
1

The following part substitutes the model package n.13 (Transformations and Expressions) of the SDMX 2.1 1
Information Model (Section 2). 2

2

13 Transformations and Expressions 3

13.1 Introduction 4
This SDMX model package supports the definition of Transformations, which are algorithms to 5
calculate new data starting from already existing ones, written using the Validation and 6
Transformation Language (VTL)1. 7
 8
The purpose of this model package is to enable the: 9
 10

• definition of validation and transformation algorithms by means of VTL, in order to specify 11
how to calculate new SDMX data from existing ones; 12

• exchange of the definition of VTL algorithms, also together the definition of the data 13
structures of the involved data (for example, exchange the data structures of a reporting 14
framework together with the validation rules to be applied, exchange the input and output 15
data structures of a calculation task together with the VTL transformations describing the 16
calculation algorithms); 17

• execution of VTL algorithms, either interpreting the VTL transformations or translating them 18
in whatever other computer language is deemed as appropriate; 19

 20
 21
This model package does not explain the VTL language or any of the content published in the VTL 22
guides. Rather, this is an illustration of the SDMX classes and attributes that allow defining VTL 23
transformations applied to SDMX artefacts. 24
 25
The SDMX model represented below is consistent with the VTL 2.0 specification2. However, the 26
former uses the SDMX terminology and is a model at technical level (from which the SDMX 27
implementation artefacts for defining VTL transformations are built), whereas the latter uses the 28
VTL terminology and is at conceptual level. The guidelines for mapping these terminologies and 29
using the VTL in the SDMX context can be found in a dedicated chapter (“Validation and 30
Transformation Language”) of the Section 6 of the SDMX Standards (“SDMX Technical Notes”). 31

1 The Validation and Transformation Language is a standard language designed and published under the
SDMX initiative. VTL is described in the VTL User and Reference Guides available on the SDMX website
https://sdmx.org.

https://sdmx.org/

3

13.2 Model - Inheritance view 32

13.2.1 Class Diagram 33
 34

 35
Figure 1: Class inheritance diagram in the Transformations and Expressions Package 36

13.2.2 Explanation of the Diagram 37

13.2.2.1 Narrative 38
The model artefacts TransformationScheme, RulesetScheme, 39
UserDefinedOperatorScheme, NamePersonalisationScheme, CustomTypeScheme, 40
and VtlMappingScheme inherit from ItemScheme 41
 42
These schemes inherit from the ItemScheme and therefore have the following attributes: 43
 44

• id 45

• uri 46

• urn 47

• version 48

• validFrom 49

• validTo 50

• isExternalReference 51

• registryURL 52

• structureURL 53

• repositoryURL 54

• final 55

• isPartial 56

 class transformation-inheritance

TransformationScheme

- v tlVersion :string

Transformation

- result :string
- isPersistent :boolean
- expression :string

UserDefinedOperator

- operatorDef inition :string

MaintainableArtefact

- f inal :Boolean
- isExternalRef erence :Boolean
- serv iceURL :URL
- structureURL :URI

ItemScheme

- isPartial :Boolean

Item

NameableArtefact
InternationalString

LocalisedString

- label :String
- locale :String

Ruleset

- rulesetDef inition :string
- rulesetTy pe :String
- rulesetScope :String

IdentifiableArtefact

- urn :urn
- uri :url
- id :String

RulesetScheme

- v tlVersion :String

UserDefinedOperatorScheme

- v tlVersion :String

NamePersonalisationScheme

- v tlVersion :String

NamePersonalisation

- v tlArtef act :String
- v tlDef aultName :String
- personalisedName :String

VtlMappingScheme

CustomTypeScheme

- v tlVersion :String

CustomType

- v tlScalarTy pe :String
- dataTy pe :String
- outputFormat :String
- nullValue :String
- v tlLiteralFormat :String

VtlMapping

0..1

+description

1+name

0..*

1

4

The model artefacts Transformation, Ruleset, UserDefinedOperator, 57
NamePersonalisation, VtlMapping, CustomType inherit the attributes and associations of 58
Item which itself inherits from NameableArtefact. They have the following attributes: 59
 60

• id 61

• uri 62

• urn 63

The multi-lingual name and description are provided by the relationship to 64
InternationalString from NameableArtefact. 65

13.3 Model - Relationship View 66

13.3.1 Class Diagram 67
 68

 69
Figure 2: Relationship diagram in the Transformations and Expressions Package 70

5

13.3.2 Explanation of the Diagram 71

13.3.2.1 Narrative - Overview 72
Transformation Scheme 73
 74
A TransformationScheme is a set of Transformations aimed at obtaining some meaningful 75
results for the user (e.g. the validation of one or more Data Sets). This set of Transformations 76
is meant to be executed together (in the same run) and may contain any number of 77
transformations in order to produce any number of results. Therefore, a TransformationScheme 78
can be considered as a VTL program. 79
 80
The TransformationScheme must include the attribute vtlVersion expressed as a string 81
(e.g. “2.0”), as the version of the VTL determines which syntax is used in defining the 82
transformations of the scheme. 83
 84
A Transformation consists of a statement which assigns the outcome of the evaluation of a 85
VTL expression to a result (an artefact of the VTL Information Model, which in the SDMX 86
context can be a persistent or non-persistent Dataflow3). 87
 88
For example, assume that D1, D2 and D3 are SDMX Dataflows (called Data Sets in VTL) 89
containing information on some goods, specifically: D3 the current stocks, D1 the stocks of the 90
previous date, D2 the flows in the last period. A possible VTL Transformation aimed at 91
checking the consistency between flows and stocks is the following: 92
 93

Dr := If ((D1 + D2) = D3, then “true”, else “false”) 94
 95
In this Transformation: 96
 97

• Dr is the result (a new dataflow) 98
• := is an assignment operator 99
• If ((D1 + D2) = D3, then “true”, else “false”) is the expression 100
• D1, D2, D3 are the operands 101
• If, (), +, = are VTL operators 102

 103
Therefore, the Transformation model artefact contains three attributes: 104

 105
1. result 106

 107
The left-hand side of a VTL statement, which specifies the Artefact to which the outcome of 108
the expression is assigned. An artefact cannot be result of more than one 109
Transformations. 110
 111

2. isPersistent 112
 113
An assignment operator, which specifies also the persistency of the left-hand side. The 114
assignment operators are two, namely := for non-persistent assignment (the result is non-115
persistent) and <- for persistent assignment (the result is persistent). 116
 117

3 Or a part of a Dataflow, see the chapter “Validation and Transformation Language” of the Section 6 of the SDMX
Standards (“SDMX Technical Notes”).

6

3. expression 118
 119
The right-hand side of a VTL statement, which is the expression to be evaluated. An 120
expression consists in the invocation of VTL operators in a certain order. When an 121
operator is invoked, for each input parameter, an actual argument is passed to the 122
operator, which returns an actual argument for the output parameter. An expression is 123
simply a text string written according the VTL grammar. 124
 125

Because an Artefact can be the result of just one Transformation and a Transformation 126
belongs to just one TransformationScheme, it follows also that an Artefact (e.g. a new 127
Dataflow) is produced in just one TransformationScheme. 128
 129
The result of a Transformation can be input of other Transformations. The VTL assumes 130
that non-persistent results are maintained only within the same TransformationScheme in 131
which they are produced. Therefore, a non-persistent result of a Transformation can be the 132
operand of other Transformations of the same TransformationScheme, whereas a 133
persistent result can be operand of transformations of any TransformationScheme4. 134
 135
The TransformationScheme has an association to zero of more RulesetScheme, zero or 136
more UserDefinedOperatorScheme, zero or one NamePersonalisationScheme, zero or 137
one VtlMappingScheme, and zero or one CustomTypeScheme 138
 139
The RulesetScheme, UserDefinedOperatorScheme NamePersonalisationScheme and 140
CustomTypeScheme have an attribute vtlVersion. Thus, a TransformationScheme using a 141
specific version of VTL can be linked to such schemes only if they are consistent with the same 142
VTL version. 143
 144
Ruleset Scheme 145
 146
Some VTL Operators can invoke rulesets, i.e., sets of previously defined rules to be applied by the 147
Operator5. Once defined, a Ruleset is persistent and can be invoked as many times as needed. 148
The knowledge of the rulesets’ definitions (if any) is essential for understanding the actual 149
behaviour of the Transformations that use them: this is achieved through the RulesetScheme 150
model artefact. The RulesetScheme is the container for one or more Ruleset. 151
 152
User Defined Operator Scheme 153
 154
The VTL allows to define UserDefinedOperator (i.e. custom operators) by means of the VTL 155
standard ones. The knowledge of the definitions of the user defined operators (if any) is essential 156
for understanding the actual behaviour of the Transformations that invoke them: this is 157
achieved through the UserDefinedOperatorScheme. The UserDefinedOperatorScheme is 158
a container for zero of more UserDefinedOperator. 159
 160
Name Personalisation Scheme 161
 162
In some operations, the VTL assigns by default some standard names to some measures and/or 163
attributes of the data structure of the result6. When needed, the VTL allows also to personalise the 164
names to be assigned. The knowledge of the personalised names (if any) is essential for 165

4 Provided that the VTL consistency rules are accomplished (see the “Generic Model for Transformations” in the VTL
User Manual and its sub-section “Transformation Consistency”).
5 VTL 2.0 has two kind of Rulesets: Datapoint and Hierarchical Rulesets.
6 For example, the check operator produces some new components in the result called by default bool_var,
errorcode, errorlevel, imbalance. These names can be personalised if needed.

7

understanding the actual behaviour of the Transformation: this is achieved through the 166
NamePersonalisationScheme. A NamePersonalisation specifies a personalised name that 167
will be assigned in place of a VTL standard name. The NamePersonalisationScheme is a 168
container for zero or more NamePersonalisation. 169
 170
VTL Mapping 171
 172
The mappings between SDMX and VTL can be relevant to the names of the artefacts and to the 173
methods for converting the data structures from SDMX to VTL and vice-versa. 174
 175
The VTL assumes that the operands are directly referenced in the expressions through their actual 176
names (unique identifiers). In the SDMX implementation of VTL, the SDMX artefacts are 177
referenced through VTL aliases. The alias can be the complete URN of the artefact, an 178
abbreviated URN or another user-defined name, as described in the Section 6 of the SDMX 179
Standards (“SDMX Technical Notes”), section “Mapping between VTL and SDMX”. 180
 181
The VTL mappings define the correspondence between the aliases and the actual SDMX artefacts, 182
associating an alias to each SDMX artefact referenced in the VTL expressions. This 183
correspondence is needed for three kinds of SDMX artefacts: Dataflows, Codelists and Concept 184
Schemes. Therefore, there are three corresponding mapping subclasses: VtlDataflowMapping;, 185
VtlCodelistMapping; VtlConceptSchemeMapping. 186
 187
As for the Dataflows, it is also possible to specify the mapping method to be applied to convert the 188
Data Structure of the Dataflow. This kind of conversion can happen in two directions, from SDMX 189
to VTL when a SDMX artefact is accessed by a VTL Transformation (toVtlMappingMethod), or 190
from VTL to SDMX when a VTL calculated artefact needs a SDMX definition 191
(fromVtlMappingMethod). 192
 193
The default mapping method from SDMX to VTL is called “Basic”. Three alternative mapping 194
methods are possible, called “Pivot”, “Basic-A2M”, “Pivot-A2M” (“A2M” stands for “Attributes to 195
Measures”, i.e. the SDMX Data Attributes become VTL Measures). 196
 197
The default mapping method from VTL to SDMX is also called “Basic”, and the two alternative 198
mapping methods are called “Unpivot” and “M2A” (“M2A” stands for “Measures to Attributes”, i.e. 199
the first VTL Measure becomes the SDMX primary measure and the other VTL Measures become 200
SDMX Data Attributes). 201
 202
In both mapping directions, if the default mapping method is used (Basic), no specification is 203
needed. When an alternative mapping method is needed for some artefact, this has to be specified 204
in toVtlMappingMethod or fromVtlMappingMethod. 205
 206
The features above are achieved through the VtlMappingScheme, which is a container for zero 207
or more VtlMapping. 208
 209
ToVtlSubspace and ToVtlSpaceKey 210
 211
Although in general one SDMX Dataflow is mapped to one VTL dataset and vice-versa, it is also 212
allowed to map distinct parts of a single SDMX Dataflow to distinct VTL data sets according to the 213
rules and conventions described in the Section 6 of the SDMX Standards (“SDMX Technical 214
Notes”), section “Mapping between VTL and SDMX”. 215
 216
In the direction from SDMX to VTL, this is achieved by fixing the values of some predefined 217
Dimensions of the SDMX Data Structure: all the observations having such combination of values 218
are mapped to one corresponding VTL dataset (the Dimensions having fixed values are not 219
maintained in the Data Structure of the resulting VTL dataset). The ToVtlSubspace and 220

8

ToVtlSpaceKey classes allow to define these Dimensions. When one SDMX Dataflow is mapped 221
to just one VTL dataset these classes are not used. 222
 223
FromVtlSuperspace and FromVtlSpaceKey 224
 225
Analogously, in the direction from VTL to SDMX, it is possible to map more calculated VTL 226
datasets to distinct parts of a single SDMX Dataflow, as long as these VTL datasets have the same 227
Data Structure. This can be done by providing, for each VTL dataset, distinct values for some 228
additional SDMX Dimensions that are not part of the VTL data structure. The 229
FromVtlSuperspace and FromVtlSpaceKey classes allow to define these dimensions. When 230
one VTL dataset is mapped to just one SDMX Dataflow these classes are not used. 231
 232
Custom Type Scheme 233
 234
As already said, a Transformation consists of a statement which assigns the outcome of the 235
evaluation of a VTL expression to a result, i.e. an artefact of the VTL Information Model. 236
which in the SDMX context can be a persistent or non-persistent Dataflow7. Therefore, the VTL 237
data type of the outcome of the VTL expression has to be converted into the SDMX data type of 238
the result Dataflow. A default conversion table is assumed8. The CustomTypeScheme allows to 239
specify custom conversions that override the default conversion table. A CustomType specifies 240
the custom conversion for a VTL scalar type, that will override the default conversion. The 241
CustomTypeScheme is a container for zero or more CustomType. The SDMX data types 242
assume the role of external representations in respect to VTL9. 243
 244
Moreover, a VTL expression can contain literals, i.e. specific values of a certain VTL data type 245
written according to a certain format. For example, consider the following Transformation that 246
extracts from the dataflow D1 the observations for which the “reference_date” belongs to the years 247
2018 and 2019: 248
 249

Dr := D1 [filter reference_date between 2018-01-01 and 2019-12-31] 250
 251
In this expression, the two values 2018-01-01 and 2019-12-31 are literals of the VTL “date” scalar 252
type expressed in the format YYYY-MM-DD. 253
 254
The VTL literals are assumed to be written in the same format specified in the default conversion 255
table mentioned above for the corresponding scalar type. The CustomTypeScheme allows also to 256
specify custom formats for the VTL literals that override the formats specified in the default 257
conversion table. 258

13.3.2.2 Definitions 259
 260
Class Feature Description

Transformation
Scheme

Inherits from
ItemScheme

Contains the definitions of
transformations meant to
produce some results and
be executed together

7 Or a part of a Dataflow, see the chapter “Validation and Transformation Language” of the Section 6 of the SDMX
Standards (“SDMX Technical Notes”).
8 The default conversion table is described in the chapter “Validation and Transformation Language” of the Section 6
of the SDMX Standards (“SDMX Technical Notes”).
9 About VTL internal and external representations, see the VTL User Manual, section “basic scalar types”, page 53.

9

Class Feature Description

 vtlVersion The version of the VTL
language used for
defining transformations

Transformation Inherits from
Item

A VTL statement which
assigns the outcome of an
expression to a result.

 result The left-hand side of the
VTL statement, which
identifies the result
artefact.

 isPersistent A boolean that indicates
whether the result is
permanently stored or not
depending on the VTL
assignment operator.

 expression The right-hand side of the
VTL statement, that is the
expression to be
evaluated, which includes
the references to the
operands of the
Transformation.

RulesetScheme Inherits from
ItemScheme

Container of rulesets.

 vtlVersion The version of the VTL
language used for
defining the rulesets

Ruleset Inherits from
Item

A persistent set of rules
which can be invoked by
means of appropriate VTL
operators.

 rulesetDefinition A VTL statement for the
definition of a ruleset
(according to the syntax
of the VTL definition
language)

 rulesetType The VTL type of the
ruleset (e.g., in VTL 2.0,
datapoint or hierarchical)

 rulesetScope The model artefact on
which the ruleset is
defined (e.g., in VTL 2.0,
valuedomain or variable)

UserDefinedOperator
Scheme

Inherits from
ItemScheme

Container of user defined
operators

 vtlVersion The version of the VTL
language used for
defining the user defined
operators

10

Class Feature Description

UserDefinedOperator Inherits from
Item

Custom VTL operator (not
existing in the standard
library) that extends the
VTL standard library for
specific purposes.

 operatorDefinition A VTL statement for the
definition of a new
operator: it specifies the
operator name, its
parameters and their data
types, the VTL expression
that defines its behaviour.

NamePersonalisation
Scheme

Inherits from
ItemScheme

Container of name
personalisations.

 vtlVersion The VTL version which
the VTL names to be
personalised belong to.

NamePersonalisation Inherits from
Item

Personalised name that is
assigned in place of a
VTL standard name in
some VTL operations.

 vtlArtefact VTL model artefact to
which the VTL standard
name to be personalised
refers, e.g.variable, value
domain.

 vtlDefaultName The VTL standard name
to be personalised.

 personalisedName The personalised name to
be used in place of the
VTL standard name.

VtlMappingScheme Inherits from
ItemScheme

Container of VTL
mappings.

VtlMapping Inherits from
Item

Sub classes are:
VtlDataflowMapping
VtlCodelistMapping
VtlConceptSchemeMapp
ing

Single mapping between
SDMX and VTL .

VtlDataflowMapping Inherits from
VtlMapping

Single mapping between
SDMX dataflow and VTL
dataset

 dataflowAlias Alias used in VTL to
reference a SDMX
dataflow. The alias must
be univocal: different
SDMX artefacts cannot
have the same VTL alias.

11

Class Feature Description

 toVtlMappingMethod Custom specification of
the mapping method from
SDMX to VTL data
structures.

 fromVtlMappingMethod Custom specification of
the mapping method from
VTL to SDMX data
structures

ToVtlSubspace Subspace of the SDMX
dimensions used to
identify the parts of the
dataflow to be mapped to
distinct VTL datasets

ToVtlSpaceKey A SDMX dimension that
contributes to identify the
parts of the dataflow to be
mapped to distinct VTL
datasets

 Key The identity of the
dimension in the data
structure definition that
contributes to identify the
parts of the dataflow to be
mapped to distinct VTL
datasets

FromVtlSuperspace Superspace composed of
the dimensions added to
the SDMX data structure
to identify the parts of the
dataflow coming from
distinct VTL datasets

FromVtlSpaceKey A SDMX dimension that
contributes to identify the
parts of the dataflow
coming from distinct VTL
datasets

 Key The identity of the
dimension in the data
structure definition that
contributes to identify the
parts of the dataflow
coming from distinct VTL
datasets

VtlCodelistMapping Inherits from
VtlMapping

Single mapping between
SDMX codelist and VTL
value domain

 codelistAlias Alias used in VTL to
reference a SDMX
codelist. The alias must
be univocal: different
SDMX artefacts cannot
have the same VTL alias.

12

Class Feature Description

VtlConceptSchemeMap
ping

Inherits from
VtlMapping

Single mapping between
SDMX concept scheme
and VTL value domain

 conceptSchemeAlias Alias used in VTL to
reference a SDMX
concept scheme. The
alias must be univocal:
different SDMX artefacts
cannot have the same
VTL alias.

CustomTypeScheme Inherits from
ItemScheme

Container of custom
specifications for VTL
scalar types.

 vtlVersion The VTL version which
the VTL scalar types
belong to.

CustomType Inherits from
Item

Custom specification for a
VTL scalar type.

 vtlScalarType VTL scalar type for which
the custom specifications
are given.

 outputFormat Specifies the formatting
mask that the VTL scalar
type has to assume in
order to be converted to
the desired external
representation,
corresponding to the
desired SDMX data type
(e.g. YYYY-MM-DD, see
also the VTL formatting
mask in the VTL
Reference Manual and
the SDMX Technical
Notes). It overrides the
“Default output format” of
the default conversion
table (see “Mapping VTL
basic scalar types to
SDMX data types” in the
SDMX Technical Notes).

 dataType External data type in
which the VTL data type
has to be converted (e.g.
the GregorianDay). It
overrides the “Default
SDMX data type” of the
default conversion table
(see “Mapping VTL basic
scalar types to SDMX
data types” in the SDMX
Technical Notes).

13

Class Feature Description

 nullValue Value to be produced in
the output of the
conversion when a
component of the
vtlScalarType has a Null
Value. If not specified, no
value is produced.

 vtlLiteralFormat The format in which the
literals of the
vtlScalarType are
expressed in the VTL
program (e.g. YYYY-MM-
DD, see also the VTL
formatting mask in the
VTL Reference Manual
and the SDMX Technical
Notes). It overrides the
“Default output format” of
the default conversion
table (see “Mapping VTL
basic scalar types to
SDMX data types” in the
SDMX Technical Notes).

 261

	13 Transformations and Expressions
	13.1 Introduction
	13.2 Model - Inheritance view
	13.2.1 Class Diagram
	13.2.2 Explanation of the Diagram
	13.2.2.1 Narrative

	13.3 Model - Relationship View
	13.3.1 Class Diagram
	13.3.2 Explanation of the Diagram
	13.3.2.1 Narrative - Overview
	13.3.2.2 Definitions

