
SDMX STANDARDS: SECTION 2

INFORMATION MODEL:
UML CONCEPTUAL DESIGN

Version 3.1

May 2025

© SDMX 2025
http://www.sdmx.org/

Revision History
Revision Date Contents
DRAFT 1.0 December

2025
Draft release updated for SDMX 3.1 for public consultation

1.0 May 2025 Public Release for SDMX 3.1

http://www.sdmx.org/

 3

Contents
1 Introduction .. 15

1.1 Related Documents 15
1.2 Modelling Technique and Diagrammatic Notes 15
1.3 Overall Functionality 16

1.3.1 Information Model Packages .. 16
1.3.2 Version 1.0 ... 17
1.3.3 Version 2.0/2.1 ... 17
1.3.4 Version 3.0 ... 18
1.3.5 Version 3.1 ... 19

2 Actors and Use Cases ... 20
2.1 Introduction 20
2.2 Use Case Diagrams 20

2.2.1 Maintenance of Structural and Provisioning Definitions 20
2.2.2 Publishing and Using Data and Reference Metadata .. 24

3 SDMX Base Package ... 28
3.1 Introduction 28
3.2 Base Structures - Identification, Versioning, and Maintenance 29

3.2.1 Class Diagram .. 29
3.2.2 Explanation of the Diagram .. 30

3.3 Basic Inheritance 33
3.3.1 Class Diagram – Basic Inheritance from the Base Inheritance Classes 33
3.3.2 Explanation of the Diagram .. 33

3.4 Data Types 34
3.4.1 Class Diagram .. 34
3.4.2 Explanation of the Diagram .. 35

3.5 The Item Scheme Pattern 35
3.5.1 Context ... 35
3.5.2 Class Diagram .. 36
3.5.3 Explanation of the Diagram .. 36

3.6 The Structure Pattern 38
3.6.1 Context ... 38
3.6.2 Class Diagrams .. 39
3.6.3 Explanation of the Diagrams .. 40

4 Specific Item Schemes .. 46
4.1 Introduction 46
4.2 Inheritance View 46
4.3 Codelist 47

4.3.1 Class Diagram .. 47
4.3.2 Explanation of the Diagram .. 47
4.3.3 Class Diagram – Codelist Extension .. 49
4.3.4 Class Diagram – Geospatial Codelist ... 50

4.4 ValueList 54
4.4.1 Class Diagram .. 54
4.4.2 Explanation of the Diagram .. 54

4.5 Concept Scheme and Concepts 56
4.5.1 Class Diagram - Inheritance ... 56
4.5.2 Explanation of the Diagram .. 56
4.5.3 Class Diagram - Relationship ... 58
4.5.4 Explanation of the diagram ... 58

4.6 Category Scheme 59

 4

4.6.1 Context ... 59
4.6.2 Class diagram - Inheritance ... 60
4.6.3 Explanation of the Diagram .. 61
4.6.4 Class diagram - Relationship ... 62

4.7 Organisation Scheme 63
4.7.1 Class Diagram .. 63
4.7.2 Explanation of the Diagram .. 64

4.8 Reporting Taxonomy 67
4.8.1 Class Diagram .. 67
4.8.2 Explanation of the Diagram .. 68

5 Data Structure Definition and Dataset ... 71
5.1 Introduction 71
5.2 Inheritance View 72

5.2.1 Class Diagram .. 72
5.2.2 Explanation of the Diagram .. 73

5.3 Data Structure Definition – Relationship View 74
5.3.1 Class Diagram .. 74
5.3.2 Explanation of the Diagrams .. 75

5.4 Data Set – Relationship View 83
5.4.1 Context ... 83
5.4.2 Class Diagram .. 84
5.4.3 Explanation of the Diagram .. 85

6 Cube .. 93
6.1 Context 93
6.2 Support for the Cube in the Information Model 93

7 Metadata Structure Definition and Metadata Set .. 95
7.1 Context 95
7.2 Inheritance 95

7.2.1 Introduction ... 95
7.2.2 Class Diagram - Inheritance ... 96
7.2.3 Explanation of the Diagram .. 96

7.3 Metadata Structure Definition 97
7.3.1 Introduction ... 97
7.3.2 Structures Already Described ... 97
7.3.3 Class Diagram – Relationship .. 97
7.3.4 Explanation of the Diagram .. 97

7.4 Metadata Set 101
7.4.1 Class Diagram .. 101
7.4.2 Explanation of the Diagram .. 101

8 Hierarchy .. 106
8.1 Scope 106
8.2 Inheritance 107

8.2.1 Class Diagram .. 107
8.2.2 Explanation of the Diagram .. 107

8.3 Relationship 108
8.3.1 Class Diagram .. 108
8.3.2 Explanation of the Diagram .. 108

9 Structure Map .. 111
9.1 Scope 111

9.1.1 Class Diagram – Relationship .. 111
9.1.2 Explanation of the Diagram .. 111
9.1.3 Class Diagram – Epoch Mapping and Date Pattern Mapping 112

 5

9.1.4 Explanation of the Diagram .. 113
10 RepresentationMap ... 116

10.1 Scope 116
10.1.1 Class Diagram – Relationship .. 117
10.1.2 Explanation of the Diagram .. 117

11 ItemSchemeMap .. 120
11.1 Scope 120

11.1.1 Explanation of the Diagram .. 120
12 Constraints ... 123

12.1 Scope 123
12.2 Inheritance 123

12.2.1 Class Diagram of Constrainable Artefacts - Inheritance 123
12.2.2 Explanation of the Diagram .. 123

12.3 Constraints 124
12.3.1 Relationship Class Diagram – high level view .. 124
12.3.2 Explanation of the Diagram .. 124
12.3.3 Relationship Class Diagram – Detail .. 126

13 Data Provisioning .. 134
13.1 Class Diagram 134
13.2 Explanation of the Diagram 135

13.2.1 Narrative ... 135
13.2.2 Definitions ... 136

14 Process ... 139
14.1 Introduction 139
14.2 Model – Inheritance and Relationship view 139

14.2.1 Class Diagram .. 139
14.2.2 Explanation of the Diagram .. 139

15 Validation and Transformation Language ... 143
15.1 Introduction 143
15.2 Model - Inheritance view 143

15.2.1 Class Diagram .. 143
15.2.2 Explanation of the Diagram .. 144

15.3 Model - Relationship View 146
15.3.1 Class Diagram .. 146
15.3.2 Explanation of the Diagram .. 146

16 Appendix 1: A Short Guide to UML in the SDMX Information Model 158
16.1 Scope 158
16.2 Use Cases 158
16.3 Classes and Attributes 159

16.3.1 General ... 159
16.3.2 Abstract Class .. 159

16.4 Associations 160
16.4.1 General ... 160
16.4.2 Simple Association ... 160
16.4.3 Aggregation .. 161
16.4.4 Association Names and Association-end (role) Names 161
16.4.5 Navigability ... 162
16.4.6 Inheritance .. 162
16.4.7 Derived association .. 163

 6

Change History
Version 1.0 – initial release September 2004. 1
 2
Version 2.0 – release November 2005 3
 4
Major functional enhancements by addition of new packages: 5
 6

Metadata Structure Definition 7

Metadata Set 8

Hierarchical Code Scheme 9

Data and Metadata Provisioning 10

Structure Set and Mappings 11

Transformations and Expressions 12

Process and Transitions 13

Re-engineering of some SDMX Base structures to give more functionality: 14
 15

Item Scheme and Item can have properties – this gives support for complex hierarchical 16
code schemes (where the property can be used to sequence codes in scheme), and 17
Item Scheme mapping tables (where the property can give additional information about 18
the map between the two schemes and the between two Items) 19

revised Organisation pattern to support maintained schemes of organisations, such as a 20
data provider 21

modified Component Structure pattern to support identification of roles played by 22
components and the attachment of attributes 23

change to inheritance to enable more artefacts to be identifiable and versionable 24

Introduction of new types of Item Scheme: 25
 26

• Object Type Scheme to specify object types in support of the Metadata Structure 27
Definition (principally the object types (classes) in this Information Model) 28

• Type Scheme to specify types other than object type 29
• A generic Item Scheme Association to specify the association between Items in two or 30

more Item Schemes, where such associations cannot be described in the Structure Set 31
and Transformation. 32

The Data Structure Definition is introduced as a synonym for Key Family though the term Key 33
Family is retained and used in this specification. 34
 35
Modification to Data Structure Definition (DSD) to 36
 37

align the cross sectional structures with the functionality of the schema 38

 7

support Data Structure Definition extension (i.e. to derive and extend a Data Structure 39
Definition from another Data Structure Definition), thus supporting the definition of a 40
related “set” of key families 41

distinguish between data attributes (which are described in a Data Structure Definition) from 42
metadata attributes (which are described in a metadata structure definition) 43

attach data attributes to specific identifiable artefacts (formally this was supported by 44
attachable artefact) 45

Domain Category Scheme re-named Category Scheme to better reflect the multiple usage of 46
this type of scheme (e.g. subject matter domain, reporting taxonomy). 47
 48
Concept Scheme enhanced to allow specification of the representation of the Concept. This 49
specification is the default (or core) representation and can be overridden by a construct that 50
uses it (such as a Dimension in a Data Structure Definition). 51
 52
Revision of cross sectional data set to reflect the functionality of the version 1.0 schema. 53
 54
Revision of Actors and Use Cases to reflect better the functionality supported. 55
 56
Version 2.1 – release April 2011 57
 58
The purpose of this revision is threefold: 59
 60

• To introduce requested changes to functionality 61
• To align the model and syntax implementations more closely (note, however, that the 62

model remains syntax neutral) 63
• To correct errors in version 2.0 64

 65
SDMX Base 66
Basic inheritance and patterns 67
 68

1. The following attributes are added to Maintainable: 69
 70

i) isExternalReference 71
ii) structure URL 72
iii) serviceURL 73

 74
2. Added Nameable Artefact and moved the Name and Description associations from 75

Identifiable Artefact to Nameable Artefact. This allows an artefact to be identified (with 76
id and urn) without the need to specify a Name. 77

 78
3. Removed any inheritance from Versionable Artefact with the exception of Maintainable 79

Artefact – this means that only Maintainable objects can be versioned, and objects 80
contained in a maintainable object cannot be independently versioned. 81

 82
4. Renamed MaintenanceAgency to Agency 0 this is its name in the schema and the URN. 83

 84
5. Removed abstract class Association as a subclass of Item (as these association types 85

are not maintained in Item Schemes). Specific associations are modelled explicitly (e.g. 86
Categorisation, ItemScheme, Item). 87

 8

 88
6. Added ActionType to data types. 89
 90
7. Removed Coded Artefact and Uncoded Artefact and all subclasses (e.g. Coded Data 91

Attribute and Uncoded Data Attribute) as the “Representation” is more complex than just 92
a distinction between coded and uncoded. 93

 94
8. Added Representation to the Component. Removed association to Type. 95
 96
9. Removed concept role association (to Item) as roles are identified by a relationship to a 97

Concept. 98
 99

10. Removed abstract class Attribute as both Data Attribute and Metadata Attribute have 100
different properties. Data Attribute and Metadata Attribute inherit directly from 101
Component. 102

 103
11. isPartial attribute added to Item Scheme to support partial Item Schemes (e.g. partial 104

Code list). 105
 106
Representation 107
 108

1. Removed interval and enumeration from Facet. 109
2. added facetValueType to Facet. 110
3. Re-named DataType to facetValueType. 111
4. Added observationalTimePeriod, inclusiveValueRange and exclusiveValueRange to 112

facetValueType. 113
5. Added ExtendedFacetType as a sub class of FacetType. This includes Xhtml as a 114

facet type to support this as an allowed representation for a Metadata Attribute 115
 116
Organisations 117

1. Organisation Role is removed and replaced with specific Organisation Schemes of 118
Agency, Data Provider, Data Consumer, Organisation Unit. 119

 120
Mapping (Structure Maps) 121
 122
Updated Item Scheme Association as follows: 123
 124

1. Renamed to Item Scheme Map to reflect better the sub classes and relate better to the 125
naming in the schema. 126
 127

2. Removed inheritance of Item Scheme Map from Item Scheme, and inherited directly 128
from Nameable Artefact. 129
 130

3. Item Association inherits from Identifiable Artefact. 131
 132

4. Removed Property from the model as this is not supported in the schema. 133
 134

5. Removed association type between Item Scheme Map and Item, and Association and 135
Item. 136

 137
6. Removed Association from the model. 138

 139

 9

7. Made Item Association a sub class of Identifiable, was a sub class Item. 140
 141

8. Removed association to Property from both Item Scheme Map and Item. 142
 143

9. Added attribute alias to both Item Scheme Association and Item Association. 144
 145

10. Made Item Scheme Map and Item Association abstract. 146
 147

11. Added sub-classes to Item Scheme Map – there is a subclass for each type of Item 148
Scheme Association (e.g. Code list Map). 149

 150
12. Added mapping between Reporting Taxonomy as this is an Item Scheme and can be 151

mapped in the same way as other Item Schemes. 152
 153
13. Added Hybrid Code list Map and Hybrid Code Map to support code mappings between 154

a Code list and a Hierarchical Code list. 155
 156
Mapping: Structure Map 157
 158

1. This is a new diagram. Essentially removed inherited /hierarchy association between the 159
various maps, as these no longer inherit from Item, and replaced the associations to the 160
abstract Maintainable and Versionable Artefact classes with the actual concrete classes. 161

 162
2. Removed associations between Code list Map, Category Scheme Map, and Concept 163

Scheme Map and made this association to Item Scheme Map. 164
 165

3. Removed hierarchy of Structure Map. 166
 167

Concept 168
 169

1. Added association to Representation. 170
 171
Data Structure Definition 172
 173

1. Added Measure Dimension to support structure-specific renderings of the DSD. The 174
Measure Dimension is associated to a Concept Scheme that specifies the individual 175
measures that are valid. 176

 177
2. The three types of “Dimension”, - Dimension, Measure Dimension, Time Dimension – 178

have a super class – Dimension Component 179
 180

3. Added association to a Concept that defines the role that the component (Dimension, 181
Data Attribute, Measure Dimension) plays in the DSD. This replaces the Boolean 182
attributes on the components. 183
 184

4. Added Primary Measure and removed this as role of Measure. 185
 186

5. Deleted the derived Data Structure Definition association from Data Structure Definition 187
to itself as this is not supported directly in DSD. 188

 189
6. Deleted attribute GroupKeyDescriptor.isAttachmentConstraint and replaced with an 190

association to an Attachment Constraint. 191

 10

 192
7. Replaced association from Data Attribute to Attachable Artefact with association to 193

Attribute Relationship. 194
 195

8. Added a set of classes to support Attribute Relationship. 196
 197

9. Renamed KeyDescriptor to DimensionDescriptor to better reflect its purpose. 198
 199

10. Renamed GroupKeyDescriptor to GroupDimensionDescriptor to better reflect its 200
purpose. 201

 202
Code list 203
 204

1. CodeList classname changed to Codelist. 205
 206
2. Removed codevalueLength from Codelist as this is supported by Facet. 207

 208
3. Removed hierarchyView association between Code and Hierarchy as this association is 209

not implemented. 210
 211
Metadata Structure Definition(MSD) 212
 213

1. Full Target Identifier, Partial Target Identifier, and Identifier Component are replaced by 214
Metadata Target and Target Object. Essentially this eliminates one level of specification 215
and reference in the MSD, and so makes the MSD more intuitive and easier to specify 216
and to understand. 217

 218
2. Re-named Identifiable Object Type to Identifiable Object Target and moved to the MSD 219

package. 220
 221

3. Added sub classes to Target Object as these are the actual types of object to which 222
metadata can be attached. These are Identifiable Object Target (allows reporting of 223
metadata to any identifiable object), Key Descriptor Values Target (allows reporting of 224
metadata for a data series key, Data Set Target (allows reporting of metadata to a data 225
set), and Reporting Period Target (allows the metadata set to specify a reporting period). 226

 227
4. Allowed Target Object can have any type of Representation, this was restricted in 228

version 2.0 to an enumerated representation in the model (but not in the schemas). 229
 230

5. Removed Object Type Scheme (as users cannot maintain their own list of object types), 231
and replaced with an enumeration of Identifiable Objects. 232

 233
6. Removed association between Metadata Attribute and Identifiable Artefact and replaced 234

this with an association between Report Structure and Metadata Target, and allowed 235
one Report Structure to reference more than on Metadata Target. This allowing a single 236
Report Structure to be defined for many object types. 237

 238
7. Added the ability to specify that a Metadata Attribute can be repeated in a Metadata Set 239

and that a Metadata Attribute can be specified as “presentational” meaning that it is 240
present for structural and presentational purposes, and will not have content in a 241
Metadata Set. 242

 243

 11

8. The Representation of a Metadata Attribute uses Extended Facet (to support Xhtml). 244
 245
Metadata Set 246
 247

1. Added link to Data Provider - 0..1 but note that for metadata set registration this will be 248
1. 249

 250
2. Removed Attribute Property as the underlying Property class has been removed. 251

 252
3. One Metadata Set is restricted to reporting metadata for a single MSD. 253

 254
4. The Metadata Report classes are re-structured and re-named to be consistent with the 255

renaming and restructuring of the MSD. 256
 257

5. Metadata Attribute Value is renamed Reported Attribute to be consistent with the 258
schemas. 259
 260

6. Deleted XML attribute and Contact Details from the inheritance diagram. 261
 262

Category Scheme 263
1. Added Categorisation. Category no longer has a direct association to Dataflow and 264

Metadataflow. 265
 266
2. Changed Reporting Taxonomy inheritance from Category Scheme to Maintainable 267

Artefact. 268
 269
3. Added Reporting Category and associated this to Structure Usage. 270

 271
Data Set 272
 273

1. Removed the association to Provision Agreement from the diagram. 274
 275
2. Added association to Data Structure Definition. This association was implied via the 276

dataflow but this is optional in the implementation whereas the association to the Data 277
Structure Definition is mandatory. 278

 279
3. Added attributes to Data Set. 280

 281
4. There is a single, unified, model of the Data Set which supports four types of data set: 282

 283
• Generic Data Set – for reporting any type of data series, including time series 284

and what is sometimes known as “cross sectional data”. In this data set, the value 285
of any one dimension (including the Time Dimension) can be reported with the 286
observation (this must be for the same dimension for the entire data set) 287

 288
• Structure-specific Data Set – for reporting a data series that is specific to a DSD 289

 290
• Generic Time Series Data Set – this is identical to the Generic Data Set except 291

it must contain only time series, which means that a value for the Time Dimension 292
is reported with the Observation 293

 294

 12

• Structure-specific Time Series Data Set - this is identical to the Structure-specific 295
Data Set except it must contain only time series, which means that a value for 296
the Time Dimension is reported with the Observation. 297

 298
5. Removed Data Set as a sub class of Identifiable – but note that Data Set has a “setId” 299

attribute. 300
 301

6. Added coded and uncoded variants of Key Value, Observation, and Attribute Value in 302
order to show the relationship between the coded values in the data set and the Codelist 303
in the Data Structure Definition. 304

 305
7. Made Key Value abstract with sub classes for coded, uncoded, measure 306

(MeasureKeyValue) ads time (TimeKeyValue) The Measure Key Value is associated to 307
a Concept as it must take its identify from a Concept. 308

 309
XSDataSet 310

1. This is removed and replaced with the single, unified data set model. 311
 312
Constraint 313

 314
1. Constraint is made Maintainable (was Identifiable). 315

 316
2. Added artefacts that better support and distinguish (from data) the constraints for 317

metadata. 318
 319

3. Added Constraint Role to specify the purpose of the Constraint. The values are allowable 320
content (for validation of sub set code code lists), and actual content (to specify the 321
content of a data or metadata source). 322

 323
Process 324

1. Removed inheritance from Item Scheme and Item: Process inherits directly from 325
Maintainable and Process Step from Identifiable. 326

 327
2. Removed specialisation association between Transition and Association. 328

 329
3. Removed Transition Scheme - transitions are explicitly specified and not maintained as 330

Items in a Item Scheme. 331
 332

4. Removed Expression and replaced with Computation. 333
 334

5. Transition is associated to Process Step and not Process itself. Therefore the source 335
association to Process Step is removed. 336

 337
6. Removed Expressions as these are not implemented in the schemas. But note that the 338

Transformations and Expressions model is retained, though it is not implemented in the 339
schemas. 340

 341
Hierarchical Codelist 342
 343

1. Renamed HierarchicalCodeList to HierarchicalCodelist. 344

 13

2. This is re-modelled to reflect more accurately the way this is implemented: this is as an 345
actual hierarchy rather than a set of relational associations from which the hierarchy can 346
be derived. 347

 348
3. Code Association is re-named Hierarchical Code and the association type association 349

to Code is removed (as these association types are not maintained in an Item Scheme). 350
 351

4. Hierarchical Code is made an aggregate of Hierarchy, and not of Hierarchical Codelist. 352
 353

5. Removed root node in the Hierarchy – there can be many top-level codes in Hierarchical 354
Code. 355

 356
6. Added reference association between Hierarchical Code and Level to indicate the Level 357

if the Hierarchy is a level based hierarchy. 358
 359
Provisioning and Registration 360

1. Data Provider and Provision Agreement have an association to Datasource (was Query 361
Datasource), as the association is to any of Query Datasource and Simple Datasource. 362
 363

2. Provision Agreement is made Maintainable and indexing attributes moved to 364
Registration 365
 366

3. Registration has a registry assigned Id and indexing attributes. 367
Version 2.1 (Revision 2.0) – release June 2020 368
 369
The package 13, previously named “Expressions and Transformations” is completely 370
reformulated, renamed as “Validation and Transformation Language” and implemented also in 371
the other Sections of the SDMX standards for actual use. 372
 373
Version 3.0 – release September 2021 374
 375
New Maintainable Artefacts 376
• Structure Map 377
• Representation Map 378
• Organisation Scheme Map 379
• Concept Scheme Map 380
• Category Scheme Map 381
• Reporting Taxonomy Map 382
• Value List 383
• Hierarchy 384
• Hierarchy Association 385
• Metadata Constraint 386
• Data Constraint 387
• Metadata Provision Agreement 388
• Metadata Provider Scheme 389
• Metadataset 390
 391

 14

New Identifiable Artefacts 392
• GeoFeatureSetCode 393
• GeoGridCode 394
• Metadata Provider 395

 396
Removed Maintainable Artefacts 397
• Structure Set – replaced by Structure Map and the four item scheme maps 398
• Hierarchical Codelist – replaced by Hierarchy and Hierarchy Association 399
• Constraint – replaced by Data Constraint and Metadata Constraint 400
 401
Changed Maintainable Artefacts 402
• Data Structure Definition – support for microdatasets and reference metadata linked to data 403
• Metadataflow – simplifies exchange of reference metadata, in particular those linked to 404

structures 405
• Metadata Structure Definition – simplified model for reference metadata 406
• Codelist – support for codelist extension and geospatial specialised codelists 407

(GeographicCodelist, GeoGridCodelist) 408
• VTL Mapping Scheme – VTL Concept Mapping Scheme removed to align the VTL / SDMX 409

interface with the 3.0 model 410
 411

New Component Representation Types 412
• GeospatialInformation – a string type where the value is an expression defining a set of 413

geographical features using a purpose-designed syntax 414
 415
Version 3.1 – release March 2025 416
 417
Changed Maintainable Artefacts 418

• Availability Constraint no longer a Maintainable, inherits from Annotatable 419
• Categorisation – added a fixed version of 1.0 420
• Data Constraint 421

o Advanced Release Calendar: removed 422
o Attachment: removed data source attachments 423

• Data Structure new property: Evolving Structure 424
• Dataflow new property: Dimension Constraint 425

 426

 15

1 Introduction 427

This document is not normative but provides a detailed view of the information model on which 428
the normative SDMX specifications are based. Those new to the UML notation or to the concept 429
of Data Structure Definitions may wish to read the appendixes in this document as an 430
introductory exercise. 431

1.1 Related Documents 432
This document is one of two documents concerned with the SDMX Information Model. The 433
complete set of documents is: 434
 435
• SDMX SECTION 02 INFORMATION MODEL: UML CONCEPTUAL DESIGN (this 436

document): This document comprises the complete definition of the information model, with 437
the exception of the registry interfaces. It is intended for technicians wishing to understand 438
the complete scope of the SDMX technical standards in a syntax neutral form. 439

• SDMX SECTION 05 REGISTRY SPECIFICATION: LOGICAL INTERFACES: This 440
document provides the logical specification for the registry interfaces, including 441
subscription/notification, registration/submission of data and metadata, and querying. 442

1.2 Modelling Technique and Diagrammatic Notes 443
The modelling technique used for the SDMX Information Model (SDMX-IM) is the Unified 444
Modelling Language (UML). An overview of the constructs of UML that are used in the SDMX-445
IM can be found in the Appendix “A Short Guide to UML in the SDMX Information Model” 446
 447
UML diagramming allows a class to be shown with or without the compartments for one or both 448
of attributes and operations (sometimes called methods). In this document the operations 449
compartment is not shown as there are no operations. 450
 451

Figure 1 Class with operations suppressed

 452
In some diagrams for some classes the attribute compartment is suppressed even though there 453
may be some attributes. This is deliberate and is done to aid clarity of the diagram. The method 454
used is: 455
 456
• The attributes will always be present on the class diagram where the class is defined and its 457

attributes and associations are defined. 458
• On other diagrams, such as inheritance diagrams, the attributes may be suppressed from 459

the class for clarity. 460
 461

Figure 2 Class with attributes also suppressed

 462

ExtendedFacet
facetType : ExtendedFacetType
facetValue : String
facetValueType : ExtendedFacetType

ExtendedFacet

 16

Note that, in any case, attributes inherited from a super class are not shown in the sub class. 463
 464
The following table structure is used in the definition of the classes, attributes, and associations. 465
 466
Class Feature Description
ClassName
 attributeName
 associationName
 +roleName

 467
The content in the “Feature” column comprises or explains one of the following structural 468
features of the class: 469
 470
• Whether it is an abstract class. Abstract classes are shown in italic Courier font. 471
• The superclass this class inherits from, if any. 472
• The sub classes of this class, if any. 473
• Attribute – the attributeName is shown in Courier font. 474
• Association – the associationName is shown in Courier font. If the association is 475

derived from the association between super classes, then the format is 476
/associationName. 477

• Role – the +roleName is shown in Courier font. 478
 479
The Description column provides a short definition or explanation of the Class or Feature. UML 480
class names may be used in the description and if so, they are presented in normal font with 481
spaces between words. For example, the class ConceptScheme will be written as Concept 482
Scheme. 483

1.3 Overall Functionality 484

1.3.1 Information Model Packages 485
The SDMX Information Model (SDMX-IM) is a conceptual metamodel from which syntax specific 486
implementations are developed. The model is constructed as a set of functional packages which 487
assist in the understanding, re-use and maintenance of the model. 488
 489
In addition to this, to aid understanding each package can be considered to be in one of three 490
conceptual layers: 491
 492

the SDMX Base layer comprises fundamental building blocks which are used by the 493
Structural Definitions layer and the Reporting and Dissemination layer 494

the Structural Definitions layer comprises the definition of the structural artefacts needed to 495
support data and metadata reporting and dissemination 496

the Reporting and Dissemination layer comprises the definition of the data and metadata 497
containers used for reporting and dissemination 498

In reality the layers have no implicit or explicit structural function as any package can make use 499
of any construct in another package. 500

 17

1.3.2 Version 1.0 501
In version 1.0 the metamodel supported the requirements for: 502
 503

Data Structure Definition including (domain) category scheme, (metadata) concept scheme, 504
and code list 505

 506
Data and related metadata reporting and dissemination 507

The SDMX-IM comprises a number of packages. These packages act as convenient 508
compartments for the various sub models in the SDMX-IM. The diagram below shows the sub 509
models of the SDMX-IM that were included in the version 1.0 specification. 510

 511
Figure 3: SDMX Information Model Version 1.0 package structure 512

1.3.3 Version 2.0/2.1 513
The version 2.0/2.1 model extends the functionality of version 1.0. principally in the area of 514
metadata, but also in various ways to define structures to support data analysis by systems with 515
knowledge of cube type structures such as OLAP1 systems. The following major constructs have 516
been added at version 2.0/2.1 517
 518

Metadata structure definition 519

Metadata set 520

Hierarchical Codelist 521

Data and Metadata Provisioning 522

Process 523

Mapping 524

Constraints 525

Constructs supporting the Registry 526

1 OLAP: On line analytical processing

 18

Furthermore, the term Data Structure Definition replaces the term Key Family: as both of these 527
terms are used in various communities, they are synonymous. The term Data Structure 528
Definition is used in the model and this document. 529

Figure 4 SDMX Information Model Version 2.0/2.1 package structure

Additional constructs that are specific to a registry-based scenario can be found in the 530
Specification of Registry Interfaces. For information these are shown on the diagram below and 531
comprise: 532
 533

• Subscription and Notification 534
• Registration 535
• Discovery 536

Note that the data and metadata required for registry functions are not confined to the registry, 537
and the registry also makes use of the other packages in the Information Model. 538

 539
Figure 5: SDMX Information Model Version 2.0/2.1 package structure including the registry 540

1.3.4 Version 3.0 541
The version 3.0 model introduces changes in the way reference metadata are handled. In 542
addition, it includes a few more artefacts. Finally, a few abstractions have been added, as shown 543
in section “Basic Inheritance” in “Figure 11: Basic Inheritance from the Base Structures”. 544
 545
The IM packages are largely the same. 546
 547

 19

 548
Figure 6: SDMX Information Model version 3.0 package structure 549

1.3.5 Version 3.1 550
Whilst some additional properties have been added to Dataflow, DSD, Data Constraint, SDMX 551
v3.1 does not change the high level information model, it remains as it is in Figure 6. 552

 20

2 Actors and Use Cases 553

2.1 Introduction 554
In order to develop the data models, it is necessary to understand the functions to be supported 555
resulting from the requirements definition. These are defined in a use case model. The use case 556
model comprises actors and use cases and these are defined below. 557
 558
Actor 559
“An actor defines a coherent set of roles that users of the system can play when interacting with 560
it. An actor instance can be played by either an individual or an external system” 561
 562
Use case 563
“A use case defines a set of use-case instances, where each instance is a sequence of actions 564
a system performs that yields an observable result of value to a particular actor” 565
 566
The overall intent of the model is to support data and metadata reporting, dissemination, and 567
exchange in the field of aggregated statistical data and related metadata. In order to achieve 568
this, the model needs to support three fundamental aspects of this process: 569
 570

• Maintenance of structural and provisioning definitions 571
• Data and reference metadata publishing (reporting), and consuming (using) 572
• Access to data, reference metadata, and structural and provisioning definitions 573

This document covers the first two aspects, whilst the document on the Registry logical model 574
covers the last aspect. 575

2.2 Use Case Diagrams 576

2.2.1 Maintenance of Structural and Provisioning Definitions 577

2.2.1.1 Use cases 578
 579

Maintain Metadataflow
 Definition

Maintain Dataflow
 Definition

Maintain Category
Scheme

Maintain Code
 List

Maintain Hierarchical
 Code Scheme

Maintain Data Structure Definition

Maintain Metadata
Structure Definition

Maintain
Structure Set

Maintenance
Agency

Maintain Reporting
 Taxonomy

Maintain Maintenance
 Agency SchemeCommunity

Administrator
(from Actors)

Maintain Structure Definitions
Structural Definitions
Maintenance Agency

Maintain Provision Agreement
Provisioning Definitions
 Maintenance Agency

MaintainConcepts

MaintainProcess

Maintain Organisation Scheme

Maintain Constraints

 21

Figure 7 Use cases for maintaining data and metadata structural and provisioning definitions

2.2.1.2 Explanation of the Diagram 580
In order for applications to publish and consume data and reference metadata it is necessary 581
for the structure and permitted content of the data and reference metadata to be defined and 582
made available to the applications, as well as definitions that support the actual process of 583
publishing and consuming. This is the responsibility of a Maintenance Agency. 584
 585
All maintained artefacts are maintained by a Maintenance Agency. For convenience the 586
Maintenance Agency actor is sub divided into two actor roles: 587
 588
• maintaining structural definitions 589
• maintaining provisioning definitions 590
 591
Whilst both these functions may be carried out by the same person, or at least by the same 592
maintaining organization, the purpose of the definitions is different and so the roles have been 593
differentiated: structural definitions define the format and permitted content of data and 594
reference metadata when reported or disseminated, whilst provisioning definitions support the 595
process of reporting and dissemination (who reports what to whom, and when). 596
 597
In a community-based scenario where at least the structural definitions may be shared, it is 598
important that the scheme of maintenance agencies is maintained by a responsible organization 599
(called here the Community Administrator), as it is important that the Id of the Maintenance 600
Agency is unique. 601

2.2.1.3 Definitions 602
Actor Use Case Description

 Responsible organisation
that administers structural
definitions common to the
community as a whole.

Creation and maintenance of
the top-level scheme of
maintenance agencies for
the Community.

 Responsible agency for
maintaining structural
artefacts such as code lists,
concept schemes, Data
Structure Definition structural
definitions, metadata
structure definitions, data
and metadata provisioning

Community
Administrator

Maintain Maintenance
 Agency Scheme

Maintenance Agency

 22

Actor Use Case Description

artefacts such as provision
agreement, and sub-
maintenance agencies.

sub roles are:
Structural Definitions
Maintenance Agency
Provisioning Definitions
Maintenance Agency

 Responsible for maintaining
structural definitions.

The maintenance of
structural definitions. This
use case has sub class use
cases for each of the
structural artefacts that are
maintained.

Creation and maintenance of
the Data Structure Definition,
Metadata Structure
Definition, and the supporting
artefacts that they use, such
as code list and concepts

Structural Definitions
Maintenance Agency

Maintain Structure Definitions

Maintain Code
 List

MaintainConcepts

Maintain Category
Scheme

Maintain Data Structure Definition

Maintain Metadata
Structure Definition

Maintain Hierarchical
 Code Scheme

 23

Actor Use Case Description

This includes Agency, Data
Provider, Data Consumer,
and Organisation Unit
Scheme

 Responsible for maintaining
data and metadata
provisioning definitions.

The maintenance of
provisioning definitions.

Figure 8: Table of Actors and Use Cases for Maintenance of Structural and Provisioning 603
Definitions 604

Maintain Reporting
 Taxonomy

Maintain Organisation Scheme

MaintainProcess

Maintain Dataflow
 Definition

Maintain Metadataflow
 Definition

Provisioning Definitions
 Maintenance Agency

Maintain Provision Agreement

 24

2.2.2 Publishing and Using Data and Reference Metadata 605

2.2.2.1 Use Cases 606

 607
Figure 9: Actors and use cases for data and metadata publishing and consuming 608

2.2.2.2 Explanation of the Diagram 609
Note that in this diagram “publishing” data and reference metadata is deemed to be the same 610
as “reporting” data and reference metadata. In some cases the act of making the data available 611
fulfils both functions. Aggregated data is published and in order for the Data Publisher to do this 612
and in order for consuming applications to process the data and reference metadata its structure 613
must be known. Furthermore, consuming applications may also require access to reference 614
metadata in order to present this to the Data Consumer so that the data is better understood. 615
As with the data, the reference metadata also needs to be formatted in accordance with a 616
maintained structure. The Data Consumer and Metadata Consumer cannot use the data or 617
reference metadata unless it is “published” and so there is a “data source” or “metadata source” 618
dependency between the “uses” and “publish” use cases. 619
 620
In any data and reference metadata publishing and consuming scenario both the publishing and 621
the consuming applications will need access to maintained Provisioning Definitions. These 622
definitions may be as simple as who provides what data and reference metadata to whom, and 623
when, or it can be more complex with constraints on the data and metadata that can be provided 624
by a particular publisher, and, in a data sharing scenario where data and metadata are “pulled” 625
from data sources, details of the source. 626

Publish Reference
Metadata

Metadata Publisher

Data and metadata are published and
used according to the specifications
of the structural definitions which
define format and permitted content,
and the provisioning definitions which
define the process of making the data
and metadata available for
consumption

Data Consumer

Metadata
Consumer

Uses Data

Uses Reference Metadata

<<extend>>

Publish DataData Publisher

data source

metadata source

 25

2.2.2.3 Definitions 627
Actor Use Case Description

 Responsible for publishing
data according to a specified
Data Structure Definition
(data structure) definition,
and relevant provisioning
definitions.

Publish a data set. This
could mean a physical data
set or it could mean to make
the data available for access
at a data source such as a
database that can process a
query.

 The user of the data. It may
be a human consumer
accessing via a user
interface, or it could be an
application such as a
statistical production system.

Use data that is formatted
according to the structural
definitions and made
available according to the
provisioning definitions.
Data are often linked to
metadata that may reside in
a different location and be
published and maintained
independently.

 Responsible for publishing
reference metadata
according to a specified
metadata structure definition,
and relevant provisioning
definitions.

Publish a reference
metadata set. This could
mean a physical metadata
set or it could mean to make
the reference metadata
available for access at a
metadata source such as a
metadata repository that can
process a query.

Data Publisher

Publish Data

Data Consumer

Uses Data

Metadata Publisher

Publish Reference
Metadata

 26

Actor Use Case Description

 The user of the reference
metadata. It may be a human
consumer accessing via a
user interface, or it could be
an application such as a
statistical production or
dissemination system.

Use reference metadata that
is formatted according to the
structural definitions and
made available according to
the provisioning definitions.

 628

Metadata Consumer

Uses Reference Metadata

 27

629

 28

3 SDMX Base Package 630

3.1 Introduction 631
The constructs in the SDMX Base package comprise the fundamental building blocks that 632
support many of the other structures in the model. For this reason, many of the classes in this 633
package are abstract (i.e., only derived sub-classes can exist in an implementation). 634
 635
The motivation for establishing the SDMX Base package is as follows: 636
 637

it is accepted “Best Practise” to identify fundamental archetypes occurring in a model 638

identification of commonly found structures or “patterns” leads to easier understanding 639

identification of patterns encourages re-use 640

Each of the class diagrams in this section views classes from the SDMX Base package from a 641
different perspective. There are detailed views of specific patterns, plus overviews showing 642
inheritance between classes, and relationships amongst classes. 643
 644

 29

3.2 Base Structures - Identification, Versioning, and Maintenance 645

3.2.1 Class Diagram 646

 647
Figure 10: SDMX Identification, Maintenance and Versioning

 648

 30

3.2.2 Explanation of the Diagram 649

3.2.2.1 Narrative 650
This group of classes forms the nucleus of the administration facets of SDMX objects. They 651
provide features which are reusable by derived classes to support horizontal functionality such 652
as identity, versioning etc. 653
 654
All classes derived from the abstract class AnnotableArtefact may have Annotations (or 655
notes): this supports the need to add notes to all SDMX-ML elements. The Annotation is used 656
to convey extra information to describe any SDMX construct. This information may be in the 657
form of a URL reference and/or a multilingual text (represented by the association to 658
InternationalString). 659
 660
The IdentifiableArtefact is an abstract class that comprises the basic attributes needed 661
for identification. Concrete classes based on IdentifiableArtefact all inherit the ability to 662
be uniquely identified. 663
 664
The NamableArtefact is an abstract class that inherits from IdentifiableArtefact and 665
in addition the +description and +name roles support multilingual descriptions and names 666
for all objects based on NameableArtefact. The InternationalString supports the 667
representation of a description in multiple locales (locale is similar to language but includes 668
geographic variations such as Canadian French, US English etc.). The LocalisedString 669
supports the representation of a description in one locale. 670
 671
VersionableArtefact is an abstract class which inherits from NameableArtefact and 672
adds versioning ability to all classes derived from it, as explained in the SDMX versioning rules 673
in SDMX Standards Section 6 “Technical Notes”, paragraph “4.3 Versioning”. 674
 675
MaintainableArtefact further adds the ability for derived classes to be maintained via its 676
association to an Organisation, and adds locational information (i.e., from where the object 677
can be retrieved). 678
 679
The inheritance chain from AnnotableArtefact through to MaintainableArtefact 680
allows SDMX classes to inherit the features they need, from simple annotation, through identity, 681
naming, to versioning and maintenance. 682
 683

3.2.2.2 Definitions 684
Class Feature Description
AnnotableArtefact Base inheritance sub

classes are:
IdentifiableArtefact

Objects of classes derived from
this can have attached
annotations.

Annotation Additional descriptive information
attached to an object.

 id Identifier for the Annotation. It can
be used to disambiguate one
Annotation from another where
there are several Annotations for
the same annotated object.

 31

Class Feature Description
 title A title used to identify an

annotation.
 type Specifies how the annotation is to

be processed.
 url A link to external descriptive text.
 value A non-localised version of the

Annotation content.
 +url An International URI provides a set

of links that are language specific,
via this role.

 +text An International String provides the
multilingual text content of the
annotation via this role.

InternationalUri The International Uri is a collection
of Localised URIs and supports
linking to external descriptions in
multiple locales.

LocalisedUri The Localised URI supports the
link to an external description in
one locale (locale is similar to
language but includes geographic
variations such as Canadian
French, US English etc.).

IdentifiableArtefact Superclass is
AnnotableArtefact

Base inheritance sub
classes are:
NameableArtefact

Provides identity to all derived
classes. It also provides
annotations to derived classes
because it is a subclass of
Annotable Artefact.

 id The unique identifier of the object.
 uri Universal resource identifier that

may or may not be resolvable.
 urn Universal resource name – this is

for use in registries: all registered
objects have a urn.

NameableArtefact Superclass is
IdentifiableArtefact
Base inheritance sub
classes are:
VersionableArtefact

Provides a Name and Description
to all derived classes in addition to
identification and annotations.

 +description A multi-lingual description is
provided by this role via the
International String class.

 +name A multi-lingual name is provided by
this role via the International String
class

 32

Class Feature Description
InternationalString The International String is a

collection of Localised Strings and
supports the representation of text
in multiple locales.

LocalisedString The Localised String supports the
representation of text in one locale
(locale is similar to language but
includes geographic variations
such as Canadian French, US
English etc.).

 label Label of the string.
 locale The geographic locale of the string

e.g French, Canadian French.
VersionableArtefact Superclass is

NameableArtefact
Base inheritance sub
classes are:
MaintainableArtefact

Provides versioning information for
all derived objects.

 version A version string following SDMX
versioning rules.

 validFrom Date from which the version is valid
 validTo Date from which version is

superseded
MaintainableArtefact Inherits from

VersionableArtefact

An abstract class to group together
primary structural metadata
artefacts that are maintained by an
Agency.

 isExternalReference If set to “true” it indicates that the
content of the object is held
externally.

 structureURL The URL of an SDMX-ML
document containing the external
object.

 serviceURL The URL of an SDMX-compliant
web service from which the
external object can be retrieved.

 +maintainer Association to the Maintenance
Agency responsible for maintaining
the artefact.

Agency See section on “Organisations”
 685

 33

3.3 Basic Inheritance 686

3.3.1 Class Diagram – Basic Inheritance from the Base Inheritance Classes 687

 688
Figure 11: Basic Inheritance from the Base Structures 689

3.3.2 Explanation of the Diagram 690

3.3.2.1 Narrative 691
The diagram above shows the inheritance within the base structures. The concrete classes are 692
introduced and defined in the specific package to which they relate. 693

 34

3.4 Data Types 694

3.4.1 Class Diagram 695
 696

Figure 12: Class Diagram of Basic Data Types 697

 35

3.4.2 Explanation of the Diagram 698

3.4.2.1 Narrative 699
The FacetType and FacetValueType enumerations are used to specify the valid format of 700
the content of a non-enumerated Concept or the usage of a Concept when specified for use 701
on a Component on a Structure (such as a Dimension in a 702
DataStructureDefinition). The description of the various types can be found in the 703
chapter on ConceptScheme (section 4.5). 704
 705
The ActionType enumeration is used to specify the action that a receiving system should take 706
when processing the content that is the object of the action. It is enumerated as follows: 707
 708
• Append: Data or metadata is an incremental update for an existing data/metadata set or the 709

provision of new data or documentation (attribute values) formerly absent. If any of the 710
supplied data or metadata is already present, it will not replace that data or metadata. This 711
corresponds to the "Update" value found in version 1.0 of the SDMX Technical Standards. 712

• Replace: Data/metadata is to be replaced and may also include additional data/metadata 713
to be appended. 714

• Delete: Data/Metadata is to be deleted. 715
• Information: Data and metadata are for information purposes. 716
 717
The ToValueType data type contains the attributes to support transformations defined in the 718
StructureMap (see Section 0). 719
 720
The ConstraintRoleType data type contains the attributes that identify the purpose of a 721
Constraint (allowableContent, actualContent). 722
 723
The ComponentRoleType data type contains the predefined Concept roles that can be 724
assigned to any Component. 725
 726
The CascadeValues data type contains the possible values for a MemberValue within a 727
CubeRegion, in order to enable cascading to all children Codes of a selected Code, while 728
including/excluding the latter in the selection. 729
 730
The VersionType data types provides the details for versioning according to SDMX versioning 731
rules, as explained in SDMX Standards Section 6, paragraph “4.3 Versioning”. 732

3.5 The Item Scheme Pattern 733

3.5.1 Context 734
The Item Scheme is a basic architectural pattern that allows the creation of list schemes for use 735
in simple taxonomies, for example. 736
 737
The ItemScheme is the basis for CategoryScheme, Codelist, ConceptScheme, 738
ReportingTaxonomy, OrganisationScheme, TransformationScheme, 739
CustomTypeScheme, NamePersonalisationScheme, RulesetScheme, 740
VtlMappingScheme and UserDefinedOperatorScheme. 741

 36

3.5.2 Class Diagram 742

Figure 13 The Item Scheme pattern

3.5.3 Explanation of the Diagram 743

3.5.3.1 Narrative 744
The ItemScheme is an abstract class which defines a set of Item (this class is also abstract). 745
Its main purpose is to define a mechanism which can be used to create taxonomies which can 746
classify other parts of the SDMX Information Model. It is derived from 747
MaintainableArtefact which gives it the ability to be annotated, have identity, naming, 748
versioning and be associated with an Agency. An example of a concrete class is a 749
ConceptScheme. The associated Concepts are Items. 750
 751
In an exchange environment an ItemScheme is allowed to contain a sub-set of the Items in 752
the maintained ItemScheme. If such an ItemScheme is disseminated with a sub-set of the 753
Items then the fact that this is a sub-set is denoted by setting the isPartial attribute to 754
"true". 755

 37

 756
A “partial” ItemScheme cannot be maintained independently in its partial form i.e., it cannot 757
contain Items that are not present in the full ItemScheme and the content of any one Item 758
(e.g., names and descriptions) cannot deviate from the content in the full ItemScheme. 759
Furthermore, the id of the ItemScheme where isPartial is set to "true" is the same as the 760
id of the full ItemScheme (agencyId, id, version). This is important as this is the id that 761
that is referenced in other structures (e.g., a Codelist referenced in a DSD) and this id is 762
always the same, regardless of whether the disseminated ItemScheme is the full ItemScheme 763
or a partial ItemScheme. 764
 765
The purpose of a partial ItemScheme is to support the exchange and dissemination of a sub-766
set ItemScheme without the need to maintain multiple ItemSchemes which contain the same 767
Items. For instance, when a Codelist is used in a DataStructureDefinition it is 768
sometimes the case that only a sub-set of the Codes in a Codelist are relevant. In this case 769
a partial Codelist can be constructed using the Constraint mechanism explained later in this 770
document. 771
 772
Item inherits from NameableArtefact which gives it the ability to be annotated and have 773
identity, and therefore has id, uri and urn attributes, a name and a description in the form of 774
an InternationalString. Unlike the parent ItemScheme, the Item itself is not a 775
MaintainableArtefact and therefore cannot have an independent Agency (i.e., it implicitly 776
has the same agencyId as the ItemScheme). 777
 778
The Item can be hierarchic and so one Item can have child Items. The restriction of the 779
hierarchic association is that a child Item can have only parent Item. 780
 781

3.5.3.2 Definitions 782
Class Feature Description
ItemScheme Inherits from:

MaintainableArtefact
Direct sub classes are:
CategoryScheme
ConceptScheme
Codelist
ReportingTaxonomy
OrganisationScheme
TransformationScheme
CustomTypeScheme
NamePersonalisationSc
heme
RulesetScheme
VtlMappingScheme
UserDefinedOperatorSc
heme

The descriptive information
for an arrangement or
division of objects into
groups based on
characteristics, which the
objects have in common.

 isPartial Denotes whether the Item
Scheme contains a subset
of the full set of Items in the
maintained scheme.

 38

Class Feature Description
 /items Association to the Items in

the scheme.
Item Inherits from:

NameableArtefact
Direct sub classes are
Category
Concept
Code
ReportingCategory
Organisation
Transformation
CustomType
NamePersonalisation
Ruleset
VtlMapping
UserDefinedOperator

The Item is an item of
content in an Item Scheme.
This may be a node in a
taxonomy or ontology, a
code in a code list etc.
Node that at the conceptual
level the Organisation is not
hierarchic.

 hierarchy This allows an Item
optionally to have one or
more child Items.

3.6 The Structure Pattern 783

3.6.1 Context 784
The Structure Pattern is a basic architectural pattern which allows the specification of complex 785
tabular structures which are often found in statistical data (such as Data Structure Definition, 786
and Metadata Structure Definition). A Structure is a set of ordered lists. A pattern to underpin 787
this tabular structure has been developed, so that commonalities between these structure 788
definitions can be supported by common software and common syntax structures. 789

 39

3.6.2 Class Diagrams 790

 791
Figure 14: The Structure Pattern 792

 40

 793

 794
Figure 15: Representation within the Structure Pattern 795

 796

3.6.3 Explanation of the Diagrams 797

3.6.3.1 Narrative 798
The Structure is an abstract class which contains a set of one or more ComponentList(s) 799
(this class is also abstract). An example of a concrete Structure is 800
DataStructureDefinition. 801
 802
The ComponentList is a list of one or more Component(s). The ComponentList has 803
several concrete descriptor classes based on it: DimensionDescriptor, 804
GroupDimensionDescriptor, MeasureDescriptor, and AttributeDescriptor of 805
the DataStructureDefinition and MetadataAttributeDescriptor of the 806
MetadataStructureDefinition. 807
 808
The Component is contained in a ComponentList. The type of Component in a 809
ComponentList is dependent on the concrete class of the ComponentList as follows: 810
 811
DimensionDescriptor: Dimension, TimeDimension 812
GroupDimensionDescriptor: Dimension, TimeDimension 813
MeasureDescriptor: Measure 814

 41

AttributeDescriptor: DataAttribute, MetadataAttributeRef 815
MetadataAttributeDescriptor: MetadataAttribute 816
 817
Each Component takes its semantic (and possibly also its representation) from a Concept in 818
a ConceptScheme. This is represented by the conceptIdentity association to Concept. 819
 820
The Component may also have a localRepresentation. This allows a concrete class, such 821
as Dimension, to specify its representation which is local to the Structure in which it is 822
contained (for Dimension this will be DataStructureDefinition), and thus overrides any 823
coreRepresentation specified for the Concept. 824
 825
The Representation can be enumerated or non-enumerated. The valid content of an 826
enumerated representation is specified either in an ItemScheme which can be one of 827
Codelist, ValueList or GeoCodelist. The valid content of a non-enumerated 828
representation is specified as one or more Facet(s) (for example, these may specify minimum 829
and maximum values). For any Attribute this is achieved by one of more 830
ExtendedFacet(s), which allow the additional representation of XHTML. 831
 832
The types of representation that are valid for specific components is expressed in the model as 833
a constraint on the association: 834
 835
• The Dimension, DataAttribute, Measure, MetadataAttribute may be enumerated 836

and, if so, use an EnumeratedList. 837
• The Dimension and Measure may be non-enumerated and, if so, use one or more 838

Facet(s), note that the FacetValueType applicable to the TimeDimension is restricted 839
to those that represent time. 840

• The MetadataAttribute and DataAttribute may be non-enumerated and, if so, use 841
one or more ExtendedFacet(s). 842

 843
The Structure may be used by one or more StructureUsage(s). An example of this, in 844
terms of concrete classes, is that a Dataflow (sub class of StructureUsage) may use a 845
particular DataStructureDefinition (sub class of Structure), and similar constructs 846
apply for the Metadataflow (link to MetadataStructureDefinition). 847

3.6.3.2 Definitions 848
Class Feature Description
StructureUsage Inherits from:

MaintainableArtefact
Sub classes are:
Dataflow
Metadataflow

An artefact whose
components are described
by a Structure. In concrete
terms (sub-classes) an
example would be a
Dataflow which is linked to
a given structure – in this
case the Data Structure
Definition.

 structure An association to a
Structure specifying the
structure of the artefact.

 42

Class Feature Description
Structure Inherits from:

MaintainableArtefact
Sub classes are:
DataStructureDefinition
MetadataStructureDefinit
ion

Abstract specification of a
list of lists to define a
complex tabular structure. A
concrete example of this
would be statistical
concepts, code lists, and
their organisation in a data
or metadata structure
definition, defined by a
centre institution, usually for
the exchange of statistical
information with its
partners.

 grouping A composite association to
one or more component
lists.

ComponentList Inherits from:
IdentifiableArtefact
Sub classes are:
DimensionDescriptor
GroupDimensionDescriptor
MeasureDescriptor
AttributeDescriptor
MetadataAttributeDescrip
tor

An abstract definition of a
list of components. A
concrete example is a
Dimension Descriptor,
which defines the list of
Dimensions in a Data
Structure Definition.

 components An aggregate association to
one or more components
which make up the list.

Component Inherits from:
IdentifiableArtefact
Sub classes are:
Measure
AttributeComponent
DimensionComponent

A Component is an abstract
super class used to define
qualitative and quantitative
data and metadata items
that belong to a Component
List and hence a Structure.
Component is refined
through its sub-classes.

 conceptIdentity Association to a Concept in
a Concept Scheme that
identifies and defines the
semantic of the
Component.

 localRepresentation Association to the
Representation of the
Component if this is
different from the
coreRepresentation of the
Concept, which the
Component uses
(ConceptUsage).

 43

Class Feature Description
Representation The allowable value or

format for Component or
Concept

 +enumerated Association to an
enumerated list that
contains the allowable
content for the Component
when reported in a data or
metadata set. The type of
enumerated list that is
allowed for any concrete
Component is shown in the
constraints on the
association.

 +nonEnumerated Association to a set of
Facets that define the
allowable format for the
content of the Component
when reported in a data or
metadata set.

Facet Defines the format for the
content of the Component
when reported in a data or
metadata set.

 facetType A specific content type,
which is constrained by the
Facet Type enumeration.

 facetValueType The format of the value of a
Component when reported
in a data or metadata set.
This is constrained by the
Facet Value Type
enumeration.

 +itemSchemeFacet Defines the format of the
identifiers in an Item
Scheme used by a
Component. Typically, this
would define the number of
characters (length) of the
identifier.

ExtendedFacet This has the same function
as Facet but allows
additionally an XHTML
representation. This is
constrained for use with a
Metadata Attribute and a
Data Attribute.

 849
The specification of the content and use of the sub classes to ComponentList and Component 850
can be found in the section in which they are used (DataStructureDefinition and 851

 44

MetadataStructureDefinition). Moreover, the FacetType SentinelValues is 852
explained in the datastructure representation diagram (see 5.3.2.2), since it only concerns 853
DataStructureDefinitions. 854

3.6.3.3 Representation Constructs 855
The majority of SDMX FacetValueTypes are compatible with those found in XML Schema, 856
and have equivalents in most current implementation platforms: 857
 858
SDMX Facet
Value Type

XML Schema
Data Type

JSON Schema
Data Type

.NET Framework
Type

Java Data Type

String xsd:string string System.String java.lang.String
Big Integer xsd:integer integer System.Decimal java.math.BigInteger
Integer xsd:int integer System.Int32 int
Long xsd.long integer System.Int64 long
Short xsd:short integer System.Int16 short
Decimal xsd:decimal number System.Decimal java.math.BigDecimal
Float xsd:float number System.Single float
Double xsd:double number System.Double double
Boolean xsd:boolean boolean System.Boolean boolean
URI xsd:anyURI string:uri System.Uri Java.net.URI or

java.lang.String
DateTime xsd:dateTime string:date-

time
System.DateTime javax.xml.datatype.XML

GregorianCalendar
Time xsd:time string:time System.DateTime javax.xml.datatype.XML

GregorianCalendar
GregorianYear xsd:gYear string2 System.DateTime javax.xml.datatype.XML

GregorianCalendar
GregorianMonth xsd:gYearMonth string System.DateTime javax.xml.datatype.XML

GregorianCalendar
GregorianDay xsd:date string System.DateTime javax.xml.datatype.XML

GregorianCalendar
Day, MonthDay,
Month

xsd:g* string System.DateTime javax.xml.datatype.XML
GregorianCalendar

Duration xsd:duration string System.TimeSpan javax.xml.datatype.Dur
ation

 859
There are also a number of SDMX data types which do not have these direct correspondences, 860
often because they are composite representations or restrictions of a broader data type. These 861
are detailed in Section 6 of the standards. 862
 863
The Representation is composed of Facets, each of which conveys characteristic 864
information related to the definition of a value domain. Often a set of Facets are needed to 865
convey the required semantic. For example, a sequence is defined by a minimum of two 866
Facets: one to define the start value, and one to define the interval. 867
 868

2 In the JSON schemas, more complex data types are complemented with regular expressions,

whenever no direct mapping to a standard type exists.

Facet Type Explanation
isSequence The isSequence facet indicates whether the values are intended to be

ordered, and it may work in combination with the interval, startValue,
and endValue facet or the timeInterval, startTime, and endTime,

 45

facets. If this attribute holds a value of true, a start value or time and a
numeric or time interval must be supplied. If an end value is not given, then
the sequence continues indefinitely.

interval The interval attribute specifies the permitted interval (increment) in a
sequence. In order for this to be used, the isSequence attribute must have
a value of true.

startValue The startValue facet is used in conjunction with the isSequence and
interval facets (which must be set in order to use this facet). This facet is
used for a numeric sequence and indicates the starting point of the
sequence. This value is mandatory for a numeric sequence to be expressed.

endValue The endValue facet is used in conjunction with the isSequence and
interval facets (which must be set in order to use this facet). This facet is
used for a numeric sequence and indicates that ending point (if any) of the
sequence.

timeInterval The timeInterval facet indicates the permitted duration in a time
sequence. In order for this to be used, the isSequence facet must have a
value of true.

startTime The startTime facet is used in conjunction with the isSequence and
timeInterval facets (which must be set in order to use this facet). This
attribute is used for a time sequence and indicates the start time of the
sequence. This value is mandatory for a time sequence to be expressed.

endTime The endTime facet is used in conjunction with the isSequence and
timeInterval facets (which must be set in order to use this facet). This
facet is used for a time sequence and indicates that ending point (if any) of
the sequence.

minLength The minLength facet specifies the minimum and length of the value in
characters.

maxLength The maxLength facet specifies the maximum length of the value in
characters.

minValue The minValue facet is used for inclusive and exclusive ranges, indicating
what the lower bound of the range is. If this is used with an inclusive range,
a valid value will be greater than or equal to the value specified here. If the
inclusive and exclusive data type is not specified (e.g., this facet is used with
an integer data type), the value is assumed to be inclusive.

maxValue The maxValue facet is used for inclusive and exclusive ranges, indicating
what the upper bound of the range is. If this is used with an inclusive range,
a valid value will be less than or equal to the value specified here. If the
inclusive and exclusive data type is not specified (e.g., this facet is used with
an integer data type), the value is assumed to be inclusive.

decimals The decimals facet indicates the number of characters allowed after the
decimal separator.

pattern The pattern attribute holds any regular expression permitted in the
implementation syntax (e.g., W3C XML Schema).

 46

4 Specific Item Schemes 869

4.1 Introduction 870
The structures that are an arrangement of objects into hierarchies or lists based on 871
characteristics, and which are maintained as a group inherit from ItemScheme. These concrete 872
classes are: 873
 874

Codelist 875
ConceptScheme 876
CategoryScheme 877

AgencyScheme, DataProviderScheme, MetadataProviderScheme, 878
DataConsumerScheme, OrganisationUnitScheme, which all inherit from the 879
abstract class OrganisationScheme 880

ReportingTaxonomy 881
TransformationScheme 882
RulesetScheme 883
UserDefinedOperatorScheme 884
NamePersonalisationScheme 885
CustomTypeScheme 886
VtlMappingScheme 887

Note that the VTL related schemes (the last 6 of the above list) are detailed in a dedicated 888
section below (section 15). 889

4.2 Inheritance View 890
The inheritance and relationship views are shown together in each of the diagrams in the specific 891
sections below. 892

 47

4.3 Codelist 893

4.3.1 Class Diagram 894
 895

Figure 16: Class diagram of the Codelist

 896

4.3.2 Explanation of the Diagram 897

4.3.2.1 Narrative 898
The Codelist inherits from the ItemScheme and therefore has the following attributes: 899

 48

 900
id 901
uri 902
urn 903
version 904
validFrom 905
validTo 906
isExternalReference 907
serviceURL 908
structureURL 909
isPartial 910

The Code inherits from Item and has the following attributes: 911
 912

id 913
uri 914
urn 915

Both Codelist and Code have the association to InternationalString to support a multi-916
lingual name, an optional multi-lingual description, and an association to Annotation to 917
support notes (not shown). 918
 919
Through the inheritance the Codelist comprise one or more Codes, and the Code itself can 920
have one or more child Codes in the (inherited) hierarchy association. Note that a child Code 921
can have only one parent Code in this association. A more complex Hierarhcy, which allows 922
multiple parents is described later. 923
 924
A partial Codelist (where isPartial is set to 'true') is identical to a Codelist and contains 925
the Code and associated names and descriptions, just as in a normal Codelist. However, its 926
content is a subset of the full Codelist. The way this works is described in section 3.5.3.1 on 927
ItemScheme. 928
 929

4.3.2.2 Definitions 930
Class Feature Description
Codelist Inherits from

ItemScheme
A list from which some statistical concepts (coded
concepts) take their values.

Code Inherits from
Item

A language independent set of letters, numbers or
symbols that represent a concept whose meaning is
described in a natural language.

 hierarchy Associates the parent and the child codes.
 extends Associates a Codelist with any Codelists that it may

extend.
 931

 49

4.3.3 Class Diagram – Codelist Extension 932

 933
Figure 17: Class diagram for Codelist Extension 934

4.3.3.1 Narrative 935
A Codelist may extend other Codelists via the CodelistExtension class. The latter, via 936
the sequence, indicates the order of precedence of the extended Codelists for conflict 937
resolution of Codes. Besides that, the prefix property is used to ensure uniqueness of 938
inherited Codes in the extending3 Codelist in case conflicting Codes must be included in the 939
latter. Each CodelistExtension association may include one InclusiveCodeSelection 940
or one ExclusiveCodeSelection; those allow including or excluding a specific selection of 941
Codes from the extended Codelists. 942
 943
The code selection classes may have MemberValues in order to specify the subset of the 944
Codes that should be included or excluded from the extended Codelist. A MemberValue 945

3 The Codelist that extends 0..* Codelists is the 'extending' Codelist, while the Codelist(s) that

are inherited is/are the 'extended' Codelist(s).

 50

may have a value that corresponds to a Code, including its children Codes (via the 946
cascadeValues property), or even include instances of the wildcard character ‘%’ in order to 947
point to a set of Codes with common parts in their identifiers. 948

4.3.3.2 Definitions 949
Class Feature Description
CodelistExtension The association between

Codelists that may extend
other Codelists.

 prefix A prefix to be used for a
Codelist used in a
extension, in order to
avoid Code Conflicts.

 sequence The order that will be used
when extending a
Codelist, for resolving
Code conflicts. The latest
Codelist used overrides
any previous Codelist.

InclusiveCodeSelection The subset of Codes to be
included when extending
a Codelist.

ExclusiveCodeSelection The subset of Codes to be
excluded when extending
a Codelist.

MemberValue Inherits from:
SelectionValue

A collection of values
based on Codes and their
children.

 cascadeValues A property to indicate if the
child Codes of the selected
Code shall be included in
the selection. It is also
possible to include children
and exclude the Code by
using the 'excluderoot'
value.

 value The value of the Code to
include in the selection. It
may include the ‘%’
character as a wildcard.

 950

4.3.4 Class Diagram – Geospatial Codelist 951
The geospatial support is implemented via an extension of the normal Codelist. This is 952
illustrated in the following diagrams. 953

 51

 954
Figure 18: Inheritance for the GeoCodelist 955

 52

 956
Figure 19: Class diagram for Geospatial Codelist 957

 958

4.3.4.1 Narrative 959
A GeoCodelist is a specialisation of Codelist that includes geospatial information, by 960
comprising a set of special Codes, i.e., GeoRefCodes. A GeoCodelist may be implemented 961
by any of the two following classes, via the geoType property: 962
 963

GeographicCodelist 964
GeoGridCodelist 965

 966
The former, i.e., GeographicCodelist, comprises a set of GeoFeatureSetCodes, by 967
adding a value in the Code that follows a pattern to represent a geo feature set. 968
 969
The latter, i.e., GeoGridCodelist, comprises a set of GridCodes, which are related to the 970
gridDefinition specified in the GeoGridCodelist. 971

4.3.4.2 Definitions 972
Class Feature Description
GeoCodelist Abstract Class

Sub Classes:
GeographicCodelist
GeoGridCodelist

The abstract class that
represents a special type
of Codelist, which includes
geospatial information.

 53

 geoType The type of Geo Codelist
that the Codelist will
become.

GeoRefCode Abstract Class
Sub Classes:
GeoFeatureSetCode
GeoGridCode

The abstract class that
represents a special type
of Code, which includes
geospatial information.

GeographicCodelist A special Codelist that has
been extended to add a
geographical feature set
to each of its items,
typically, this would
include all types of
administrative
geographies.

GeoGridCodelist A code list that has
defined a geographical
grid composed of cells
representing regular
squared portions of the
Earth.

 gridDefinition Contains a regular
expression string
corresponding to the grid
definition for the GeoGrid
Codelist.

GeoFeatureSetCode A Code that has a geo
feature set.

 value The geo feature set of the
Code, which represents a
set of points defining a
feature in a format defined
a predefined pattern (see
section 6).

GeoGridCode A Code that represents a
Geo Grid Cell belonging in
a specific grid definition.

 geoCell The value used to assign
the Code to one cell in the
grid.

 973

 54

4.4 ValueList 974

4.4.1 Class Diagram 975

 976
Figure 20: Class diagram of the ValueList 977

4.4.2 Explanation of the Diagram 978

4.4.2.1 Narrative 979
A ValueList inherits from EnumeratedList (and hence the MaintenableArtefact) and 980
thus has the following attributes: 981

 55

 982
id 983
uri 984
urn 985
version 986
validFrom 987
validTo 988
isExternalReference 989
registryURL 990
structureURL 991
repositoryURL 992

ValueItem inherits from EnumeratedItem, which adds an id, with relaxed constraints, to the 993
former. 994
 995
Through the inheritance from NameableArtefact the ValueList has the association to 996
InternationalString to support a multi-lingual name, an optional multi-lingual description, 997
and an association to Annotation to support notes (not shown). Similarly, the ValueItem, 998
inherits the association to InternationalString and to the Annotation from the 999
EnumeratedItem. 1000
 1001
The ValueList can have one or more ValueItems. 1002

4.4.2.2 Definitions 1003
Class Feature Description

ValueList Inherits from
EnumeratedList

A list from which some
statistical concepts
(enumerated concepts) take
their values.

ValueItem Inherits from
EnumeratedItem

A language independent set
of letters, numbers or
symbols that represent a
concept whose meaning is
described in a natural
language.

 1004

 56

4.5 Concept Scheme and Concepts 1005

4.5.1 Class Diagram - Inheritance 1006
 1007

Figure 21 Class diagram of the Concept Scheme

4.5.2 Explanation of the Diagram 1008
The ConceptScheme inherits from the ItemScheme and therefore has the following attributes: 1009

 57

 1010
id 1011
uri 1012
urn 1013
version 1014
validFrom 1015
validTo 1016
isExternalReference 1017
registryURL 1018
structureURL 1019
repositoryURL 1020
isPartial 1021

Concept inherits from Item and has the following attributes: 1022
 1023

id 1024
uri 1025
urn 1026

Through the inheritance from NameableArtefact both ConceptScheme and Concept have 1027
the association to InternationalString to support a multi-lingual name, an optional multi-1028
lingual description, and an association to Annotation to support notes (not shown). 1029
 1030
Through the inheritance from ItemScheme the ConceptScheme comprise one or more 1031
Concepts, and the Concept itself can have one or more child Concepts in the (inherited) 1032
hierarchy association. Note that a child Concept can have only one parent Concept in this 1033
association. 1034
 1035
A partial ConceptScheme (where isPartial is set to “true”) is identical to a ConceptScheme 1036
and contains the Concept and associated names and descriptions, just as in a normal 1037
ConceptScheme. However, its content is a subset of the full ConceptScheme. The way this 1038
works is described in section 3.5.3.1 on ItemScheme. 1039
 1040

 58

4.5.3 Class Diagram - Relationship 1041

 1042
Figure 22: Relationship class diagram of the Concept Scheme 1043

4.5.4 Explanation of the diagram 1044

4.5.4.1 Narrative 1045
The ConceptScheme can have one or more Concepts. A Concept can have zero or more 1046
child Concepts, thus supporting a hierarchy of Concepts. Note that a child Concept can have 1047
only one parent Concept in this association. The purpose of the hierarchy is to relate concepts 1048
that have a semantic relationship: for example, a Reporting_Country and Vis_a_Vis_Country 1049
may both have Country as a parent concept, or a CONTACT may have a PRIMARY_CONTACT 1050
as a child concept. It is not the purpose of such schemes to define reporting structures: these 1051
reporting structures are defined in the MetadataStructureDefinition. 1052
 1053
The Concept can be associated with a coreRepresentation. The coreRepresentation 1054
is the specification of the format and value domain of the Concept when used on a structure 1055
like a DataStructureDefinition or a MetadataStructureDefinition, unless the 1056
specification of the Representation is overridden in the relevant structure definition. In a 1057
hierarchical ConceptScheme the Representation is inherited from the parent Concept 1058
unless overridden at the level of the child Concept. 1059
 1060
The Representation is documented in more detail in the section on the SDMX Base. 1061
 1062

 59

The Concept may be related to a concept described in terms of the ISO/IEC 11179 standard. 1063
The ISOConceptReference identifies this concept and concept scheme in which it is 1064
contained. 1065

4.5.4.2 Definitions 1066
Class Feature Description
ConceptScheme

Inherits from
ItemScheme

The descriptive information for an
arrangement or division of concepts
into groups based on
characteristics, which the objects
have in common.

Concept Inherits from
Item

A concept is a unit of knowledge
created by a unique combination of
characteristics.

 /hierarchy Associates the parent and the child
concept.

 coreRepresentation Associates a Representation.
 +ISOConcept Association to an ISO concept

reference.
ISOConceptReference The identity of an ISO concept

definition.
 conceptAgency The maintenance agency of the

concept scheme containing the
concept.

 conceptSchemeID The identifier of the concept
scheme.

 conceptID The identifier of the concept.
 1067

4.6 Category Scheme 1068

4.6.1 Context 1069
This package defines the structure that supports the definition of and relationships between 1070
categories in a category scheme. It is similar to the package for concept scheme. An example 1071
of a category scheme is one which categorises data – sometimes known as a subject matter 1072
domain scheme or a data category scheme. Importantly, as will be seen later, the individual 1073
nodes in the scheme (the “categories”) can be associated to any set of 1074
IdentiableArtefacts in a Categorisation. 1075

 60

4.6.2 Class diagram - Inheritance 1076

Figure 23 Inheritance Class diagram of the Category Scheme

 1077

 61

4.6.3 Explanation of the Diagram 1078

4.6.3.1 Narrative 1079
The categories are modelled as a hierarchical ItemScheme. The CategoryScheme inherits 1080
from the ItemScheme and has the following attributes: 1081
 1082

id 1083
uri 1084
urn 1085
version 1086
validFrom 1087
validTo 1088
isExternalReference 1089
structureURL 1090
serviceURL 1091
isPartial 1092

Category inherits from Item and has the following attributes: 1093
 1094

id 1095
uri 1096
urn 1097

Both CategoryScheme and Category have the association to InternationalString to 1098
support a multi-lingual name, an optional multi-lingual description, and an association to 1099
Annotation to support notes (not shown on the model). 1100
 1101
Through the inheritance the CategoryScheme comprise one or more Categorys, and the 1102
Category itself can have one or more child Category in the (inherited) hierarchy 1103
association. Note that a child Category can have only one parent Category in this 1104
association. 1105
 1106
A partial CategoryScheme (where isPartial is set to “true”) is identical to a 1107
CategoryScheme and contains the Category and associated names and descriptions, just 1108
as in a normal CategoryScheme. However, its content is a subset of the full 1109
CategoryScheme. The way this works is described in section 3.5.3.1 on ItemScheme. 1110
 1111

 62

4.6.4 Class diagram - Relationship 1112

 1113
Figure 24: Relationship Class diagram of the Category Scheme 1114

The CategoryScheme can have one or more Categorys. The Category is Identifiable and 1115
has identity information. A Category can have zero or more child Categorys, thus supporting 1116
a hierarchy of Categorys. Any IdentifiableArtefact can be +categorisedBy a 1117
Category. This is achieved by means of a Categorisation. Each Categorisation can 1118
associate one IdentifiableArtefact with one Category. Multiple Categorisations 1119
can be used to build a set of IdentifiableArtefacts that are +categorisedBy the same 1120
Category. Note that there is no navigation (i.e. no embedded reference) to the 1121
Categorisation from the Category. From an implementation perspective this is necessary 1122
as Categorisation has no effect on the versioning of either the CategoryScheme or the 1123
IdentifiableArtefact. 1124

4.6.4.1 Definitions 1125
Class Feature Description
CategoryScheme

Inherits from
ItemScheme

The descriptive information for an
arrangement or division of
categories into groups based on
characteristics, which the objects
have in common.

 /items Associates the categories.

 63

Class Feature Description
Category

Inherits from
Item

An item at any level within a
classification, typically tabulation
categories, sections, subsections,
divisions, subdivisions, groups,
subgroups, classes and
subclasses.

 /hierarchy Associates the parent and the
child Category.

Categorisation Inherits from
MaintainableArtefact

Associates an Identifable Artefact
with a Category.

 +categorisedArtefact Associates the Identifable
Artefact.

 +categorisedBy Associates the Category.

4.7 Organisation Scheme 1126

4.7.1 Class Diagram 1127
 1128

Figure 25 The Organisation Scheme class diagram

 64

4.7.2 Explanation of the Diagram 1129

4.7.2.1 Narrative 1130
The OrganisationScheme is abstract. It contains Organisation which is also abstract. The 1131
Organisation can have child Organisation. 1132
 1133
The OrganisationScheme can be one of five types: 1134
 1135

1. AgencyScheme – contains Agency which is restricted to a flat list of agencies (i.e., there 1136
is no hierarchy). Note that the SDMX system of (Maintenance) Agency can be hierarchic 1137
and this is explained in more detail in the SDMX Standards Section 6 “Technical Notes”. 1138

2. DataProviderScheme – contains DataProvider which is restricted to a flat list of 1139
agencies (i.e., there is no hierarchy). 1140

3. MetadataProviderScheme – contains MetadataProvider which is restricted to a 1141
flat list of agencies (i.e., there is no hierarchy). 1142

4. DataConsumerScheme – contains DataConsumer which is restricted to a flat list of 1143
agencies (i.e., there is no hierarchy). 1144

5. OrganisationUnitScheme – contains OrganisationUnit which does inherit the 1145
/hierarchy association from Organisation. 1146

 1147
Reference metadata can be attached to the Organisation by means of the metadata 1148
attachment mechanism. This mechanism is explained in the Reference Metadata section of this 1149
document (see section 7). This means that the model does not specify the specific reference 1150
metadata that can be attached to a DataProvider, MetadataProvider, DataConsumer, 1151
OrganisationUnit or Agency, except for limited Contact information. 1152
 1153
A partial OrganisationScheme (where isPartial is set to “true”) is identical to an 1154
OrganisationScheme and contains the Organisation and associated names and 1155
descriptions, just as in a normal OrganisationScheme. However, its content is a subset of 1156
the full OrganisationScheme. The way this works is described in section 3.5.3.1 on 1157
ItemScheme. 1158
 1159

4.7.2.2 Definitions 1160
Class Feature Description
OrganisationScheme Abstract Class

Inherits from
ItemScheme
Sub classes are:
AgencyScheme
DataProviderScheme
MetadataProviderScheme
DataConsumerScheme
OrganisationUnitScheme

A maintained collection of
Organisations.

 /items Association to the
Organisations in the scheme.

 65

Class Feature Description
Organisation Abstract Class

Inherits from
Item
Sub classes are:
Agency
DataProvider
MetadataProvider
DataConsumer
OrganisationUnit

An organisation is a unique
framework of authority within
which a person or persons
act, or are designated to act,
towards some purpose.

 +contact Association to the Contact
information.

 /hierarchy Association to child
Organisations.

Contact An instance of a role of an
individual or an organization
(or organization part or
organization person) to
whom an information item(s),
a material object(s) and/or
person(s) can be sent to or
from in a specified context.

 name The designation of the
Contact person by a
linguistic expression.

 organisationUnit The designation of the
organisational structure by a
linguistic expression, within
which Contact person works.

 responsibility The function of the contact
person with respect to the
organisation role for which
this person is the Contact.

 telephone The telephone number of the
Contact.

 fax The fax number of the
Contact.

 email The Internet e-mail address
of the Contact.

 X400 The X400 address of the
Contact.

 uri The URL address of the
Contact.

AgencyScheme A maintained collection of
Maintenance Agencies.

 66

Class Feature Description
 /items Association to the

Maintenance Agency in the
scheme.

DataProviderScheme A maintained collection of
Data Providers.

 /items Association to the Data
Providers in the scheme.

MetadataProviderScheme A maintained collection of
Metadata Providers.

 /items Association to the Metadata
Providers in the scheme.

DataConsumerScheme A maintained collection of
Data Consumers.

 /items Association to the Data
Consumers in the scheme.

OrganisationUnitScheme A maintained collection of
Organisation Units.

 /items Association to the
Organisation Units in the
scheme.

Agency Inherits from
Organisation

Responsible agency for
maintaining artefacts such as
statistical classifications,
glossaries, structural
metadata such as Data and
Metadata Structure
Definitions, Concepts and
Code lists.

DataProvider Inherits from
Organisation

An organisation that
produces data.

MetadataProvider Inherits from
Organisation

An organisation that
produces reference
metadata.

DataConsumer Inherits from
Organisation

An organisation using data
as input for further
processing.

OrganisationUnit Inherits from
Organisation

A designation in the
organisational structure.

 /hierarchy Association to child
Organisation Units

 1161

 67

4.8 Reporting Taxonomy 1162

4.8.1 Class Diagram 1163

 1164
Figure 26: Class diagram of the Reporting Taxonomy 1165

 68

4.8.2 Explanation of the Diagram 1166

4.8.2.1 Narrative 1167
In some data reporting environments, and in particular those in primary reporting, a report may 1168
comprise a variety of heterogeneous data, each described by a different Structure. Equally, 1169
a specific disseminated or published report may also comprise a variety of heterogeneous data. 1170
The definition of the set of linked sub reports is supported by the ReportingTaxonomy. 1171
 1172
The ReportingTaxonomy is a specialised form of ItemScheme. Each ReportingCategory 1173
of the ReportingTaxonomy can link to one or more StructureUsage which itself can be one 1174
of Dataflow, or Metadataflow, and one or more Structure, which itself can be one of 1175
DataStructureDefinition or MetadataStructureDefinition. It is expected that 1176
within a specific ReportingTaxonomy each Category that is linked in this way will be linked 1177
to the same class (e.g. all Category in the scheme will link to a Dataflow). Note that a 1178
ReportingCategory can have child ReportingCategory and in this way it is possible to 1179
define a hierarchical ReportingTaxonomy. It is possible in this taxonomy that some 1180
ReportingCategory are defined just to give a reporting structure. For instance: 1181
 1182
Section 1 1183
 1. linked to Datafow_1 1184
 2. linked to Datafow_2 1185
Section 2 1186
 1. linked to Datafow_3 1187
 2. linked to Datafow_4 1188
 1189
Here, the nodes of Section 1 and Section 2 would not be linked to Dataflow but the other 1190
would be linked to a Dataflow (and hence the DataStructureDefinition). 1191
 1192
A partial ReportingTaxonomy (where isPartial is set to “true”) is identical to a 1193
ReportingTaxonomy and contains the ReportingCategory and associated names and 1194
descriptions, just as in a normal ReportingTaxonomy. However, its content is a sub set of the 1195
full ReportingTaxonomy The way this works is described in section 3.5.3.1 on ItemScheme. 1196
 1197

4.8.2.2 Definitions 1198
Class Feature Description
ReportingTaxonomy Inherits from

ItemScheme
A scheme which defines the
composition structure of a data report
where each component can be
described by an independent
Dataflow or Metadataflow.

 /items Associates the Reporting Category
ReportingCategory Inherits from

Item
A component that gives structure to
the report and links to data and
metadata.

 /hierarchy Associates child Reporting Category.

 69

Class Feature Description
 +flow Association to the data and metadata

flows that link to metadata about the
provisioning and related data and
metadata sets, and the structures
that define them.

 +structure Association to the Data Structure
Definition and Metadata Structure
Definitions which define the structural
metadata describing the data and
metadata that are contained at this
part of the report.

 1199

 70

1200

 71

5 Data Structure Definition and Dataset 1201

5.1 Introduction 1202
The DataStructureDefiniton is the class name for a structure definition for data. Some 1203
organisations know this type of definition as a “Key Family” and so the two names are 1204
synonymous. The term Data Structure Definition (also referred to as DSD) is used in this 1205
specification. 1206
 1207
Many of the constructs in this layer of the model inherit from the SDMX Base Layer. Therefore, 1208
it is necessary to study both the inheritance and the relationship diagrams to understand the 1209
functionality of individual packages. In simple sub models these are shown in the same diagram 1210
but are omitted from the more complex sub models for the sake of clarity. In these cases, the 1211
inheritance diagram below shows the full inheritance tree for the classes concerned with data 1212
structure definitions. 1213
 1214
There are very few additional classes in this sub model other than those shown in the inheritance 1215
diagram below. In other words, the SDMX Base gives most of the structure of this sub model 1216
both in terms of associations and in terms of attributes. The relationship diagrams shown in this 1217
section show clearly when these associations are inherited from the SDMX Base (see the 1218
Appendix “A Short Guide to UML in the SDMX Information Model” to see the diagrammatic 1219
notation used to depict this). 1220
 1221
The actual SDMX Base construct from which the concrete classes inherit depends upon the 1222
requirements of the class for: 1223
 1224

Annotation – AnnotableArtefact 1225

Identification – IdentifiableArtefact 1226

Naming – NameableArtefact 1227

Versioning – VersionableArtefact 1228

Maintenance – MaintainableArtefact 1229

 72

5.2 Inheritance View 1230

5.2.1 Class Diagram 1231
 1232

Figure 27 Class inheritance in the Data Structure Definition and Data Set Packages

 73

5.2.2 Explanation of the Diagram 1233

5.2.2.1 Narrative 1234
Those classes in the SDMX metamodel which require annotations inherit from 1235
AnnotableArtefact. These are: 1236
 1237

IdentifiableArtefact 1238
DataSet 1239

Key (and therefore SeriesKey and GroupKey) 1240
Observation 1241

Those classes in the SDMX metamodel which require annotations and global identity are 1242
derived from IdentifiableArtefact. These are: 1243
 1244

NameableArtefact 1245
ComponentList 1246
Component 1247

Those classes in the SDMX metamodel which require annotations, global identity, multilingual 1248
name and multilingual description are derived from NameableArtefact. These are: 1249
 1250

VersionableArtefact 1251
Item 1252

The classes in the SDMX metamodel which require annotations, global identity, multilingual 1253
name and multilingual description, and versioning are derived from VersionableArtefact. 1254
These are: 1255
 1256

MaintainableArtefact 1257

Abstract classes which represent information that is maintained by Maintenance Agencies all 1258
inherit from MaintainableArtefact, they also inherit all the features of a 1259
VersionableArtefact, and are: 1260
 1261

StructureUsage 1262
Structure 1263
ItemScheme 1264

All the above classes are abstract. The key to understanding the class diagrams presented in 1265
this section are the concrete classes that inherit from these abstract classes. 1266
 1267
Those concrete classes in the SDMX Data Structure Definition and Dataset packages of the 1268
metamodel which require to be maintained by Agencies all inherit (via other abstract classes) 1269
from MaintainableArtefact, these are: 1270
 1271

Dataflow 1272
DataStructureDefinition 1273

The component structures that are lists of lists, inherit directly from Structure. A Structure 1274
contains several lists of components. The concrete class that inherits from Structure is: 1275

 74

 1276
DataStructureDefinition 1277

A DataStructureDefinition contains a list of dimensions, a list of measures and a list of 1278
attributes. 1279
 1280
The concrete classes which inherit from ComponentList and are subcomponents of the 1281
DataStructureDefinition are: 1282
 1283

DimensionDescriptor – content is Dimension and TimeDimension 1284

DimensionGroupDescriptor – content is an association to Dimension, 1285
TimeDimension 1286

MeasureDescriptor – content is Measure 1287

AttributeDescriptor – content is DataAttribute and an association to 1288
MetadataAttribute 1289

The classes that inherit from Component are: 1290
 1291

Measure 1292

DimensionComponent and thereby its sub classes of Dimension and TimeDimension 1293

Attribute and thereby its sub classes of DataAttribute and MetadataAttribute 1294

The concrete classes identified above are the majority of the classes required to define the 1295
metamodel for the DataStructureDefinition. The diagrams and explanations in the rest 1296
of this section show how these concrete classes are related in order to support the functionality 1297
required. 1298

5.3 Data Structure Definition – Relationship View 1299

5.3.1 Class Diagram 1300

 1301
 1302

Figure 28 Relationship class diagram of the Data Structure Definition excluding representation

 75

5.3.2 Explanation of the Diagrams 1303

5.3.2.1 Narrative 1304
A DataStructureDefinition defines the Dimensions, TimeDimension, 1305
DataAttributes, and Measures, and associated Representations, that comprise the 1306
valid structure of data and related attributes that are contained in a DataSet, which is defined 1307
by a Dataflow. In addition, a DataStructureDefinition may be related to one 1308
MetadataStructureDefinition, in order to use the latter’s MetadataAttributes, by 1309
relating them to other Components within the DSD, as explained below. 1310
 1311
The Dataflow may also have additional metadata attached that define qualitative information 1312
and Constraints on the use of the DataStructureDefinition such as the subset of 1313
Codes used in a Dimension (this is covered later in this document – see sections “Constraints” 1314
and “Data Provisioning”). Each Dataflow has a maximum of one 1315
DataStructureDefinition specified which defines the structure of any DataSets to be 1316
reported/disseminated. A Dataflow may optionally define which Dimensions it uses, by 1317
defining a DimensionConstraint (this is a mandatory requirement if the 1318
DataStructureDefinition sets its’ evolvingStructure property to ‘true’ and is sematically 1319
referenced by the Dataflow). 1320
 1321
There are two types of dimensions each having a common association to Concept: 1322
 1323

• Dimension 1324
• TimeDimension 1325

 1326
Note that DimensionComponent can be any or all its sub classes i.e., Dimension, 1327
TimeDimension. 1328
 1329
The DimensionComponent, DataAttribute, MetadataAttribute and Measure link to 1330
the Concept that defines its name and semantic (/conceptIdentity association to 1331
Concept). The DataAttribute, Dimension (but not TimeDimension) and Measure can 1332
optionally have a +conceptRole association with a Concept that identifies its role in the 1333
DataStructureDefinition, or one of the standard pre-defined roles, i.e., those published 1334
in "GUIDELINES FOR SDMX CONCEPT ROLES" by the SDMX SWG. The use of these roles 1335
is to enable applications to process the data in a meaningful way (e.g., relating a dimension 1336
value to a mapping vector). It is expected, beyond the standard roles published by the SWG, 1337
that communities (such as the official statistics community) will harmonise such roles within their 1338
community so that data can be exchanged and shared in a meaningful way within that 1339
community. 1340
 1341
The valid values for a DimensionComponent, Measure, DataAttribute or 1342
MetadataAttribute, when used in this DataStructureDefinition, are defined by the 1343
Representation. This Representation is taken from the Concept definition 1344
(coreRepresentation) unless it is overridden in this DataStructureDefinition 1345
(localRepresentation) – see Figure 28. Note also that TimeDimension is constrained to 1346
specific FacetValueTypes. Moreover, the Representations of MetadataAttributes are 1347
specified in the corresponding MetadataStructureDefinition, linked by the 1348
DataStructureDefinition. 1349
 1350

 76

There will always be a DimensionDescriptor grouping that identifies all of the Dimension 1351
comprising the full key. Together the Dimensions specify the key of an Observation. 1352
 1353
The DimensionComponent can optionally be grouped by multiple 1354
GroupDimensionDescriptors each of which identifies the group of Dimensions that can 1355
form a partial key. The GroupDimensionDescriptor must be identified 1356
(GroupDimensionDescriptor.id) and this is used in the GroupKey of the DataSet to 1357
declare which DataAttributes or MetadataAttributes are reported at this group level in 1358
the DataSet. 1359
 1360
There can be a maximum of one TimeDimension specified in the DimensionDescriptor. 1361
The TimeDimension is used to specify the Concept used to convey the time period of the 1362
observation in a data set. The TimeDimension must contain a valid representation of time and 1363
cannot be coded. 1364
 1365
There can be one or more Measures under the MeasureDescriptor. Measures represent 1366
the observable phenomena. Each Measure may have a valid representation, a maxOccurs 1367
attribute limiting the maximum number of values per Measure (which may be set to 'unbounded' 1368
for unlimited occurrences), as well as a minOccurs attribute, indicating the minimum required 1369
number of values, when the Measure is reported. If minOccurs or maxOccurs are omitted 1370
(they both default to ‘1’), the Measure is considered to take a single value; otherwise, it is an 1371
array. Moreover, the usage attribute indicates whether a Measure must be reported or not, by 1372
the corresponding values: mandatory or optional. 1373
 1374
The AttributeDescriptor may contain one or more Attributes, i.e., at least one 1375
DataAttribute definition or one MetadataAttribute reference. 1376
 1377
The DataAttribute defines a characteristic of data that are collected or disseminated and is 1378
grouped in the DataStructureDefinition by a single AttributeDescriptor. The 1379
DataAttribute can be indicated if it must be reported or not, by the corresponding value of 1380
the usage attribute: i.e., mandatory or optional. The property minOccurs specifies the 1381
minimum number of array values to be included when the DataAttribute is reported. 1382
Moreover, a maxOccurs attribute indicates whether the DataAttribute may need to report 1383
more than one values, i.e., an array of values. The DataAttribute may play a specific role in 1384
the structure and this is specified by the +role association to the Concept that identifies its 1385
role. 1386
 1387
The MetadataAttribute defines reference metadata that may be collected or disseminated 1388
and is grouped together with DataAttribute under the AttributeDescriptor. 1389
 1390
A DataAttribute or a MetadataAttribute (i.e., an AttributeComponent) is specified 1391
as being +relatedTo an AttributeRelationship, which defines the constructs to which 1392
the AttributeComponent is to be reported within a DataSet. An AttributeComponent 1393
can be specified as being related to one of the following artefacts: 1394
 1395

• All data within the dataset (DataflowRelationship) – this is equivalent to attaching 1396
an Attribute to all data within the Dataflow. 1397

• Dimension or set of Dimensions (DimensionRelationship) 1398

 77

• Set of Dimensions specified by a GroupKey (GroupRelationship – this is retained 1399
for compatibility reasons – or +groupKey of the DimensionRelationship) 1400

• Observation (ObservationRelationship) 1401
• In addition to the positioning of an AttributeComponent within a DataSet, another 1402

relationship indicates the Measure(s) for which the AttributeComponent is reported. 1403
Regardless of the position of the AttributeComponent within the DataSet, the 1404
AttributeComponent may concern one, more than one, or all Measures included in 1405
the DSD. This is expressed using the MeasureRelationship class, which relates a 1406
DataAttribute to one or more Measures. Lack of the MeasureRelationship 1407
defaults to a relationship to all Measures. 1408

 1409
Figure 29: Attribute Attachment Defined in the Data Structure Definition 1410

The following table details the possible relationships a DataAttribute may specify. Note that 1411
these relationships are mutually exclusive, and therefore only one of the following is possible. 1412
 1413

 78

Relationship Meaning Location in Data Set at which
the Attribute is reported

DataflowRelationship The value of the attribute is fixed
for all data contained in the
dataset. The Attribute value
applies to all data defined by the
underlying Dataflow.

The attribute is reported at the
Dataset level.

Dimension (1..n) The value of the attribute will vary
with the value(s) of the
referenced Dimension(s). In this
case, Group(s) to which the
attribute should be attached may
optionally be specified.

The attribute is reported at the
lowest level of the Dimension to
which the Attribute is related,
otherwise at the level of the
Group if Attachment Group(s)
is specified.

Group The value of the Attribute varies
with combination of values for all
of the Dimensions contained in
the Group. This is added as a
convenience to listing all
Dimensions and the attachment
Group, but should only be used
when the Attribute value varies
based on all Group Dimension
values.

The attribute is reported at the
level of Group.

Observation The value of the Attribute varies
with the observed value.

The attribute is reported at the
level of Observation.

 1414
 1415

 1416
Figure 30: Representation of DSD Components 1417

 79

Each of Dimension, TimeDimension, Measure, DataAttribute and 1418
MetadataAttribute can have a Representation specified (using the 1419
localRepresentation association). If this is not specified in the 1420
DataStructureDefinition then the representation specified for Concept 1421
(coreRepresentation) is used. Measure, and DataAttribute may be also represented 1422
by multilingual text (as seen in the DataSet diagram further down). An exception is the 1423
MetadataAttribute, where its Representation is specified in the 1424
MetadataStructureDefinition. 1425
 1426
A DataStructureDefinition can be extended to form a derived 1427
DataStructureDefinition. This is supported in the StructureMap. 1428

5.3.2.2 Definitions 1429
Class Feature Description
StructureUsage See “SDMX Base”.
Dataflow Inherits from

StructureUsage
Abstract concept (i.e., the
structure without any data) of a
flow of data that providers will
provide for different reference
periods.

 /structure Associates a Dataflow to the
Data Structure Definition.

 dimensionConstraint A list of Dimensions which the
Dataflow uses. This is only
required when the referenced
DataStructureDefinition has the
evolvingStructure property set
to true and when the
association to the
DataStructureDefinition in on
the latest minor version4.

DataStructureDefiniti
on

 A collection of metadata
concepts, their structure and
usage when used to collect or
disseminate data.

 /grouping An association to a set of
metadata concepts that have
an identified structural role in a
Data Structure Definition.

4 Referencing the latest minor version of the Data Structure is achieved by the reference

including the plus operator on the minor version to indicate it links to the latest stable version,

for example 2.0+.0 will resolve to the highest version 2.x.y.

 80

Class Feature Description
 evolvingStructure An optional boolean property,

defaulting to false. When true
the DataStructureDefinition
may have new Dimensions
added without having to
change its major version
number.

GroupDimensionDescrip
tor

Inherits from
ComponentList

A set of metadata concepts
that define a partial key derived
from the Dimension Descriptor
in a Data Structure Definition.

 /components An association to the
Dimension components that
comprise the group.

DimensionDescriptor Inherits from
ComponentList

An ordered set of metadata
concepts that, combined,
classify a statistical series, and
whose values, when combined
(the key) in an instance such
as a data set, uniquely identify
a specific observation.

 /components An association to the
Dimension and Time
Dimension comprising the Key
Descriptor.

AttributeDescriptor Inherits from
ComponentList

A set metadata concepts that
define the Attributes of a Data
Structure Definition.

 /components An association to a Data
Attribute component.

MeasureDescriptor Inherits from
ComponentList

A metadata concept that
defines the Measures of a Data
Structure Definition.

 /components An association to a Measure
component.

DimensionComponent Inherits from
Component

Sub class
Dimension
TimeDimension

An abstract class representing
any Component that can be
used for identifying
observations.

 81

Class Feature Description
 Order Specifies the order of the

Dimension Components within
the DSD. The property is used
to indicate the position of the
Dimension Component and
determines the Key for
identifying observations, or
series. The Time Dimension,
when specified, must be the
last within the Dimension
Descriptor.

Dimension Inherits from
DimensionComponent

A metadata concept used
(most probably together with
other metadata concepts) to
classify a statistical series, e.g.,
a statistical concept indicating
a certain economic activity or a
geographical reference area.

 /role Association to the Concept that
specifies the role that that the
Dimension plays in the Data
Structure Definition.

 /conceptIdentity An association to the metadata
concept which defines the
semantic of the Dimension.

TimeDimension Inherits from
DimensionComponent

A metadata concept that
identifies the component in the
key structure that has the role
of “time”.

DataAttribute Inherits from
Component

A characteristic of an object or
entity.

 /role Association to the Concept that
specifies the role that that the
Data Attribute plays in the Data
Structure Definition.

 minOccurs

Defines the minimum required
occurrences for the Attribute.
When equals to zero, the
Attribute is conditional.

 maxOccurs Defines the maximum allowed
occurrences for the Attribute.

 Usage Defines whether a Data
Attribute must be reported or
not.

 +relatedTo Association to an Attribute
Relationship.

 /conceptIdentity An association to the Concept
which defines the semantic of
the component.

 82

Class Feature Description
Measure Inherits from

Component
The metadata concept that is
the phenomenon to be
measured in a data set. In a
data set the instance of the
measure is often called the
observation.

 /conceptIdentity An association to the Concept
which carries the values of the
measures.

 minOccurs

Defines the minimum required
occurrences for the Measure.
When equals to zero, the
Measure is conditional.

 maxOccurs Defines the maximum allowed
occurrences for the Measure.

 Usage Defines whether a Measure
must be reported or not.

AttributeRelationship Abstract Class

Sub classes
ObservationRelations
hip
GroupRelationship
DimensionRelationshi
p

Specifies the type of artefact to
which a Data Attribute can be
attached in a Data Set.

ObservationRelationsh
ip

 The Data Attribute is related to
the observations of the Data
Set.

GroupRelationship The Data Attribute is related to
a Group Dimension Descriptor
construct.

 +groupKey An association to the Group
Dimension Descriptor

DimensionRelationship The Data Attribute is related to
a set of Dimensions.

 +dimensions Association to the set of
Dimensions to which the Data
Attribute is related.

 +groupKey Association to the Group
Dimension Descriptor which
specifies the set of Dimensions
to which the Data Attribute is
attached.

MeasureRelationship The Measures that a Data
Attribute is reported for.

 +measures Association to the set of
Measures to which a Data
Attribute is related to.

 83

Class Feature Description
SentinelValuesType This facet indicates that an

Attribute or a Measure has
sentinel values with special
meaning within their data type.
This is realised by providing
such values within the
TextFormat, in addition to any
textType or other Facet.

SentinelValue A value that has a special
meaning within the text format
representation of the
Component.

 +name An association of a Sentinel
Value to a multilingual name.

 +description An association of a Sentinel
Value to a multilingual
description.

 1430
The explanation of the classes, attributes, and associations comprising the Representation is 1431
described in the section on the SDMX Base. 1432

5.4 Data Set – Relationship View 1433

5.4.1 Context 1434
A data set comprises the collection of data values and associated metadata that are collected 1435
or disseminated according to a known DataStructureDefinition. 1436

 84

5.4.2 Class Diagram 1437

Figure 31: Class Diagram of the Data Set

 85

5.4.3 Explanation of the Diagram 1438

5.4.3.1 Narrative – Data Set 1439
Note that the DataSet must conform to the DataStructureDefinition associated to the 1440
Dataflow for which this DataSet is an “instance of data”. Whilst the model shows the 1441
association to the classes of the DataStructureDefinition, this is for conceptual purposes 1442
to show the link to the DataStructureDefinition. In the actual DataSet as exchanged 1443
there must, of course, be a reference to the DataStructureDefinition and optionally a 1444
Dataflow or a ProvisionAgreement, but the DataStructureDefinition is not 1445
necessarily exchanged with the data. Therefore, the DataStructureDefinition classes 1446
are shown in the grey areas, as these are not a part of the DataSet when the DataSet is 1447
exchanged. However, the structural metadata in the DataStructureDefinition can be 1448
used by an application to validate the contents of the DataSet in terms of the valid content of 1449
a KeyValue as defined by the Representation in the DataStructureDefinition. 1450
 1451
An organisation playing the role of DataProvider can be responsible for one or more 1452
DataSet. 1453
 1454
A DataSet is formatted as a DataStructureDefinition specific data set 1455
(StructureSpecificDataSet). The structured data set is structured according to one 1456
specific DataStructureDefinition; hence the latter is required for validation at the syntax 1457
level. 1458
 1459
A DataSet is a collection of a set of Observations that share the same dimensionality, which 1460
is specified by a set of unique components (Dimension, TimeDimension) defined in the 1461
DimensionDescriptor of the DataStructureDefinition, together with associated 1462
AttributeValues that define specific characteristics about the artefact to which it is attached 1463
– Observations, set of Dimensions. It can be structured in terms of a SeriesKey to which 1464
Observations are reported. 1465
 1466
The Observation can be the value(s) of the variable(s) being measured for the Concept 1467
associated to the Measure(s) in the MeasureDescriptor of the 1468
DataStructureDefinition. Each Observation associates one or more 1469
ObservationValues with a KeyValue (+observationDimension) which is the value for 1470
the “Dimension at the Observation Level”. Any Dimension can be specified as being the 1471
“Dimension at the Observation Level”, and this specification is made at the level of the DataSet 1472
(i.e., it must be the same Dimension for the entire DataSet). 1473
 1474
The KeyValue is a value for one of TimeDimension or Dimension specified in the 1475
DataStructureDefinition. If it is a Dimension, it can be coded (CodedKeyValue) or 1476
uncoded (UncodedKeyValue). If it is the TimeDimension then it is a TimeKeyValue. The 1477
actual value that the CodedDimensionValue can take must be one of the Codes in the 1478
Codelist specified as the Representation of the Dimension in the 1479
DataStructureDefinition. 1480
 1481
An ObservationValue can be coded – this is the CodedObservation – or it can be uncoded 1482
– this is the UncodedObservation. In the case of uncoded observations, the values may be 1483
multilingual – expressed via the TextMeasureValue – or not 1484
(OtherUncodedMeasureValue). 1485

 86

 1486
The GroupKey is a subunit of the Key that has the same dimensionality as the SeriesKey but 1487
defines a subset of the KeyValues of the SeriesKey. Its sub dimension structure is defined 1488
in the GroupDimensionDescriptor of the DataStructureDefinition identified by the 1489
same id as the GroupKey. The id identifies a “type” of group and the purpose of the GroupKey 1490
is to report one or more AttributeValue that are contained at this group level. The GroupKey 1491
is present when the GroupDimensionDescriptor is related to the GroupRelationship in 1492
the DataStructureDefinition. There can be many types of groups in a DataSet. If the 1493
Group is related to the DimensionRelationship in the DataStructureDefinition 1494
then the AttributeValue will be reported with the appropriate dimension in the SeriesKey 1495
or Observation. 1496
 1497
In this way each of SeriesKey, GroupKey, and Observation can have zero or more 1498
AttributeValues that define some metadata about the object to which it is associated. The 1499
AttributeValue may be either a DataAttributeValue or a 1500
MetadataAttributeValue, representing values of DataAttributes defined in the DSD or 1501
MetadataAttributes of the linked MSD, respectively. The allowable Concepts and the 1502
objects to which these metadata can be associated (attached) are defined in the 1503
DataStructureDefinition and the linked MetadataStructureDefinition. 1504
 1505
The AttributeValue links to the object type (SeriesKey, GroupKey, Observation) to 1506
which it is associated. 1507
 1508

5.4.3.2 Definitions 1509
Class Feature Description
DataSet Abstract Class

Sub classes
StructureSpecificData
Set

An organised collection of data.

 reportingBegin A specific time period in a known
system of time periods that
identifies the start period of a
report.

 reportingEnd A specific time period in a known
system of time periods that
identifies the end period of a
report.

 dataExtractionDate A specific time period that
identifies the date and time that
the data are extracted from a
data source.

 validFrom Indicates the inclusive start time
indicating the validity of the
information in the data set.

 validTo Indicates the inclusive end time
indicating the validity of the
information in the data set.

 87

Class Feature Description
 publicationYear Specifies the year of publication

of the data or metadata in terms
of whatever provisioning
agreements might be in force.

 publicationPeriod Specifies the period of publication
of the data or metadata in terms
of whatever provisioning
agreements might be in force.

 setId Provides an identification of the
data set.

 action Defines the action to be taken by
the recipient system (information,
append, replace, delete)

 describedBy Associates a Dataflow and
thereby a Data Structure
Definition to the data set.

 +structuredBy Associates the Data Structure
Definition that defines the
structure of the Data Set. Note
that the Data Structure Definition
is the same as that associated
(non-mandatory) to the Dataflow.

 +publishedBy Associates the Data Provider that
reports/publishes the data.

StructureSpecific
DataSet

 An XML specific data format
structure that contains data
corresponding to one specific
Data Structure Definition.

Key Abstract class
Sub classes
SeriesKey
GroupKey

Comprises the cross product of
values of dimensions that identify
uniquely an Observation.

 keyValues Association to the individual Key
Values that comprise the Key.

 +attachedAttribute Association to the Attribute
Values relating to the Series Key
or Group Key.

KeyValue Abstract class
Sub classes
TimeKeyValue
CodedKeyValue
UncodedKeyValue

The value of a component of a
key such as the value of the
instance a Dimension in a
Dimension Descriptor of a Data
Structure Definition.

 88

Class Feature Description
 +valueFor Association to the key component

in the Data Structure Definition
for which this Key Value is a valid
representation.
Note that this is conceptual
association as the key
component is identified explicitly
in the data set.

TimeKeyValue Inherits from
KeyValue

The value of the Time Dimension
component of the key.

CodedKeyValue Inherits from
KeyValue

The value of a coded component
of the key. The value is the Code
to which this class is associated.

 +valueOf Association to the Code.
Note that this is a conceptual
association showing that the
Code must exist in the Code list
associated with the Dimension in
the Data Structure Definition. In
the actual Data Set the value of
the Code is placed in the Key
Value.

UnCodedKeyValue Inherits from
KeyValue

The value of an uncoded
component of the key.

 value The value of the key component.
 startTime This attribute is only used if the

textFormat of the attribute is of
the Timespan type in the Data
Structure Definition (in which
case the value field takes a
duration).

GroupKey Inherits from
Key

A set of Key Values that comprise
a partial key, of the same
dimensionality as the Time Series
Key for the purpose of attaching
Data Attributes.

 +describedBy Associates the Group Dimension
Descriptor defined in the Data
Structure Definition.

SeriesKey Inherits from
Key

Comprises the cross product of
values of all the Key Values that,
together with the Key Value of the
+observation Dimension identify
uniquely an Observation.

 +describedBy Associates the Dimension
Descriptor defined in the Data
Structure Definition.

Observation The value(s) of the observed
phenomenon in the context of the
Key Values comprising the key.

 89

Class Feature Description
 +valueFor Associates the Measure(s)

defined in the Data Structure
Definition.
The source multiplicity (1..*)
indicates that more than one
values may be provided for a
Measure, if the latter allows it.

 +attachedAttribute Association to the Attribute
Values relating to the
Observation.

 +observationDimension Association to the Key Value that
holds the value of the “Dimension
at the Observation Level”.

ObservationValue Abstract class
Sub classes
UncodedObservationVal
ue
CodedObservation

UncodedObservatio
nValue

Abstract class
Inherits from
ObservationValue
Sub classes
OtherUncodedMeasureVa
lue
TextMeasureValue

OtherUncodedMeasu
reValue

Inherits from
UncodedObservationVal
ue

An observation that has a text
value.

 value The value of the Uncoded
Observation.

 startTime This attribute is only used if the
textFormat of the Measure is of
the Timespan type in the Data
Structure Definition (in which
case the value field takes a
duration).

TextMeasureValue Inherits from
UncodedObservationVal
ue

An observation that has a
localised text value

 text The localised text values.
CodedObservation Inherits from

ObservationValue
An Observation that takes its
value from a code in a Code list.

 90

Class Feature Description
 +valueOf Association to the Code that is

the value of the Observation.
Note that this is a conceptual
association showing that the
Code must exist in the Codelist(s)
associated with the Measure(s) in
the Data Structure Definition. In
the actual Data Set the value of
the Code is placed in the
Observation.

AttributeValue Abstract class
Sub classes
DataAttributeValue
MetadataAttributeValu
e

Represents the value for any
Attribute reported in the Dataset,
i.e., Data or Metadata Attribute.

DataAttributeValu
e

Abstract class
Inherits from
AttributeValue
Sub classes
UncodedAttributeValue
CodedAttributeValue

The value of a Data Attribute,
such as the instance of a Coded
Attribute or of an Uncoded
Attribute in a structure such as a
Data Structure Definition.

 +valueFor Association to the Data Attribute
defined in the Data Structure
Definition. Note that this is
conceptual association as the
Concept is identified explicitly in
the data set.
The source multiplicity (1..*)
indicates the possibility to provide
more than one values for a Data
Attribute, if the latter allows it.

MetadataAttribute
Value

(explained further in section
“Metadata Set”)

The value of a Metadata Attribute,
as specified in the Metadata
Structure Definition, which is
linked in the Data Structure
Definition

UncodedAttributeV
alue

Inherits from
AttributeValue
Sub classes
OtherUncodedAttribute
Value
TextAttributeValue

OtherUncodedAttri
buteValue

Inherits from
UncodedObservationVal
ue

An attribute value that has a text
value

 value The value of the Uncoded
attribute.

 91

Class Feature Description
 startTime This attribute is only used if the

textFormat of the attribute is of
the Timespan type in the Data
Structure Definition (in which
case the value field takes a
duration).

TextAttributeValu
e

Inherits from
UncodedAttributeValue

An attribute that has a localised
text value

 text The localised text values.
CodedAttributeVal
ue

Inherits from
AttributeValue

An attribute that takes it value
from a Code in Code list.

 +valueOf Association to the Code that is
the value of the Attribute Value.
Note that this is a conceptual
association showing that the
Code must exist in the Code list
associated with the Data Attribute
in the Data Structure Definition. In
the actual Data Set the value of
the Code is placed in the Attribute
Value.

 1510

 92

1511

 93

6 Cube 1512

6.1 Context 1513
Some statistical systems create views of data based on a “cube” structure. In essence, a cube 1514
is an n-dimensional object where the value of each dimension can be derived from a hierarchical 1515
code list. The utility of such cube systems is that it is possible to “roll up” or “drill down” each of 1516
the hierarchy levels for each of the dimensions to specify the level of granularity required to give 1517
a “view” of the data – some dimensions may be rolled up, others may be drilled down. Such 1518
systems give a dynamic view of the data, with aggregated values for rolled up dimension 1519
positions. For example, the individual countries may be rolled up into an economic region such 1520
as the EU, or a geographical region such as Europe, whilst another dimension, such as “type of 1521
road” may be drilled down to its lower level. The resulting measure (such as “number of 1522
accidents”) would then be an aggregation of the value for each individual country for the specific 1523
type of road. 1524
 1525
Such cube systems rely, not on simple code lists, but on hierarchical code sets (see section 8). 1526

6.2 Support for the Cube in the Information Model 1527
Data reported using a Data Structure Definition structure (where each dimension value, if coded, 1528
is taken from a flat code list) can be described by a cube definition and can be processed by 1529
cube aware systems. The SDMX-IM supports the definition of such cubes in the following way: 1530
 1531

• The Hierarchy defines the (often complex) hierarchies of codes. 1532
• If required: 1533

o The StructureMap can group DataStructureDefinition that describe the 1534
cube 1535

o The HierarchyAssociation can provide a mechanism to apply a 1536
Hierarchy to the Codes in the Codelists used by the 1537
DataStructureDefinition, providing also the context of which the hierarchy 1538
applies (e.g., a Dataflow). 1539

 94

1540

 95

7 Metadata Structure Definition and Metadata Set 1541

7.1 Context 1542
Besides the possibility to extend the components of Data Structure Definitions by metadata 1543
attributes defined in Metadata Structure Definitions, the SDMX metamodel allows metadata to 1544
describe any identifiable artefact. These metadata can be: 1545
 1546

1. Exchanged without the need to embed it within the object that it is describing. 1547
 1548

2. Stored separately from the object that it describes, yet be linked to it (for example, an 1549
organisation has a metadata repository which supports the dissemination of metadata 1550
resulting from metadata requests generated by systems or services that have access to 1551
the object for which the metadata pertains. This is common in web dissemination where 1552
additional metadata is available for viewing (and eventually downloading) by clicking on 1553
an “information” icon next to the object to which the metadata is attached). 1554

 1555
3. Versioned and maintained like structural metadata, but from Metadata Providers than 1556

Agencies. 1557
 1558

4. Reported according to a defined structure. 1559
 1560
In order to achieve this, the following structures are modelled: 1561
 1562

• The Metadata Structure Definition which comprises the metadata attributes that can be 1563
attached to the various object types (these attributes can be structured in a hierarchy), 1564
together with any constraints that may apply (e.g., association to a code list that contains 1565
valid values for the attribute when reported in a metadata set), 1566

• The Metadataflow and/or Metadata Provision Agreement, which contains the objects to 1567
which the metadata are to be associated (attached), 1568

• The Metadata Set, which contains reported metadata. 1569

7.2 Inheritance 1570

7.2.1 Introduction 1571
As with the Data Structure Definition Structure, many of the constructs in this layer of the model 1572
inherit from the SDMX Base layer. Therefore, it is necessary to study both the inheritance and 1573
the relationship diagrams to understand the functionality of individual packages. The diagram 1574
below shows the full inheritance tree for the classes concerned with the 1575
MetadataStructureDefinition, the MetadataProvisionAgreement, the 1576
Metadataflow and the MetadataSet. 1577
 1578
There are very few additional classes in the MetadataStructureDefinition package that 1579
do not themselves inherit from classes in the SDMX Base. In other words, the SDMX Base gives 1580
most of the structure of this sub model both in terms of associations and in terms of attributes. 1581
The relationship diagrams shown in this section show clearly when these associations are 1582
inherited from the SDMX Base (see the Appendix “A Short Guide to UML in the SDMX 1583
Information Model” to see the diagrammatic notation used to depict this). 1584
 1585

 96

7.2.2 Class Diagram - Inheritance 1586

 1587
Figure 32: Inheritance class diagram of the Metadata Structure Definition 1588

7.2.3 Explanation of the Diagram 1589

7.2.3.1 Narrative 1590
It is important to the understanding of the relationship class diagrams presented in this section 1591
to identify the concrete classes that inherit from the abstract classes. 1592
 1593
The concrete classes in this part of the SDMX metamodel, which require to be maintained by 1594
Maintenance Agencies, all inherit from MaintainableArtefact. These are: 1595
 1596

StructureUsage (concrete class is Metadataflow) 1597

Structure (concrete class is MetadataStructureDefinition) 1598

MetadataProvisionAgreement 1599

These classes also inherit the identity and versioning facets of IdentifiableArtefact, 1600
NameableArtefact and VersionableArtefact. 1601
 1602

 97

A Structure may contain several lists of components. In this case the 1603
MetadataStructureDefinition acts as a list and contains Components, i.e., 1604
MetadataAttributes. 1605

7.3 Metadata Structure Definition 1606

7.3.1 Introduction 1607
The diagrams and explanations in the rest of this section show how these concrete classes are 1608
related in order to support the required functionality. 1609

7.3.2 Structures Already Described 1610
The MetadataStructureDefinition only contains MetadataAttributes, since target 1611
objects are contained in Metadataflow and MetadataProvisionAgreement, since SDMX 1612
3.0. 1613
 1614

7.3.3 Class Diagram – Relationship 1615

 1616
Figure 33: Relationship class diagram of the Metadata Structure Definition 1617

7.3.4 Explanation of the Diagram 1618

7.3.4.1 Narrative 1619
In brief, a MetadataStructureDefinition (MSD) defines the MetadataAttributes, 1620
within an MetadataAttributeDescriptor, that can be associated with the objects identified 1621
in the Metadataflows and MetadataProvisionAgreements that refer to the MSD. The 1622

 98

hierarchy of the MetadataAttributes is specified within the 1623
MetadataAttributeDescriptor. 1624
 1625
The MetadataAttributeDescriptor comprises a set of MetadataAttributes – these 1626
can be defined as a hierarchy. Each MetadataAttribute identifies a Concept that is 1627
reported or disseminated in a MetadataSet (/conceptIdentity) that uses this 1628
MetadataStructureDefinition. Different MetadataAttributes in the same 1629
MetadataAttributeDescriptor can use Concepts from different ConceptSchemes. 1630
Note that a MetadataAttribute does not link to a Concept that defines its role in this 1631
MetadataStructureDefinition (i.e., the MetadataAttribute does not play a role). 1632
 1633
The MetadataAttribute can be specified as having multiple occurrences and/or specified 1634
as being mandatory (minOccurs=1 or more) or optional (minOccurs=0). A hierarchical 1635
MetadataStructureDefinition can be defined by specifying a hierarchy for a 1636
MetadataAttribute. 1637
 1638
It can be seen from this, that the specification of the objects to which a MetadataAttribute 1639
can be attached is indirect: the MetadataAttributes are defined in a 1640
MetadataStructureDefinition, but they are attached to one or more 1641
IdentifiableArtefacts as defined in the Metadataflows or 1642
MetadataProvisionAgreements. This gives a flexible mechanism by which the actual 1643
objects need not be defined in concrete terms in the model but are defined dynamically by the 1644
IdentifiableObjectSelection. In this way, the MetadataStructureDefinition can 1645
be used to define any set of MetadataAttributes regardless of the objects to which they can 1646
be attached. 1647
 1648
Each MetadataAttribute can have a Representation specified (using the 1649
/localRepresentation association). If this is not specified in the 1650
MetadataStructureDefinition then the Representation is taken from that defined for 1651
the Concept (the coreRepresentation association). 1652
 1653
The definition of the various types of Representation can be found in the specification of the 1654
Base constructs. Note that if the Representation is non-enumerated then the association is 1655
to the ExtendedFacet (which allows for XHTML as a FacetValueType). If the 1656
Representation is enumerated, then is must use a Codelist. 1657
 1658
The Metadataflow is linked to a MetadataStructureDefinition. The Metadataflow, 1659
in addition to the attributes inherited from the Base classes, it also has a list of 1660
IdentifiableObjectSelection constructs, which resolve into the 1661
IdentifiableArtefacts that the Metadatasets will refer to. The 1662
IdentifiableObjectSelection acts like a reference, but it may also include wildcarding 1663
part of the reference terms. 1664
 1665
The MetadataProvisionAgreement is linked to a Metadataflow. The former, like the 1666
Metadataflow, may have IdentifiableObjectSelection constructs to be used for 1667
specifying the proper targets for reference metadata. 1668

 99

7.3.4.2 Definitions 1669
Class Feature Description
StructureUsage See “SDMX Base”.
Metadataflow Inherits from:

StructureUsage
Abstract concept (i.e., the
structure without any
metadata) of a flow of
metadata that providers will
provide for different
reference periods. Specifies
possible targets for
metadata, via the
Identifiable Object
Selection.

 /structure Associates a Metadata
Structure Definition.

MetadataProvisionAgr
eement

 Links the Metadata Provider
to the relevant Structure
Usage (i.e., Metadataflow)
for which the provider
supplies metadata. The
agreement may constrain
the scope of the metadata
that can be provided, by
means of a Constraint.
Specifies possible targets
for metadata, via the
Identifiable Object
Selection.

MetadataProvider See Organisation Scheme.
IdentifiableObjectSe
lection

 A list or wildcarded
expression resolving into
Identifiable Objects that
metadata will refer to.

MetadataStructureDef
inition

Inherits from:
MaintainableArtefact

A collection of metadata
concepts and their structure
when used to collect or
disseminate reference
metadata.

MetadataAttributeDes
criptor

Inherits from:
ComponentList

Defines a set of concepts
that comprises the Metadata
Attributes to be reported.

 /components An association to the
Metadata Attributes relevant
to the Metadata Attribute
Descriptor.

MetadataAttribute Identifies a Concept for
which a value may be
reported in a Metadata Set.

 /hierarchy Association to one or more
child Metadata Attribute.

 100

Class Feature Description
 /conceptIdentity An association to the

concept which defines the
semantic of the attribute.

 isPresentational Indication that the Metadata
Attribute is present for
structural purposes (i.e. it
has child attributes) and that
no value for this attribute is
expected to be reported in a
Metadata Set.

 minOccurs
maxOccurs

Specifies how many
occurrences of the
Metadata Attribute may be
reported at this point in the
Metadataset.

 /localRepresentation Associates a
Representation that
overrides any core
representation specified for
the Concept itself.

Representation The representation of the
Metadata Attribute.

 101

7.4 Metadata Set 1670

7.4.1 Class Diagram 1671

 1672
Figure 34: Relationship Class Diagram of the Metadata Set 1673

7.4.2 Explanation of the Diagram 1674

7.4.2.1 Narrative 1675
Note that the MetadataSet must conform to the MetadataStructureDefinition 1676
associated to the Metadataflow or MetadataProvisionAgreement for which this 1677
MetadataSet is an “instance of metadata”. Whilst the model shows the association to the 1678
classes of the MetadataStructureDefinition, this is for conceptual purposes to show the 1679
link to the MetadataStructureDefinition. In the actual MetadataSet, as exchanged, 1680
there must, of course, be a reference to the MetadataStructureDefinition and optionally 1681
a Metadataflow or a MetadataProvisionAgreement, but the 1682
MetadataStructureDefinition is not necessarily exchanged with the metadata. Note that 1683

 102

the MetadataStructureDefinition classes are shown also but are not a part of the 1684
MetadataSet itself. 1685
 1686
A MetadataProvider is maintaining one or more MetadataSets, as the latter is a 1687
MaintainableArtefact. 1688
 1689
A MetadataSet comprises a set of MetadataAttributeValues and a set of 1690
TargetIdentifiableObjects, which must be part of those specified in the relevant 1691
Metadataflow or MetadataProvisionAgreement. 1692
 1693
The MetadataStructureDefinition specifies which MetadataAttributes are 1694
expected as MetadataAttributeValues. The TargetIdentifiableObjects point to the 1695
IdentifiableArtefacts for which the MetadataAttributeValues are reported. 1696
 1697
A simple text value for the MetadataAttributeValue uses the 1698
UncodedMetadataAttributeValue sub class of MetadataAttributeValue whilst a 1699
coded value uses the CodedMetadataAttributeValue sub class. 1700
 1701
The UncodedMetadataAttributeValue can be one of: 1702
 1703

• XHTMLAttributeValue – the content is XHTML, 1704
• TextAttributeValue – the content is textual and may contain the text in multiple 1705

languages, 1706
• OtherUncodedAttributeValue – the content is a string value that must conform to 1707

the Representation specified for the MetadataAttribute in the 1708
MetadataStructureDefinition. 1709

 1710
The CodedMetadataAttributeValue contains a value for a Code specified as the 1711
Representation for a MetadataAttribute in the MetadataStructureDefinition. 1712

7.4.2.2 Definitions 1713
Class Feature Description
MetadataSet Any organised collection of

metadata.
 reportingBegin A specific time period in a

known system of time periods
that identifies the start period of
a report.

 reportingEnd A specific time period in a
known system of time periods
that identifies the end period of
a report.

 publicationYear Specifies the year of publication
of the data or metadata in terms
of whatever provisioning
agreements might be in force.

 103

Class Feature Description
 publicationPeriod Specifies the period of

publication of the data or
metadata in terms of whatever
provisioning agreements might
be in force.

 action Defines the action to be taken
by the recipient system
(information, append, replace,
delete)

 +describedBy Associates a Metadataflow or a
Metadata Provision Agreement
to the Metadata Set.

 +structuredBy Associates the Metadata
Attribute Descriptor of the
Metadata Structure Definition
that defines the structure of the
Metadata Set. Note that this
dependency explains that the
Metadataset is structures
according to the Metadata
Structure Definition of the linked
(by the +describedBy)
Metadataflow or the Metadata
Provision Agreement.

 +publishedBy Associates the Data Provider
that reports/publishes the
metadata.

 +attachesTo Associates the target identifiable
objects to which metadata is to
be attached.

 +metadata Associates the Metadata
Attribute values which are to be
associated with the object or
objects identified by the Target
Identifiable Objects(s).

TargetIdentifiableO
bject

 Specifies the identification of an
Identifiable object.

 +valueFor Associates the Target
Identifiable Object being a part
of the Identifiable Object
Selection specified in the
Dataflow or Metadata Provision
Agreement.

StructureRef Contains the identification of an
Identifiable object.

 structureType The object type of the target
object.

IdentifiableArtefac
tRef

 Identification of the target
object.

 104

Class Feature Description
 +containedObject Association to a contained

object in a hierarchy of
Identifiable Objects such as a
Transition in a Process Step.

MetadataAttributeVa
lue

Abstract class
Sub classes are:
UncodedMetadataAttrib
uteValue
CodedMetadataAttribut
eValue

The value for a Metadata
Attribute.

 +valueFor
(inherited from the
AttributeValue)

Association to the Metadata
Attribute in the Metadata
Structure Definition that
identifies the Concept and
allowed Representation for the
Metadata Attribute value.

Note that this is a conceptual
association showing the link to
the MSD construct. The syntax
for the Metadata Attribute value
will state, in some form, the id of
the Metadata Attribute.

 +child Association to a child Metadata
Attribute value consistent with
the hierarchy defined in the
MSD for the Metadata Attribute
for which this child is a
Metadata Attribute value.

UncodedMetadataAttr
ibuteValue

Inherits from
MetadataAttributeValu
e
Sub class:
XHTMLAttributeValue

TextAttributeValue

OtherUncodedAttribute

Value

The content of a Metadata
Attribute value where this is
textual.

XHTMLAttributeValue This contains XHTML
 value The string value of the XHTML
TextAttributeValue This value of a Metadata

Attribute value where the
content is human-readable text.

 text The string value is text. This can
be present in multiple language
versions.

 105

Class Feature Description
OtherUncodedAttribu
teValue

 The value of a Metadata
Attribute value where the
content is not of human-
readable text.

 value A text string that is consistent in
format to that defined in the
Representation of the Metadata
Attribute for which this is a
Metadata Attribute value.

 startTime This attribute is only used if the
textFormat of the Metadata
Attribute is of the Timespan type
in the Metadata Structure
Definition (in which case the
value field takes a duration).

CodedMetadataAttrib
uteValue

Inherits from
MetadataAttributeValu
e

The content of a Metadata
Attribute value that is taken from
a Code in a Code list.

 value The Code value of the Metadata
Attribute value.

 +value Association to a Code in the
Code list specified in the
Representation of the Metadata
Attribute for which this Metadata
Attribute value is the value.

Note that this shows the
conceptual link to the Item that
is the value. In reality, the value
itself will be contained in the
Coded Metadata Attribute
Value.

 1714

 106

8 Hierarchy 1715

8.1 Scope 1716
The Codelist described in the section on structural definitions supports a simple hierarchy of 1717
Codes and restricts any child Code to having just one parent Code. Whilst this structure is useful 1718
for supporting the needs of the DataStructureDefinition and the 1719
MetadataStructureDefinition, it may not be sufficient for supporting the more complex 1720
associations between codes that are often found in coding schemes such as a classification 1721
scheme. Often, the Codelist used in a DataStructureDefinition is derived from a more 1722
complex coding scheme. Access to such a coding scheme can aid applications, such as OLAP 1723
applications or data visualisation systems, to give more views of the data than would be possible 1724
with the simple Codelist used in the DataStructureDefinition. A Hierarchy may be 1725
linked to an IndentifiableArtefact, in order to assist 1726
 1727
Note that a Hierarchy is not necessarily a balanced tree. A balanced tree is where levels are 1728
pre-defined and fixed, (i.e. a level always has the same set of codes, and any code has a fixed 1729
parent and child relationship to other codes). A statistical classification is an example of a 1730
balanced tree, and the support for a balanced hierarchy is a subset, and special case, of 1731
hierarchies. 1732
 1733
The principal features of the Hierarchy are: 1734
 1735

1. A child code can have more than one parent. 1736
 1737

2. There can be more than one code that has no parent (i.e. more than one “root node”). 1738
 1739

3. The levels in a hierarchy can be explicitly defined or they can be implicit: i.e. they exist 1740
only as parent/child relationships in the coding structure. 1741

 1742
4. Hierarchies may be associated to the structures they refer to, via the 1743

HierarchyAssociation. 1744

 107

8.2 Inheritance 1745

8.2.1 Class Diagram 1746

 1747
Figure 35: Inheritance class diagram for the Hierarchy 1748

8.2.2 Explanation of the Diagram 1749

8.2.2.1 Narrative 1750
 1751
The Hierarchy and HierarchyAssociation inherit from MaintainableArtefact and 1752
thus have identification, naming, versioning and a maintenance agency. The Level is a 1753
NameableArtefact and therefore has an Id, multi-lingual name and multi-lingual description. 1754
A HierachicalCode is an IdentifiableArtefact. 1755
 1756
It is important to understand that the Codes participating in a Hierarchy are not themselves 1757
contained in the list – they are referenced from the list and are maintained in one or more 1758
Codelists. This is explained in the narrative of the relationship class diagram below. 1759

8.2.2.2 Definitions 1760
The definitions of the various classes, attributes, and associations are shown in the relationship 1761
section below. 1762
 1763

 108

8.3 Relationship 1764

8.3.1 Class Diagram 1765

 1766
Figure 36: Relationship class diagram of the Hierarchy 1767

8.3.2 Explanation of the Diagram 1768

8.3.2.1 Narrative 1769
The basic principles of the Hierarchy are: 1770
 1771

1. The Hierarchy is a specification of the structure of the Codes. 1772
 1773

2. The Codes in the Hierarchy are not themselves a part of the artefact, rather they are 1774
references to Codes in one or more external Codelists. 1775

 1776
3. The hierarchy of Codes is specified in HierarchicalCode. This references the Code 1777

and its immediate child HierarchicalCodes. 1778
 1779
A Hierarchy can have formal levels (hasFormalLevels="true"). However, even if 1780
hasFormalLevels="false" the Hierarchy can still have one or more Levels associated 1781
in order to document information about the HierarchicalCodes. 1782
 1783
If hasFormalLevels="false" the Hierarchy is “value based” comprising a hierarchy of 1784
codes with no formal Levels. If hasFormalLevels="true" then the hierarchy is “level 1785
based” where each Level is a formal Level in the Hierarchy, such as those present in 1786
statistical classifications. In a “level based” hierarchy each HierarchicalCode is linked to the 1787
Level in which it resides. It is expected that all HierarchicalCodes at the same hierarchic 1788

 109

level defined by the +parent/+child association will be linked to the same Level. Note that 1789
the +level association need only be specified if the HierarchicalCode is at a different 1790
hierarchical level (implied by the HierarchicalCode parent/child association) than the actual 1791
Level in the level hierarchy (implied by the Level parent/child association). 1792
 1793
[Note that organisations wishing to be compliant with accepted models for statistical 1794
classifications should ensure that the Id is the number associated with the Level, where 1795
Levels are numbered consecutively starting with level 1 at the highest Level]. 1796
 1797
The Level may have CodingFormat information defined (e.g. coding type at that level). 1798
 1799
A HierarchyAssociation links an IdentifiableArtefact (+linkedObject), that 1800
needs a Hierarchy, with the latter (+linkedHierarchy). The association is performed in a 1801
certain context (+contextObject), e.g. a Dimension in the context of a Dataflow. 1802

8.3.2.2 Definitions 1803
 1804
Class Feature Description
Hierarchy Inherits from:

MaintainableArtefact

A classification structure
arranged in levels of detail from
the broadest to the most
detailed level.

 hasFormalLevels If “true”, this indicates a
hierarchy where the structure is
arranged in levels of detail from
the broadest to the most
detailed level.

If “false”, this indicates a
hierarchy structure where the
items in the hierarchy have no
formal level structure.

 +codes Association to the top-level
Hierarchical Codes in the
Hierarchy.

 +level Association to the top Level in
the Hierarchy.

Level Inherits from

NameableArtefact

In a “level based” hierarchy this
describes a group of Codes
which are characterised by
homogeneous coding, and
where the parent of each Code
in the group is at the same
higher level of the Hierarchy.

In a “value based’ hierarchy this
describes information about the
Hierarchical Codes at the
specified nesting level.

 +codeFormat Association to the Coding
Format.

 110

Class Feature Description
 +child Association to a child Level of

Level.
CodingFormat Specifies format information for

the codes at this level in the
hierarchy such as whether the
codes at the level are
alphabetic, numeric or
alphanumeric and the code
length.

HierarchicalCode A hierarchic structure of code
references.

 validFrom Date from which the construct
is valid

 validTo Date from which construct is
superseded.

 +code Association to the Code that is
used at the specific point in the
hierarchy.

 +child Association to a child Code in
the hierarchy.

 +level Association to a Level where
levels have been defined for the
Hierarchy.

Code The Code to be used at this
point in the hierarchy.

 /items Association to the Code list
containing the Code.

Codelist The Code list containing the
Code.

HierarchyAssociation Inherits from:

MaintainableArtefact

An association between an
Identifiable Artefact and a
Hierarchy, within a specific
context.

 +contextObject The context within which the
association is performed.

 +linkedObject Associates the Identifiable
Artefact that needs the
Hierarchy.

 +linkedHierarchy Associated the Hierarchy.
 1805
 1806

 111

9 Structure Map 1807

9.1 Scope 1808
A StructureMap allows mapping between Data Structures or Dataflows. It ultimately 1809
maps one DataStructureDefinition to another (source to target) although it can do this 1810
via the Dataflow or directly against the DataStructureDefinition. 1811
 1812
The StructureMap defines how the structure of a source DataStructureDefinition 1813
relates to the structure of the target DataStructureDefinition. The term structure in this 1814
instance refers to the Dimensions and Attributes (collectively called Components). An 1815
example relationship is source REF_AREA Dimension maps to target COUNTRY 1816
Dimension. When converting data, systems should interpret this, as ‘data reported against 1817
REF_AREA in the source dataset, should be converted to data against COUNTRY in the target 1818
dataset’. StructureMaps can make use of the RepresentationMap to describe how the 1819
reported value map, if there is a mapping to be done on the value, for example source 1820
REF_AREA.US may map to COUNTRY.USA. In the case of mapping Dates, the EpochMap or 1821
DatePatternMap is used and maintained in the StructureMap that uses it. 1822
 1823

9.1.1 Class Diagram – Relationship 1824
 1825

 1826
Figure 37: Relationship Class diagram of the Structure Map 1827

9.1.2 Explanation of the Diagram 1828

9.1.2.1 Narrative 1829
The StructureMap is a MaintainableArtefact. The StructureMap can either map a 1830
source and target DataStructureDefinition or a source and target Dataflow, it cannot 1831
mix source and target types. The StructureMap contains zero or more ComponentMaps. 1832
Each ComponentMap maps one or more Components from the source 1833
DataStructureDefinition to one or more Components in the target 1834

 112

DataStructureDefinition5. In addition, the StructureMap contains zero or more 1835
FixedValueMaps. In this case, one or more Components, from the source or target 1836
DataStructureDefinition, map to a fixed value. 1837
 1838
The rules pertaining to how reported values map, are maintained in either a 1839
RepresentationMap, EpochMap, or DatePatternMap. A ComponentMap can only 1840
reference one of these mapping types to define how the reported values relate from source 1841
Dataset to the target Dataset. If a ComponentMap has more than 1 source or target, a 1842
RepresentationMap must be used to describe how the values map, as it is the only map 1843
which can define multiple source and target values in combination. 1844
 1845
If the ComponentMap does not reference any map type to describe how the values map in a 1846
Dataset, then the values from the source Dataset are copied to the target Dataset verbatim, 1847
with no mapping rules being applied. 1848
 1849
A RepresentationMap is a separate Maintainable structure. EpochMap and 1850
DatePatternMap are maintained in the same StructureMap and are referenced locally from 1851
the ComponentMap. EpochMap and DatePatternMap are maintained outside of the 1852
ComponentMap and can therefore be reused by multiple ComponentMaps. 1853
 1854
 1855

9.1.3 Class Diagram – Epoch Mapping and Date Pattern Mapping 1856

 1857
Figure 38: Relationship Class diagram of the EpochMap and DatePatternMap 1858

5 Source and target Data Structure Definition are either directly linked from the StructureMap or

indirectly via the linked source and target Dataflow

 113

9.1.4 Explanation of the Diagram 1859

9.1.4.1 Narrative 1860
The EpochMap and DatePatternMap are both IdentifiableArtefact. An EpochMap 1861
and DatePatternMap both provide the ability to map source to target date formats. The 1862
EpochMap describes the source date as the number of epochs since a point in time, where the 1863
duration of each epoch is defined, e.g., number of milliseconds since 1970. The 1864
DatePatternMap describes the source date as a pattern for example MM-YYYY, accompanied 1865
by the appropriate locale. 1866
 1867
Both mappings describe the target date as a frequency Identifier. The frequency identifier is 1868
given either a fixed value, e.g., ‘A’ or a reference to a Dimension or Attribute in the target 1869
DataStructureDefinition of the StructureMap, e.g. ‘FREQ’. In the latter case, the 1870
frequency id is derived at run time when the output series and observations are generated. 1871
Dates mapped using the frequency lookup can therefore be mapped using different frequencies 1872
depending on the series or observation being converted. 1873
 1874
If the Frequency Identifier aligns with standard SDMX frequencies the output date format can 1875
be derived using standard SDMX date formatting (e.g., A=YYYY, Q=YYYY-Qn). If the SDMX 1876
standard formatting is not desired or if the frequency Id is not a standard SDMX frequency Code, 1877
the FrequencyFormatMapping can be used to describe the relationship between the 1878
frequency Id and the output date format, e.g., A01=YYYY. 1879
 1880

9.1.4.2 Definitions 1881
Class Feature Description
StructureMap Inherits from

MaintainableArtefact
Links a source and target
structure where there is a
semantic equivalence between
the source and the target
structures.

 +sourceStructure Association to the source Data
Structure.

 +targetStructure Association to the target Data
Structure

 +sourceStructureUsage Association to the source
Dataflow.

 +targetStructureUsage Association to the target
Dataflow.

ComponentMap Inherits from
AnnotableArtefact

Links source and target
Component(s) where there is a
semantic equivalence between
the source and the target
Components.

 +source Association to zero or more
source Components.

 +target Association to zero or more the
target Components.

 114

Class Feature Description
 mappingRules Reference to either a

RepresentationMap, an
EpochMap or a DatePatternMap.

FixedValueMap Inherits from
AnnotableArtefact

Links a Component (source or
target) to a fixed value.

 value The value that a Component will
be fixed in a fixed component
map.

DateMap Inherits from
IdentifiableArtefact

 freqDimension The Dimension or Attribute
of the target Data Structure
Definition which will hold the
frequency information for date
conversion. Mutually exclusive
with targetFrequencyId.

 yearStart The date of the start of the year,
enabling mapping from high
frequency to lower frequency
formats.

 resolvePeriod Which point in time to resolve to
when mapping from low
frequency to high frequency
periods.

 mappedFrequencies A reference to a map of
frequency id to date pattern for
output.

EpochMap Inherits from
DateMap

 basePeriod Epoch zero starts on this period.
 targetFrequencyId The frequency to convert the

input date into. Mutually
exclusive with freqDimension.

 epochPeriod Describes the period of time that
each epoch represents.

DatePatternMap Inherits from
DateMap

Described a source date based
on a string pattern, and how it
maps to the target date.

 locale The locale on which the input will
be parsed according to the
pattern.

DateMapping
 sourcePattern Describes the source date using

conventions for describing years,
months, days, etc.

 targetFrequencyId The frequency to convert the
input date into. Mutually
exclusive with freqDimension.

 115

Class Feature Description
FrequencyFormatMap
ping

Inherits from
IdentifiableArtefact

Describes the relationship
between a frequency Id to the
what the output date is formatted

 frequencyId The string used to describe the
frequency

 datePattern The output date pattern for that
frequency

 1882

 116

10 RepresentationMap 1883

10.1 Scope 1884
A RepresentationMap describes a mapping between source value(s) and target value(s) 1885
where the values are restricted to those in a Codelist, ValueList or be of a certain data 1886
type, e.g., Integer. 1887
 1888
The RepresentationMap maps information from one or more sources, where the values for 1889
each source are used in combination to derive the output value for one or more targets. Each 1890
source value may match a substring of the original data (using startIndex and/or endIndex) 1891
or define a pattern matching rule described by a regular expression. The target value is provided 1892
as an absolute string, although it can make use of regular expression groups to carry across 1893
values from the source string to the target string without having to explicitly state the value to 1894
carry. An example is a regular expression which states ‘match a value starting with AB followed 1895
by anything, where the anything is marked a capture group’, the target can state ‘take the 1896
anything value and postfix it with AB’ thus enabling the mapping of ABX to XAB and ABY to 1897
YAB. 1898
 1899
The absence of an output for an input is interpreted as ‘no output value for the given source 1900
value(s)’. 1901
 1902

 117

10.1.1 Class Diagram – Relationship 1903

 1904
Figure 39: Representation Map 1905

10.1.2 Explanation of the Diagram 1906

10.1.2.1 Narrative 1907
The RepresentationMap is a MaintainableArtefact. It maps one or more source values 1908
to one or more target values, where values that are being mapped are defined by the 1909
ValueRepresentation. A ValueRepresentation is an abstract container which is either 1910
a Codelist, ValueList or a FacetValueType. Source and target values are in a list where 1911
the list order is important as the RepresentationMapping sourceValues and 1912
targetValues must match the order. It is permissible to mix types for both source and target 1913
values, allowing for example a Codelist to map to an Integer (which is a FacetValueType). 1914
The list of source or targets can also be mixed, for example a Codelist in conjunction with a 1915

 118

FacetValueType and ValueList and can be defined as the source of a mapping, thus 1916
allowing rules such as ‘When CL_AREA=UK AND AGE=26 CURRENCY=$’. 1917
 1918

10.1.2.2 Definitions 1919
Class Feature Description
RepresentationMap Inherits from

MaintainableArtefact
Links source and target
representations, whose values
may conform to a linked
Codelist, ValueList or
enumerated type such as
Integer.

 source Association to one or more
Codelist, ValueList, or
FacetValue – mixed types are
permissible

 target Association to one or more
Codelist, ValueList, or
FacetValue – mixed types are
permissible

RepresentationMapping Inherits from
AnnotableArtefact

Describes how the source
value(s) map to the target
value(s)

 validFrom Optional period describing when
the mapping is applicable

 validTo Optional period describing which
the mapping is no longer
applicable.

 sourceValues Input value for source in the
RepresentationMap

 targetValues Output value for each mapped
target in the
RepresentationMap

MappedValue Describes an input value that is
part of the sourceValues in a
RepresentationMapping

 value The value to compare the source
data with

 isRegEx If true, the value field should be
treated as a regular expression
when comparing with the source
data

 startIndex If provided, a substring of the
source data should be taken,
starting from this index (starting
at zero) before comparing with
the value field for matching

 119

Class Feature Description
 endIndex If provided, a substring of the

source data should be taken,
ending at this index (starting at
zero) before comparing with the
value field for matching

TargetValue Describes the target value that is
part of the targetValues of a
RepresentationMapping

 value Represents a value for the
targetValues of a
RepresenationMapping

 1920

 120

11 ItemSchemeMap 1921

11.1 Scope 1922
An ItemSchemeMap is an abstract container to describe mapping rules between any item 1923
scheme, with the exception of Codelists and ValueLists which are mapped using the 1924
RepresentationMap. A single source ItemScheme is mapped to a single target 1925
ItemScheme. The ItemSchemeMap then contains the rules for how the values from the 1926
source ItemScheme map to the values in the target ItemScheme. Each source value may 1927
match a substring of the original data (using startIndex and/or endIndex) or define a pattern 1928
matching rule described by a regular expression. The target value is provided as an absolute 1929
string, although it can make use of regular expression groups to carry across values from the 1930
source string to the target string without having to explicitly state the value to carry. An example 1931
is a regular expression which states ‘match a value starting with AB followed by anything, where 1932
the anything is marked a capture group’, the target can state ‘take the anything value and postfix 1933
it with AB’ thus enabling the mapping of ABX to XAB and ABY to YAB. 1934
 1935
The absence of an output for an input is interpreted as ‘no output value for the given source 1936
value(s)’. 1937
 1938

 1939
Figure 40: Item Scheme Map 1940

 1941

11.1.1 Explanation of the Diagram 1942

11.1.1.1 Narrative 1943
An ItemSchemeMap is an abstract type which inherits from Maintainable. It is subclassed 1944
by the 4 concrete classes: 1945

• OrganisationSchemeMap 1946
• ConceptSchemeMap 1947
• CategorySchemeMap 1948

 121

• ReportingTaxonomyMap 1949
 1950
An OrganisationSchemeMap maps a source AgencyScheme, DataProviderScheme, 1951
DataConsumerScheme or OrganisationUnitScheme to a target AgencyScheme, 1952
DataProviderScheme, DataConsumerScheme or OrganisationUnitScheme. It is 1953
permissible to mix source and target types to define an equivalence between Organisations 1954
of different roles. The mapped items refer to the Organisations in the source/target 1955
schemes. 1956
A ConceptSchemeMap maps a source ConceptScheme to a target ConceptScheme. The 1957
mapped items refer to the Concepts in the source/target schemes. 1958
A CategorySchemeMap maps a source CategoryScheme to a target CategoryScheme. 1959
The mapped Items refer to the Categories in the source/target schemes. 1960
A ReportingTaxonomyMap maps a source ReportingTaxonomy to a target 1961
ReportingTaxonomy. The mapped Items refer to the ReportingCategory in the 1962
source/target schemes. 1963
 1964

11.1.1.2 Definitions 1965
Class Feature Description
ItemSchemeMap Inherits from

MaintainableArtef
act

Links source and target
ItemSchemes

 +source Association to a source
ItemScheme

 +target Association to a target
ItemScheme

ItemMap Inherits from
AnnotableArtefact

Describes how the source value
maps to the target value

 validFrom Optional period describing when
the mapping is applicable

 validTo Optional period describing which
the mapping is no longer
applicable.

 sourceValue Input value for source
 targetValue Output value for each mapped

target
 isRegEx If true, the sourceValue field

should be treated as a regular
expression when comparing with
the source data

 startIndex If provided, a substring of the
source data should be taken,
starting from this index (starting at
zero) before comparing with the
value field for matching

 endIndex If provided, a substring of the
source data should be taken,
ending at this index (starting at
zero) before comparing with the
value field for matching

 122

Class Feature Description
OrganisationSchemeMap Inherits from

ItemSchemeMap
Concrete Maintainable
subtype of ItemSchemeMap

ConceptSchemeMap Inherits from
ItemSchemeMap

Concrete Maintainable
subtype of ItemSchemeMap

CategorySchemeMap Inherits from
ItemSchemeMap

Concrete Maintainable
subtype of ItemSchemeMap

ReportingTaxonomyMap Inherits from
ItemSchemeMap

Concrete Maintainable
subtype of ItemSchemeMap

 1966

 123

12 Constraints 1967

12.1 Scope 1968
The scope of this section is to describe the support in the metamodel for specifying both the 1969
access to and the content of a data source. The information may be stored in a resource such 1970
as a registry for use by applications wishing to locate data and metadata which are available via 1971
the Internet. The Constraint is also used to specify a subset of a Codelist which may be 1972
used as a partial Codelist, relevant in the context of the artefact to which the Constraint is 1973
attached e.g., DataStructureDefinition, Dataflow, ProvisionAgreement, 1974
MetadataStructureDefinition, Metadataflow, MetadataProvisionAgreement. 1975
 1976
Note that in this metamodel the term data provider refers to both data and metadata providers. 1977
 1978
The Dataflow and Metadataflow, themselves may be specified as containing only a subset 1979
of all the possible keys that could be derived from a DataStructureDefinition or 1980
MetadataStructureDefinition. Respectively, further subsets may be defined within a 1981
ProvisionAgreement and MetadataProvisionAgreement. 1982
 1983
These specifications are called Constraint in this model. 1984

12.2 Inheritance 1985

12.2.1 Class Diagram of Constrainable Artefacts - Inheritance 1986

 1987
Figure 41: Inheritance class diagram of constrainable and provisioning artefacts 1988

12.2.2 Explanation of the Diagram 1989

12.2.2.1 Narrative 1990
Any artefact that inherits from the ConstrainableArtefact interface can have constraints 1991
defined. The artefacts that can have constraint metadata attached are: 1992
 1993

Dataflow 1994

ProvisionAgreement 1995

DataProvider 1996

DataStructureDefinition 1997

Metadataflow 1998

 124

MetaDataProvider 1999

MetadataProvisionAgreement 2000

MetadataStructureDefinition 2001

Note that, because the Constraint can specify a subset of the component values implied by 2002
a specific Structure (such as a specific DataStructureDefinition or specific 2003
MetadataStructureDefinition), the ConstrainableArtefacts must be associated 2004
with a specific Structure. Therefore, whilst the Constraint itself may not be linked directly 2005
to a DataStructureDefinition or MetadataStructureDefinition, the artefact that 2006
it is constraining will be linked to a DataStructureDefinition or 2007
MetadataStructureDefinition. A DataProvider and MetadataProvider indirectly 2008
refernece DSDs and MSDs through their associated Data and Metadata Provision Agreements 2009
as such these Constraints are restricted to Cube Regions and are applicable only to the DSDs 2010
/ MSDs which contain the Componets being restricted. 2011
 2012

12.3 Constraints 2013

12.3.1 Relationship Class Diagram – high level view 2014

 2015
Figure 42: Relationship class diagram showing constraint metadata 2016

12.3.2 Explanation of the Diagram 2017

12.3.2.1 Narrative 2018
The constraint mechanism allows specific constraints to be attached to a 2019
ConstrainableArtefact. These constraints specify a subset of the total set of values or 2020
keys that may be present in any of the ConstrainableArtefacts. 2021

 125

 2022
For instance, a DataStructureDefinition specifies, for each Dimension, the list of 2023
allowable code values. However, a specific Dataflow that uses the 2024
DataStructureDefinition may contain only a subset of the possible range of keys that is 2025
theoretically possible from the DataStructureDefinition definition (the total range of 2026
possibilities is sometimes called the Cartesian product of the dimension values). In addition to 2027
this, a DataProvider that is capable of supplying data according to the Dataflow has a 2028
ProvisionAgreement, and the DataProvider may also wish to supply constraint 2029
information which may further constrain the range of possibilities in order to describe the data 2030
that the provider can supply. It may also be useful to describe the content of a data source in 2031
terms of the KeySets or CubeRegions contained within it. 2032
 2033
A ConstrainableArtefact can have two types of Constraints: 2034
 2035

1. DataConstraint – is used as a mechanism to specify the set of keys (DataKeySet), 2036
or set of component values (CubeRegion) that can be reported against the target 2037
ConstrainableArtefact. Multiple such DataConstraints may be present for a 2038
ConstrainableArtefact. 2039

2. MetadataConstraint – is used as a mechanism to specify a set of component values 2040
(MetadatTargetRegion) that can be reported against the target 2041
ConstrainableArtefact. Multiple such MetadataConstraints may be present for a 2042
ConstrainableArtefact. 2043

 2044
Note also that another possible type of a Constraint is available; that is a 2045
AvailableDataConstraint, this is used to report the data that exists in a data source. An 2046
AvailableDataConstraint is not a Maintainable Artefact as it is geneated dynamically 2047
based on the query. An AvailableDataConstraint contains only 1 CubeRegion which is 2048
used to specify the valid values per Dimension of the DSD that is is attached to. 2049

 126

12.3.3 Relationship Class Diagram – Detail 2050

 2051
Figure 43: Constraints – Key Set, Cube Region and Metadata Target Region 2052

 127

12.3.3.1 Explanation of the Diagram 2053
A Constraint is a MaintainableArtefact. 2054
 2055
A DataConstraint has a choice of two ways of specifying value subsets: 2056
 2057

1. As a set of keys that can be present in the DataSet (DataKeySet). Each DataKey 2058
specifies a number of ComponentValues each of which reference a Component (e.g., 2059
Dimension, DataAttribute). Each ComponentValue is a value that may be present 2060
for a Component of a structure when contained in a DataSet. In addition, each 2061
DataKeySet may also include MemberSelections for AttributeComponents or 2062
Measures. 2063

2. As a CubeRegion whose MemberSelections SelectionValues define a subset 2064
of allowed/disallowed values for a Component when contained in a 2065
DataSet/MetadataSet. A DataConstraint is restricted to a maximum of 2 2066
CubeRegions, one to define included (allowable) content, and the other to define 2067
disallowed content (isIncluded=false). 2068

The difference between (1) and (2) above is that : 2069
1. Defines a combination of Dimension values, which are assessed in combination to 2070

reference one or more Series in a Dataset. This combination of values can be used 2071
to explicitly include or exclude the Series from being reported (via the isIncluded 2072
property). In addition, once a set of Series are targeted by a DataKey restrictions can 2073
be applied to Attribute and Measure values by defining subsets of values that are 2074
either allowed or disallowed. The DataKeySet targets its rules to specific Series. 2075

2. Defines a subset of values that are allowed for a Component. Each CubeRegion 2076
MemberSelection defines a single Component to define a set of allowed or disallowed 2077
values, the MemberSelections are processed indepently of each other. The Cube 2078
Region supplies global rules, not series specific rules. 2079

 2080
A MetadataConstraint has only one way of specifying value subsets: 2081
 2082

1. As a set of MetadataTargetRegions each of which defines a “slice” of the total 2083
structure (MemberSelection) in terms of one or more MemberValues that may be 2084
present for a Component of a structure when contained in a MetadataSet. 2085

In both CubeRegion and MetadataTargetRegion, the value in ComponentValue.value 2086
and MemberValue.value must be consistent with the Representation declared for the 2087
Component in the DataStructureDefinition (Dimension or DataAttribute) or 2088
MetadataStructureDefinition (MetadataAttribute). Note that in all cases the 2089
"operator" on the value is deemed to be "equals", unless the wildcard character is used '%'. In 2090
the latter case the "operation" is a partial matching, where the percentage character ('%') may 2091
match zero or more characters. Furthermore, it is possible in a MemberValue to specify that 2092
child values (e.g., child codes) are included in the Constraint by means of the 2093
cascadeValues attribute. The latter may take the following values: 2094

– "true": all children are included, 2095
– "false" (default), or 2096
– "excludeRoot", where all children are included, and the root Code is excluded (i.e. the 2097

referenced Code). 2098

 128

 2099
It is possible to define for the DataKeySet, DataKey, CubeRegion, 2100
MetadataTargetRegion and MemberSelection whether the set is included (isIncluded 2101
= "true", default) or excluded (isIncluded = "false") from the Constraint definition. 2102
This attribute is useful if, for example, only a small sub-set of the possible values are not included 2103
in the set, then this smaller sub-set can be defined and excluded from the constraint. Note that 2104
if the child construct is “included” and the parent construct is “excluded” then the child construct 2105
is included in the list of constructs that are “excluded”. 2106
 2107
In any MemberSelection that the corresponding Component was using Codelist with 2108
extensions, it is possible to remove the prefix that has been used, in order to refer to the original 2109
Codes. This is achieved via property removePrefix, which defaults to “false”. 2110
 2111
In DataKeys and MemberValues it is possible, via the validFrom and validTo properties, 2112
to set a validity period for which the selected key or value is constrained. 2113

12.3.3.2 Definitions 2114
Class Feature Description
ConstrainableArt
efact

Abstract Class
Sub classes are:
Dataflow
DataProvider
DataStructureDefinition
Metadataflow
MetadataProvisionAgreem
ent
MetadataSet
MetadataStructureDefini
tion
ProvisionAgreement
QueryDatasource
SimpleDatasource

An artefact that can have
Constraints specified.

 content Associates the metadata that
constrains the content to be
found in a data or metadata
source linked to the
Constrainable Artefact.

Constraint Inherits from
MaintainableArtefact
Abstract class
Sub classes are:
DataConstraint
MetadataConstraint

Specifies a subset of the
definition of the allowable or
actual content of a data or
metadata source that can be
derived from the Structure that
defines code lists and other valid
content.

 +dataContentKeys Association to a subset of Data
Key Sets (i.e., value
combinations) that can be
derived from the definition of the
structure to which the
Constrainable Artefact is linked.

 129

Class Feature Description
 +dataContentRegion Association to a subset of

component values that can be
derived from the Data Structure
Definition to which the
Constrainable Artefact is linked.

 +metadataContentRegion Association to a subset of
component values that can be
derived from the Metadata
Structure Definition to which the
Constrainable Artefact is linked.

 role Association to the role that the
Constraint plays

DataConstraint Inherits from
Constraint

Defines a Constraint in terms of
the content that can be found in
data sources linked to the
Constrainable Artefact to which
this constraint is associated.

ConstraintRoleTy
pe

 Specifies the way the type of
content of a Constraint in terms
of its purpose.

 allowableContent The Constraint contains a
specification of the valid subset
of the Component values or
keys.

 actualContent The Constraint contains a
specification of the actual
content of a data or metadata
source in terms of the
Component values or keys in the
source.

MetadataConstrai
nt

Inherits from
Constraint

Defines a Constraint in terms of
the content that can be found in
metadata sources linked to the
Constrainable Artefact to which
this constraint is associated.

DataKeySet A set of data keys.
 isIncluded Indicates whether the Data Key

Set is included in the constraint
definition or excluded from the
constraint definition.

 +keys Association to the Data Keys in
the set.

 +member Association to the selection of a
value subset for Attributes and
Measures.

DataKey The values of a key in a data
set.

 130

Class Feature Description
 isIncluded Indicates whether the Data Key

is included in the constraint
definition or excluded from the
constraint definition.

 +keyValue Associates the Component
Values that comprise the key.

 validFrom Date from which the Data Key is
valid.

 validTo Date from which the Data Key is
superseded.

ComponentValue The identification and value of a
Component of the key (e.g.,
Dimension)

 value The value of Component
 +valueFor Association to the Component

(e.g., Dimension) in the
Structure to which the
Constrainable Artefact is linked.

TimeDimensionVal
ue

 The value of the Time
Dimension component.

 timeValue The value of the time period.
 operator Indicates whether the specified

value represents and exact time
or time period, or whether the
value should be handled as a
range.

A value of greaterThan or
greaterThanOrEqual indicates
that the value is the beginning of
a range (exclusive or inclusive,
respectively).

A value of lessThan or
lessThanOrEqual indicates that
the value is the end or a range
(exclusive or inclusive,
respectively).

In the absence of the opposite
bound being specified for the
range, this bound is to be treated
as infinite (e.g., any time period
after the beginning of the
provided time period for
greaterThanOrEqual)

 131

Class Feature Description
CubeRegion A set of Components and their

values that defines a subset or
“slice” of the total range of
possible content of a data
structure to which the
Constrainable Artefact is linked.

 isIncluded Indicates whether the Cube
Region is included in the
constraint definition or excluded
from the constraint definition.

 +member Associates the set of
Components that define the
subset of values.

MetadataTargetRe
gion

 A set of Components and their
values that defines a subset or
“slice” of the total range of
possible content of a metadata
structure to which the
Constrainable Artefact is linked.

 isIncluded Indicates whether the Metadata
Target Region is included in the
constraint definition or excluded
from the constraint definition.

 +member Associates the set of
Components that define the
subset of values.

MemberSelection A set of permissible values for
one component of the axis.

 isIncluded Indicates whether the Member
Selection is included in the
constraint definition or excluded
from the constraint definition.

 removePrefix Indicates whether the Codes
should keep or not the prefix, as
defined in the extension of
Codelist.

 +valuesFor Association to the Component in
the Structure to which the
Constrainable Artefact is linked,
which defines the valid
Representation for the Member
Values.

SelectionValue Abstract class. Sub classes are:
MemberValue
TimeRangeValue
LocalisedMemberValue

A collection of values for the
Member Selections that,
combined with other Member
Selections, comprise the value
content of the Cube Region.

 validFrom Date from which the Selection
Value is valid.

 132

Class Feature Description
 validTo Date from which the Selection

Value is superseded.
MemberValue Inherits from

SelectionValue
A single value of the set of
values for the Member Selection.

 value A value of the member.
 cascadeValues Indicates that the child nodes of

the member are included in the
Member Selection (e.g., child
codes)

LocalisedMemberV
alue

Inherits from
SelectionValue

A single localised value of the
set of values for a Member
Selection.

 value A value of the member.
 locale The locale that the values must

adhere to in the dataset.
TimeRangeValue Inherits from

SelectionValue
Abstract Class
Concrete Classes:
BeforePeriod
AfterPeriod
RangePeriod

A time value or values that
specifies the date or dates for
which the constrained selection
is valid.

BeforePeriod Inherits from
TimeRangeValue

The period before which the
constrained selection is valid.

 isInclusive Indication of whether the date is
inclusive in the period.

 period The time period which acts as
the latest possible reported
period

AfterPeriod Inherits from
TimeRangeValue

The period after which the
constrained selection is valid.

 isInclusive Indication of whether the date is
inclusive in the period.

 period The time period which acts as
the earliest possible reported
period

RangePeriod The start and end periods in a
date range.

 +start Association to the Start Period.
 +end Association to the End Period.
StartPeriod Inherits from

TimeRangeValue
The period from which the
constrained selection is valid.

 isInclusive Indication of whether the date is
inclusive in the period.

 period The time period which acts as
the start of the range

EndPeriod Inherits from
TimeRangeValue

The period to which the
constrained selection is valid.

 isInclusive Indication of whether the date is
inclusive in the period.

 133

Class Feature Description
 period The time period which acts as

the end of the range

 134

13 Data Provisioning 2115

13.1 Class Diagram 2116

 2117
Figure 44: Relationship and inheritance class diagram of data/metadata provisioning 2118

 135

13.2 Explanation of the Diagram 2119

13.2.1 Narrative 2120
This sub model links many artefacts in the SDMX-IM and is pivotal to an SDMX metadata 2121
registry, as all of the artefacts in this sub model must be accessible to an application that is 2122
responsible for data and metadata registration or for an application that requires access to the 2123
data or metadata. 2124
 2125
Whilst a registry contains all of the metadata depicted on the diagram above, the classes in the 2126
grey shaded area are specific to a registry-based scenario where data sources (either physical 2127
data and metadata sets or databases and metadata repositories) are registered. More details 2128
on how these classes are used in a registry scenario can be found in the SDMX Registry 2129
Interface document. (Section 5 of the SDMX Standards). 2130
 2131
A ProvisionAgreement / MetadataProvisionAgreement links the artefact that defines 2132
how data / metadata are structured and classified (StructureUsage) to the DataProvider / 2133
MetadataProvider. By means of a data registration, it references the Datasource (data 2134
only), whether this be an SDMX conformant file on a website (SimpleDatasource) or a 2135
database service capable of supporting an SDMX query and responding with an SDMX 2136
conformant document (QueryDatasource). 2137
 2138
The StructureUsage, which has concrete classes of Dataflow and Metadataflow 2139
identifies the corresponding DataStructureDefinition or 2140
MetadataStructureDefinition, and, via Categorisation, can link to one or more 2141
Category(s) in a CategoryScheme such as a subject matter domain scheme, by which the 2142
StructureUsage can be classified. This can assist in drilling down from subject matter 2143
domains to find the data or metadata that may be relevant. 2144
 2145
The SimpleDatasource links to the actual DataSet on a website (this is shown on the 2146
diagram as a dependency called “references”). The sourceURL is obtained during the 2147
registration process of the DataSet. Additional information about the content of the 2148
SimpleDatasource is stored in the registry in terms of a Constraint (see 12.3) for the 2149
Registration. 2150
 2151
The QueryDatasource is an abstract class that represents a data source, which can 2152
understand an SDMX RESTful query (RESTDatasource) and respond appropriately. Each of 2153
these different Datasources inherit the dataURL from Datasource, and the 2154
QueryDatasource has an additional URL, the specURL, to locate the specification of the 2155
service (i.e., the open API specification for RESTDatasource), which describes how to access 2156
it. All other supported protocols are assumed to use the SimpleDatasource URL. 2157
 2158
The diagram below shows in schematic way the essential navigation through the SDMX 2159
structural artefacts that eventually link to a data or metadata registration6. 2160
 2161

6 Provider Scheme, Provider, Provision Agreement and Registered source refer both to data

and reference metadata.

 136

 2162
Figure 45: Schematic of the linking of structural metadata to data and metadata registration 2163

13.2.2 Definitions 2164
 2165
Class Feature Description
StructureUsage Abstract class:

Sub classes are:

Dataflow
Metadataflow

This is described in the
Base.

 controlledBy Association to the Provision
Agreements that comprise
the metadata related to the
provision of data.

DataProvider See Organisation Scheme.
 hasAgreement Association to the Provision

Agreements for which the
provider supplies data or
metadata.

 +source Association to a data
source, which can process a
data query.

MetadataProvider See Organisation Scheme.
 hasAgreement Association to the Metadata

Provision Agreements for
which the provider supplies
data or metadata.

 +source Association to a metadata
source, which can process a
metadata query.

 137

Class Feature Description
ProvisionAgreement Links the Data Provider to

the relevant Structure
Usage (i.e., the Dataflow)
for which the provider
supplies data. The
agreement may constrain
the scope of the data that
can be provided, by means
of a DataConstraint.

 +source Association to a data
source, which can process a
data query.

MetadataProvisionAgr
eement

 Links the Metadata Provider
to the relevant Structure
Usage (i.e., the
Metadataflow) for which the
provider supplies metadata.
The agreement may
constrain the scope of the
metadata that can be
provided, by means of a
MetadataConstraint.

 +source Association to reference
metadata source, which can
process a metadata query.

Datasource Abstract class

Sub classes are:
SimpleDatasource
QueryDatasource

Identification of the location
or service from where data
or reference metadata can
be obtained.

 +sourceURL The URL of the data or
reference metadata source
(a file or a web service).

SimpleDatasource An SDMX dataset
accessible as a file at a
URL.

QueryDatasource Abstract class
Inherits from:

Datasource
Sub classes are:

RESTDatasource

A data source, which can
process a data query.

RESTDatasource A data source that is
accessible via a RESTful
web services interface.

 +specificationURL Association to the URL for
the specification of the web
service.

 138

Class Feature Description
Registration This is not detailed here but

is shown as the link
between the SDMX-IM and
the Registry Service API. It
denotes a data registration
document.

 139

14 Process 2166

14.1 Introduction 2167
In any system that processes data and reference metadata the system itself is a series of 2168
processes and in each of these processes the data or reference metadata may undergo a series 2169
of transitions. This is particularly true of its path from raw data to published data and reference 2170
metadata. The process model presented here is a generic model that can capture key 2171
information about these stages in both a textual way and also in a more formalised way by 2172
linking to specific identifiable objects, and by identifying software components that are used. 2173

14.2 Model – Inheritance and Relationship view 2174

14.2.1 Class Diagram 2175

 2176
Figure 46: Inheritance and Relationship class diagram of Process and Transitions 2177

14.2.2 Explanation of the Diagram 2178

14.2.2.1 Narrative 2179
The Process is a set of hierarchical ProcessSteps. Each ProcessStep can take zero or 2180
more IdentifiableArtefacts as input and output. Each of the associations to the input and 2181
output IdentifiableArtefacts (ProcessArtefact) can be assigned a localID. 2182
 2183
The computation performed by a ProcessStep is optionally described by a Computation, 2184
which can identify the software used by the ProcessStep and can also be described in textual 2185
form (+description) in multiple language variants. The Transition describes the 2186

 140

execution of ProcessSteps from +source ProcessStep to +target ProcessStep based 2187
on the outcome of a +condition that can be described in multiple language variants. 2188
 2189

14.2.2.2 Definitions 2190
Class Feature Description
Process Inherits from

Maintainable
A scheme which defines or
documents the operations
performed on data or
metadata in order to validate
data or metadata to derive
new information according to
a given set of rules.

 +step Associates the Process
Steps.

ProcessStep Inherits from
IdentifiableArtefact

A specific operation,
performed on data or
metadata in order to validate
or to derive new information
according to a given set of
rules.

 +input Association to the Process
Artefact that identifies the
objects which are input to the
Process Step.

 +output Association to the Process
Artefact that identifies the
objects which are output
from the Process Step.

 +child Association to child
Processes that combine to
form a part of this Process.

 +computation Association to one or more
Computations.

 +transition Association to one or more
Transitions.

Computation Describes in textual form the
computations involved in the
process.

 localId Distinguishes between
Computations in the same
Process.

 softwarePackage
softwareLanguage
softwareVersion

Information about the
software that is used to
perform the computation.

 +description Text describing or giving
additional information about
the computation. This can be
in multiple language
variants.

 141

Class Feature Description
Transition Inherits from

IdentifiableArtefact
An expression in a textual or
formalised way of the
transformation of data
between two specific
operations (Processes)
performed on the data.

 +target Associates the Process Step
that is the target of the
Transition.

 +condition Associates a textual
description of the Transition.

ProcessArtefact Identification of an object
that is an input to or an
output from a Process Step.

 +artefact Association to an Identifiable
Artefact that is the input to or
the output from the Process
Step.

 2191

 142

2192

 143

15 Validation and Transformation Language 2193

15.1 Introduction 2194
This SDMX model package supports the definition of Transformations, which are algorithms to 2195
calculate new data starting from already existing ones, written using the Validation and 2196
Transformation Language (VTL)7. 2197
 2198
The purpose of this model package is to enable the: 2199
 2200

• definition of validation and transformation algorithms by means of VTL, in order to specify 2201
how to calculate new SDMX data from existing ones; 2202

• exchange of the definition of VTL algorithms, also together the definition of the data 2203
structures of the involved data (for example, exchange the data structures of a reporting 2204
framework together with the validation rules to be applied, exchange the input and output 2205
data structures of a calculation task together with the VTL transformations describing the 2206
calculation algorithms); 2207

• execution of VTL algorithms, either interpreting the VTL transformations or translating 2208
them in whatever other computer language is deemed as appropriate; 2209

 2210
This model package does not explain the VTL language or any of the content published in the 2211
VTL guides. Rather, this is an illustration of the SDMX classes and attributes that allow defining 2212
VTL transformations applied to SDMX artefacts. 2213
 2214
The SDMX model represented below is consistent with the VTL 2.0 specification. However, the 2215
former uses the SDMX terminology and is a model at technical level (from which the SDMX 2216
implementation artefacts for defining VTL transformations are built), whereas the latter uses the 2217
VTL terminology and is at conceptual level. The guidelines for mapping these terminologies and 2218
using the VTL in the SDMX context can be found in a dedicated chapter (“Validation and 2219
Transformation Language”) of the Section 6 of the SDMX Standards (“SDMX Technical Notes”), 2220
often referenced below. 2221

15.2 Model - Inheritance view 2222

15.2.1 Class Diagram 2223
 2224

7 The Validation and Transformation Language is a standard language designed and published

under the SDMX initiative. VTL is described in the VTL User and Reference Guides available

on the SDMX website https://sdmx.org.

https://sdmx.org/

 144

 2225
Figure 47: Class inheritance diagram in the Transformations and Expressions Package 2226

15.2.2 Explanation of the Diagram 2227

15.2.2.1 Narrative 2228
The model artefacts TransformationScheme, RulesetScheme, 2229
UserDefinedOperatorScheme, NamePersonalisationScheme, 2230
CustomTypeScheme, and VtlMappingScheme inherit from ItemScheme 2231
 2232
These schemes inherit from the ItemScheme and therefore have the following attributes: 2233
 2234

id 2235
uri 2236
urn 2237
version 2238
validFrom 2239

 145

validTo 2240
isExternalReference 2241
registryURL 2242
structureURL 2243
repositoryURL 2244
isPartial 2245

The model artefacts Transformation, Ruleset, UserDefinedOperator, 2246
NamePersonalisation, VtlMapping, CustomType inherit the attributes and 2247
associations of Item which itself inherits from NameableArtefact. They have the following 2248
attributes: 2249
 2250

id 2251
uri 2252
urn 2253

The multi-lingual name and description are provided by the relationship to 2254
InternationalString from NameableArtefact. 2255
	 2256

 146

 2257

15.3 Model - Relationship View 2258

15.3.1 Class Diagram 2259
 2260

 2261
Figure 48: Relationship diagram in the Transformations and Expressions Package 2262

15.3.2 Explanation of the Diagram 2263

15.3.2.1 Narrative - Overview 2264
 2265
Transformation Scheme 2266
 2267
A TransformationScheme is a set of Transformations aimed at obtaining some 2268
meaningful results for the user (e.g. the validation of one or more Data Sets). This set of 2269
Transformations is meant to be executed together (in the same run) and may contain any 2270
number of Transformations in order to produce any number of results. Therefore, a 2271
TransformationScheme can be considered as a VTL program. 2272
 2273
The TransformationScheme must include the attribute vtlVersion expressed as a string 2274
(e.g. “2.0”), as the version of the VTL determines which syntax is used in defining the 2275
transformations of the scheme. 2276
 2277

 147

A Transformation consists of a statement which assigns the outcome of the evaluation of a 2278
VTL expression to a result (an artefact of the VTL Information Model, which in the SDMX 2279
context can be a persistent or non-persistent Dataflow8). 2280
 2281
For example, assume that D1, D2 and D3 are SDMX Dataflows (called Data Sets in VTL) 2282
containing information on some goods, specifically: D3 the current stocks, D1 the stocks of the 2283
previous date, D2 the flows in the last period. A possible VTL Transformation aimed at 2284
checking the consistency between flows and stocks is the following: 2285
 2286

Dr := If ((D1 + D2) = D3, then "true", else "false") 2287
 2288
In this Transformation: 2289
 2290
Dr is the result (a new dataflow) 2291
:= is an assignment operator 2292
If((D1+D2)=D3, then "true", else "false") is the expression 2293
D1, D2, D3 are the operands 2294
If, (), +, = are VTL operators 2295
 2296
The Transformation model artefact contains three attributes: 2297

 2298
1. result 2299

The left-hand side of a VTL statement, which specifies the Artefact to which the outcome 2300
of the expression is assigned. An artefact cannot be result of more than one 2301
Transformation. 2302
 2303

2. isPersistent 2304
An assignment operator, which specifies also the persistency of the left-hand side. The 2305
assignment operators are two, namely ‘:=’ for non-persistent assignment (the result is 2306
non-persistent) and ‘<-’ for persistent assignment (the result is persistent). 2307
 2308

3. expression 2309
The right-hand side of a VTL statement, which is the expression to be evaluated. An 2310
expression consists in the invocation of VTL operators in a certain order. When an 2311
operator is invoked, for each input parameter, an actual argument is passed to the 2312
operator, which returns an actual argument for the output parameter. An expression 2313
is simply a text string written according the VTL grammar. 2314
 2315

Because an Artefact can be the result of just one Transformation and a 2316
Transformation belongs to just one TransformationScheme, it follows also that a derived 2317
Artefact (e.g., a new Dataflow) is produced in just one TransformationScheme. 2318
 2319
The result of a Transformation can be input of other Transformations. The VTL 2320
assumes that non-persistent results are maintained only within the same 2321

8 Or a part of a Dataflow, see also the chapter “Validation and Transformation Language” of

the Section 6 of the SDMX Standards (“SDMX Technical Notes”), paragraph “Mapping

dataflow subsets to distinct VTL data sets”.

 148

TransformationScheme in which they are produced. Therefore, a non-persistent result of a 2322
Transformation can be the operand of other Transformations of the same 2323
TransformationScheme, whereas a persistent result can be operand of transformations of 2324
any TransformationScheme9. 2325
 2326
The TransformationScheme has an association to zero of more RulesetScheme, zero or 2327
more UserDefinedOperatorScheme, zero or one NamePersonalisationScheme, zero 2328
or one VtlMappingScheme, and zero or one CustomTypeScheme. 2329
 2330
The RulesetScheme, UserDefinedOperatorScheme, NamePersonalisationScheme 2331
and CustomTypeScheme have the attribute vtlVersion. Thus, a TransformationScheme 2332
using a specific version of VTL can be linked to such schemes only if they are consistent with 2333
the same VTL version. 2334
 2335
The VtlMappingScheme associated to a TransformationScheme must contain the 2336
mappings between the references to the SDMX artefacts from the TransformationScheme 2337
and the structured identifiers of these SDMX artefacts. 2338
 2339
Ruleset Scheme 2340
 2341
Some VTL Operators can invoke rulesets, i.e., sets of previously defined rules to be applied by 2342
the Operator. Once defined, a Ruleset is persistent and can be invoked as many times as 2343
needed. The knowledge of the rulesets’ definitions (if any) is essential for understanding the 2344
actual behaviour of the Transformation that use them: this is achieved through the 2345
RulesetScheme model artefact. The RulesetScheme is the container for one or more 2346
Ruleset. 2347
 2348
The Ruleset model artefact contains the following attributes: 2349
 2350

1. rulesetType – the type of the ruleset according to VTL (VTL 2.0 allows two types: 2351
“datapoint” and “hierarchical” ruleset); 2352

2. rulesetScope – the VTL artefact on which the ruleset is defined; VTL 2.0 allows 2353
rulesets defined on Value Domains, which correspond to SDMX Codelists and 2354
rulesets defined on Variables, which correspond to SDMX Concepts for which a definite 2355
Representation is assumed; 2356

3. rulesetDefinition – the VTL statement that defines the ruleset according to the 2357
syntax of the VTL definition language. 2358

 2359
The RulesetScheme can have an association with zero or more VtlMappingScheme. These 2360
mappings define the correspondence between the references to the SDMX artefacts contained 2361
in the rulesetDefinition and the structured identifiers of these SDMX artefacts. 2362
 2363

9 Provided that the VTL consistency rules are accomplished (see the “Generic Model for

Transformations” in the VTL User Manual and its sub-section “Transformation

Consistency”).

 149

The rulesets defined on Value Domains reference Codelists. The rulesets defined on 2364
Variables reference Concepts (for which a definite Representation is assumed). In 2365
conclusion, in the VTL rulesets there can exist mappings for: Codelists and Concepts. 2366
 2367
 2368
User Defined Operator Scheme 2369
 2370
The UserDefinedOperatorScheme is a container for zero of more 2371
UserDefinedOperator. The UserDefinedOperator is defined using VTL standard 2372
operators. This is essential for understanding the actual behaviour of the Transformations 2373
that invoke them. 2374
 2375
The attribute operatorDefinition contains the VTL statement that defines the operator 2376
according to the syntax of the VTL definition language. 2377
 2378
Although the VTL user defined operators are conceived to be defined on generic operands, so 2379
that the specific artefacts to be manipulated are passed as parameters at the invocation, it is 2380
also possible that they reference specific SDMX artefacts like Dataflows and Codelists. 2381
Therefore, the UserDefinedOperatorScheme can link to zero or one VtlMappingScheme, 2382
which must contain the mappings between the VTL references and the structured URN of the 2383
corresponding SDMX artefacts (see also the “VTL mapping” section below). 2384
 2385
The definition of a UserDefinedOperator can also make use of VTL rulesets; therefore, the 2386
UserDefinedOperatorScheme can link to zero, one or more RulesetScheme, which must 2387
contain the definition of these Rulesets (see also the “Ruleset Scheme” section above). 2388
 2389
Name Personalisation Scheme 2390
 2391
In some operations, the VTL assigns by default some standard names to some measures and/or 2392
attributes of the data structure of the result10. The VTL allows also to personalise the names to 2393
be assigned. The knowledge of the personalised names (if any) is essential for understanding 2394
the actual behaviour of the Transformation: this is achieved through the 2395
NamePersonalisationScheme. A NamePersonalisation specifies a personalised name 2396
that will be assigned in place of a VTL default name. The NamePersonalisationScheme is 2397
a container for zero or more NamePersonalisation. 2398
 2399
VTL Mapping 2400
 2401
The mappings between SDMX and VTL can be relevant to the names of the artefacts and to 2402
the methods for converting the data structures from SDMX to VTL and vice-versa. These 2403
features are achieved through the VtlMappingScheme, which is a container for zero or more 2404
VtlMapping. 2405
 2406
The VTL assumes that the operands are directly referenced through their actual names (unique 2407
identifiers). In the VTL transformations, rulesets, user defined operators, the SDMX artefacts 2408

10 For example, the check operator produces some new components in the result called by

default bool_var, errorcode, errorlevel, imbalance. These names can be personalised if

needed.

 150

are referenced through VTL aliases. The alias can be the complete URN of the artefact, an 2409
abbreviated URN, or another user-defined name, as described in the Section 6 of the SDMX 2410
Standards.11 2411
 2412
The VTLmapping defines the correspondence between the VTL alias and the structured 2413
identifier of the SDMX artefact, for each referenced SDMX artefact. This correspondence is 2414
needed for the following kinds of SDMX artefacts: Dataflows, Codelists and Concepts. 2415
Therefore, there are the following corresponding mapping subclasses: VtlDataflowMapping, 2416
VtlCodelistMapping and VtlConceptMapping. 2417
 2418
As for the Dataflows, it is also possible to specify the method to convert the Data Structure of 2419
the Dataflow. This kind of conversion can happen in two directions, from SDMX to VTL when 2420
a SDMX Dataflow is accessed by a VTL Transformation (toVtlMappingMethod), or from 2421
VTL to SDMX when a SDMX derived Dataflow is calculated through VTL 2422
(fromVtlMappingMethod).12 2423
 2424
The default mapping method from SDMX to VTL is called “Basic”. Three alternative mapping 2425
methods are possible, called “Pivot”, “Basic-A2M”, “Pivot-A2M” (“A2M” stands for “Attributes to 2426
Measures”, i.e. the SDMX DataAttributes become VTL measures). 2427
 2428
The default mapping method from VTL to SDMX is also called “Basic”, and the two alternative 2429
mapping methods are called “Unpivot” and “M2A” (“M2A” stands for “Measures to Attributes”, 2430
i.e. some VTL measures become SDMX DataAttributes according to what is declared in 2431
the DSD). 2432
 2433
In both the mapping directions, no specification is needed if the default mapping method (Basic) 2434
is used. When an alternative mapping method is applied for some Dataflow, this must be 2435
specified in toVtlMappingMethod or fromVtlMappingMethod. 2436
 2437
 2438
ToVtlSubspace, ToVtlSpaceKey, FromVtlSuperspace, FromVtlSpaceKey 2439
 2440
Although in general one SDMX Dataflow is mapped to one VTL dataset and vice-versa, it is also 2441
allowed to map distinct parts of a single SDMX Dataflow to distinct VTL data sets according to 2442
the rules and conventions described in the Section 6 of the SDMX Standards.13 2443
 2444
In the direction from SDMX to VTL, this is achieved by fixing the values of some predefined 2445
Dimensions of the SDMX Data Structure: all the observations having such combination of values 2446
are mapped to one corresponding VTL dataset (the Dimensions having fixed values are not 2447

11 SDMX Technical Notes, chapter “Validation and Transformation Language”, section

“References to SDMX artefacts from VTL statements”.
12 For a more thorough description of these conversions, see the Section 6 of the SDMX

Standards (“SDMX Technical Notes”), chapter “Validation and Transformation Language”,

section “Mapping between SDMX and VTL”.
13 SDMX Technical Notes, chapter “Validation and Transformation Language”, section

“Mapping dataflow subsets to distinct VTL data sets”.

 151

maintained in the Data Structure of the resulting VTL dataset). The ToVtlSubspace and 2448
ToVtlSpaceKey classes allow to define these Dimensions. When one SDMX Dataflow is 2449
mapped to just one VTL dataset these classes are not used. 2450
 2451
Analogously, in the direction from VTL to SDMX, it is possible to map more calculated VTL 2452
datasets to distinct parts of a single SDMX Dataflow, as long as these VTL datasets have the 2453
same Data Structure. This can be done by providing, for each VTL dataset, distinct values for 2454
some additional SDMX Dimensions that are not part of the VTL data structure. The 2455
FromVtlSuperspace and FromVtlSpaceKey classes allow to define these dimensions. 2456
When one VTL dataset is mapped to just one SDMX Dataflow these classes are not used. 2457
 2458
Custom Type Scheme 2459
 2460
As already said, a Transformation consists of a statement which assigns the outcome of the 2461
evaluation of a VTL expression to a result, i.e. an artefact of the VTL Information Model. 2462
which in the SDMX context can be a persistent or non-persistent Dataflow14. Therefore, the 2463
VTL data type of the outcome of the VTL expression has to be converted into the SDMX data 2464
type of the resulting Dataflow. A default conversion table from VTL to SDMX data types is 2465
assumed15. The CustomTypeScheme allows to specify custom conversions that override the 2466
default conversion table. The CustomTypeScheme is a container for zero or more 2467
CustomType. A CustomType specifies the custom conversion from a VTL scalar type that will 2468
override the default conversion. The overriding SDMX data type is specified by means of the 2469
dataType and outputFormat attributes (the SDMX data type assumes the role of external 2470
representation in respect to VTL16). 2471
 2472
Moreover, the CustomType allows to customize the default format of VTL literals and the 2473
(possible) SDMX value to be produced when a VTL measure or attribute is NULL. 2474
 2475
VTL expression can contain literals, i.e. specific values of a certain VTL data type written 2476
according to a certain format. For example, consider the following Transformation that 2477
extracts from the dataflow D1 the observations for which the “reference_date” belongs to the 2478
years 2018 and 2019: 2479
 2480

Dr := D1 [filter between (reference_date, 2018-01-01, 2019-12-31)] 2481
 2482
In this expression, the two values 2018-01-01 and 2019-12-31 are literals of the VTL “date” 2483
scalar type expressed in the format YYYY-MM-DD. 2484
 2485
The VTL literals are assumed to be written in the same SDMX format specified in the default 2486
conversion table mentioned above, for the conversion from VTL to SDMX data types. If a 2487

14 Or a part of a Dataflow, as described in the previous paragraph.
15 The default conversion table from VTL to SDMX is described in the the Section 6 of the SDMX

Standards (“SDMX Technical Notes”), chapter “Validation and Transformation Language”,

section “Mapping VTL basic scalar types to SDMX data types”.
16 About VTL internal and external representations, see also the VTL User Manual, section

“Basic scalar types”, p.53.

 152

different format is used for a certain VTL scalar type, it must be specified in the 2488
vtlLiteralFormat attribute of the CustomType 2489
 2490
Regarding the management of NULLs, in the conversions between SDMX and VTL, by default 2491
a missing value in SDMX in converted in VTL NULL and vice-versa, for any VTL scalar type. If 2492
a different value is needed, after the conversion from SDMX to VTL, proper VTL operators can 2493
be used for obtaining it. In the conversion from VTL to SDMX the desired value can be declared 2494
in the nullValue attribute (separately for each VTL basic scalar type). 2495
 2496

15.3.2.2 Definitions 2497
 2498
Class Feature Description
Transformation
Scheme

Inherits from
ItemScheme

Contains the definitions of
transformations meant to
produce some derived
data and be executed
together

 vtlVersion The version of the VTL
language used for defining
transformations

Transformation Inherits from
Item

A VTL statement which
assigns the outcome of an
expression to a result.

 result The left-hand side of the
VTL statement, which
identifies the result
artefact.

 isPersistent A boolean that indicates
whether the result is
permanently stored or not,
depending on the VTL
assignment operator.

 expression The right-hand side of the
VTL statement that is the
expression to be
evaluated, which includes
the references to the
operands of the
Transformation.

RulesetScheme Inherits from
ItemScheme

Container of rulesets.

 vtlVersion The version of the VTL
language used for defining
the rulesets

Ruleset Inherits from
Item

A persistent set of rules
which can be invoked by
means of appropriate VTL
operators.

 153

Class Feature Description
 rulesetDefinition A VTL statement for the

definition of a ruleset
(according to the syntax of
the VTL definition
language)

 rulesetType The VTL type of the
ruleset (e.g., in VTL 2.0,
datapoint or hierarchical)

 rulesetScope The model artefact on
which the ruleset is
defined (e.g., in VTL 2.0,
valuedomain or variable)

UserDefinedOperator
Scheme

Inherits from
ItemScheme

Container of user defined
operators

 vtlVersion The version of the VTL
language used for defining
the user defined operators

UserDefinedOperator Inherits from
Item

Custom VTL operator (not
existing in the standard
library) that extends the
VTL standard library for
specific purposes.

 operatorDefinition A VTL statement for the
definition of a new
operator: it specifies the
operator name, its
parameters and their data
types, the VTL expression
that defines its behaviour.

NamePersonalisation
Scheme

Inherits from
ItemScheme

Container of name
personalisations.

 vtlVersion The VTL version which the
VTL default names to be
personalised belong to.

NamePersonalisation Inherits from
Item

Definition of personalised
name to be used in place
of a VTL default name.

 vtlArtefact VTL model artefact to
which the VTL default
name to be personalised
refers, e.g. variable, value
domain.

 vtlDefaultName The VTL default name to
be personalised.

 personalisedName The personalised name to
be used in place of the
VTL default name.

VtlMappingScheme Inherits from
ItemScheme

Container of VTL
mappings.

 154

Class Feature Description
VtlMapping Inherits from

Item

Sub classes are:
VtlDataflowMapping
VtlCodelistMapping
VtlConceptMapping

Single mapping between
the reference to a SDMX
artefact made from VTL
transformations, rulesets,
user defined operators
and the corresponding
SDMX structure identifier.

VtlDataflowMapping Inherits from
VtlMapping

Single mapping between
the reference to a SDMX
dataflow and the
corresponding SDMX
structure identifier

 dataflowAlias Alias used in VTL to
reference a SDMX
dataflow (it can be the
URN, the abbreviated
URN or a user defined
alias). The alias must be
univocal: different SDMX
artefacts cannot have the
same VTL alias.

 toVtlMappingMethod Custom specification of
the mapping method from
SDMX to VTL data
structures for the dataflow
(overriding the default
“basic” method).

 fromVtlMappingMethod Custom specification of
the mapping method from
VTL to SDMX data
structures for the dataflow
(overriding the default
“basic” method).

VtlCodelistMapping Inherits from
VtlMapping

Single mapping between
the VTL reference to a
SDMX codelist and the
SDMX structure identifier
of the codelist.

 codelistAlias Name used in VTL to
reference a SDMX
codelist. The name/alias
must be univocal: different
SDMX artefacts cannot
have the same VTL alias.

VtlConceptMapping Inherits from
VtlMapping

Single mapping between
the VTL reference to a
SDMX concept and the
SDMX structure identifier
of the concept.

 155

Class Feature Description
 conceptAlias Name used in VTL to

reference a SDMX
concept. The name/alias
must be univocal: different
SDMX artefacts cannot
have the same VTL alias.

ToVtlSubspace Subspace of the
dimensions of the SDMX
dataflow used to identify
the parts of the dataflow to
be mapped to distinct VTL
datasets

ToVtlSpaceKey A dimension of the SDMX
dataflow that contributes
to identify the parts of the
dataflow to be mapped to
distinct VTL datasets.

 Key The identity of the
dimension in the data
structure definition of the
dataflow that contributes
to identify the parts of the
dataflow to be mapped to
distinct VTL datasets

FromVtlSuperspace Superspace is composed
of the dimensions to be
added to the data structure
of the VTL result dataset in
order to obtain the data
structure of the derived
SDMX dataflow (in case
the latter is a superset of
distinct VTL datasets
calculated independently).

FromVtlSpaceKey A SDMX dimension to be
added to the data structure
of the VTL result dataset in
order to obtain the data
structure of the derived
SDMX dataflow

 Key The identity of the
dimension to be added to
the data structure of the
VTL result dataset in order
to obtain the data structure
of the derived SDMX
dataflow.

CustomTypeScheme Inherits from
ItemScheme

Container of custom
specifications for VTL
basic scalar types.

 156

Class Feature Description
 vtlVersion The VTL version, which

the VTL scalar types
belong to.

CustomType Inherits from
Item

Custom specification for a
VTL basic scalar type.

 vtlScalarType VTL scalar type for which
the custom specifications
are given.

 outputFormat Custom specification of
the VTL formatting mask
needed to obtain to the
desired representation,
i.e. the desired SDMX
format (e.g. YYYY-MM-
DD, see also the VTL
formatting mask in the VTL
Reference Manual and the
SDMX Technical Notes).
If not specified, the
“Default output format” of
the default conversion
table from VTL to SDMX is
used. 17

 datatype Custom specification of
the external (SDMX) data
type in which the VTL data
type must be converted
(e.g. the GregorianDay). If
not specified, the “Default
SDMX data type” of the
default conversion table
from VTL to SDMX is
used. 18

 nullValue Custom specification of
the SDMX value to be
produced for the VTL
NULL values, with
reference to the
vtlScalarType
specified above. If no
value is specified, no value
is produced.

17 See “Mapping VTL basic scalar types to SDMX data types” in the SDMX Technical Notes,

chapter “Validation and Transformation Language”.
18 See “Mapping VTL basic scalar types to SDMX data types” in the SDMX Technical Notes,

chapter “Validation and Transformation Language”.

 157

Class Feature Description
 vtlLiteralFormat Custom specification of

the format of the VTL
literals belonging to the
vtlScalarType used in the
VTL program (e.g. YYYY-
MM-DD)19. If not specified,
the “Default output format”
of the default conversion
table from VTL to SDMX is
assumed.20

 2499

19 See also the VTL formatting mask in the VTL Reference Manual and the SDMX Technical

Notes.
20 See “Mapping VTL basic scalar types to SDMX data types” in the SDMX Technical Notes,

chapter “Validation and Transformation Language.

 158

16 Appendix 1: A Short Guide to UML in the SDMX 2500
Information Model 2501

16.1 Scope 2502
The scope of this document is to give a brief overview of the diagram notation used in UML. The 2503
examples used in this document have been taken from the SDMX UML model. 2504

16.2 Use Cases 2505
In order to develop the data models it is necessary to understand the functions that require to 2506
be supported. These are defined in a use case model. The use case model comprises actors 2507
and use cases and these are defined below. 2508
 2509
The actor can be defined as follows: 2510

“An actor defines a coherent set of roles that users of the system can play when 2511
interacting with it. An actor instance can be played by either an individual or an external 2512
system” 2513

 2514
The actor is depicted as a stick man as shown below. 2515
 2516

Figure 49 Actor

 2517
The use case can be defined as follows: 2518

“A use case defines a set of use-case instances, where each instance is a sequence of 2519
actions a system performs that yields an observable result of value to a particular actor” 2520

 2521

Figure 50 Use case

 2522

Figure 51 Actor and use case

 2523

Data Publisher

Publish Data

Data Publisher
Publish Data

 159

Figure 52 Extend use cases

An extend use case is where a use case may be optionally extended by a use case that is 2524
independent of the using use case. The arrow in the association points to he owning use case 2525
of the extension. In the example above the Uses Data use case is optionally extended by the 2526
Uses Metadata use case. 2527

16.3 Classes and Attributes 2528

16.3.1 General 2529
A class is something of interest to the user. The equivalent name in an entity-relationship model 2530
(E-R model) is the entity and the attribute. In fact, if the UML is used purely as a means of 2531
modelling data, then there is little difference between a class and an entity. 2532
 2533

Figure 53 Class and its attributes

 2534
Figure 53 shows that a class is represented by a rectangle split into three compartments. The 2535
top compartment is for the class name, the second is for attributes and the last is for operations. 2536
Only the first compartment is mandatory. The name of the class is Annotation, and it belongs 2537
to the package SDMX-Base. It is common to group related artefacts (classes, use-cases, etc.) 2538
together in packages. . Annotation has three “String” attributes – name, type, and url. The 2539
full identity of the attribute includes its class e.g. the name attribute is Annotation.name. 2540
 2541
Note that by convention the class names use UpperCamelCase – the words are concatenated 2542
and the first letter of each word is capitalized. An attribute uses lowerCamelCase - the first 2543
letter of the first (or only) word is not capitalized, the remaining words have capitalized first 2544
letters. 2545

16.3.2 Abstract Class 2546
An abstract class is drawn because it is a useful way of grouping classes, and avoids drawing 2547
a complex diagram with lots of association lines, but where it is not foreseen that the class 2548

Data Consumer

Metadata
Consumer

Uses Data

Uses Reference Metadata

<<extend>>

Annotation
name : String
type : String
url : String

 160

serves any other purpose (i.e. it is always implemented as one of its sub classes). In the diagram 2549
in this document an abstract class is depicted with its name in italics, and coloured white. 2550
 2551

Figure 54 Abstract and concrete classes

16.4 Associations 2552

16.4.1 General 2553
In an E-R model these are known as relationships. A UML model can give more meaning to the 2554
associations than can be given in an E-R relationship. Furthermore, the UML notation is fixed 2555
(i.e. there is no variation in the way associations are drawn). In an E-R diagram, there are many 2556
diagramming techniques, and it is the relationship in an E-R diagram that has many forms, 2557
depending on the particular E-R notation used. 2558

16.4.2 Simple Association 2559

Figure 55 A simple association

 2560
Here the DataflowDefinition class has an association with the 2561
DataStructureDefinition class. The diagram shows that a DataflowDefinition can 2562
have an association with only one DataStructureDefinition (1) and that a 2563
DataStructureDefinition can be linked to many DataflowDefinitions (0..*). The 2564
association is sometimes named to give more semantics. 2565
 2566
In UML it is possible to specify a variety of “multiplicity” rules. The most common ones are: 2567
 2568

Zero or one (0..1) 2569

Zero or many (0..*) 2570

One or many (1..*) 2571

Many (*) 2572

Unspecified (blank) 2573

AbstractClass ConcreteClass

DataflowDefinition

DataStructureDefinition

/structure

0..*

1

 161

16.4.3 Aggregation 2574

 2575
Figure 56: A simple aggregate association 2576

 2577

Figure 57 A composition aggregate association

 2578
An association with an aggregation relationship indicates that one class is a subordinate class 2579
(or a part) of another class. In an aggregation relationship. There are two types of aggregation, 2580
a simple aggregation where the child class instance can outlive its parent class, and a 2581
composition aggregation where 2582
the child class's instance lifecycle is dependent on the parent class's instance lifecycle. In the 2583
simple aggregation it is usual, in the SDMX Information model, for this association to also be a 2584
reference to the associated class. 2585

16.4.4 Association Names and Association-end (role) Names 2586
It can be useful to name associations as this gives some more semantic meaning to the model 2587
i.e. the purpose of the association. It is possible for two classes to be joined by two (or more) 2588
associations, and in this case it is extremely useful to name the purpose of the association. 2589
Figure 58 shows a simple aggregation between CategoryScheme and Category called 2590
/items (this means it is derived from the association between the super classes – in this case 2591
between the ItemScheme and the Item, and another between Category called /hierarchy. 2592
 2593

Dimension

GroupDimensionDescriptor
isAttachmentConstraint : Boolean

0..*

0..*

0..*

0..*

Process

0..*

ProcessStep

 162

Figure 58 Association names and end names

Furthermore, it is possible to give role names to the association-ends to give more semantic 2594
meaning – such as parent and child in a tree structure association. The role is shown with “+” 2595
preceding the role name (e.g. in the diagram above the semantic of the association is that a 2596
Item can have zero or one parent Items and zero or many child Item). 2597
 2598
In this model the preference has been to use role names for associations between concrete 2599
classes and association names for associations between abstract classes. The reason for using 2600
an association name is often useful to show a physical association between two sub classes 2601
that inherit the actual association between the super class from which they inherit. This is 2602
possible to show in the UML with association names, but not with role names. This is covered 2603
later in “Derived Association”. 2604
 2605
Note that in general the role name is given at just one end of the association. 2606

16.4.5 Navigability 2607
Associations are, in general, navigable in both directions. For a conceptual data model it is not 2608
necessary to give any more semantic than this. 2609
 2610
However, UML allows a notation to express navigability in one direction only. In this model this 2611
“navigability” feature has been used to represent referencing. In other words, the class at the 2612
navigable end of the association is referenced from the class at the non-navigable end. This is 2613
aligned, in general, with the way this is implemented in the XML schemas. 2614

Figure 59 One way association

Here it is possible to navigate from A to B, but there is no implementation support for navigation 2615
from B to A using this association. 2616

16.4.6 Inheritance 2617
Sometimes it is useful to group common attributes and associations together in a super class. 2618
This is useful if many classes share the same associations with other classes, and have many 2619
(but not necessarily all) attributes in common. Inheritance is shown as a triangle at the super 2620
class. 2621
 2622

Item

0..*

1

+child
0..*

+parent

1

hierarchy

ItemScheme

1..*1..*

items

A B

 163

Figure 60 Inheritance

Here the Dimension is derived from Component which itself is derived from 2623
IdentifiableArtefact. Both Component and IdentifiableArtefact are abstract 2624
superclasses. The Dimension inherits the attributes and associations of all of the the super 2625
classes in the inheritance tree. Note that a super class can be a concrete class (i.e. it exists in 2626
its own right as well as in the context of one of its sub classes), or an abstract class. 2627

16.4.7 Derived association 2628
It is often useful in a relationship diagram to show associations between sub classes that are 2629
derived from the associations of the super classes from which the sub classes inherit. A derived 2630
association is shown by “/” preceding the association name e.g. /name. 2631
 2632

Figure 61 Derived associations

 2633

Dimension

IdentifiableArtefact
urn : urn
uri : Url
id : String

Component

Category

CategoryScheme

1..*

/items

1..*

1 0..*

/hierarchy

+parent
1

+child

0..*

Item

0..*

1

+child
0..*

+parent

1

hierarchy

ItemScheme

1..*1..*

items

