimension with a Time Representation 2129

can also be constrained within a Cube or MetadataTarget Region. 2130
The ReleaseCalendar is the only term that does not apply on Components; it 2131

specifies the schedule of publication or reporting of the dataset or metadataset. 2132
 2133
For example, the Release Calendar for Provider BIS, is specified in the three following 2134
terms: 2135

- Periodicity: how often data should be reported, e.g., monthly 2136
- Offset: the number of days between the 1st of January and the first release of 2137

data, e.g., 10 days 2138
- Tolerance: the maximum allowed of days that data may be considered, without 2139

being considered as late, e.g., 5 days 2140
 2141
With the above terms, BIS would need to report data between the 10th and 15th of every 2142
month. 2143

65

10 Transforming between versions of SDMX 2144

10.1 Scope 2145

The scope of this section is to define both best practices and mandatory behaviour for 2146
specific aspects of transformation between different versions of SDMX. 2147

10.2 Compatibility and new DSD features 2148

The following table provides an overview of the backwards compatibility between 2149
SDMX 3.0 and 2.1. 2150
 2151

SDMX 3.0 feature SDMX 2.1 compatibility Comments

Multiple Measures Create a Measure Dimension
Or
Model Measures as Attributes

For a Measure
Dimensions, all Concepts
must reside in the same
Concept Scheme

Arrays for values Cannot be supported Arrays are always
reported in a verbose
format, even if one value
is reported

Measure
Relationship

Can be ignored, as it does not
affect dataset format

Metadata Attributes Can be created as Data
Attributes

Not for extended facets

Multilingual
Components

Cannot be supported

No Measure Can only be emulated by
ignoring the Primary Measure
value

Use extended
Codelist

A new Codelist with all Codes
must be created

Sentinel values Cannot be supported in the
DSD

Rules may be supported
outside the DSD, in
bilateral agreements

 2152
The following table illustrates forward compatibility issues from SDMX 2.1 to 3.0. 2153
 2154

SDMX 2.1 feature SDMX 3.0 compatibility Comments

Measure
Dimension

Create a Dimension with role
‘MEASURE’
Or
Create multiple Measures from the
Measure Dimension Concept Scheme

If the dataset has
to resemble that of
SDMX 2.1
Structure Specific,
then the first option
must be used

Primary Measure Create one Measure with role
‘PRIMARY’; use id=”OBS_VALUE”

 2155

66

11 Validation and Transformation Language (VTL) 2156

11.1 Introduction 2157

The Validation and Transformation Language (VTL) supports the definition of 2158
Transformations, which are algorithms to calculate new data starting from already 2159
existing ones7. The purpose of the VTL in the SDMX context is to enable the: 2160
 2161

• definition of validation and transformation algorithms, in order to specify how to 2162
calculate new data from existing ones; 2163

• exchange of the definition of VTL algorithms, also together the definition of the 2164
data structures of the involved data (for example, exchange the data structures 2165
of a reporting framework together with the validation rules to be applied, 2166
exchange the input and output data structures of a calculation task together 2167
with the VTL Transformations describing the calculation algorithms); 2168

• compilation and execution of VTL algorithms, either interpreting the VTL 2169
Transformations or translating them in whatever other computer language is 2170
deemed as appropriate. 2171

 2172
It is important to note that the VTL has its own information model (IM), derived from 2173
the Generic Statistical Information Model (GSIM) and described in the VTL User Guide. 2174
The VTL IM is designed to be compatible with more standards, like SDMX, DDI (Data 2175
Documentation Initiative) and GSIM, and includes the model artefacts that can be 2176
manipulated (inputs and/or outputs of Transformations, e.g. "Data Set", "Data 2177
Structure") and the model artefacts that allow the definition of the transformation 2178
algorithms (e.g. "Transformation", "Transformation Scheme"). 2179
 2180
The VTL language can be applied to SDMX artefacts by mapping the SDMX IM model 2181
artefacts to the model artefacts that VTL can manipulate8. Thus, the SDMX artefacts 2182
can be used in VTL as inputs and/or outputs of Transformations. It is important to be 2183
aware that the artefacts do not always have the same names in the SDMX and VTL 2184
IMs, nor do they always have the same meaning. The more evident example is given 2185
by the SDMX Dataset and the VTL "Data Set", which do not correspond one another: 2186

as a matter of fact, the VTL "Data Set" maps to the SDMX "Dataflow", while the 2187

SDMX "Dataset" has no explicit mapping to VTL (such an abstraction is not needed 2188

in the definition of VTL Transformations). A SDMX "Dataset", however, is an instance 2189

of a SDMX "Dataflow" and can be the artefact on which the VTL transformations are 2190

executed (i.e., the Transformations are defined on Dataflows and are applied to 2191

Dataflow instances that can be Datasets). 2192

 2193
The VTL programs (Transformation Schemes) are represented in SDMX through the 2194
TransformationScheme maintainable class which is composed of 2195

Transformation (nameable artefact). Each Transformation assigns the 2196

outcome of the evaluation of a VTL expression to a result. 2197
 2198

7 The Validation and Transformation Language is a standard language designed and
published under the SDMX initiative. VTL is described in the VTL User and Reference
Guides available on the SDMX website https://sdmx.org.
8 In this chapter, in order to distinguish VTL and SDMX model artefacts, the VTL ones
are written in the Arial font while the SDMX ones in Courier New

https://sdmx.org/

67

This section does not explain the VTL language or any of the content published in the 2199
VTL guides. Rather, this is a description of how the VTL can be used in the SDMX 2200
context and applied to SDMX artefacts. 2201

11.2 References to SDMX artefacts from VTL statements 2202

11.2.1 Introduction 2203

The VTL can manipulate SDMX artefacts (or objects) by referencing them through pre-2204
defined conventional names (aliases). 2205
 2206
The alias of an SDMX artefact can be its URN (Universal Resource Name), an 2207
abbreviation of its URN or another user-defined name. 2208
 2209
In any case, the aliases used in the VTL Transformations have to be mapped to the 2210
SDMX artefacts through the VtlMappingScheme and VtlMapping classes (see the 2211

section of the SDMX IM relevant to the VTL). A VtlMapping allows specifying the 2212

aliases to be used in the VTL Transformations, Rulesets9 or User Defined Operators10 2213
to reference SDMX artefacts. A VtlMappingScheme is a container for zero or more 2214

VtlMapping. 2215

 2216
The correspondence between an alias and a SDMX artefact must be one-to-one, 2217
meaning that a generic alias identifies one and just one SDMX artefact while a SDMX 2218
artefact is identified by one and just one alias. In other words, within a 2219
VtlMappingScheme an artefact can have just one alias and different artefacts cannot 2220

have the same alias. 2221
 2222
The references through the URN and the abbreviated URN are described in the 2223
following paragraphs. 2224

11.2.2 References through the URN 2225

This approach has the advantage that in the VTL code the URN of the referenced 2226
artefacts is directly intelligible by a human reader but has the drawback that the 2227
references are verbose. 2228
 2229
The SDMX URN11 is the concatenation of the following parts, separated by special 2230
symbols like dot, equal, asterisk, comma, and parenthesis: 2231

• SDMXprefix 2232

• SDMX-IM-package-name 2233

• class-name 2234

• agency-id 2235

9 See also the section "VTL-DL Rulesets" in the VTL Reference Manual.
10 The VTLMappings are used also for User Defined Operators (UDO). Although

UDOs are envisaged to be defined on generic operands, so that the specific artefacts
to be manipulated are passed as parameters at their invocation, it is also possible that
an UDO invokes directly some specific SDMX artefacts. These SDMX artefacts have
to be mapped to the corresponding aliases used in the definition of the UDO through
the VtlMappingScheme and VtlMapping classes as well.
11 For a complete description of the structure of the URN see the SDMX 2.1 Standards
- Section 5 - Registry Specifications, paragraph 6.2.2 ("Universal Resource Name
(URN)").

68

• maintainedobject-id 2236
• maintainedobject-version 2237

• container-object-id 12 2238
• object-id 2239

The generic structure of the URN is the following: 2240
 2241
SDMXprefix.SDMX-IM-package-name.class-name=agency-id:maintainedobject-id 2242
(maintainedobject-version).*container-object-id.object-id 2243
 2244
The SDMXprefix is "urn:sdmx:org", always the same for all SDMX artefacts. 2245
 2246
The SDMX-IM-package-name is the concatenation of the string "sdmx.infomodel." with 2247
the package-name, which the artefact belongs to. For example, for referencing a 2248
Dataflow the SDMX-IM-package-name is "sdmx.infomodel.datastructure", because the 2249

class Dataflow belongs to the package "datastructure". 2250

 2251
The class-name is the name of the SDMX object class, which the SDMX object belongs 2252
to (e.g., for referencing a Dataflow the class-name is "Dataflow"). The VTL can 2253

reference SDMX artefacts that belong to the classes Dataflow, Dimension, 2254

TimeDimension, Measure, DataAttribute, Concept, Codelist. 2255

 2256
The agency-id is the acronym of the agency that owns the definition of the artefact, for 2257
example for the Eurostat artefacts the agency-id is "ESTAT"). The agency-id can be 2258
composite (for example AgencyA.Dept1.Unit2). 2259
 2260
The maintainedobject-id is the name of the maintained object which the artefact 2261
belongs to, and in case the artefact itself is maintainable13, coincides with the name of 2262
the artefact. Therefore the maintainedobject-id depends on the class of the artefact: 2263
 2264

• if the artefact is a Dataflow, which is a maintainable class, the 2265

maintainedobject-id is the Dataflow name (dataflow-id); 2266

• if the artefact is a Dimension, Measure, TimeDimension or 2267

DataAttribute, which are not maintainable and belong to the 2268

DataStructure maintainable class, the maintainedobject-id is the name of 2269

the DataStructure (dataStructure-id) which the artefact belongs to; 2270

• if the artefact is a Concept, which is not maintainable and belongs to the 2271

ConceptScheme maintainable class, the maintainedobject-id is the name 2272

of the ConceptScheme (conceptScheme-id) which the artefact belongs to; 2273

• if the artefact is a Codelist, which is a maintainable class, the 2274

maintainedobject-id is the Codelist name (codelist-id). 2275

 2276
The maintainedobject-version is the version of the maintained object which the 2277
artefact belongs to (for example, possible versions are 1.0.0, 2.1.0, 3.1.2). 2278
 2279
The container-object-id does not apply to the classes that can be referenced in VTL 2280
Transformations, therefore is not present in their URN 2281
 2282

12 The container-object-id can repeat and may not be present.
13 i.e., the artefact belongs to a maintainable class

69

The object-id is the name of the non-maintainable artefact (when the artefact is 2283
maintainable its name is already specified as the maintainedobject-id, see above), in 2284
particular it has to be specified: 2285
 2286

• if the artefact is a Dimension, TimeDimension, Measure or 2287

DataAttribute (the object-id is the name of one of the artefacts above, 2288

which are data structure components) 2289

• if the artefact is a Concept (the object-id is the name of the Concept) 2290

 2291
For example, by using the URN, the VTL Transformation that sums two SDMX 2292
Dataflows DF1 and DF2 and assigns the result to a third persistent Dataflow DFR, 2293

assuming that DF1, DF2 and DFR are the maintainedobject-id of the three 2294
Dataflows, that their version is 1.0.0 and their Agency is AG, would be written as14: 2295

 2296
'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' <- 2297
'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' + 2298
'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)' 2299

11.2.3 Abbreviation of the URN 2300

The complete formulation of the URN described above is exhaustive but verbose, even 2301
for very simple statements. In order to reduce the verbosity through a simplified 2302
identifier and make the work of transformation definers easier, proper abbreviations of 2303
the URN are possible. Using this approach, the referenced artefacts remain intelligible 2304
in the VTL code by a human reader. 2305
 2306
The URN can be abbreviated by omitting the parts that are not essential for the 2307
identification of the artefact or that can be deduced from other available information, 2308
including the context in which the invocation is made. The possible abbreviations are 2309
described below. 2310
 2311

• The SDMXprefix can be omitted for all the SDMX objects, because it is a 2312

prefixed string (urn:sdmx:org), always the same for SDMX objects. 2313

• The SDMX-IM-package-name can be omitted as well because it can be deduced 2314
from the class-name that follows it (the table of the SDMX-IM packages and 2315
classes that allows this deduction is in the SDMX 2.1 Standards - Section 5 - 2316
Registry Specifications, paragraph 6.2.3). In particular, considering the object 2317
classes of the artefacts that VTL can reference, the package is: 2318

o "datastructure" for the classes Dataflow, Dimension, 2319

TimeDimension, Measure, DataAttribute, 2320

o "conceptscheme" for the class Concept, 2321

o "codelist" for the class Codelist. 2322

• The class-name can be omitted as it can be deduced from the VTL invocation. 2323
In particular, starting from the VTL class of the invoked artefact (e.g. dataset, 2324
component, identifier, measure, attribute, variable, valuedomain), which is 2325
known given the syntax of the invoking VTL operator15, the SDMX class can be 2326

14 Since these references to SDMX objects include non-permitted characters as per
the VTL ID notation, they need to be included between single quotes, according to the
VTL rules for irregular names.
15 For the syntax of the VTL operators see the VTL Reference Manual

70

deduced from the mapping rules between VTL and SDMX (see the section 2327
"Mapping between VTL and SDMX" hereinafter)16. 2328

• If the agency-id is not specified, it is assumed by default equal to the agency-2329
id of the TransformationScheme, UserDefinedOperatorScheme or 2330

RulesetScheme from which the artefact is invoked. For example, the agency-2331

id can be omitted if it is the same as the invoking TransformationScheme 2332

and cannot be omitted if the artefact comes from another agency17. Take also 2333
into account that, according to the VTL consistency rules, the agency of the 2334
result of a Transformation must be the same as its 2335

TransformationScheme, therefore the agency-id can be omitted for all the 2336

results (left part of Transformation statements). 2337

• As for the maintainedobject-id, this is essential in some cases while in other 2338
cases it can be omitted: 2339

o if the referenced artefact is a Dataflow, which is a maintainable class, 2340

the maintainedobject-id is the dataflow-id and obviously cannot be 2341
omitted; 2342

o if the referenced artefact is a Dimension, TimeDimension, Measure, 2343

DataAttribute, which are not maintainable and belong to the 2344

DataStructure maintainable class, the maintainedobject-id is the 2345

dataStructure-id and can be omitted, given that these components are 2346
always invoked within the invocation of a Dataflow, whose 2347

dataStructure-id can be deduced from the SDMX structural definitions; 2348
o if the referenced artefact is a Concept, which is not maintainable and 2349

belong to the ConceptScheme maintainable class, the maintained 2350

object is the conceptScheme-id and cannot be omitted; 2351

o if the referenced artefact is a Codelist, which is a maintainable 2352

class, the maintainedobject-id is the codelist-id and obviously 2353

cannot be omitted. 2354

• When the maintainedobject-id is omitted, the maintainedobject-version is 2355
omitted too. When the maintainedobject-id is not omitted and the 2356
maintainedobject-version is omitted, the version 1.0.0 is assumed by default. 2357

• As said, the container-object-id does not apply to the classes that can be 2358
referenced in VTL Transformations, therefore is not present in their URN 2359

• The object-id does not exist for the artefacts belonging to the Dataflow, 2360

and Codelist classes, while it exists and cannot be omitted for the 2361

artefacts belonging to the classes Dimension, TimeDimension, 2362

Measure, DataAttribute and Concept, as for them the object-id is 2363

the main identifier of the artefact 2364

16 In case the invoked artefact is a VTL component, which can be invoked only within
the invocation of a VTL data set (SDMX Dataflow), the specific SDMX class-name

(e.g. Dimension, TimeDimension, Measure or DataAttribute) can be deduced

from the data structure of the SDMX Dataflow, which the component belongs to.
17 If the Agency is composite (for example AgencyA.Dept1.Unit2), the agency is
considered different even if only part of the composite name is different (for example
AgencyA.Dept1.Unit3 is a different Agency than the previous one). Moreover the
agency-id cannot be omitted in part (i.e., if a TransformationScheme owned by

AgencyA.Dept1.Unit2 references an artefact coming from AgencyA.Dept1.Unit3, the
specification of the agency-id becomes mandatory and must be complete, without
omitting the possibly equal parts like AgencyA.Dept1)

71

The simplified object identifier is obtained by omitting all the first part of the URN, 2365
including the special characters, till the first part not omitted. 2366
 2367
For example, the full formulation that uses the complete URN shown at the end of the 2368
previous paragraph: 2369
 2370
'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DFR(1.0.0)' := 2371
'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF1(1.0.0)' + 2372
'urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=AG:DF2(1.0.0)' 2373
 2374
by omitting all the non-essential parts would become simply: 2375
 2376

DFR := DF1 + DF2 2377
 2378
The references to the Codelists can be simplified similarly. For example, given the 2379

non-abbreviated reference to the Codelist AG:CL_FREQ(1.0.0), which is18: 2380

 2381
'urn:sdmx:org.sdmx.infomodel.codelist.Codelist=AG:CL_FREQ(1.0.0)' 2382
 2383
if the Codelist is referenced from a RulesetScheme belonging to the agency AG, 2384

omitting all the optional parts, the abbreviated reference would become simply19: 2385
 2386

CL_FREQ 2387
 2388
As for the references to the components, it can be enough to specify the component-2389
Id, given that the dataStructure-Id can be omitted. An example of non-abbreviated 2390
reference, if the data structure is DST1 and the component is SECTOR, is the 2391
following: 2392
 2393

'urn:sdmx:org.sdmx.infomodel.datastructure.DataStructure=AG:DST1(1.0).SEC2394
TOR' 2395
 2396
The corresponding fully abbreviated reference, if made from a 2397
TransformationScheme belonging to AG, would become simply: 2398

 2399
SECTOR 2400

 2401
For example, the Transformation for renaming the component SECTOR of the 2402
Dataflow DF1 into SEC can be written as20: 2403

 2404
'DFR(1.0.0)' := 'DF1(1.0.0)' [rename SECTOR to SEC] 2405

 2406
In the references to the Concepts, which can exist for example in the definition of the 2407
VTL Rulesets, at least the conceptScheme-id and the concept-id must be 2408

specified. 2409
 2410

18 Single quotes are needed because this reference is not a VTL regular name.
19 Single quotes are not needed in this case because CL_FREQ is a VTL regular
name.
20 The result DFR(1.0.0) is be equal to DF1(1.0.0) save that the component SECTOR
is called SEC

72

An example of non-abbreviated reference, if the conceptScheme-id is CS1 and the 2411
concept-id is SECTOR, is the following: 2412

 2413
'urn:sdmx:org.sdmx.infomodel.conceptscheme.Concept=AG:CS1(1.0.0).SECTOR' 2414
 2415
The corresponding fully abbreviated reference, if made from a RulesetScheme 2416

belonging to AG, would become simply: 2417
 2418

CS1(1.0.0).SECTOR 2419
 2420
The Codes and in general all the Values can be written without any other specification, 2421
for example, the transformation to check if the values of the measures of the 2422
Dataflow DF1 are between 0 and 25000 can be written like follows: 2423

 2424
'DFR(1.0.0)' := between ('DF1(1.0.0)', 0, 25000) 2425

 2426
The artefact (Component, Concept, Codelist …) which the Values are referred to 2427

can be deduced from the context in which the reference is made, taking also into 2428
account the VTL syntax. In the Transformation above, for example, the values 0 and 2429
2500 are compared to the values of the measures of DF1(1.0.0). 2430

11.2.4 User-defined alias 2431

The third possibility for referencing SDMX artefacts from VTL statements is to use 2432
user-defined aliases not related to the SDMX URN of the artefact. 2433
 2434
This approach gives preference to the use of symbolic names for the SDMX artefacts. 2435
As a consequence, in the VTL code the referenced artefacts may become not directly 2436
intelligible by a human reader. In any case, the VTL aliases are associated to the 2437
SDMX URN through the VtlMappingScheme and VtlMapping classes. These 2438

classes provide for structured references to SDMX artefacts whatever kind of reference 2439
is used in VTL statements (URN, abbreviated URN or user-defined aliases). 2440

11.2.5 References to SDMX artefacts from VTL Rulesets 2441

The VTL Rulesets allow defining sets of reusable Rules that can be applied by some 2442
VTL operators, like the ones for validation and hierarchical roll-up. A "Rule" consists in 2443
a relationship between Values belonging to some Value Domains or taken by some 2444
Variables, for example: (i) when the Country is USA then the Currency is USD; (ii) the 2445
Benelux is composed by Belgium, Luxembourg, Netherlands. 2446
 2447
The VTL Rulesets have a signature, in which the Value Domains or the Variables on 2448
which the Ruleset is defined are declared, and a body, which contains the Rules. 2449
 2450
In the signature, given the mapping between VTL and SDMX better described in the 2451
following paragraphs, a reference to a VTL Value Domain becomes a reference to a 2452
SDMX Codelist, while a reference to a VTL Represented Variable becomes a 2453

reference to a SDMX Concept, assuming for it a definite representation21. 2454

 2455

21 Rulesets of this kind cannot be reused when the referenced Concept has a different
representation.

73

In general, for referencing SDMX Codelists and Concepts, the conventions 2456

described in the previous paragraphs apply. In the Ruleset syntax, the elements that 2457
reference SDMX artefacts are called "valueDomain" and "variable" for the Datapoint 2458
Rulesets and "ruleValueDomain", "ruleVariable", "condValueDomain" "condVariable" 2459
for the Hierarchical Rulesets). The syntax of the Ruleset signature allows also to define 2460
aliases of the elements above, these aliases are valid only within the specific Ruleset 2461
definition statement and cannot be mapped to SDMX.22 2462
 2463
In the body of the Rulesets, the Codes and in general all the Values can be written 2464
without any other specification, because the artefact, which the Values are referred 2465
(Codelist, Concept) to can be deduced from the Ruleset signature. 2466

11.3 Mapping between SDMX and VTL artefacts 2467

11.3.1 When the mapping occurs 2468

The mapping methods between the VTL and SDMX object classes allow transforming 2469
a SDMX definition in a VTL one and vice-versa for the artefacts to be manipulated. 2470
It should be remembered that VTL programs (i.e. Transformation Schemes) are 2471
represented in SDMX through the TransformationScheme maintainable class 2472

which is composed of Transformations (nameable artefacts). Each 2473

Transformation assigns the outcome of the evaluation of a VTL expression to a 2474

result: the input operands of the expression and the result can be SDMX artefacts. 2475
Every time a SDMX object is referenced in a VTL Transformation as an input operand, 2476
there is the need to generate a VTL definition of the object, so that the VTL operations 2477
can take place. This can be made starting from the SDMX definition and applying a 2478
SDMX-VTL mapping method in the direction from SDMX to VTL. The possible mapping 2479
methods from SDMX to VTL are described in the following paragraphs and are 2480
conceived to allow the automatic deduction of the VTL definition of the object from the 2481
knowledge of the SDMX definition. 2482
In the opposite direction, every time an object calculated by means of VTL must be 2483
treated as a SDMX object (for example for exchanging it through SDMX), there is the 2484
need of a SDMX definition of the object, so that the SDMX operations can take place. 2485
The SDMX definition is needed for the VTL objects for which a SDMX use is 2486
envisaged23. 2487
 2488
The mapping methods from VTL to SDMX are described in the following paragraphs 2489
as well, however they do not allow the complete SDMX definition to be automatically 2490
deduced from the VTL definition, more than all because the former typically contains 2491
additional information in respect to the latter. For example, the definition of a SDMX 2492
DSD includes also some mandatory information not available in VTL (like the concept 2493
scheme to which the SDMX components refer, the assignmentStatus and 2494
attributeRelationship for the DataAttributes and so on). Therefore the mapping 2495
methods from VTL to SDMX provide only a general guidance for generating SDMX 2496
definitions properly starting from the information available in VTL, independently of how 2497
the SDMX definition it is actually generated (manually, automatically or part and part). 2498

22 See also the section "VTL-DL Rulesets" in the VTL Reference Manual.
23 If a calculated artefact is persistent, it needs a persistent definition, i.e. a SDMX
definition in a SDMX environment. In addition, possible calculated artefact that are not
persistent may require a SDMX definition, for example when the result of a non-
persistent calculation is disseminated through SDMX tools (like an inquiry tool).

74

11.3.2 General mapping of VTL and SDMX data structures 2499

This section makes reference to the VTL "Model for data and their structure"24 and the 2500
correspondent SDMX "Data Structure Definition"25. 2501
The main type of artefact that the VTL can manipulate is the VTL Data Set, which in 2502
general is mapped to the SDMX Dataflow. This means that a VTL Transformation, 2503

in the SDMX context, expresses the algorithm for calculating a derived Dataflow 2504

starting from some already existing Dataflows (either collected or derived).26 2505

While the VTL Transformations are defined in term of Dataflow definitions, they are 2506

assumed to be executed on instances of such Dataflows, provided at runtime to the 2507

VTL engine (the mechanism for identifying the instances to be processed are not part 2508
of the VTL specifications and depend on the implementation of the VTL-based 2509
systems). As already said, the SDMX Datasets are instances of SDMX Dataflows, 2510

therefore a VTL Transformation defined on some SDMX Dataflows can be applied 2511

on some corresponding SDMX Datasets. 2512

 2513
A VTL Data Set is structured by one and just one Data Structure and a VTL Data 2514
Structure can structure any number of Data Sets. Correspondingly, in the SDMX 2515
context a SDMX Dataflow is structured by one and just one 2516

DataStructureDefinition and one DataStructureDefinition can structure 2517

any number of Dataflows. 2518

 2519
A VTL Data Set has a Data Structure made of Components, which in turn can be 2520
Identifiers, Measures and Attributes. Similarly, a SDMX DataflowDefinition has 2521

a DataStructureDefinition made of components that can be 2522

DimensionComponents, Measure and DataAttributes. In turn, a SDMX 2523

DimensionComponent can be a Dimension or a TimeDimension. 2524

Correspondingly, in the SDMX implementation of the VTL, the VTL Identifiers can be 2525
(optionally) distinguished in similar sub-classes (Simple Identifier, Time Identifier) even 2526
if such a distinction is not evidenced in the VTL IM. 2527
 2528
The possible mapping options are described in more detail in the following sections. 2529

11.3.3 Mapping from SDMX to VTL data structures 2530

11.3.3.1 Basic Mapping 2531

The main mapping method from SDMX to VTL is called Basic mapping. This is 2532
considered as the default mapping method and is applied unless a different method is 2533
specified through the VtlMappingScheme and VtlDataflowMapping classes. 2534

When transforming from SDMX to VTL, this method consists in leaving the 2535
components unchanged and maintaining their names and roles, according to the 2536
following table: 2537

SDMX VTL
Dimension (Simple) Identifier

TimeDimension (Time) Identifier

24 See the VTL 2.0 User Manual
25 See the SDMX Standards Section 2 – Information Model
26 Besides the mapping between one SDMX Dataflow and one VTL Data Set, it is

also possible to map distinct parts of a SDMX Dataflow to different VTL Data Set, as

explained in a following paragraph.

75

Measure Measure
DataAttribute Attribute

 2538
The SDMX DataAttributes, in VTL they are all considered "at data point / 2539

observation level" (i.e. dependent on all the VTL Identifiers), because VTL does not 2540
have the SDMX AttributeRelationships, which defines the construct to which 2541

the DataAttribute is related (e.g. observation, dimension or set or group of 2542

dimensions, whole data set). 2543
 2544
With the Basic mapping, one SDMX observation27 generates one VTL data point. 2545

11.3.3.2 Pivot Mapping 2546

An alternative mapping method from SDMX to VTL is the Pivot mapping, which makes 2547
sense and is different from the Basic method only for the SDMX data structures that 2548
contain a Dimension that plays the role of measure dimension (like in SDMX 2.1) 2549

and just one Measure. Through this method, these structures can be mapped to multi-2550

measure VTL data structures. 2551
 2552
In SDMX 2.1 the MeasureDimension was a subclass of DimensionComponent like 2553

Dimension and TimeDimension. In the current SDMX version, this subclass does 2554

not exist anymore, however a Dimension can have the role of measure dimension 2555

(i.e. a Dimension that contributes to the identification of the measures). In SDMX 2.1 2556

a DataStructure could have zero or one MeasureDimensions, in the current 2557

version of the standard, from zero to many Dimension may have the role of measure 2558

dimension. Hereinafter a Dimension that plays the role of measure dimension is 2559

referenced for simplicity as “MeasureDimension“, i.e. maintaining the capital letters 2560

and the courier font even if the MeasureDimension is not anymore a class in the 2561

SDMX Information Model of the current SDMX version. For the sake of simplicity, the 2562
description below considers just one Dimension having the role of 2563

MeasureDimension (i.e., the more simple and common case). Nevertheless, it 2564

maintains its validity also if in the DataStructure there are more dimension with the 2565

role of MeasureDimensions: in this case what is said about the 2566

MeasureDimension must be applied to the combination of all the 2567

MeasureDimensions considered as a joint variable28. 2568

 2569
Among other things, the Pivot method provides also backward compatibility with the 2570
SDMX 2.1 data structures that contained a MeasureDimension. 2571

 2572
If applied to SDMX structures that do not contain any MeasureDimension, this 2573

method behaves like the Basic mapping (see the previous paragraph). 2574
 2575
The SDMX structures that contain a MeasureDimension are mapped as described 2576

below (this mapping is equivalent to a pivoting operation): 2577

27 Here an SDMX observation is meant to correspond to one combination of values of
the DimensionComponents.
28 E.g., if in the data structure there exist 3 Dimensions C,D,E having the role of

MeasureDimension, they should be considered as a joint MeasureDimension Z=(C,D,E);

therefore when the description says “each possible value Cj of the MeasureDimension …” it means

“each possible combination of values (Cj, Dk, Ew) of the joint MeasureDimension Z=(C,D,E)”.

76

 2578

• A SDMX simple dimension becomes a VTL (simple) identifier and a SDMX 2579
TimeDimension becomes a VTL (time) identifier; 2580

• Each possible Code Cj of the SDMX MeasureDimension is mapped to a VTL 2581

Measure, having the same name as the SDMX Code (i.e. Cj); the VTL Measure 2582

Cj is a new VTL component even if the SDMX data structure has not such a 2583
Component; 2584

• The SDMX MeasureDimension is not mapped to VTL (it disappears in the 2585

VTL Data Structure); 2586

• The SDMX Measure is not mapped to VTL as well (it disappears in the VTL 2587

Data Structure); 2588

• An SDMX DataAttribute is mapped in different ways according to its 2589

AttributeRelationship: 2590

o If, according to the SDMX AttributeRelationship, the values of 2591

the DataAttribute do not depend on the values of the 2592

MeasureDimension, the SDMX DataAttribute becomes a VTL 2593

Attribute having the same name. This happens if the 2594
AttributeRelationship is not specified (i.e. the DataAttribute 2595

does not depend on any DimensionComponent and therefore is at 2596

data set level), or if it refers to a set (or a group) of dimensions which 2597
does not include the MeasureDimension; 2598

o Otherwise, if, according to the SDMX AttributeRelationship, the 2599

values of the DataAttribute depend on the MeasureDimension, 2600

the SDMX DataAttribute is mapped to one VTL Attribute for each 2601

possible Code of the SDMX MeasureDimension. By default, the 2602

names of the VTL Attributes are obtained by concatenating the name of 2603
the SDMX DataAttribute and the names of the correspondent Code 2604

of the MeasureDimension separated by underscore. For example, if 2605

the SDMX DataAttribute is named DA and the possible Codes of 2606

the SDMX MeasureDimension are named C1, C2, …, Cn, then the 2607

corresponding VTL Attributes will be named DA_C1, DA_C2, …, 2608
DA_Cn (if different names are desired, they can be achieved afterwards 2609
by renaming the Attributes through VTL operators). 2610

o Like in the Basic mapping, the resulting VTL Attributes are considered 2611
as dependent on all the VTL identifiers (i.e. "at data point / observation 2612
level"), because VTL does not have the SDMX notion of Attribute 2613
Relationship. 2614

 2615
The summary mapping table of the "pivot" mapping from SDMX to VTL for the SDMX 2616
data structures that contain a MeasureDimension is the following: 2617

SDMX VTL
Dimension (Simple) Identifier

TimeDimension (Time) Identifier

MeasureDimension &

one Measure

One Measure for each Code of the

SDMX MeasureDimension

DataAttribute not depending on the
MeasureDimension

Attribute

DataAttribute depending on the
MeasureDimension

One Attribute for each Code of the

SDMX MeasureDimension

77

 2618
Using this mapping method, the components of the data structure can change in the 2619
conversion from SDMX to VTL and it must be taken into account that the VTL 2620
statements can reference only the components of the resulting VTL data structure. 2621
 2622
At observation / data point level, calling Cj (j=1, … n) the jth Code of the 2623

MeasureDimension: 2624

 2625

• The set of SDMX observations having the same values for all the Dimensions 2626
except than the MeasureDimension become one multi-measure VTL Data 2627

Point, having one Measure for each Code Cj of the SDMX 2628

MeasureDimension; 2629

• The values of the SDMX simple Dimensions, TimeDimension and 2630

DataAttributes not depending on the MeasureDimension (these 2631

components by definition have always the same values for all the observations 2632
of the set above) become the values of the corresponding VTL (simple) 2633
Identifiers, (time) Identifier and Attributes. 2634

• The value of the Measure of the SDMX observation belonging to the set above 2635

and having MeasureDimension=Cj becomes the value of the VTL Measure 2636

Cj 2637

• For the SDMX DataAttributes depending on the MeasureDimension, the 2638

value of the DataAttribute DA of the SDMX observation belonging to the 2639

set above and having MeasureDimension=Cj becomes the value of the VTL 2640

Attribute DA_Cj 2641

11.3.3.3 From SDMX DataAttributes to VTL Measures 2642

• In some cases, it may happen that the DataAttributes of the SDMX 2643

DataStructure need to be managed as Measures in VTL. Therefore, a 2644

variant of both the methods above consists in transforming all the SDMX 2645
DataAttributes in VTL Measures. When DataAttributes are converted 2646

to Measures, the two methods above are called Basic_A2M and Pivot_A2M 2647
(the suffix "A2M" stands for Attributes to Measures). Obviously, the resulting 2648
VTL data structure is, in general, multi-measure and does not contain 2649
Attributes. 2650

The Basic_A2M and Pivot_A2M behaves respectively like the Basic and Pivot 2651
methods, except that the final VTL components, which according to the Basic and Pivot 2652
methods would have had the role of Attribute, assume instead the role of Measure. 2653
 2654
Proper VTL features allow changing the role of specific attributes even after the SDMX 2655
to VTL mapping: they can be useful when only some of the DataAttributes need 2656

to be managed as VTL Measures. 2657

11.3.4 Mapping from VTL to SDMX data structures 2658

11.3.4.1 Basic Mapping 2659

The main mapping method from VTL to SDMX is called Basic mapping as well. 2660
This is considered as the default mapping method and is applied unless a different 2661
method is specified through the VtlMappingScheme and VtlDataflowMapping 2662

classes. 2663
 2664

78

The method consists in leaving the components unchanged and maintaining their 2665
names and roles in SDMX, according to the following mapping table, which is the same 2666
as the basic mapping from SDMX to VTL, only seen in the opposite direction. 2667
 2668
Mapping table: 2669
 2670

VTL SDMX

(Simple) Identifier Dimension

(Time) Identifier TimeDimension

Measure Measure

Attribute DataAttribute

 2671
If the distinction between simple identifier and time identifier is not maintained in the 2672
VTL environment, the classification between Dimension and TimeDimension exists 2673

only in SDMX, as declared in the relevant DataStructureDefinition. 2674

 2675
Regarding the Attributes, because VTL considers all of them "at observation level", the 2676
corresponding SDMX DataAttributes should be put "at observation level" as well, 2677

unless some different information about their AttributeRelationship is otherwise 2678

available. 2679
 2680
Note that the basic mappings in the two directions (from SDMX to VTL and vice-versa) 2681
are (almost completely) reversible. In fact, if a SDMX structure is mapped to a VTL 2682
structure and then the latter is mapped back to SDMX, the resulting data structure is 2683
like the original one (apart for the AttributeRelationship, that can be different if 2684

the original SDMX structure contains DataAttributes that are not at observation 2685

level). In reverse order, if a VTL structure is mapped to SDMX and then the latter is 2686
mapped back to VTL, the original data structure is obtained. 2687
 2688
As said, the resulting SDMX definitions must be compliant with the SDMX consistency 2689
rules. For example, the SDMX DSD must have the assignmentStatus, which does 2690

not exist in VTL, the AttributeRelationship for the DataAttributes and so 2691

on. 2692

11.3.4.2 Unpivot Mapping 2693

An alternative mapping method from VTL to SDMX is the Unpivot mapping. 2694
 2695
Although this mapping method can be used in any case, it makes major sense in case 2696
the VTL data structure has more than one measure component (multi-measures VTL 2697
structure). 2698
 2699
The multi-measures VTL structures are converted to SDMX Dataflows having an 2700

added MeasureDimension, which disambiguates the VTL multiple Measures, and a 2701

new Measure in place of the VTL ones, containing the values of the VTL Measures. 2702

 2703
The unpivot mapping behaves like follows: 2704

• like in the basic mapping, a VTL (simple) identifier becomes a SDMX 2705
Dimension and a VTL (time) identifier becomes a SDMX TimeDimension 2706

(as said, a measure identifier cannot exist in multi-measure VTL structures); 2707

79

• a MeasureDimension component called "measure_name" is added to the 2708

SDMX DataStructure; 2709

• a Measure component called "obs_value" is added to the SDMX 2710

DataStructure; 2711

• each VTL Measure is mapped to a Code of the SDMX MeasureDimension 2712

having the same name as the VTL Measure (therefore all the VTL Measure 2713
Components do not originate Components in the SDMX DataStructure); 2714

• a VTL Attribute becomes a SDMX DataAttribute having 2715

AttributeRelationship referred to all the SDMX 2716

DimensionComponents including the TimeDimension and except the 2717

MeasureDimension. 2718

 2719
The summary mapping table of the unpivot mapping method is the following: 2720
 2721

 2722
 2723
At observation / data point level: 2724

• a multi-measure VTL Data Point becomes a set of SDMX observations, one 2725
for each VTL Measure; 2726

• the values of the VTL Identifiers become the values of the corresponding 2727
SDMX DimensionComponents, for all the observations of the set above; 2728

• the name of the jth VTL Measure (e.g. “Cj”) becomes the Code of the SDMX 2729

MeasureDimension of the jth observation of the set; 2730

• the value of the jth VTL Measure becomes the value of the SDMX Measure 2731

of the jth observation of the set; 2732

• the values of the VTL Attributes become the values of the corresponding 2733
SDMX DataAttributes (in principle for all the observations of the set 2734

above). 2735

If desired, this method can be applied also to mono-measure VTL structures, provided 2736
that none of the VTL Components has already the role of Measure Identifier. Like in 2737
the general case, a MeasureDimension component called “measure_name” is 2738

added to the SDMX DataStructure, in this case it has just one possible Code, 2739

corresponding to the name of the unique VTL Measure. The original VTL Measure 2740
would not become a Component in the SDMX data structure. The value of the VTL 2741

Measure would be assigned to the unique SDMX Measure called “obs_value”. 2742

In any case, the resulting SDMX definitions must be compliant with the SDMX 2743
consistency rules. For example, the possible Codes of the SDMX 2744

MeasureDimension need to be listed in a SDMX Codelist, with proper id, agency 2745

VTL SDMX

(Simple) Identifier Dimension

(Time) Identifier TimeDimension

All Measure Components MeasureDimension (having one Code

for each VTL measure component) &
one Measure

Attribute DataAttribute depending on all

SDMX Dimensions including the

TimeDimension and except the
MeasureDimension

80

and version; moreover, the SDMX DSD must have the assignmentStatus, which 2746

does not exist in VTL, the attributeRelationship for the DataAttributes and 2747

so on. 2748

11.3.4.3 From VTL Measures to SDMX Data Attributes 2749

More than all for the multi-measure VTL structures (having more than one Measure 2750
Component), it may happen that the Measures of the VTL Data Structure need to be 2751
managed as DataAttributes in SDMX. Therefore a third mapping method consists 2752

in transforming some VTL measures in a corresponding SDMX Measures and all the 2753

other VTL Measures in SDMX DataAttributes. This method is called M2A (“M2A” 2754

stands for “Measures to DataAttributes”). 2755

 2756
All VTL Measures maintain their names in SDMX. The VTL Measure Components that 2757
become SDMX DataAttributes are the ones declared as DataAttributes in the 2758

target SDMX data structure definition. 2759
 2760
The mapping table is the following: 2761
 2762

VTL SDMX

(Simple) Identifier Dimension

(Time) Identifier TimeDimension

Some Measures Measure

Other Measures DataAttribute

Attribute DataAttribute

 2763
 Even in this case, the resulting SDMX definitions must be compliant with the SDMX 2764
consistency rules. For example, the SDMX DSD must have the assignmentStatus, 2765

which does not exist in VTL, the attributeRelationship for the 2766

DataAttributes and so on. 2767

11.3.5 Declaration of the mapping methods between data structures 2768

In order to define and understand properly VTL Transformations, the applied mapping 2769
methods must be specified in the SDMX structural metadata. If the default mapping 2770
method (Basic) is applied, no specification is needed. 2771
 2772
A customized mapping can be defined through the VtlMappingScheme and 2773

VtlDataflowMapping classes (see the section of the SDMX IM relevant to the VTL). 2774

A VtlDataflowMapping allows specifying the mapping methods to be used for a 2775

specific dataflow, both in the direction from SDMX to VTL (toVtlMappingMethod) 2776

and from VTL to SDMX (fromVtlMappingMethod); in fact a 2777

VtlDataflowMapping associates the structured URN that identifies a SDMX 2778

Dataflow to its VTL alias and its mapping methods. 2779

 2780
It is possible to specify the toVtlMappingMethod and fromVtlMappingMethod 2781

also for the conventional dataflow called "generic_dataflow": in this case the 2782

specified mapping methods are intended to become the default ones, overriding the 2783
"Basic" methods. In turn, the toVtlMappingMethod and fromVtlMappingMethod 2784

declared for a specific Dataflow are intended to override the default ones for such a 2785

Dataflow. 2786

81

The VtlMappingScheme is a container for zero or more VtlDataflowMapping (it 2787

may contain also mappings towards artefacts other than dataflows). 2788

11.3.6 Mapping dataflow subsets to distinct VTL Data Sets 2789

Until now it has been assumed to map one SMDX Dataflow to one VTL Data Set and 2790

vice-versa. This mapping one-to-one is not mandatory according to VTL because a 2791
VTL Data Set is meant to be a set of observations (data points) on a logical plane, 2792
having the same logical data structure and the same general meaning, independently 2793
of the possible physical representation or storage (see VTL 2.0 User Manual page 24), 2794
therefore a SDMX Dataflow can be seen either as a unique set of data observations 2795

(corresponding to one VTL Data Set) or as the union of many sets of data observations 2796
(each one corresponding to a distinct VTL Data Set). 2797

As a matter of fact, in some cases it can be useful to define VTL operations involving 2798
definite parts of a SDMX Dataflow instead than the whole.29 2799

Therefore, in order to make the coding of VTL operations simpler when applied on 2800
parts of SDMX Dataflows, it is allowed to map distinct parts of a SDMX Dataflow 2801

to distinct VTL Data Sets according to the following rules and conventions. This kind 2802
of mapping is possible both from SDMX to VTL and from VTL to SDMX, as better 2803
explained below.30 2804

Given a SDMX Dataflow and some predefined Dimensions of its DataStructure, 2805

it is allowed to map the subsets of observations that have the same combination of 2806
values for such Dimensions to correspondent VTL datasets. 2807

For example, assuming that the SDMX Dataflow DF1(1.0.0) has the Dimensions 2808

INDICATOR, TIME_PERIOD and COUNTRY, and that the user declares the 2809
Dimensions INDICATOR and COUNTRY as basis for the mapping (i.e. the mapping 2810

dimensions): the observations that have the same values for INDICATOR and 2811
COUNTRY would be mapped to the same VTL dataset (and vice-versa). 2812
In practice, this kind mapping is obtained like follows: 2813
 2814

• For a given SDMX Dataflow, the user (VTL definer) declares the 2815

DimensionComponents on which the mapping will be based, in a given 2816

order.31 Following the example above, imagine that the user declares the 2817
Dimensions INDICATOR and COUNTRY. 2818

29 A typical example of this kind is the validation, and more in general the manipulation, of individual time

series belonging to the same Dataflow, identifiable through the DimensionComponents of the

Dataflow except the TimeDimension. The coding of these kind of operations might be simplified by

mapping distinct time series (i.e. different parts of a SDMX Dataflow) to distinct VTL Data Sets.

30 Please note that this kind of mapping is only an option at disposal of the definer of VTL Transformations;
in fact it remains always possible to manipulate the needed parts of SDMX Dataflows by means of VTL

operators (e.g. “sub”, “filter”, “calc”, “union” …), maintaining a mapping one-to-one between SDMX
Dataflows and VTL Data Sets.

31 This definition is made through the ToVtlSubspace and ToVtlSpaceKey classes and/or the
FromVtlSuperspace and FromVtlSpaceKey classes, depending on the direction of the mapping (“key”
means “dimension”). The mapping of Dataflow subsets can be applied independently in the two

directions, also according to different Dimensions. When no Dimension is declared for a given

direction, it is assumed that the option of mapping different parts of a SDMX Dataflow to different VTL

Data Sets is not used.

82

• The VTL Data Set is given a name using a special notation also called “ordered 2819
concatenation” and composed of the following parts: 2820

o The reference to the SDMX Dataflow (expressed according to the 2821

rules described in the previous paragraphs, i.e. URN, abbreviated URN 2822
or another alias); for example DF(1.0.0); 2823

o a slash (“/”) as a separator; 32 2824
o The reference to a specific part of the SDMX Dataflow above, 2825

expressed as the concatenation of the values that the SDMX 2826
DimensionComponents declared above must have, separated by 2827

dots (“.”) and written in the order in which these 2828
DimensionComponents are defined33. For example 2829

POPULATION.USA would mean that such a VTL Data Set is mapped 2830
to the SDMX observations for which the dimension INDICATOR is 2831
equal to POPULATION and the dimension COUNTRY is equal to USA. 2832

In the VTL Transformations, this kind of dataset name must be referenced between 2833
single quotes because the slash (“/”) is not a regular character according to the VTL 2834
rules. 2835
Therefore, the generic name of this kind of VTL datasets would be: 2836
 2837

'DF(1.0.0)/INDICATORvalue.COUNTRYvalue' 2838
 2839
Where DF(1.0.0) is the Dataflow and INDICATORvalue and COUNTRYvalue are 2840

placeholders for one value of the INDICATOR and COUNTRY dimensions. 2841
Instead the specific name of one of these VTL datasets would be: 2842
 2843

‘DF(1.0.0)/POPULATION.USA’ 2844
 2845
In particular, this is the VTL dataset that contains all the observations of the Dataflow 2846

DF(1.0.0) for which INDICATOR = POPULATION and COUNTRY = USA. 2847

Let us now analyse the different meaning of this kind of mapping in the two mapping 2848
directions, i.e. from SDMX to VTL and from VTL to SDMX. 2849
 2850

As already said, the mapping from SDMX to VTL happens when the SDMX 2851
dataflows are operand of VTL Transformations, instead the mapping from VTL to 2852

SDMX happens when the VTL Data Sets that is result of Transformations34 need to be 2853
treated as SDMX objects. This kind of mapping can be applied independently in the 2854
two directions and the Dimensions on which the mapping is based can be different 2855

in the two directions: these Dimensions are defined in the ToVtlSpaceKey and in 2856

the FromVtlSpaceKey classes respectively. 2857

32 As a consequence of this formalism, a slash in the name of the VTL Data Set assumes the specific

meaning of separator between the name of the Dataflow and the values of some of its Dimensions.

33 This is the order in which the dimensions are defined in the ToVtlSpaceKey class or in the
FromVtlSpaceKey class, depending on the direction of the mapping.

34 It should be remembered that, according to the VTL consistency rules, a given VTL dataset cannot be
the result of more than one VTL Transformation.

83

First, let us see what happens in the mapping direction from SDMX to VTL, i.e. when 2858
parts of a SDMX Dataflow (e.g. DF1(1.0.0)) need to be mapped to distinct VTL Data 2859

Sets that are operand of some VTL Transformations. 2860

As already said, each VTL Data Set is assumed to contain all the observations of the 2861
SDMX Dataflow having INDICATOR=INDICATORvalue and COUNTRY= 2862

COUNTRYvalue. For example, the VTL dataset ‘DF1(1.0.0)/POPULATION.USA’ 2863
would contain all the observations of DF1(1.0.0) having INDICATOR = POPULATION 2864
and COUNTRY = USA. 2865

In order to obtain the data structure of these VTL Data Sets from the SDMX one, it is 2866
assumed that the SDMX DimensionComponents on which the mapping is based are 2867

dropped, i.e. not maintained in the VTL data structure; this is possible because their 2868
values are fixed for each one of the invoked VTL Data Sets35. After that, the mapping 2869
method from SDMX to VTL specified for the Dataflow DF1(1.0.0) is applied (i.e. 2870

basic, pivot …). 2871
 2872
In the example above, for all the datasets of the kind 2873
‘DF1(1.0.0)/INDICATORvalue.COUNTRYvalue’, the dimensions INDICATOR and 2874
COUNTRY would be dropped so that the data structure of all the resulting VTL Data 2875
Sets would have the identifier TIME_PERIOD only. 2876
It should be noted that the desired VTL Data Sets (i.e. of the kind ‘DF1(1.0.0)/ 2877
INDICATORvalue.COUNTRYvalue’) can be obtained also by applying the VTL 2878
operator “sub” (subspace) to the Dataflow DF1(1.0.0), like in the following VTL 2879

expression: 2880

‘DF1(1.0.0)/POPULATION.USA’ := 2881
DF1(1.0.0) [sub INDICATOR=“POPULATION”, COUNTRY=“USA”]; 2882
 2883
‘DF1(1.0.0)/POPULATION.CANADA’ := 2884
DF1(1.0.0) [sub INDICATOR=“POPULATION”, COUNTRY=“CANADA”]; 2885
 2886
… … … 2887

In fact the VTL operator “sub” has exactly the same behaviour. Therefore, mapping 2888
different parts of a SDMX Dataflow to different VTL Data Sets in the direction from 2889

SDMX to VTL through the ordered concatenation notation is equivalent to a proper use 2890
of the operator “sub” on such a Dataflow. 36 2891

In the direction from SDMX to VTL it is allowed to omit the value of one or more 2892
DimensionComponents on which the mapping is based, but maintaining all the 2893

separating dots (therefore it may happen to find two or more consecutive dots and dots 2894

35 If these DimensionComponents would not be dropped, the various VTL Data Sets resulting from this

kind of mapping would have non-matching values for the Identifiers corresponding to the mapping
Dimensions (e.g. POPULATION and COUNTRY). As a consequence, taking into account that the typical
binary VTL operations at dataset level (+, -, *, / and so on) are executed on the observations having
matching values for the identifiers, it would not be possible to compose the resulting VTL datasets one
another (e.g. it would not be possible to calculate the population ratio between USA and CANADA).

36 In case the ordered concatenation notation is used, the VTL Transformation described above, e.g.

‘DF1(1.0)/POPULATION.USA’ := DF1(1.0) [sub INDICATOR=“POPULATION”, COUNTRY=“USA”], is
implicitly executed. In order to test the overall compliance of the VTL program to the VTL consistency
rules, it has to be considered as part of the VTL program even if it is not explicitly coded.

84

in the beginning or in the end). The absence of value means that for the corresponding 2895
Dimension all the values are kept and the Dimension is not dropped. 2896
For example, ‘DF(1.0.0)/POPULATION.’ (note the dot in the end of the name) is the 2897
VTL dataset that contains all the observations of the Dataflow DF(1.0.0) for which 2898

INDICATOR = POPULATION and COUNTRY = any value. 2899
 2900
This is equivalent to the application of the VTL “sub” operator only to the identifier 2901
INDICATOR: 2902
 2903

‘DF1(1.0.0)/POPULATION.’ := 2904
DF1(1.0.0) [sub INDICATOR=“POPULATION”]; 2905
 2906

Therefore the VTL Data Set ‘DF1(1.0.0)/POPULATION.’ would have the identifiers 2907
COUNTRY and TIME_PERIOD. 2908
Heterogeneous invocations of the same Dataflow are allowed, i.e. omitting different 2909

Dimensions in different invocations. 2910

Let us now analyse the mapping direction from VTL to SDMX. 2911
In this situation, distinct parts of a SDMX Dataflow are calculated as distinct VTL 2912

datasets, under the constraint that they must have the same VTL data structure. 2913

For example, let us assume that the VTL programmer wants to calculate the SDMX 2914
Dataflow DF2(1.0.0) having the Dimensions TIME_PERIOD, INDICATOR, and 2915

COUNTRY and that such a programmer finds it convenient to calculate separately the 2916
parts of DF2(1.0.0) that have different combinations of values for INDICATOR and 2917
COUNTRY: 2918

• each part is calculated as a VTL derived Data Set, result of a dedicated VTL 2919
Transformation; 37 2920

• the data structure of all these VTL Data Sets has the TIME_PERIOD identifier 2921
and does not have the INDICATOR and COUNTRY identifiers.38 2922

Under these hypothesis, such derived VTL Data Sets can be mapped to DF2(1.0.0) by 2923
declaring the DimensionComponents INDICATOR and COUNTRY as mapping 2924

dimensions39. 2925
 2926
The corresponding VTL Transformations, assuming that the result needs to be 2927
persistent, would be of this kind: 40 2928

‘DF2(1.0.0)/INDICATORvalue.COUNTRYvalue’ <- expression 2929
 2930

Some examples follow, for some specific values of INDICATOR and COUNTRY: 2931
 2932

‘DF2(1.0.0)/GDPPERCAPITA.USA’ <- expression11; 2933
‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ <- expression12; 2934

37 If the whole DF2(1.0) is calculated by means of just one VTL Transformation, then the mapping between
the SDMX Dataflow and the corresponding VTL dataset is one-to-one and this kind of mapping (one

SDMX Dataflow to many VTL datasets) does not apply.

38 This is possible as each VTL dataset corresponds to one particular combination of values of
INDICATOR and COUNTRY.

39 The mapping dimensions are defined as FromVtlSpaceKeys of the FromVtlSuperSpace of the

VtlDataflowMapping relevant to DF2(1.0).

40 the symbol of the VTL persistent assignment is used (<-)

85

… … … 2935
‘DF2(1.0.0)/POPGROWTH.USA’ <- expression21; 2936
‘DF2(1.0.0)/POPGROWTH.CANADA’ <- expression22; 2937
… … … 2938
 2939

As said, it is assumed that these VTL derived Data Sets have the TIME_PERIOD as 2940
the only identifier. In the mapping from VTL to SMDX, the Dimensions INDICATOR 2941

and COUNTRY are added to the VTL data structure on order to obtain the SDMX one, 2942
with the following values respectively: 2943
 2944

VTL dataset INDICATOR value COUNTRY value 2945
 2946

‘DF2(1.0.0)/GDPPERCAPITA.USA’ GDPPERCAPITA USA 2947
‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ GDPPERCAPITA CANADA 2948

… … … 2949
‘DF2(1.0.0)/POPGROWTH.USA’ POPGROWTH USA 2950
‘DF2(1.0.0)/POPGROWTH.CANADA’ POPGROWTH CANADA 2951

… … … 2952
 2953
It should be noted that the application of this many-to-one mapping from VTL to SDMX 2954
is equivalent to an appropriate sequence of VTL Transformations. These use the VTL 2955
operator “calc” to add the proper VTL identifiers (in the example, INDICATOR and 2956
COUNTRY) and to assign to them the proper values and the operator “union” in order 2957
to obtain the final VTL dataset (in the example DF2(1.0.0)), that can be mapped one-2958
to-one to the homonymous SDMX Dataflow. Following the same example, these 2959

VTL Transformations would be: 2960
 2961
DF2bis_GDPPERCAPITA_USA := ‘DF2(1.0.0)/GDPPERCAPITA.USA’ 2962

[calc identifier INDICATOR := ”GDPPERCAPITA”, 2963
identifier COUNTRY := ”USA”]; 2964

 2965
DF2bis_GDPPERCAPITA_CANADA := ‘DF2(1.0.0)/GDPPERCAPITA.CANADA’ 2966

[calc identifier INDICATOR:=”GDPPERCAPITA”, 2967
identifier COUNTRY:=”CANADA”]; 2968

… … … 2969

DF2bis_POPGROWTH_USA := ‘DF2(1.0.0)/POPGROWTH.USA’ 2970
[calc identifier INDICATOR := ”POPGROWTH”, 2971

identifier COUNTRY := ”USA”]; 2972

DF2bis_POPGROWTH_CANADA’ := ‘DF2(1.0.0)/POPGROWTH.CANADA’ 2973
[calc identifier INDICATOR := ”POPGROWTH”, 2974

identifier COUNTRY := ”CANADA”]; 2975

… … … 2976

DF2(1.0) <- UNION (DF2bis_GDPPERCAPITA_USA’, 2977
DF2bis_GDPPERCAPITA_CANADA’, 2978
… , 2979
DF2bis_POPGROWTH_USA’, 2980
DF2bis_POPGROWTH_CANADA’ 2981
…); 2982

 2983
In other words, starting from the datasets explicitly calculated through VTL (in the 2984
example ‘DF2(1.0)/GDPPERCAPITA.USA’ and so on), the first step consists in 2985
calculating other (non-persistent) VTL datasets (in the example 2986
DF2bis_GDPPERCAPITA_USA and so on) by adding the identifiers INDICATOR and 2987

86

COUNTRY with the desired values (INDICATORvalue and COUNTRYvalue). Finally, 2988
all these non-persistent Data Sets are united and give the final result DF2(1.0)41, which 2989
can be mapped one-to-one to the homonymous SDMX Dataflow having the 2990

dimension components TIME_PERIOD, INDICATOR and COUNTRY. 2991

Therefore, mapping different VTL datasets having the same data structure to different 2992
parts of a SDMX Dataflow, i.e. in the direction from VTL to SDMX, through the 2993

ordered concatenation notation is equivalent to a proper use of the operators “calc” 2994
and “union” on such datasets. 42 2995

It is worth noting that in the direction from VTL to SDMX it is mandatory to specify the 2996
value for every Dimension on which the mapping is based (in other word, in the name 2997
of the calculated VTL dataset is not possible to omit the value of some of the 2998
Dimensions). 2999
 3000

11.3.7 Mapping variables and value domains between VTL and SDMX 3001

With reference to the VTL “model for Variables and Value domains”, the following 3002
additional mappings have to be considered: 3003

VTL SDMX
Data Set Component Although this abstraction exists in SDMX,

it does not have an explicit definition and
correspond to a Component (either a

DimensionComponent or a Measure

or a DataAttribute) belonging to one

specific Dataflow43

Represented Variable Concept with a definite
Representation

Value Domain Representation (see the Structure

Pattern in the Base Package)

Enumerated Value Domain / Code List Codelist

Code Code (for enumerated

DimensionComponent, Measure,

DataAttribute)

Described Value Domain non-enumerated Representation

(having Facets / ExtendedFacets,

see the Structure Pattern in the Base
Package)

Value Although this abstraction exists in SDMX,
it does not have an explicit definition and
correspond to a Code of a Codelist

(for enumerated Representations) or

41 The result is persistent in this example but it can be also non persistent if needed.

42 In case the ordered concatenation notation from VTL to SDMX is used, the set of Transformations

described above is implicitly performed; therefore, in order to test the overall compliance of the VTL
program to the VTL consistency rules, these implicit Transformations have to be considered as part of
the VTL program even if they are not explicitly coded.

43 Through SDMX Constraints, it is possible to specify the values that a Component of a Dataflow

can assume.

87

to a valid value (for non-enumerated

Representations)

Value Domain Subset / Set This abstraction does not exist in SDMX

Enumerated Value Domain Subset /
Enumerated Set

This abstraction does not exist in SDMX

Described Value Domain Subset /
Described Set

This abstraction does not exist in SDMX

Set list This abstraction does not exist in SDMX

 3004
The main difference between VTL and SDMX relies on the fact that the VTL artefacts 3005
for defining subsets of Value Domains do not exist in SDMX, therefore the VTL features 3006
for referring to predefined subsets are not available in SDMX. These artefacts are the 3007
Value Domain Subset (or Set), either enumerated or described, the Set List (list of 3008
values belonging to enumerated subsets) and the Data Set Component (aimed at 3009
defining the set of values that the Component of a Data Set can take, possibly a subset 3010
of the codes of Value Domain). 3011
Another difference consists in the fact that all Value Domains are considered as 3012
identifiable objects in VTL either if enumerated or not, while in SDMX the Codelist 3013

(corresponding to a VTL enumerated Value Domain) is identifiable, while the SDMX 3014
non-enumerated Representation (corresponding to a VTL non-enumerated Value 3015

Domain) is not identifiable. As a consequence, the definition of the VTL Rulesets, 3016
which in VTL can refer either to enumerated or non-enumerated value domains, in 3017
SDMX can refer only to enumerated Value Domains (i.e. to SDMX Codelists). 3018

As for the mapping between VTL variables and SDMX Concepts, it should be noted 3019

that these artefacts do not coincide perfectly. In fact, the VTL variables are 3020
represented variables, defined always on the same Value Domain (“Representation” 3021
in SDMX) independently of the data set / data structure in which they appear44, while 3022
the SDMX Concepts can have different Representations in different 3023

DataStructures.45 This means that one SDMX Concept can correspond to many 3024

VTL Variables, one for each representation the Concept has. 3025

Therefore, it is important to be aware that some VTL operations (for example the binary 3026
operations at data set level) are consistent only if the components having the same 3027
names in the operated VTL Data Sets have also the same representation (i.e. the same 3028
Value Domain as for VTL). For example, it is possible to obtain correct results from 3029
the VTL expression 3030

DS_c := DS_a + DS_b (where DS_a, DS_b, DS_c are VTL Data Sets) 3031
if the matching components in DS_a and DS_b (e.g. ref_date, geo_area, sector …) 3032
refer to the same general representation. In simpler words, DS_a and DS_b must use 3033
the same values/codes (for ref_date, geo_area, sector …), otherwise the relevant 3034
values would not match and the result of the operation would be wrong. 3035
As mentioned, the property above is not enforced by construction in SDMX, and 3036
different representations of the same Concept can be not compatible one another (for 3037

example, it may happen that geo_area is represented by ISO-alpha-3 codes in DS_a 3038
and by ISO alpha-2 codes in DS_b). Therefore, it will be up to the definer of VTL 3039

44 By using represented variables, VTL can assume that data structures having the same variables as

identifiers can be composed one another because the correspondent values can match.

45 A Concept becomes a Component in a DataStructureDefinition, and Components can have

different LocalRepresentations in different DataStructureDefinitions, also overriding the

(possible) base representation of the Concept.

88

Transformations to ensure that the VTL expressions are consistent with the actual 3040
representations of the correspondent SDMX Concepts. 3041

It remains up to the SDMX-VTL definer also the assurance of the consistency between 3042
a VTL Ruleset defined on Variables and the SDMX Components on which the Ruleset 3043

is applied. In fact, a VTL Ruleset is expressed by means of the values of the Variables 3044
(i.e. SDMX Concepts), i.e. assuming definite representations for them (e.g. ISO-3045

alpha-3 for country). If the Ruleset is applied to SDMX Components that have the same 3046
name of the Concept they refer to but different representations (e.g. ISO-alpha-2 for 3047
country), the Ruleset cannot work properly. 3048
 3049

11.4 Mapping between SDMX and VTL Data Types 3050

11.4.1 VTL Data types 3051

According to the VTL User Guide the possible operations in VTL depend on the data 3052
types of the artefacts. For example, numbers can be multiplied but text strings cannot. 3053
In the VTL Transformations, the compliance between the operators and the data types 3054
of their operands is statically checked, i.e., violations result in compile-time errors. 3055
 3056
The VTL data types are sub-divided in scalar types (like integers, strings, etc.), which 3057
are the types of the scalar values, and compound types (like Data Sets, Components, 3058
Rulesets, etc.), which are the types of the compound structures. See below the 3059
diagram of the VTL data types, taken from the VTL User Manual: 3060

89

 3061
Figure 22 – VTL Data Types 3062

 3063
The VTL scalar types are in turn subdivided in basic scalar types, which are elementary 3064
(not defined in term of other data types) and Value Domain and Set scalar types, which 3065
are defined in terms of the basic scalar types. 3066
The VTL basic scalar types are listed below and follow a hierarchical structure in terms 3067
of supersets/subsets (e.g. "scalar" is the superset of all the basic scalar types): 3068

Version 1.1 Page: 49

Data Types overview 1748

Data Types model diagram 1749

 1750

 1751

 1752

 1753

 1754

 1755

 1756

 1757

 1758

 1759

 1760

 1761

 1762

 1763

 1764

 1765

 1766

 1767

 1768

 1769

 1770

 1771

 1772

 1773

 1774

 1775

 1776

 1777

 1778

 1779

 1780

0..N

1..1

Value Domain
Scalar Type

Refers
 to

Is super-class of

Data Type

Is super-class of

Scalar Type
Compound

Type

Is sub-type of

0..N

0..N

Universal Set
Type

Product
Type

Component
Type

Data Set
Type

Ruleset
Type

Universal List
Type

Set Scalar Type

Basic Scalar
Type

Is super-class of

Operator
Type

1..1

0..N

Restricts

90

 3069
Figure 23 – VTL Basic Scalar Types 3070

11.4.2 VTL basic scalar types and SDMX data types 3071

The VTL assumes that a basic scalar type has a unique internal representation and 3072
can have more external representations. 3073
The internal representation is the format used within a VTL system to represent (and 3074
process) all the scalar values of a certain type. In principle, this format is hidden and 3075
not necessarily known by users. The external representations are instead the external 3076
formats of the values of a certain basic scalar type, i.e. the formats known by the users. 3077
For example, the internal representation of the dates can be an integer counting the 3078
days since a predefined date (e.g. from 01/01/4713 BC up to 31/12/5874897 AD like 3079
in Postgres) while two possible external representations are the formats YYYY-MM-3080
GG and MM-GG-YYYY (e.g. respectively 2010-12-31 and 12-31-2010). 3081
The internal representation is the reference format that allows VTL to operate on more 3082
values of the same type (for example on more dates) even if such values have different 3083
external formats: these values are all converted to the unique internal representation 3084
so that they can be composed together (e.g. to find the more recent date, to find the 3085
time span between these dates and so on). 3086
The VTL assumes that a unique internal representation exists for each basic scalar 3087
type but does not prescribe any particular format for it, leaving the VTL systems free 3088
to using they preferred or already existing internal format. By consequence, in VTL the 3089
basic scalar types are abstractions not associated to a specific format. 3090
SDMX data types are conceived instead to support the data exchange, therefore they 3091
do have a format, which is known by the users and correspond, in VTL terms, to 3092
external representations. Therefore, for each VTL basic scalar type there can be more 3093
SDMX data types (the latter are explained in the section "General Notes for 3094
Implementers" of this document and are actually much more numerous than the 3095
former). 3096
 3097
The following paragraphs describe the mapping between the SDMX data types and 3098
the VTL basic scalar types. This mapping shall be presented in the two directions of 3099
possible conversion, i.e. from SDMX to VTL and vice-versa. 3100
 3101
The conversion from SDMX to VTL happens when an SDMX artefact acts as inputs of 3102
a VTL Transformation. As already said, in fact, at compile time the VTL needs to know 3103
the VTL type of the operands in order to check their compliance with the VTL operators 3104

Version 1.1 Page: 52

The hierarchical tree of the basic scalar types is the following: 1857

Scalar 1858

 String 1859

 Number 1860

 Integer 1861

 Time 1862

 Date 1863

 Time_period 1864

 Duration 1865

 Boolean 1866

 1867

A scalar Value of type string is a sequence of alphanumeric characters of any length. On string 1868
Values, all the string operations are allowed, such as: concatenation of strings, splitting of 1869
strings, extraction of a part of a string (substring) and so on. 1870

A Scalar Value of type number is a rational number of any magnitude and precision, also used 1871
as approximation of a real number. On values of type number, the numeric operations are 1872
allowed, such as: addition, subtraction, multiplication, division, power, square root and so on. 1873
The type integer (positive and negative integer numbers and zero) is a subtype of the type 1874
number. 1875

A Scalar Value of type time denotes time intervals of any duration and expressed with any 1876
precision. According to ISO 8601 (ISO standard for the representation of dates and times), a 1877
time interval is the intervening time between two time points. This type can allow operations 1878
like shift of the time interval, change of the starting/ending times, split of the interval, 1879
concatenation of contiguous intervals and so on (not necessarily all these operations are 1880
allowed in this VTL version). 1881

The type date is a subtype of the type time which denotes time points expressed at any 1882
precision, which are time intervals starting and ending in the same time point (i.e. 1883
intervals of zero duration). A value of type date includes all the parts needed to identify 1884
a time point at the desired precision, like the year, the month, the day, the hour, the 1885
minute and so on (for example, 2018-04-05 is the fifth of April 2018, at the precision of 1886
the day). 1887

The type time_period is a subtype of the type time as well and denotes non-1888
overlapping time intervals having a regular duration (for example the years, the 1889
quarters of years, the months, the weeks and so on). A value of the type time_period is 1890
composite and must include all the parts needed to identify a regular time period at 1891
the desired precision; in particular, the time-period type includes the explicit indication 1892
of the kind of regular period considered (e.g., “day”, “week”, “month”, “quarter” …). For 1893
example, the value 2018M04, assuming that “M” stands for “month”, denotes the 1894
month n.4 of the 2018 (April 2018). Moreover, 2018Q2, assuming that “Q” stands for 1895
“quarter”, denotes the second quarter of 2018. In these examples, the letters M and Q 1896
are used to denote the kind of period through its duration. 1897

91

and at runtime it must convert the values from their external (SDMX) representations 3105
to the corresponding internal (VTL) ones. 3106
 3107
The opposite conversion, i.e. from VTL to SDMX, happens when a VTL result, i.e. a 3108
VTL Data Set output of a Transformation, must become a SDMX artefact (or part of it). 3109
The values of the VTL result must be converted into the desired (SDMX) external 3110
representations (data types) of the SDMX artefact. 3111

11.4.3 Mapping SDMX data types to VTL basic scalar types 3112

The following table describes the default mapping for converting from the SDMX data 3113
types to the VTL basic scalar types. 3114

SDMX data type (BasicComponentDataType) Default VTL basic scalar type

String
(string allowing any character)

string

Alpha
(string which only allows A-z)

string

AlphaNumeric
(string which only allows A-z and 0-9)

string

Numeric
(string which only allows 0-9, but is not numeric so
that is can having leading zeros)

string

BigInteger
(corresponds to XML Schema xs:integer datatype;
infinite set of integer values)

integer

Integer
(corresponds to XML Schema xs:int datatype;
between -2147483648 and +2147483647
(inclusive))

integer

Long
(corresponds to XML Schema xs:long datatype;
between -9223372036854775808 and
+9223372036854775807 (inclusive))

integer

Short
(corresponds to XML Schema xs:short datatype;
between -32768 and -32767 (inclusive))

integer

Decimal
(corresponds to XML Schema xs:decimal
datatype; subset of real numbers that can be
represented as decimals)

number

Float
(corresponds to XML Schema xs:float datatype;
patterned after the IEEE single-precision 32-bit
floating point type)

number

Double
(corresponds to XML Schema xs:double datatype;
patterned after the IEEE double-precision 64-bit
floating point type)

number

Boolean
(corresponds to the XML Schema xs:boolean
datatype; support the mathematical concept of
binary-valued logic: {true, false})

boolean

92

URI
(corresponds to the XML Schema xs:anyURI;
absolute or relative Uniform Resource Identifier
Reference)

string

Count
(an integer following a sequential pattern,
increasing by 1 for each occurrence)

integer

InclusiveValueRange
(decimal number within a closed interval, whose
bounds are specified in the SDMX representation
by the facets minValue and maxValue)

number

ExclusiveValueRange
(decimal number within an open interval, whose
bounds are specified in the SDMX representation
by the facets minValue and maxValue)

number

Incremental
(decimal number the increased by a specific
interval (defined by the interval facet), which is
typically enforced outside of the XML validation)

number

ObservationalTimePeriod
(superset of StandardTimePeriod and
TimeRange)

time

StandardTimePeriod
(superset of BasicTimePeriod and
ReportingTimePeriod)

time

BasicTimePeriod
(superset of GregorianTimePeriod and DateTime)

date

GregorianTimePeriod
(superset of GregorianYear, GregorianYearMonth,
and GregorianDay)

date

GregorianYear
(YYYY)

date

GregorianYearMonth / GregorianMonth
(YYYY-MM)

date

GregorianDay
(YYYY-MM-DD)

date

ReportingTimePeriod
(superset of RepostingYear, ReportingSemester,
ReportingTrimester, ReportingQuarter,
ReportingMonth, ReportingWeek, ReportingDay)

time_period

ReportingYear
(YYYY-A1 – 1 year period)

time_period

ReportingSemester
(YYYY-Ss – 6 month period)

time_period

ReportingTrimester
(YYYY-Tt – 4 month period)

time_period

ReportingQuarter
(YYYY-Qq – 3 month period)

time_period

ReportingMonth
(YYYY-Mmm – 1 month period)

time_period

ReportingWeek time_period

93

(YYYY-Www – 7 day period; following ISO 8601
definition of a week in a year)

ReportingDay
(YYYY-Dddd – 1 day period)

time_period

DateTime
(YYYY-MM-DDThh:mm:ss)

date

TimeRange
(YYYY-MM-DD(Thh:mm:ss)?/<duration>)

time

Month
(--MM; speicifies a month independent of a year;
e.g. February is black history month in the United
States)

string

MonthDay
(--MM-DD; specifies a day within a month
independent of a year; e.g. Christmas is December
25th; used to specify reporting year start day)

string

Day
(---DD; specifies a day independent of a month or
year; e.g. the 15th is payday)

string

Time
(hh:mm:ss; time independent of a date; e.g. coffee
break is at 10:00 AM)

string

Duration
(corresponds to XML Schema xs:duration
datatype)

duration

XHTML Metadata type – not applicable

KeyValues Metadata type – not applicable

IdentifiableReference Metadata type – not applicable

DataSetReference Metadata type – not applicable

AttachmentConstraintReference Metadata type – not applicable

Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types 3115

When VTL takes in input SDMX artefacts, it is assumed that a type conversion 3116
according to the table above always happens. In case a different VTL basic scalar type 3117
is desired, it can be achieved in the VTL program taking in input the default VTL basic 3118
scalar type above and applying to it the VTL type conversion features (see the implicit 3119
and explicit type conversion and the "cast" operator in the VTL Reference Manual). 3120

11.4.4 Mapping VTL basic scalar types to SDMX data types 3121

The following table describes the default conversion from the VTL basic scalar types 3122
to the SDMX data types . 3123

VTL basic
scalar type

Default SDMX data type
(BasicComponentDataType
)

Default output format

String String Like XML (xs:string)

Number Float Like XML (xs:float)

Integer Integer Like XML (xs:int)

Date DateTime YYYY-MM-DDT00:00:00Z

94

Time StandardTimePeriod <date>/<date> (as defined above)

time_period ReportingTimePeriod
(StandardReportingPeriod)

 YYYY-Pppp
(according to SDMX)

Duration Duration Like XML (xs:duration)
PnYnMnDTnHnMnS

Boolean Boolean Like XML (xs:boolean) with the values
"true" or "false"

Figure 14 – Mappings from SDMX data types to VTL Basic Scalar Types 3124

In case a different default conversion is desired, it can be achieved through the 3125
CustomTypeScheme and CustomType artefacts (see also the section 3126

Transformations and Expressions of the SDMX information model). 3127
 3128
The custom output formats can be specified by means of the VTL formatting mask 3129
described in the section "Type Conversion and Formatting Mask" of the VTL Reference 3130
Manual. Such a section describes the masks for the VTL basic scalar types "number", 3131
"integer", "date", "time", "time_period" and "duration" and gives examples. As for the 3132
types "string" and "boolean" the VTL conventions are extended with some other special 3133
characters as described in the following table. 3134

VTL special characters for the formatting masks

Number

D one numeric digit (if the scientific notation is adopted, D is only for
the mantissa)

E one numeric digit (for the exponent of the scientific notation)

. (dot) possible separator between the integer and the decimal parts.

, (comma) possible separator between the integer and the decimal parts.

Time and duration

C century

Y year

S semester

Q quarter

M month

W week

D day

h hour digit (by default on 24 hours)

M minute

S second

D decimal of second

P period indicator (representation in one digit for the duration)

P number of the periods specified in the period indicator

AM/PM indicator of AM / PM (e.g. am/pm for "am" or "pm")

MONTH uppercase textual representation of the month (e.g., JANUARY for
January)

DAY uppercase textual representation of the day (e.g., MONDAY for
Monday)

Month lowercase textual representation of the month (e.g., january)

Day lowercase textual representation of the month (e.g., monday)

95

Month First character uppercase, then lowercase textual representation of
the month (e.g., January)

Day First character uppercase, then lowercase textual representation of
the day using (e.g. Monday)

String

X any string character

Z any string character from "A" to "z"

9 any string character from "0" to "9"

Boolean

B Boolean using "true" for True and "false" for False

1 Boolean using "1" for True and "0" for False

0 Boolean using "0" for True and "1" for False

Other qualifiers

* an arbitrary number of digits (of the preceding type)

+ at least one digit (of the preceding type)

() optional digits (specified within the brackets)

\ prefix for the special characters that must appear in the mask

N fixed number of digits used in the preceding textual representation
of the month or the day

 3135

The default conversion, either standard or customized, can be used to deduce 3136
automatically the representation of the components of the result of a VTL 3137
Transformation. In alternative, the representation of the resulting SDMX Dataflow 3138

can be given explicitly by providing its DataStructureDefinition. In other words, 3139

the representation specified in the DSD, if available, overrides any default 3140
conversion46. 3141

11.4.5 Null Values 3142

In the conversions from SDMX to VTL it is assumed by default that a missing value in 3143
SDMX becomes a NULL in VTL. After the conversion, the NULLs can be manipulated 3144
through the proper VTL operators. 3145
On the other side, the VTL programs can produce in output NULL values for Measures 3146
and Attributes (Null values are not allowed in the Identifiers). In the conversion from 3147
VTL to SDMX, it is assumed that a NULL in VTL becomes a missing value in SDMX. 3148
In the conversion from VTL to SDMX, the default assumption can be overridden, 3149
separately for each VTL basic scalar type, by specifying which the value that 3150
represents the NULL in SDMX is. This can be specified in the attribute "nullValue" 3151

of the CustomType artefact (see also the section Transformations and Expressions of 3152

the SDMX information model). A CustomType belongs to a CustomTypeScheme, 3153

which can be referenced by one or more TransformationScheme (i.e. VTL 3154

programs). The overriding assumption is applied for all the SDMX Dataflows 3155

calculated in the TransformationScheme. 3156

46 The representation given in the DSD should obviously be compatible with the VTL
data type.

96

11.4.6 Format of the literals used in VTL Transformations 3157

The VTL programs can contain literals, i.e. specific values of certain data types written 3158
directly in the VTL definitions or expressions. The VTL does not prescribe a specific 3159
format for the literals and leave the specific VTL systems and the definers of VTL 3160
Transformations free of using their preferred formats. 3161
Given this discretion, it is essential to know which are the external representations 3162
adopted for the literals in a VTL program, in order to interpret them correctly. For 3163
example, if the external format for the dates is YYYY-MM-DD the date literal 2010-01-3164
02 has the meaning of 2nd January 2010, instead if the external format for the dates is 3165
YYYY-DD-MM the same literal has the meaning of 1st February 2010. 3166
Hereinafter, i.e. in the SDMX implementation of the VTL, it is assumed that the literals 3167
are expressed according to the "default output format" of the table of the previous 3168
paragraph ("Mapping VTL basic scalar types to SDMX data types") unless otherwise 3169
specified. 3170
A different format can be specified in the attribute "vtlLiteralFormat" of the 3171

CustomType artefact (see also the section Transformations and Expressions of the 3172

SDMX information model). 3173
Like in the case of the conversion of NULLs described in the previous paragraph, the 3174
overriding assumption is applied, for a certain VTL basic scalar type, if a value is found 3175
for the vtlLiteralFormat attribute of the CustomType of such VTL basic scalar 3176

type. The overriding assumption is applied for all the literals of a related VTL 3177
TransformationScheme. 3178

In case a literal is operand of a VTL Cast operation, the format specified in the Cast 3179
overrides all the possible otherwise specified formats. 3180

97

12 Structure Mapping 3181

12.1 Introduction 3182

The purpose of SDMX structure mapping is to transform datasets from one 3183
dimensionality to another. In practice, this means that the input and output datasets 3184
conform to different Data Structure Definition. 3185

Structure mapping does not alter the observation values and is not intended to perform 3186
any aggregations or calculations. 3187

An input series maps to: 3188

a. Exactly one output series; or 3189

b. Multiple output series with different Series Keys, but the same observation 3190
values; or 3191

c. Zero output series where no source rule matches the input Component values. 3192
 3193
Typical use cases include: 3194

• Transforming received data into a common internal structure; 3195

• Transforming reported data into the data collector's preferred structure; 3196

• Transforming unidimensional datasets47 to multi-dimensional; and 3197

• Transforming internal datasets with a complex structure to a simpler structure 3198
with fewer dimensions suitable for dissemination. 3199

12.2 1-1 structure maps 3200

1-1 (pronounced 'one to one') mappings support the simple use case where the value 3201
of a Component in the source structure is translated to a different value in the target, 3202
usually where different classification schemes are used for the same Concept. 3203
 3204
In the example below, ISO 2-character country codes are mapped to their ISO 3-3205
character equivalent. 3206
 3207

Country Alpha-2 code Alpha-3 code

Afghanistan AF AFG

Albania AL ALB

Algeria DZ DZA

American Samoa AS ASM

Andorra AD AND

etc…

 3208
Different source values can also map to the same target value, for example when 3209
deriving regions from country codes. 3210
 3211

47 Unidimensional datasets are those with a single 'indicator' or 'series code' dimension.

98

Source Component:
REF_AREA

Target Component:
REGION

FR EUR

DE EUR

IT EUR

ES EUR

BE EUR

 3212

12.3 N-n structure maps 3213

N-n (pronounced 'N to N') mappings describe rules where a specified combination of 3214
values in multiple source Components map to specified values in one or more target 3215
Components. For example, when mapping a partial Series Key from a highly 3216
multidimensional cube (like Balance of Payments) to a single 'Indicator' Dimension in 3217
a target Data Structure. 3218
 3219
Example: 3220

Rule Source Target

1 If
FREQUENCY=A; and
ADJUSTMENT=N; and
MATURITY=L.

Set
INDICATOR=A_N_L

2 If
FREQUENCY=M; and
ADJUSTMENT=S_A1; and
MATURITY=TY12.

Set
INDICATOR=MON_SAX_12

 3221
N-n rules can also set values for multiple source Components. 3222

Rule Source Target

1 If
FREQUENCY=A; and
ADJUSTMENT=N; and
MATURITY=L.

Set
INDICATOR=A_N_L,
STATUS=QXR15,
NOTE="Unadjusted".

2 If
FREQUENCY=M; and
ADJUSTMENT=S_A1; and
MATURITY=TY12.

Set
INDICATOR=MON_SAX_12,
STATUS=MPM12,
NOTE="Seasonally Adjusted"

3223

99

12.4 Ambiguous mapping rules 3224

A structure map is ambiguous if the rules result in a dataset containing multiple series 3225
with the same Series Key. 3226
 3227
A simple example mapping a source dataset with a single dimension to one with 3228
multiple dimensions is shown below: 3229
 3230

Source Target Output Series Key

SERIES_CODE=XMAN_Z_21

Dimensions
INDICATOR=XM
FREQ=A
ADJUSTMENT=N

Attributes
UNIT_MEASURE=_Z
COMP_ORG=21

XM:A:N

SERIES_CODE=XMAN_Z_34

Dimensions
INDICATOR=XM
FREQ=A
ADJUSTMENT=N

Attributes
UNIT_MEASURE=_Z
COMP_ORG=34

XM:A:N

 3231
The above behaviour can be okay if the series XMAN_Z_21 contains observations for 3232
different periods of time then the series XMAN_Z_34. If however both series contain 3233
observations for the same point in time, the output for this mapping will be two 3234
observations with the same series key, for the same period in time. 3235

12.5 Representation maps 3236

Representation Maps replace the SDMX 2.1 Codelist Maps and are used describe 3237
explicit mappings between source and target Component values. 3238
 3239
The source and target of a Representation Map can reference any of the following: 3240

a. Codelist 3241
b. Free Text (restricted by type, e.g String, Integer, Boolean) 3242
c. Valuelist 3243

 3244
A Representation Map mapping ISO 2-character to ISO 3-character Codelists would 3245
take the following form: 3246

CL_ISO_ALPHA2 CL_ISO_ALPHA3

AF AFG

AL ALB

DZ DZA

AS ASM

AD AND

etc…

 3247
A Representation Map mapping free text country names to an ISO 2-character Codelist 3248
could be similarly described: 3249

100

Text CL_ISO_ALPHA2

"Germany" DE

"France" FR

"United Kingdom" GB

"Great Britain" GB

"Ireland" IE

"Eire" IE

etc…

 3250
Valuelists, introduced in SDMX 3.0, are equivalent to Codelists but allow the 3251
maintenance of non-SDMX identifiers. Importantly, their IDs do not need to conform to 3252
IDType, but as a consequence are not Identifiable. 3253

When used in Representation Maps, Valuelists allow Non-SDMX identifiers containing 3254
characters like £, $, % to be mapped to Code IDs, or Codes mapped to non-SDMX 3255
identifiers. 3256

In common with Codelists, each item in a Valuelist has a multilingual name giving it a 3257
human-readable label and an optional description. For example: 3258

Value Locale Name

$ en United States Dollar

% En Percentage

 fr Pourcentage

 3259

Other characteristics of Representation Maps: 3260

• Support the mapping of multiple source Component values to multiple Target 3261
Component values as described in section 12.3 on n-to-n mappings; this covers 3262
also the case of mapping an Attribute with an array representation to map 3263
combinations of values to a single target value; 3264

• Allow source or target mappings for an Item to be optional allowing rules such 3265
as 'A maps to nothing' or 'nothing maps to A'; and 3266

• Support for mapping rules where regular expressions or substrings are used to 3267
match source Component values. Refer to section 12.6 for more on this topic. 3268

12.6 Regular expression and substring rules 3269

It is common for classifications to contain meanings within the identifier, for example 3270
the code Id 'XULADS' may refer to a particular seasonality because it starts with the 3271
letters XU. 3272

With SDMX 2.1 each code that starts with XU had to be individually mapped to the 3273
same seasonality, and additional mappings added when new Codes were added to 3274
the Codelists. This led to many hundreds or thousands of mappings which can be 3275
more efficiently summarised in a single conceptual rule: 3276

If starts with 'XU' map to 'Y' 3277

101

These rules are described using either regular expressions, or substrings for simpler 3278
use cases. 3279

12.6.1 Regular expressions 3280

Regular expression mapping rules are defined in the Representation Map. 3281

Below is an example set of regular expression rules for a particular component. 3282

Regex Description Output

A Rule match if input = 'A' OUT_A

^[A-G] Rule match if the input starts with letters A to G OUT_B

A|B Rule match if input is either 'A' or 'B' OUT_C

 3283
Like all mapping rules, the output is either a Code, a Value or free text depending on 3284
the representation of the Component in the target Data Structure Definition. 3285

If the regular expression contains capture groups, these can be used in the definition 3286
of the output value, by specifying \n as an output value where n is the number of the 3287
capture group starting from 1. For example 3288

 3289

Regex Target output Example Input Example Output

([0-9]{4})[0-
9]([0-9]{1})

\1-Q\2 200933 2009-Q3

 3290

As regular expression rules can be used as a general catch-all if nothing else matches, 3291
the ordering of the rules is important. Rules should be tested starting with the highest 3292
priority, moving down the list until a match is found. 3293

The following example shows this: 3294

Priority Regex Description Output

1 A Rule match if input = 'A' OUT_A

2 B Rule match if input = 'B' OUT_B

3 [A-Z] Any character A-Z OUT_C

 3295

The input 'A' matches both the first and the last rule, but the first takes precedence 3296
having the higher priority. The output is OUT_A. 3297

The input 'G' matches on the last rule which is used as a catch-all or default in this 3298
example. 3299

12.6.2 Substrings 3300

Substrings provide an alternative to regular expressions where the required section of 3301
an input value can be described using the number of the starting character, and the 3302
length of the substring in characters. The first character is at position 1. 3303

102

For instance: 3304

Input String Start Length Output

ABC_DEF_XYZ 5 3 DEF

XULADS 1 2 XU

 3305

Sub-strings can therefore be used for the conceptual rule If starts with 'XU' map to Y 3306
as shown in the following example: 3307

Start Length Source Target

1 2 XU Y

12.7 Mapping non-SDMX time formats to SDMX formats 3308

Structure mapping allows non-SDMX compliant time values in source datasets to be 3309
mapped to an SDMX compliant time format. 3310

Two types of time input are defined: 3311

a. Pattern based dates – a string which can be described using a notation like 3312
dd/mm/yyyy or is represented as the number of periods since a point in time, for 3313
example: 2010M001 (first month in 2010), or 2014D123 (123rd day in 2014); and 3314

b. Numerical based datetime – a number specifying the elapsed periods since a 3315
fixed point in time, for example Unix Time is measured by the number of 3316
milliseconds since 1970. 3317

The output of a time-based mapping is derived from the output Frequency, which is 3318
either explicitly stated in the mapping or defined as the value output by a specific 3319
Dimension or Attribute in the output mapping. If the output frequency is unknown or if 3320
the SDMX format is not desired, then additional rules can be provided to specify the 3321
output date format for the given frequency Id. The default rules are: 3322

Frequency Format Example

A YYYY 2010

D YYYY-MM-DD 2010-01-01

I YYYY-MM-DD-
Thh:mm:ss

2010-01T20:22:00

M YYYY-MM 2010-01

Q YYYY-Qn 2010-Q1

S YYYY-Sn 2010-S1

T YYYY-Tn 2010-T1

103

W YYYY-Wn YYYY-W53

 3323

In the case where the input frequency is lower than the output frequency, the mapping 3324
defaults to end of period, but can be explicitly set to start, end or mid-period. 3325
 3326
There are two important points to note: 3327
 3328

1. The output frequency determines the output date format, but the default output 3329
can be redefined using a Frequency Format mapping to force explicit rules on 3330
how the output time period is formatted. 3331

2. To support the use case of changing frequency the structure map can 3332
optionally provide a start of year attribute, which defines the year start date in 3333
MM-DD format. For example: YearStart=04-01. 3334

12.7.1 Pattern based dates 3335

Date and time formats are specified by date and time pattern strings based on Java's 3336
Simple Date Format. Within date and time pattern strings, unquoted letters from 'A' to 3337
'Z' and from 'a' to 'z' are interpreted as pattern letters representing the components of 3338
a date or time string. Text can be quoted using single quotes (') to avoid interpretation. 3339
"''" represents a single quote. All other characters are not interpreted; they're simply 3340
copied into the output string during formatting or matched against the input string 3341
during parsing. 3342

Due to the fact that dates may differ per locale, an optional property, defining the locale 3343
of the pattern, is provided. This would assist processing of source dates, according to 3344
the given locale48. An indicative list of examples is presented in the following table: 3345

English (en) Australia (AU) en-AU

English (en) Canada (CA) en-CA

English (en) United Kingdom (GB) en-GB

English (en) United States (US) en-US

Estonian (et) Estonia (EE) et-EE

Finnish (fi) Finland (FI) fi-FI

French (fr) Belgium (BE) fr-BE

French (fr) Canada (CA) fr-CA

French (fr) France (FR) fr-FR

French (fr) Luxembourg (LU) fr-LU

French (fr) Switzerland (CH) fr-CH

German (de) Austria (AT) de-AT

German (de) Germany (DE) de-DE

48 A list of commonly used locales can be found in the Java supported locales:
https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html

https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html

104

German (de) Luxembourg (LU) de-LU

German (de) Switzerland (CH) de-CH

Greek (el) Cyprus (CY) el-CY(*)

Greek (el) Greece (GR) el-GR

Hebrew (iw) Israel (IL) iw-IL

Hindi (hi) India (IN) hi-IN

Hungarian (hu) Hungary (HU) hu-HU

Icelandic (is) Iceland (IS) is-IS

Indonesian (in) Indonesia (ID) in-ID(*)

Irish (ga) Ireland (IE) ga-IE(*)

Italian (it) Italy (IT) it-IT

 3346

Examples 3347

22/06/1981 would be described as dd/MM/YYYY, with locale en-GB 3348

2008-mars-12 would be described as YYYY-MMM-DD, with locale fr-FR 3349

22 July 1981 would be described as dd MMMM YYYY, with locale en-US 3350

22 Jul 1981 would be described as dd MMM YYYY 3351

2010 D62 would be described as YYYYDnn (day 62 of the year 2010) 3352

The following pattern letters are defined (all other characters from 'A' to 'Z' and from 'a' 3353
to 'z' are reserved): 3354

Letter Date or Time Component Presentation Examples

G Era designator Text AD

yy Year short (upper case is Year of Week49) Year 96

yyyy Year Full (upper case is Year of Week) Year 1996

MM Month number in year starting with 1 Month 07

MMM Month name short Month Jul

MMMM Month name full Month July

ww Week in year Number 27

W Week in month Number 2

DD Day in year Number 189

dd Day in month Number 10

F Day of week in month Number 2

E Day name in week Text Tuesday; Tue

49 yyyy represents the calendar year while YYYY represents the year of the week,
which is only relevant for 53 week years

https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale
https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale
https://www.oracle.com/java/technologies/javase/jdk8-jre8-suported-locales.html#cldrlocale
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#year
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#text

105

U Day number of week (1 = Monday, ..., 7 =
Sunday)

Number 1

HH Hour in day (0-23) Number 0

kk Hour in day (1-24) Number 24

KK Hour in am/pm (0-11) Number 0

hh Hour in am/pm (1-12) Number 12

mm Minute in hour Number 30

ss Second in minute Number 55

S Millisecond Number 978

n Number of periods, used after a SDMX
Frequency Identifier such as M, Q, D
(month, quarter, day)

Number 12

 3355

The model is illustrated below: 3356

 3357

Figure 24 showing the component map mapping the SOURCE_DATE Dimension to the 3358
TIME_PERIOD dimension with the additional information on the component map to 3359

describe the time format 3360

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#number

106

 3361
Figure 25 showing an input date format, whose output frequency is derived from the 3362

output value of the FREQ Dimension 3363

12.7.2 Numerical based datetime 3364

Where the source datetime input is purely numerical, the mapping rules are defined by 3365
the Base as a valid SDMX Time Period, and the Period which must take one of the 3366
following enumerated values: 3367

• day 3368

• second 3369

• millisecond 3370

• microsecond 3371

• nanosecond 3372

Numerical datetime systems Base Period

Epoch Time (UNIX)
Milliseconds since 01 Jan 1970

1970 millisecond

Windows System Time
Milliseconds since 01 Jan 1601

1601 millisecond

 3373
The example above illustrates numerical based datetime mapping rules for two 3374
commonly used time standards. 3375

The model is illustrated below: 3376

 3377

Figure 26 showing the component map mapping the SOURCE_DATE Dimension to the 3378
TIME_PERIOD Dimension with the additional information on the component map to 3379

describe the numerical datetime system in use 3380

107

12.7.3 Mapping more complex time inputs 3381

VTL should be used for more complex time inputs that cannot be interpreted using the 3382
pattern based on numerical methods. 3383

12.8 Using TIME_PERIOD in mapping rules 3384

The source TIME_PERIOD Dimension can be used in conjunction with other input 3385
Dimensions to create discrete mapping rules where the output is conditional on the 3386
time period value. 3387

The main use case is setting the value of Observation Attributes in the target dataset. 3388

Rule Source Target

1 If
INDICATOR=XULADS; and
TIME_PERIOD=2007.

Set
OBS_CONF=F

2 If
INDICATOR=XULADS; and
TIME_PERIOD=2008.

Set
OBS_CONF=F

3 If
INDICATOR=XULADS; and
TIME_PERIOD=2009.

Set
OBS_CONF=F

4 If
INDICATOR=XULADS; and
TIME_PERIOD=2010.

Set
OBS_CONF=C

In the example above, OBS_CONF is an Observation Attribute. 3389

12.9 Time span mapping rules using validity periods 3390

Creating discrete mapping rules for each TIME_PERIOD is impractical where rules 3391
need to cover a specific span of time regardless of frequency, and for high-frequency 3392
data. 3393

Instead, an optional validity period can be set for each mapping. 3394

By specifying validity periods, the example from Section 12.8 can be re-written using 3395
two rules as follows: 3396

Rule Source Target

1 If
INDICATOR=XULADS.

Validity Period
start period=2007
end period=2009

Set
OBS_CONF=F

2 If
INDICATOR=XULADS.

Validity Period
start period=2010

Set
OBS_CONF=F

 3397
In Rule 1, start period resolves to the start of the 2007 period (2007-01-01T00:00:00), 3398
and the end period resolves to the very end of 2009 (2009-12-31T23:59:59). The rule 3399

108

will hold true regardless of the input data frequency. Any observations reporting data 3400
for the Indicator XULADS that fall into that time range will have an OBS_CONF value 3401
of F. 3402

In Rule 2, no end period is specified so remains in effect from the start of the period 3403
(2010-01-01T00:00:00) until the end of time. Any observations reporting data for the 3404
Indicator XULADS that fall into that time range will have an OBS_CONF value of C. 3405

12.10 Mapping examples 3406

12.10.1 Many to one mapping (N-1) 3407

Source Map To
FREQ="A"

ADJUSTMENT="N"

REF_AREA="PL"

COUNTERPART_AREA="W0"

REF_SECTOR="S1"

COUNTERPART_SECTOR="S1"

ACCOUNTING_ENTRY="B"

STO="B5G"

FREQ="A"

REF_AREA="PL"

COUNTERPART_AREA="W0"

INDICATOR="IND_ABC"

 3408

The bold Dimensions map from source to target verbatim. The mapping simply 3409
specifies: 3410
FREQ => FREQ 3411
REF_AREA=> REF_AREA 3412
COUNTERPART_AREA=> COUNTERPART _AREA 3413
 3414
No Representation Mapping is required. The source value simply copies across 3415
unmodified. 3416
 3417
The remaining Dimensions all map to the Indicator Dimension. This is an example of 3418
many Dimensions mapping to one Dimension. In this case a Representation 3419
Mapping is required, and the mapping first describes the input 'partial key' and how 3420
this maps to the target indicator: 3421
 3422
N:S1:S1:B:B5G => IND_ABC 3423
 3424
Where the key sequence is based on the order specified in the mapping (i.e 3425
ADJUSTMENT, REF_SECTOR, etc will result in the first value N being taken from 3426
ADJUSTMENT as this was the first item in the source Dimension list. 3427
 3428
Note: The key order is NOT based on the Dimension order of the DSD, as the mapping 3429
needs to be resilient to the DSD changing. 3430
 3431

12.10.2 Mapping other data types to Code Id 3432

In the case where the incoming data type is not a string and not a code identifier i.e. 3433
the source Dimension is of type Integer and the target is Codelist. This is supported by 3434
the RepresentationMap. The RepresentationMap source can reference a Codelist, 3435
Valuelist, or be free text, the free text can include regular expressions. 3436
The following representation mapping can be used to explicitly map each age to an 3437
output code. 3438

109

Source Input
Free Text

Desired Output
Code Id

0 A

1 A

2 A

3 B

4 B

 3439
If this mapping takes advantage of regular expressions it can be expressed in two 3440
rules: 3441

Regular Expression Desired Output

[0-2] A

[3-4] B

 3442

12.10.3 Observation Attributes for Time Period 3443

This use case is where a specific observation for a specific time period has an attribute 3444
value. 3445

Input INDICATOR Input TIME_PERIOD Output OBS_CONF

XULADS 2008 C

XULADS 2009 C

XULADS 2010 C

 3446
Or using a validity period on the Representation Mapping: 3447

Input INDICATOR Valid From/ Valid To Output OBS_CONF

XULADS 2008/2010 C

 3448

12.10.4 Time mapping 3449

This use case is to create a time period from an input that does not respect SDMX 3450
Time Formats. 3451
The Component Mapping from SYS_TIME to TIME_PERIOD specifies itself as a time 3452
mapping with the following details: 3453

Source Value Source Mapping Target Frequency Output

18/07/1981 dd/MM/yyyy A 1981

 3454
When the target frequency is based on another target Dimension value, in this example 3455
the value of the FREQ Dimension in the target DSD. 3456

Source Value Source Mapping Target Frequency
Dimension

Output

18/07/1981 dd/MM/yyyy FREQ 1981-07-18
(when FREQ=D)

 3457
When the source is a numerical format 3458

Source Value Start Period Interval Target
FREQ

Output

1589808220 1970 millisecond M 2020-05

 3459
 3460

110

When the source frequency is lower than the target frequency additional information 3461
can be provided for resolve to start of period, end of period, or mid period, as shown 3462
in the following example: 3463

Source Value Source Mapping Target Frequency
Dimension

Output

1981 yyyy D – End of Period 1981-12-31

 3464
When the start of year is April 1st the Structure Map has YearStart=04-01: 3465

Source Value Source Mapping Target Frequency
Dimension

Output

1981 yyyy D – End of Period 1982-03-31

 3466

111

13 ANNEX Semantic Versioning 3467

13.1 Introduction to Semantic Versioning 3468

In the world of versioned data modelling exists a dreaded place called "dependency 3469
hell." The bigger your data model through organisational, national or international 3470
harmonisation grows and the more artefacts you integrate into your modelling, the 3471
more likely you are to find yourself, one day, in this pit of despair. 3472
 3473
In systems with many dependencies, releasing new artefact versions can quickly 3474
become a nightmare. If the dependency specifications are too tight, you are in danger 3475
of version lock (the inability to upgrade an artefact without having to release new 3476
versions of every dependent artefact). If dependencies are specified too loosely, you 3477
will inevitably be bitten by version promiscuity (assuming compatibility with more future 3478
versions than is reasonable). Dependency hell is where you are when version lock 3479
and/or version promiscuity prevent you from easily and safely moving your data 3480
modelling forward. 3481
 3482
As a very successful solution to the similar problem in software development, 3483
"Semantic Versioning" semver.org proposes a simple set of rules and requirements 3484
that dictate how version numbers are assigned and incremented. These rules make 3485
also perfect sense in the world of versioned data modelling and help to solve the 3486
"dependency hell" encountered with previous versions of SDMX. SDMX 3.0 applies 3487
thus the Semantic Versioning rules on all versioned SDMX artefacts. Once you release 3488
a versioned SDMX artefact, you communicate changes to it with specific increments 3489
to your version number. 3490
 3491
This SDMX 3.0(.0) specification inherits the original semver.org 2.0.0 wording 3492
(license: Creative Commons - CC BY 3.0) and applies it to versioned SDMX 3493
structural artefacts. Under this scheme, version numbers and the way they change 3494
convey meaning about the underlying data structures and what has been modified from 3495
one version to the next. 3496
 3497

13.2 Semantic Versioning Specification for SDMX 3.0(.0) 3498

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 3499
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 3500
document are to be interpreted as described in RFC 2119. 3501
 3502
In the following, "versioned" artefacts are understood to be semantically versioned 3503
SDMX structural artefacts. 3504
 3505

• All versioned SDMX artefacts MUST specify a version number. 3506

• The version number of immutable versioned SDMX artefacts MUST take the 3507
form X.Y.Z where X, Y, and Z are non-negative integers and MUST NOT 3508
contain leading zeroes. X is the major version, Y is the minor version, and Z is 3509
the patch version. Each element MUST increase numerically. For instance: 3510
1.9.0 -> 1.10.0 -> 1.11.0. 3511

http://semver.org/
https://semver.org/
http://creativecommons.org/licenses/by/3.0/

112

• Once an SDMX artefact with an X.Y.Z version has been publicly released, the 3512
contents of that version MUST NOT be modified. That artefact version is 3513
considered stable. Any modifications MUST be released as a new version. 3514

• Major version zero (0.y.z) is for initial modelling. Anything MAY change at any 3515
time. The public artefact SHOULD NOT be considered stable. 3516

• Version 1.0.0 defines the first stable artefact. The way in which the version 3517
number is incremented after this release is dependent on how this public 3518
artefact changes. 3519

• Patch version Z (x.y.Z | x > 0) MUST be incremented if only backwards 3520
compatible property changes are introduced. A property change is defined as 3521
an internal change that does not affect the relationship to other artefacts. These 3522
are changes in the artefact's or artefact element's names, descriptions and 3523
annotations that MUST NOT alter their meaning. 3524

• Minor version Y (x.Y.z | x > 0) MUST be incremented if a new, backwards 3525
compatible element is introduced to a stable artefact. These are additional 3526
items in ItemScheme artefacts. It MAY be incremented if substantial new 3527
information is introduced within the artefact's properties. It MAY include patch 3528
level changes. Patch version MUST be reset to 0 when minor version is 3529
incremented. 3530

• Major version X (X.y.z | X > 0) MUST be incremented if any backwards 3531
incompatible changes are introduced to a stable artefact. These often relate to 3532
deletions of items in ItemSchemes or to backwards incompatibility introduced 3533
due to changes in references to other artefacts. A major version change MAY 3534
also include minor and patch level changes. Patch and minor version MUST be 3535
reset to 0 when major version is incremented. 3536

• A mutable version, e.g. used for public drafts or as pre-release, MUST be 3537
denoted by appending an Extension that consists of a hyphen and a series of 3538
dot separated identifiers immediately following the patch version (x.y.z-EXT). 3539
Identifiers MUST comprise only ASCII alphanumerics and hyphen [0-9A-Za-z-3540
]. Identifiers MUST NOT be empty. Numeric identifiers MUST NOT include 3541
leading zeroes. However, to foster harmonisation and general comprehension 3542
it is generally recommended to use the standard extension "-draft". Extended 3543
versions have a lower precedence than the associated stable version. An 3544
extended version indicates that the version is unstable and it might not satisfy 3545
the intended compatibility requirements as denoted by its associated stable 3546
version. When making changes to an SDMX artefact with an extended version 3547
number then one is not required to increment the version if those changes are 3548
kept within the allowed scope of the version increment from the previous 3549
version (if that existed), otherwise also here the before mentioned version 3550
increment rules for X.Y.Z apply. Concretely, a version X.0.0-EXT will allow for 3551
any changes, a version X.Y.0-EXT will allow only for minor changes and a 3552
version X.Y.Z-EXT will allow only for any patch changes, as defined above. 3553
Extension examples: 1.0.0-draft, 1.0.0-draft.1, 1.0.0-0.3.7, 1.0.0-x.7.z.92. 3554

• Precedence refers to how versions are compared to each other when ordered. 3555
Precedence MUST be calculated by separating the version into major, minor, 3556
patch and extension identifiers in that order. Precedence is determined by the 3557
first difference when comparing each of these identifiers from left to right as 3558
follows: Major, minor, and patch versions are always compared numerically. 3559

113

Example: 1.0.0 < 2.0.0 < 2.1.0 < 2.1.1. When major, minor, and patch are equal, 3560
an extended version has lower precedence than a stable version. Example: 3561
1.0.0-draft < 1.0.0. Precedence for two extended versions with the same major, 3562
minor, and patch version MUST be determined by comparing each dot 3563
separated identifier from left to right until a difference is found as follows: 3564
identifiers consisting of only digits are compared numerically and identifiers with 3565
letters or hyphens are compared lexically in ASCII sort order. Numeric 3566
identifiers always have lower precedence than non-numeric identifiers. A larger 3567
set of extension fields has a higher precedence than a smaller set, if all of the 3568
preceding identifiers are equal. Example: 1.0.0-draft < 1.0.0-draft.1 < 1.0.0-3569
draft.prerelease < 1.0.0-prerelease < 1.0.0-prerelease.2 < 1.0.0-prerelease.11 3570
< 1.0.0-rc.1 < 1.0.0. 3571

• The reasons for version changes MAY be documented in brief form in an 3572
artefact's annotation of type "CHANGELOG". 3573

 3574

13.3 Backus–Naur Form Grammar for Valid SDMX 3.0(.0) 3575

Semantic Versions 3576

<valid semver> ::= <version core> 3577
 | <version core> "-" <extension> 3578
 3579
<version core> ::= <major> "." <minor> "." <patch> 3580
 3581
<major> ::= <numeric identifier> 3582
 3583
<minor> ::= <numeric identifier> 3584
 3585
<patch> ::= <numeric identifier> 3586
 3587
<extension> ::= <dot-separated extension identifiers> 3588
 3589
<dot-separated extension identifiers> ::= <extension identifier> 3590
 | <extension identifier> "." <dot-3591
separated extension identifiers> 3592
 3593
<extension identifier> ::= <alphanumeric identifier> 3594
 | <numeric identifier> 3595
 3596
<alphanumeric identifier> ::= <non-digit> 3597
 | <non-digit> <identifier characters> 3598
 | <identifier characters> <non-digit> 3599
 | <identifier characters> <non-digit> <identifier 3600
characters> 3601
 3602
<numeric identifier> ::= "0" 3603
 | <positive digit> 3604
 | <positive digit> <digits> 3605
 3606
<identifier characters> ::= <identifier character> 3607
 | <identifier character> <identifier characters> 3608
 3609
<identifier character> ::= <digit> 3610
 | <non-digit> 3611
 3612
<non-digit> ::= <letter> 3613
 | "-" 3614
 3615
<digits> ::= <digit> 3616

114

 | <digit> <digits> 3617
 3618
<digit> ::= "0" 3619
 | <positive digit> 3620
 3621
<positive digit> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" 3622
 3623
<letter> ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" 3624
 | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" 3625
 | "U" | "V" | "W" | "X" | "Y" | "Z" | "a" | "b" | "c" | "d" 3626
 | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" 3627
 | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" 3628
 | "y" | "z" 3629

 3630

13.4 Dependency Management in SDMX 3.0(.0): 3631

MAJOR, MINOR or PATCH version parts in SDMX 3.0 artefact references CAN be 3632

wildcarded using "+" as extension: 3633

• X+.Y.Z means the currently latest available version >= X.Y.Z 3634

o Example: "2+.3.1" means the currently latest available version >= 3635

"2.3.1" (even if not backwards compatible) 3636

o Typical use case: references in SDMX Categorisations 3637

• X.Y+.Z means the currently latest available backwards compatible version >= 3638
X.Y.Z 3639

o Example: "2.3+.1" means the currently latest available version >= 3640

"2.3.1" and < "3.0.0" (all backwards compatible versions >= 3641

"2.3.1") 3642

o Typical use case: references in SDMX DSD 3643

• X.Y.Z+ means the currently latest available forwards and backwards 3644

compatible version >= X.Y.Z 3645

o Example: "2.3.1+" means the currently latest available version >= 3646

"2.3.1" and < "2.4.0" (all forwards and backwards compatible 3647

versions >= "2.3.1") 3648

• Non-versioned and 2-digit version SDMX structural artefacts CAN reference 3649
any other non-versioned or versioned (whether SemVer or not) SDMX 3650
structural artefacts. 3651

 3652

• Semantically versioned artefacts MUST only reference other semantically 3653
versioned artefacts. 3654

• Wildcarded references in a stable artefact implicitly target only future stable 3655
versions of the referenced artefacts within the defined wildcard scope. 3656

o Example: The reference to "AGENCY_ID:CODELIST_ID(2.3+.1)" 3657

in an artefact "AGENCY_ID:DSD_ID(2.2.1)" resolves to artefact 3658

"AGENCY_ID:CODELIST_ID(2.4.3)" if that was currently the latest 3659

available stable version. 3660

115

• Wildcarded references in a version-extended artefact implicitly target future 3661
stable and version-extended versions of the referenced artefacts within the 3662
defined wildcard scope. 3663

o Example: The reference to "AGENCY_ID:CODELIST_ID(2.3+.1)" 3664

in an artefact "AGENCY_ID:DSD_ID(2.2.1-draft)" resolves to 3665

artefact "AGENCY_ID:CODELIST_ID(2.5.0-draft)" if that was 3666

currently the latest available version. 3667

• References to specific version-extended artefacts MAY be used, but those 3668
cannot be combined with a wildcard. 3669

o Example: The reference to "AGENCY_ID:CODELIST_ID(2.5.0-3670

draft)" in an artefact "AGENCY_ID:DSD_ID(2.2.1)" resolves to 3671

artefact "AGENCY_ID:CODELIST_ID(2.5.0-draft)", which might 3672

be subject to continued backwards compatible changes. 3673

Because both, wildcarded references and references to version-extended artefacts, 3674
allow for changes in the referenced artefacts, care needs to be taken when choosing 3675
the appropriate references in order to achieve the required limitation in the allowed 3676
scope of changes. 3677
 3678

13.5 Upgrade and conversions of artefacts defined with 3679

previous SDMX standard versions to Semantic Versioning 3680

Because SDMX standardises the interactions between statistical systems, which 3681
cannot all be upgraded at the same time, the new versioning rules cannot be applied 3682
to existing artefacts in EDIFACT, SDMX 1.0, 2.0 or 2.1. SemVer can only be applied 3683
to structural artefacts that are newly modelled with the SDMX 3.0 Information Model. 3684
Migrating to SemVer means migrating to the SDMX 3.0 Information Model, to its new 3685
API version and new versions of its exchange message formats. 3686
 3687
To migrate SDMX structural artefacts created previously to SDMX 3.0.0: 3688
 3689
If the artefacts do not need versioning, then the new artefacts based on the SDMX 3.0 3690
Information Model SHOULD be made version-less, e.g., a previous artefact with the 3691
non-final version 1.0 and that doesn't need versioning becomes non-versioned. This 3692
will be the case for all AgencyScheme artefacts. 3693

 3694
If artefact versioning is required and SDMX 3.0.0 Semantic Versioning is available 3695
within the tools and processes used, then it is recommended to switch to Semantic 3696
Versioning with the following steps: 3697

1. Complement the missing version parts with 0s to make the version number 3698
SemVer-compliant using the MAJOR.MINOR.PATCH-EXTENSION syntax: 3699

Example: Version 2 becomes version 2.0.0 and version 3.1 becomes version 3700
3.1.0. 3701

14. Replace the "isFinal=false" property by the version extensions "-3702

draft" (or alternatively "-unstable" or "-nonfinal" depending 3703

on the use case). 3704

116

Example: Version 1.3 with isFinal=true becomes version 1.3.0 and version 3705

1.3 with isFinal=false becomes version 1.3.0-draft. 3706

If artefact versioning is required but semantic versioning cannot be applied, then 3707
version strings used in previous versions of the Standard (e.g., version=1.2) may 3708
continue to be used. 3709
 3710
Note: Like for other not fully backwards compatible SDMX 3.0 features, also some 3711
cases of semantically versioned SDMX 3.0 artefacts cannot be converted back to 3712
earlier SDMX versions. This is the case when one or more extensions have been 3713
created in parallel to the corresponding stable version. In this case, only the stable 3714
version SHOULD be converted to a final version (e.g., 3.2.1 becomes 3.2.1 final, and 3715
3.2.1-draft cannot be converted back). 3716
 3717

13.6 FAQ for Semantic Versioning 3718

My organisation is new to SDMX and starts to implement 3.0 or starts to 3719
implement a new process fully based on SDMX 3.0. Which versioning scheme 3720
should be used? 3721
 3722
If all counterparts involved in the process and all tools used for its implementation are 3723
SDMX 3.0-ready, then it is recommended to: 3724

• in general, use semantic versioning; 3725

• exceptionally, do not use versioning for artefacts that do not require it, e.g. 3726
artefacts that never change, that are only used internally or for which 3727
communication on changes with external parties or systems is not required. 3728

 3729
How should I deal with revisions in the 0.y.z initial modelling phase? 3730
 3731
The simplest thing to do is start your initial modelling release at 0.1.0 and then 3732
increment the minor version for each subsequent release. 3733
 3734
How do I know when to release 1.0.0? 3735
 3736
If your data model is being used in production, it should probably already be 1.0.0. If 3737
you have a stable artefact on which users have come to depend, you should be 1.0.0. 3738
If you're worrying a lot about backwards compatibility, you should probably already be 3739
1.0.0. 3740
 3741
Doesn't this discourage rapid modelling and fast iteration? 3742
 3743
Major version zero is all about rapid modelling. If you're changing the artefact every 3744
day you should either still be in version 0.y.z or on the next (minor or) major version 3745
for a separate modelling. 3746
 3747
If even the tiniest backwards incompatible changes to the public artefact require 3748
a major version bump, won't I end up at version 42.0.0 very rapidly? 3749
 3750
This is a question of responsible modelling and foresight. Incompatible changes should 3751
not be introduced lightly to a data model that has a lot of dependencies. The cost that 3752

117

must be incurred to upgrade can be significant. Having to bump major versions to 3753
release incompatible changes means you will think through the impact of your 3754
changes, and evaluate the cost/benefit ratio involved. 3755
 3756
Documenting the version changes in an artefact's annotation of type 3757
"CHANGELOG" is too much work! 3758
 3759
It is your responsibility as a professional modeller to properly document the artefacts 3760
that are intended for use by others. Managing data model complexity is a hugely 3761
important part of keeping a project efficient, and that's hard to do if nobody knows how 3762
to use your data model, or what artefacts are safe to reuse. In the long run, SDMX 3.0 3763
Semantic Versioning can keep everyone and everything running smoothly. 3764
However, refrain from overdoing. Nobody can and will read too long lists of changes. 3765
Thus, keep it to the absolute essence, and mainly use it for short announcements. You 3766
can even skip the changelog if the change is impact-less. For all complete reports, a 3767
new API feature could be more useful to automatically generate a log of differences 3768
between two versions. 3769
 3770
What do I do if I accidentally release a backwards incompatible change as a 3771
minor version? 3772
 3773
As soon as you realise that you've broken the SDMX 3.0 Semantic Versioning 3774
specification, fix the problem and release a new minor version that corrects the 3775
problem and restores backwards compatibility. Even under this circumstance, it is 3776
unacceptable to modify versioned releases. If it's appropriate, document the offending 3777
version and inform your users of the problem so that they are aware of the offending 3778
version. 3779
 3780
What if I inadvertently alter the public artefact in a way that is not compliant with 3781
the version number change (i.e. the modification incorrectly introduces a major 3782
breaking change in a patch release)? 3783
 3784
Use your best judgement. If you have a huge audience that will be drastically impacted 3785
by changing the behaviour back to what the public artefact intended, then it may be 3786
best to perform a major version release, even though the property change could strictly 3787
be considered a patch release. Remember, SDMX 3.0.0 Semantic Versioning is all 3788
about conveying meaning by how the version number changes. If these changes are 3789
important to your users, use the version number to inform them. 3790
 3791
How should I handle deprecating elements? 3792
 3793
Deprecating existing elements is a normal part of data modelling and is often required 3794
to make forward progress or follow history (changing classifications, evolving reference 3795
areas). When you deprecate part of your stable artefact, you should issue a new minor 3796
version with the deprecation in place (e.g. add the new country code but still keep the 3797
old country code) and with a "CHANGELOG" annotation announcing the deprecation 3798
(e.g. the intention to remove the old country code in a future version) . Before you 3799
completely remove the functionality in a new major release there should be at least 3800
one minor release that contains the deprecation so that users can smoothly transition 3801
to the new artefact. 3802
 3803
Does SDMX 3.0.0 Semantic Versioning have a size limit on the version string? 3804

118

 3805
No, but use good judgement. A 255 character version string is probably overkill, for 3806
example. In addition, specific SDMX implementations may impose their own limits on 3807
the size of the string. Remember, it is generally recommended to use the standard 3808
extension "-draft". 3809
 3810
Is "v1.2.3" a semantic version? 3811
 3812
No, "v1.2.3" is not a semantic version. The semantic version is "1.2.3". 3813
 3814
Is there a suggested regular expression (RegEx) to check an SDMX 3.0.0 3815
Semantic Versioning string? 3816
 3817
There are two: 3818
 3819
One with named groups for those systems that support them (PCRE [Perl Compatible 3820
Regular Expressions, i.e. Perl, PHP and R], Python and Go). 3821
 3822
Reduced version (without original SemVer "build metadata") from: 3823
https://regex101.com/r/Ly7O1x/3/ 3824
 3825
^(?P<major>0|[1-9]\d*)\.(?P<minor>0|[1-9]\d*)\.(?P<patch>0|[1-3826
9]\d*)(?:-(?P<extension>(?:0|[1-9]\d*|\d*[a-zA-Z-][0-9a-zA-Z-3827
]*)(?:\.(?:0|[1-9]\d*|\d*[a-zA-Z-][0-9a-zA-Z-]*))*))?$ 3828

 3829
And one with numbered capture groups instead (so cg1 = major, cg2 = minor, cg3 = 3830
patch and cg4 = extension) that is compatible with ECMA Script (JavaScript), PCRE 3831
(Perl Compatible Regular Expressions, i.e. Perl, PHP and R), Python and Go. 3832
 3833
Reduced version (without original SemVer "build metadata") from: 3834
https://regex101.com/r/vkijKf/1/ 3835
 3836
^(0|[1-9]\d*)\.(0|[1-9]\d*)\.(0|[1-9]\d*)(?:-((?:0|[1-3837
9]\d*|\d*[a-zA-Z-][0-9a-zA-Z-]*)(?:\.(?:0|[1-9]\d*|\d*[a-zA-Z-3838
][0-9a-zA-Z-]*))*))?$ 3839

 3840
Must I adopt semantic versioning rules when switching to SDMX 3.0? 3841
 3842
No. If backwards compatibility with pre-existing tools and processes is required, then 3843
it is possible to continue using the previous versioning scheme (with up to two version 3844
parts MAJOR.MINOR). Semantic versioning is indicated only for those use cases 3845
where a proper artefact versioning is required. If versioning does not apply to some or 3846
all of your artefacts, then rather migrate to non-versioned SDMX 3.0 artefacts. 3847
 3848
May I mix artefacts that follow semantic versioning with artefacts that don't? 3849
 3850
Artefacts that are not (semantically) versioned may reference artefacts that are 3851
semantically versioned, but those are fully safe to use only when not extended. 3852
However, the reverse is not true: non-semantically-versioned artefacts do not offer 3853
change guarantees, and, therefore, should not be referenced by semantically 3854
versioned artefacts. 3855
 3856

https://regex101.com/r/Ly7O1x/3/
https://regex101.com/r/vkijKf/1/

119

I have plenty of artefacts. I'm happy with my current versioning policy and I don't 3857
want to use SemVer! Can I still migrate to SDMX 3.0, and if so, what do I need to 3858
do? 3859
 3860
Yes, of course, you can. The introduction of semantic versioning is done in a way which 3861
is largely backward compatible with previous versions of the standard, so you can keep 3862
your existing 2-digit version numbers (1.0, 1.1, 2.0, etc.) if that is required by your 3863
current tools and processes. However, if not using SemVer then pre-SDMX 3.0 final 3864
artefacts will be migrated as non-final and mutable in SDMX 3.0. There are also many 3865
good reasons to move to SemVer, and the migration is encouraged. Be assured that 3866
there will be tools out there that will assist you doing this in an efficient and convenient 3867
way. 3868
 3869
I have plenty of artefacts versioned 'X.Y'. I want to make some of them 3870
immutable, and enjoy the benefits provided by semantic versioning. Some other 3871
artefacts however must remain mutable (i.e. non final). However, in both cases, 3872
I'd like adopt the semantic versioning. What do I need to do? 3873
 3874
For artefacts that will be made immutable and are therefore safe to use, simply append 3875
a '.0' to the current version (use X.Y.0) when migrating to Semantic Versioning. E.g., if 3876
the version of your artefact is currently 1.10, then migrate to 1.10.0. 3877
 3878
For artefacts that remain mutable, and therefore do not bring the guarantees of 3879
semantic versioning, if you want to benefit from the advantages of semantic versioning, 3880
then simply append '.0-notfinal' to the version string. So, if the version of your artefact 3881
is currently 1.10, use 1.10.0-notfinal instead. Indeed, other extensions can be used 3882
depending on your use case. 3883
 3884
I have adopted SDMX 3.0 with the semantic versioning conventions for the 3885
version strings of all my artefacts, regardless of whether these are stable (e.g. 3886
1.0.0) or unstable (e.g. 1.0.0-notfinal, 1.0.0-draft, etc.). However, I still receive 3887
artefacts from organizations that have not yet adopted SemVer conventions for 3888
the version strings. How should I treat these? 3889
 3890
The only artefacts that are safe to use, are those that are semantically versioned. 3891
Starting with SDMX 3.0, these artefacts MUST use the SEMVER version string to 3892
indicate this fact and the version string of these artefacts MUST be expressed as X.Y.Z 3893
(e.g. 2.1.0). Extended versions bring some limited guarantees for changes. 3894
 3895
All other artefacts are in principle unsafe. They might be safe in practice but the SDMX 3896
standard does not bring any guarantees in that respect, and these artefacts may 3897
change in unpredictable ways. 3898
 3899
In practice, the migration approach will often mirror the way in which organisations 3900
have migrated between earlier SDMX versions. Rarely, the new data models used 3901
mixed SDMX standard versions in their dependencies, and if they did then standard 3902
conversions were put in place. A typical method is to first migrate the re-used artefacts 3903
from the previous SDMX version to SDMX 3.0 and while doing so to apply the 3904
appropriate new semantic version string. From that point onwards, you can enjoy the 3905
advantages of the new SDMX versioning features for all those artefacts that require 3906
appropriate versioning. 3907

