

1

SDMX Technical Working Group 1

VTL Task Force 2

 3

 4

 5

 6

 7

VTL – version 1.1 8

(Validation & Transformation Language) 9

 10

Part 2 – Reference Manual 11

 12

 13

(DRAFT FOR PUBLIC REVIEW) 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

October 2016 28

 29

2

 30

3

Foreword 31

 32

The Task force for the Validation and Transformation Language (VTL), created in 2012-2013 33

under the initiative of the SDMX Secretariat, is pleased to present the draft version of VTL 1.1. 34

The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the 35

consideration that SDMX already had a package for transformations and expressions in its 36

information model, while a specific implementation language was missing. To make this 37

framework operational, a standard language for defining validation and transformation rules 38

(operators, their syntax and semantics) had to be adopted, while appropriate SDMX formats 39

for storing and exchanging rules, and web services to retrieve them, had to be designed. The 40

present VTL 1.1 package is only concerned with the first element, i.e. a formal definition of 41

each operator, together with a general description of VTL, its core assumptions and the 42

information model it is based on. 43

The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM 44

communities and the work started in summer 2013. The intention was to provide a language 45

usable by statisticians to express logical validation rules and transformations on data, 46

whether described as dimensional tables or as unit-record data. The assumption is that this 47

logical formalization of validation and transformation rules could be converted into specific 48

programming languages for execution (SAS, R, Java, SQL, etc.) but would provide a “neutral” 49

expression at business level of the processing taking place, against which various 50

implementations can be mapped. Experience with existing examples suggests that this goal 51

would be attainable. 52

An important point that emerged is that several standards are interested in such a language. 53

However, each standard operates on its model artefacts and produces artefacts within the 54

same model (property of closure). To cope with this, VTL has been built upon a very basic 55

information model (VTL IM), taking the common parts of GSIM, SDMX and DDI, mainly using 56

artefacts from GSIM 1.1, somewhat simplified and with some additional detail. This way, 57

existing standards (GSIM, SDMX, DDI, others) may adopt VTL by mapping their information 58

model against the VTL IM. Therefore, although a work-product of SDMX, the VTL language in 59

itself is independent of SDMX and will be usable with other standards as well. Thanks to the 60

possibility of being mapped with the basic part of the IM of other standards, the VTL IM also 61

makes it possible to collect and manage the basic definitions of data represented in different 62

standards. 63

For the reason described above, The VTL specifications are designed at a logical level, 64

independently of any other standard, including SDMX. The VTL specifications, therefore, are 65

self-standing and can be implemented either on their own or by other standards (including 66

SDMX). In particular, the work for the SDMX implementation of VTL is going in parallel to the 67

work for designing the VTL 1.1 version, and will entail a future update of the SDMX 68

documentation. 69

The first public consultation on VTL (version 1.0) was held in 2014. Many comments were 70

incorporated in the VTL 1.0 version, published in March 2015. Other suggestions for 71

improving the language, received afterwards, fed the discussion for building the present draft 72

version 1.1, which contains many new features. 73

 74

4

The VTL 1.1 package, containing the general VTL specifications independent of other 75

standards possible implementations, will include, in its final release: 76

a) Part 1 – the user manual, highlighting the main characteristics of VTL, its core 77

assumptions and the information model the language is based on; 78

b) Part 2 – the reference manual, containing the full library of operators ordered by 79

category, including examples; this version will support more validation and 80

compilation needs compared to VTL 1.0. 81

c) eBNF notation (extended Backus-Naur Form) which is the technical notation to be 82

used as a test bed for all the examples. 83

The present document (part 2) contains the reference manual with the full library of 84

operators ordered by category. 85

The latest version of VTL is freely available online at https://sdmx.org/?page_id=5096 86

 87

Acknowledgements 88

The VTL specifications have been prepared thanks to the collective input of experts from Bank 89

of Italy, Bank for International Settlements (BIS), European Central Bank (ECB), Eurostat, ILO, 90

INEGI-Mexico, ISTAT-Italy, OECD, Statistics Netherlands, and UNESCO. Other experts from the 91

SDMX Technical Working Group, the SDMX Statistical Working Group and the DDI initiative 92

were consulted and participated in reviewing the documentation. 93

The list of contributors and reviewers includes the following experts: Sami Airo, Foteini 94

Andrikopoulou, David Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio Capaccioli, 95

Vincenzo Del Vecchio, Fabio Di Giovanni, Jens Dossé, Heinrich Ehrmann, Bryan Fitzpatrick, 96

Tjalling Gelsema, Luca Gramaglia, Arofan Gregory, Gyorgy Gyomai, Edgardo Greising, Dragan 97

Ivanovic, Angelo Linardi, Juan Munoz, Chris Nelson, Stratos Nikoloutsos, Marco Pellegrino, 98

Michele Romanelli, Juan Alberto Sanchez, Roberto Sannino, Angel Simon Delgado, Daniel 99

Suranyi, Olav ten Bosch, Laura Vignola, Fernando Wagener and Nikolaos Zisimos. 100

Feedback and suggestions for improvement are encouraged and should be sent to the SDMX 101

Technical Working Group (twg@sdmx.org). 102

 103

https://sdmx.org/?page_id=5096
mailto:twg@sdmx.org

5

Table of contents 104

 105

Foreword ... 3 106

Table of contents .. 5 107

Introduction ... 9 108

Structure of the document .. 10 109

Diagram of the Operators .. 11 110

List of the Operators/Functions .. 12 111

VTL-DL Operators .. 12 112

VTL-ML Standard Library ... 13 113

Operators and functions applied on Datasets and scalar values ... 13 114

List of standard library operators and functions .. 14 115

VTL-ML - Evaluation order of the Operators ... 21 116

Syntactical conventions .. 22 117

VTL-DL – Artefacts Definition... 24 118

defineValueDomain .. 24 119

defineValueDomainSubset .. 25 120

defineVariable ... 27 121

defineDataStructure.. 27 122

defineDataset .. 29 123

VTL-DL - Rulesets .. 31 124

define datapoint ruleset ... 31 125

define hierarchical ruleset .. 34 126

define mapping ruleset ... 39 127

VTL-ML - General purpose operators and functions .. 41 128

Parentheses () .. 41 129

Assignment := ... 41 130

Membership . .. 41 131

Alias as ... 42 132

alterDataset ... 43 133

get ... 45 134

put ... 49 135

eval .. 50 136

6

Join expression .. 50 137

join_clause .. 51 138

calc_clause .. 54 139

drop_clause .. 54 140

keep_clause .. 55 141

filter_clause .. 55 142

rename_clause.. 55 143

unfold_clause .. 56 144

fold_clause .. 57 145

Function Creation .. 57 146

VTL-ML - String operators and functions ... 59 147

length .. 59 148

String concatenation || .. 59 149

trim /rtrim/ltrim .. 61 150

upper/lower .. 62 151

substr... 62 152

instr ... 64 153

date_from_string .. 65 154

replace ... 66 155

VTL-ML - Numeric operators and functions .. 68 156

unary plus + ... 68 157

unary minus – ... 68 158

addition and subtraction + - .. 69 159

multiplication and division * / ... 72 160

round/ceil/floor .. 73 161

abs ... 74 162

trunc .. 76 163

exp ... 77 164

ln .. 78 165

log .. 79 166

power .. 79 167

sqrt .. 80 168

nroot.. 81 169

mod ... 82 170

7

listsum ... 83 171

VTL-ML - Boolean operators and functions ... 85 172

equal to = .. 85 173

not equal to <> .. 86 174

greater than > >= .. 87 175

less than < <= .. 89 176

in, not in .. 90 177

between .. 91 178

isnull .. 93 179

exists_in, not_exists_in/in_all ... 94 180

match_characters ... 98 181

all ... 99 182

any ... 100 183

unique ... 102 184

func_dep ... 103 185

and .. 104 186

or ... 106 187

xor ... 107 188

not ... 109 189

VTL-ML - Date operators and functions ... 111 190

extract ... 111 191

string from date .. 112 192

current_date ... 113 193

VTL-ML - Set functions ... 114 194

union ... 114 195

intersect .. 117 196

symdiff ... 118 197

setdiff .. 119 198

subscript .. 121 199

transcode .. 122 200

aggregate .. 123 201

VTL-ML - Statistical functions ... 127 202

Aggregate functions .. 127 203

Time aggregate functions.. 130 204

Analytic functions .. 133 205

8

first_value ... 134 206

lag lead .. 135 207

last_value .. 135 208

ntile ... 136 209

percent_rank .. 137 210

rank ... 138 211

ratio_to_report ... 138 212

hierarchy ... 139 213

VTL-ML - Data validation functions ... 149 214

check ... 149 215

check (with datapoint rulesets) .. 149 216

check (with hierarchical rulesets) ... 151 217

check (single rule) .. 152 218

check value domain subset ... 154 219

VTL-ML - Time series functions .. 157 220

fill_time_series .. 157 221

flow_to_stock .. 158 222

stock_to_flow .. 159 223

timeshift .. 160 224

VTL-ML - Conditional operators ... 162 225

if-then-else .. 162 226

nvl .. 164 227

VTL-ML - Clause operators ... 166 228

rename .. 166 229

filter ... 166 230

keep ... 168 231

calc .. 169 232

attrcalc .. 170 233

 234

9

Introduction 235

The VTL 1.1 library of the Operators is described hereinafter. The operators included in this 236

version of VTL are summarized in the diagrams and tables below. 237

VTL 1.1 is made of two main parts: the VTL Definition Language (VTL-DL) and the VTL 238

Manipulation Language (VTL-ML). 239

The former (VTL-DL) did not exist in VTL 1.0, because at that time VTL was intended to work 240

on top of existing standards, like SDMX, DDI, GSIM or others, and therefore the definition of 241

the artefacts to be manipulated (Data and their structures, Variables, Value Domains and so 242

on) was assumed to be made using the implementing standards and not VTL itself. In other 243

words, VTL 1.0 was not meant to define its artefacts and therefore only contained a 244

manipulation language. 245

During the work for VTL 1.1, it was acknowledged as very recommendable and useful to have 246

a complete definition language, able to define all the artefacts that VTL can manipulate. This 247

is, first, to express structural and reusable definitions directly in VTL (even independently of 248

other standards); second, to facilitate the use of VTL on top of other standards (through a 249

proper mapping, the structural definitions of the other standards could be translated in VTL 250

definitions and vice-versa); third, to make it possible to check at parsing time the coherency of 251

the VTL manipulation expressions against the structure of the artefacts to be manipulated 252

(even defined through VTL). 253

Therefore, VTL 1.1 has been equipped also with a definition language for VTL artefacts. 254

As for the manipulation language, VTL 1.0 contains a flat list of operators, in principle not 255

related one another. A main suggestion for VTL 1.1 was to identify a core set of primitive 256

operators able to express all the other operators of the language. This is in order to specify 257

more formally the semantics of the available operators, avoiding possible ambiguities about 258

their behaviour and fostering coherent implementations. The distinction between the core 259

and standard library is mainly of interest of the VTL technical implementers. 260

The suggestion above has been acknowledged, so that the VTL 1.1 manipulation language is 261

made of a core set of primitive operators and a standard library of derived operators, 262

definable in term of the primitive ones. The standard library contains VTL 1.0 operators 263

(possibly enhanced) and the new operators introduced in VTL 1.1. 264

The VTL core includes a mechanism called FLWOR expressions (For-Let-Where-Order-265

Return), which allows to define derived operators and their behaviour, including custom 266

operators (not existing in the standard library) for specific purposes. 267

10

Structure of the document 268

This manual describes in detail the operators of VTL 1.1 and is organized as follows. 269

In this chapter, the following paragraph (Diagrams of the Operators) summarizes all the 270

available operators (for the VTL-DL, VTL-ML - Core Operators, VTL-ML – Standard Library) 271

through a diagram. Then, in the paragraph “List of the Operators/Functions”, two 272

corresponding lists are given, specifying for each operator some basic information. In 273

“Evaluation Order”, the precedence rules for evaluation of the VTL-ML operators are 274

described. Finally, the “Syntactical conventions” section illustrates the meta-syntax used in 275

the other chapters for describing formally the syntax of the operators. 276

The remainder of the document is structured in chapters, each one dedicated to the 277

description of a category of Operators. For each Operator there is a specific section explaining 278

the syntax, the semantics and giving some examples. Each of these sections has the following 279

structure: 280

 281

 Semantics: an informal extract of the behaviour; 282

 Syntax: a specification of the complete syntax of the operator at hand. It is expressed 283

in terms of the types of the Core (cfr. part 1) by means of a specific meta-syntax; 284

 Parameters: the input parameters, described in detail, with respect to the types of the 285

Core; 286

 Returns: the output parameters, described in detail, with respect to the types of the 287

Core; 288

 Constraints: semantic constraints and syntactical constraints that cannot be specified 289

with the meta-syntax but need a textual explanation; sometimes for the sake of clarity, 290

even syntactical constraints are also repeated. 291

 Semantic specification: an extensive explanation of the behaviour of the operator in 292

terms of the syntactical elements described in the sections Syntax, Parameters and 293

Returns. Sometimes, when particularly complex, specific constraints are explained also 294

in this section. 295

 Examples: a series of examples proving the behaviour of the operator. 296

 297

The last chapter illustrates the use case of a real questionnaire and the possible use of VTL for 298

defining validation rules. 299

 300

11

Diagram of the Operators 301

 302

12

List of the Operators/Functions 303

The following tables list the VTL Operators and describe their main characteristics. The tables are relevant to the 304

VTL-DL and the VTL-ML Standard Library. The operators of the Standard Library are ordered by category except 305

for the clauses, which are the operators having a postfix syntax that are shown all together in the end. 306

The VTL-ML Standard Library includes operators that may act on both Data Set and on Structure Components of 307

the Data Sets. The last column shows if the Operator acts on Dataset, Components or both, when meaningful. The 308

Component version takes as input and returns in output Component expressions. They are part of the syntax of 309

other operators or clauses, where specifically required for row-wise processing. 310

VTL-DL Operators 311

Operator/Functions Category Syntax Description
Operand
Data Sets

Component
version

defineValueDomain
Information

Model artefacts
definition

Functional
defines a ValueDomain

in VTL information
model.

-

-

defineValueDomainSu
bset

Information
Model artefacts

definition
Functional

defines a
ValueDomainSubset in

VTL information
model

-

-

Define Variable
Information

Model artefacts
definition

Functional

defines a persistent

Variable in the VTL

information model

-

-

defineDataStructure
Information

Model artefacts
definition

Functional

defines a persistent

DataStructure in the

information model

-

-

defineDataset
Information

Model artefacts
definition

Functional
defines a persistent

Dataset in the
information model

-

-

define datapoint
ruleset

Ruleset Functional

defines a persistent
object that contains

Rules to be applied to
the Data Points

-

-

define hierarchical
ruleset

Ruleset Functional

defines a persistent
object that contains

Rules to be applied to
the code items of a

Dataset component.

-

-

define mapping Ruleset Functional

defines a persistent
object that contains

Rules to be applied to
recode codes of a
component in a

Dataset

-

-

 312

13

 313

VTL-ML Standard Library 314

 315

Operators and functions applied on Datasets and scalar values 316
 317
Most of the single data points operators and functions can be applied to both Datasets and scalar values. The 318

operands of the operators and functions can take the following forms: 319

 Scalar expression, e.g. 1+2. 320

 Dataset expression, with a single measure or attribute selected using the membership operator 321

".", e.g. ds_bop.obs_value. In this case the operator or function is applied to the specified 322

measure or attribute. 323

 Dataset expression, with no measure or attribute selected, e.g. ds_bop. In this case the operator 324

or function is applied to all measures of the Dataset having the data type accepted by the operator. 325

When a VTL operator or function is applied to two or more Datasets then at least an Identifier Component must 326

appear in all Datasets with the same name and data type. In this case the function is applied on the measures 327

having the same name and data type (accepted by the operator) and for the matching data points, i.e., the data 328

points that have the same values of the common Identifier Components. 329

Assuming that f is a VTL function or operator, ds, ds1 and ds2 are Datasets and c is a scalar value (constant), the 330

following table shows the VTL rules in the case of binary operators or functions: 331
 332

Case Result Computation rule Examples

f (c , c) A scalar value f is applied to the scalar operands 1 + 1

round (10.52, 1)

"abc" || "cde"

f (ds , c) A Dataset having the same
components Identifiers and
Attributes Components) of ds. The
Measure Components returned are
only those having data type
accepted by the operator. The
other Measures will be discarded.

f is applied to all measures of ds
having data type accepted by the
operator.

f is applied to all data points of ds.

The cardinality of the resulting
Dataset (number of data points) is
the same of ds.

ds + 1

round (ds, 1)

f (ds1 , ds2) A Dataset having all the Identifier
Components (without duplicates)
and the common measures of ds1
and ds2 having data type accepted
by the operator. The other
Measures will be discarded.

The attributes of ds1 and ds2 are
ignored (do not appear in the
resulting Dataset).

f is applied to the common numeric
measures of ds1 and ds2.

f is applied to all matching data
points of ds1 and ds2 (those having
the same values of the common
Identifier Components) and to the
Measures having data type
accepted by the operator.

The cardinality of the resulting
Dataset (number of data points) is
the number of matching data
points.

ds1 + ds2

mod (ds1, ds2)

f (ds.m , c) A Dataset having all the Identifier
Components of ds, the specified
Measure Component m and the
Attribute Components of ds.

f is applied to the specified
Measure Components of ds.

f is applied to all data points of ds.

round (ds.obs_value,
1)

ds.obs_comment || "."

14

 The cardinality of the resulting
Dataset (number of data points) is
the same of ds.

f (ds1.m1 ,
ds2.m1)

A Dataset having all the Identifier
Components (without duplicates)
of ds1 and ds2, and the Measure
Component m1. The same Measure
must be selected in both Datasets.

The Attributes of ds1 and ds2, and
the other Measures (if any), are
ignored (do not appear in the
resulting Dataset).

f is applied to the specified
Measure of ds, or to the common
measures of ds.

f is applied to all matching data
points of ds1 and ds2 (those having
the same values of the common
Identifier Components).

The cardinality of the resulting
Dataset (number of data points) is
the number of matching data
points.

ds1 + ds2

mod (ds1.obs_value,
ds2.obs_value)

 333

To apply the function f to measures having different names (in different Datasets) is possible using the operator 334

as, e.g.: 335

ds1.obs_value + (ds2.obsval as obs_value) 336

A Dataset contains a set of data points. A data point (statistical observation) can be thought of as a row in a 337

relational table or as a cell in a hypercube. 338

Scalars are also supported. As we will show, many operators allow for a kind of hybrid combination, involving 339

Datasets and scalars. In this case the scalar value is combined (according to the semantics of the operator at 340

hand) with all the Data Points in the Dataset, and in particular with the respective values of the Measure 341

Component. 342

For example: 343

ds2 := ds1 + 1 344

produces a Dataset ds2 with the same structure as ds1, where the constant numeric value 1 has been added to 345

the value of the Measure Component of every single Data Point in ds1. Seen in another perspective, with this 346

behavior, we propose a kind of implicit “promotion” of a scalar value into a somehow special Dataset, with one 347

single Data Point, having one Measure Component (with the constant value) and with no Identifier Components. 348

In such a case, this single Data Point will match with all the Data Points of the involved Data Set as a limit but 349

straightforward case, since, indeed, there are no Identifier Components to be matched at all. 350
 351

List of standard library operators and functions 352

 353

Operator/

Functions
Category Syntax Description

Operand

Data Sets

Component

version

Core/

Standard

Round parenthesis ()
General
purpose

Functional
Specifies the

evaluation precedence
1 YES Standard

assignment
:=

General
purpose

Infix
Assigns an Expression

to a model artefact
2 NO Standard

Membership
.

General
purpose

Infix
Identifies a

Component within a
Data Set

1 NO Standard

Alias
as

General
purpose

Infix
Define an alias for a

component or for the
result of an expression

1 YES (ONLY) Standard

15

alterDataset
General

purpose
Functional

Modify the Dataset

with all or a subset of

input components

having only the

Identifier role

1 NO Standard

get
General

Purpose
Functional Retrieves a Data Set 1..N NO Standard

put
General

Purpose
Functional Stores a Data Set 1 NO Standard

eval
General

Purpose
Functional

Evaluates an external

routine
1 NO Standard

join expression

General

Purpose

Functional

Implements the

FLWOR

expression

1..N YES

Core

Function creation
General

Purpose
Functional Creates a function 1..N YES Core

null
General

Purpose
Functional null literal 0 YES Core

length String Functional
Returns the length of a

string
1 YES Standard

concatenation

||
String Functional

Concatenates two

strings
2 YES both

trim/ltrim/rtrim String Functional

Eliminates trailing

or/and leading

whitespace from a

String

1 YES Standard

upper/lower String Functional
Makes a string upper /

lower case
1 YES Standard

substr String Functional
Extracts a substring

from a string
1 YES Standard

instr String Functional
Returns the position of

a String in another one
1 YES Standard

16

date_from_string String Functional
Change a string into a

date
1 YES Standard

replace String Functional

Replace a string with

another one into a

string

1 YES Standard

unary plus

+
Numeric Infix

Leaves the sign

unaltered
1 YES both

unary minus

-
Numeric Infix Changes the sign 1 YES both

addition

+

and subtraction

-

Numeric Infix
Sum or subtract two

numbers
2 YES both

multiplication

*

and division

/

Numeric Infix
Multiply or divide two

numbers
2 YES both

round/ceil/floor Numeric Functional Rounds a number 1 YES Standard

abs

Numeric
Functional

Calculates the absolute

value
1 YES Standard

trunc

Numeric
Functional Truncates the values 1 YES Standard

exp Numeric Functional
Calculates the

exponential
1 YES both

ln Numeric Functional
Calculates the natural

logarithm
1 YES Standard

log Numeric Functional
Calculates the a base b

logarithm
1 YES Standard

power Numeric Functional Calculates the power 1 YES Standard

sqrt Numeric Functional
Calculates the square

root of a number
1 YES Standard

nroot Numeric Functional Calculates the 1 YES Standard

17

n-th root

mod Numeric Functional
Calculates the

modulo
1 YES both

listsum Numeric Functional

Sums numbers

replacing null with

zero

1..N YES Standard

equal to

=
Boolean Infix Compares the values 2 YES both

not equal to

<>
Boolean Infix Compares the values 2 YES both

Greater than

>, >=
Boolean Infix Compares the values 2 YES both

Less than

<, <=
Boolean Infix Compares the values 2 YES both

in, not in Boolean Infix

Verify if a value

belongs to a set of

values

1 YES Standard

between Boolean Infix

Verify if a value

belongs to a range of

values

1 YES both

isnull Boolean Functional
Compares the values

with the NULL literal
1 YES both

exists_in,

not_exists_in,

exists_in_all,

not_exists_in_all

Boolean Infix
Checks the Identifiers

and the foreign keys
2 NO Standard

match_characters

Boolean
Functional

Checks if a value

respects or not a

pattern

1 YES Standard

all

Boolean
Functional

Verifies that all values

in the Dataset are true
1 YES Standard

any

Boolean
Functional

Verifies that at least

one value in the
1 YES Standard

18

Dataset are true

unique

Boolean
Functional

Verifies that at only

one value in the

Dataset are true

1 YES Standard

func_dep

Boolean
Functional

Checks the functional

dependency between

components of a

Dataset

1 YES Standard

and

Boolean
Infix

Calculates the logical

AND
2 YES both

or Boolean Infix
Calculates the logical

OR
2 YES both

xor Boolean Infix
Calculates the logical

XOR
2 YES both

not Boolean Infix
Calculates the logical

NOT
1 YES both

extract Date operator Functional
Returns an integer that

is part of a given date
1 YES Standard

string_from_date Date operator Functional
Converts a date value

into a string
1 YES Standard

current_date Date operator Functional
returns the current

date and time
0 YES Standard

union Set Functional
Computes the

union of datasets
1..N NO Standard

intersect Set Infix

Computes the

intersection of

datasets

1..N NO Standard

symdiff Set Functional

Computes the

symmetric difference

of 2 datasets

2 NO Standard

setdiff Set Infix

Computes the

difference of 2

datasets

2 NO Standard

19

subscript Set Postfix

Assigns a fixed value to

the identifires and

remove them

1 NO Standard

transcode Set Functional

Recodes the identifiers

values using a

mapping ruleset

1 YES Standard

aggregate Set Functional
Aggregates data using

a hierarchical ruleset.
1 YES

Standard

aggregateFunctions
Statistical

function
Functional

Set of statistical

functions used to

aggregate data

1 YES
Standard

time_aggregate
Statistical

function
Functional

Set of statistical

functions used to

aggregate data using

time constraints

1 YES

Standard

analytic function
Statistical

function
Functional

Allows to specify

operations on groups

of Data Points

1

YES

Standard

hierarchy
Statistical

function
Functional

Applies a hierarchical

aggregation
1

YES

Standard

check (with

datapoint ruleset)
Validation Functional

Applies one or more

datapoint Ruleset on a

Dataset.

1
YES

Standard

check (with

hierarchical ruleset)
Validation Functional

Applies one or more

hierarchical ruleset on

a Dataset.

1
YES

Standard

check (single rule) Validation Functional

Checks if an

expression verifies a

condition

1 NO Standard

check value domain

subset
Validation

Functional

Checks if the Value

Domain Subset is

respected

1 NO Standard

fill_time_series Time series Functional

Replaces each missing

data point in the input

Dataset

1 YES Standard

20

flow_to_stock Time series Functional

Transforms from a

flow interpretation of

a Dataset to stock

1 YES Standard

stock_to_flow Time series Functional

transforms from a

stock interpretation of

a Dataset to flow

1 YES Standard

timeshift Time series Functional

Shifts the time

component of a

specified range of time

1 YES Standard

if-then-else Conditional Functional

Makes different

calculations according

to a condition

1 YES Standard

nvl Conditional Functional
Replaces the null value

with a value
1 YES Standard

rename Clause

Clause

(Postfix

Operator)

change the name and

the role of Measures or

Attributes component

1 YES (ONLY) Standard

filter Clause

Clause

(Postfix

Operator)

Filters the Data Points 1 YES (ONLY) Standard

keep Clause

Clause

(Postfix

Operator)

Alters the Data

Structure
1 YES (ONLY) Standard

calc Clause

Clause

(Postfix

Operator)

Calcuates the values of

a Structure

Component

1 YES (ONLY) Standard

attrcalc Clause

Clause

(Postfix

Operator)

Calculates the values

of an Attribute
1 YES (ONLY) Standard

 354

 355

21

VTL-ML - Evaluation order of the Operators 356

Within a single expression of the manipulation language, the operators are applied in sequence, according to the 357

precedence order. Operators with the same precedence level are applied according to associativity rules. 358

Precedence and associativity orders are reported in the following table. 359
 360

Order Operator Description Associativity

I ()
Round parenthesis. To alter the

default order.
Left-to-right

II
All VTL functional

operators
The majority of the operators of

the VTL
Left-to-right

III
Clauses and
membership

 Left-to-right

IV
unary plus

unary minus
not

Unary minus
Unary plus

Logical negation
Right-to-left

V
*,
/

Multiplication
Division

Left-to-right

VI +, -
Addition

Subtraction
Left-to-right

VII

> >=
< <=

in, not in
between

Greater than
Less than

In (not in) a value list
In a range

Left-to-right

VIII

exists_in
not_exists_in
exists_in_all

not_exists_in_all

Identifiers matching Left-to-right

IX
=

<>
Equal-to

Not-equal-to
Left-to-right

X and Logical AND Left-to-right

XI
or

xor
Logical OR

Logical XOR
Left-to-right

XII if-then-else Conditional (if-then-else) Right-to-left

XIII := Assignment Right-to-left

 361

22

Syntactical conventions 362

In the remainder of the document, and in the Syntax sections in particular, a meta-syntax is 363

used to describe the syntax of the operators. The meta-syntax is described in this section and 364

is not part of the VTL language, but has only presentation purposes. 365

 For denoting the type of a Variable Parameter, we refer to the – VTL types (See User 366

Manual, Section “Objects and Types”). 367

 Operator names and parameters are case sensitive. 368

 In general, some operators have infix style, others have functional style and the 369

clauses have postfix style. 370

The syntax of the operators is defined by meta-expressions, which denotes the signature of an 371

operator, that is, its name, the list of the input parameters, the possible special keywords 372

and the respective types. For readability reasons, a meta-expression is often partitioned into 373

concatenated sub-meta-expressions (or simply sub-expressions), as follows: 374

meta-expression ::= sub-expr1 sub-expr2 … sub-exprN 375

sub-expr1 ::= sub-meta-expression … 376

… 377

sub-exprN ::= sub-meta-expression … 378

In this representation: 379

 The sub-expr1, … sub-exprN are meta-variables, that is, placeholders for sub-380

expressions. In the text, they are in italic. 381

 The symbol ::== means “defined as” and denotes the assignment of a sub-expression to 382

a meta-variable. 383

 The operator names and the special keywords that appear in the various sub-384

expressions are in bold. 385

Sub-expressions can be composed into the meta-expression adopting a particular restriction 386

of regular expression patterns as follows: 387

 {optional}, {optional}?,[optional]? : alternative ways to denote an optional sub-388

expression 389

 {one-or-more}+: a sub-expression that is repeated from 1 to many occurrences 390

 {zero-or-more}*: a sub-expression that is repeated from 0 to many occurrences 391

 [part1|part2|part3]: alternative sub-expressions 392

 [part1|part2|part3]+: alternative sub-expressions, from 1 to many occurrences 393

 [part1|part2|part3]*: alternative sub-expressions, from 0 to many occurrences 394

Example 395

 [trim | ltrim | rtrim] (ds) 396

 397

ds : dataset {identifier <IDENT> as scalar-type}+ 398

{measure <IDENT> as string-literal}+ 399

{attribute <IDENT> as scalar-type}* 400

 401

The meta-expression above synthesizes: 402

23

 trim, ltrim, rtrim, “(“, “)” are the operator names (reserved keywords); 403

 They take s input an expression ds, which is a meta-sub-expression and defined 404

accordingly; 405

 the type of ds is constrained to be a Dataset with one or more Identifier Components 406

and one or more string Measure Component. No particular constraints are introduced 407

for attributes. 408

 ds is the only parameter of the operators in the example and denotes a Dataset. 409

Specifically, <IDENT> is a placeholder for any identifier (measure or attribute, in the 410

different cases). 411

 412

 413

From this template, it is possible to infer some valid instances of the operators: 414

 415

ds_1 := ltrim(ds_2) 416

ds_1 := rtrim(ds_3) 417

 418

The two examples above are compliant with the template. In facts, ltrim and rtrim are 419

recognized as VTL operators of the library and ds_2 and ds_3 are two Datasets. Also observe 420

that the example implies a previous definition of ds_2 and ds_3, for example importing the 421

Datasets from the database (as we will see, with the GET operator). The restrictions on the 422

specific structure of the input Datasets, in terms of allowed Identifier and Measure 423

Components, are also checked, but do not have effects on the syntax. 424

 425

 426

 427

 428

 429

24

VTL-DL – Artefacts Definition 430

defineValueDomain 431

Semantics 432

The operator defineValueDomain defines a ValueDomain in the VTL information model. 433

 434

Syntax 435

defineValueDomain valueDomainId (436

 {valueDomainDescription, isEnumerated} 437

 dimensionType { [inLineCodeList | dataTypeRestriction] } 438

) 439

 440

Parameters 441

valueDomainId : ident 442

valueDomainDescription : string 443

isEnumeraed : boolean 444

dimensionType : scalar 445

inLineCodeList : list({ record({@codeItemId as ident; { #codeDescr as constant; } }) }*) 446

codeItemId : ident 447

codeDescr : constant 448

dataTypeRestriction 449

: restrict [YYYY | MM | DD | YYYY-MM | maxLength n | regexp regexp | between a and b | > b | < n | 450

<= n | >= n] 451

n, a, b : numeric 452

regexp : string 453

 454

 valueDomainId – is the identifier of the new ValueDomain. 455

 valueDomainDescription – is a string that describes the new ValueDomain. 456

 isEnumerated – is a Boolean that denotes whether the new ValueDomain is enumerated. 457

 dimensionType – is the data type of the Identifier Component. 458

 inLineCodeList – is an in line specification of a CodeList. It is a list of records (pairs, in particular). The first 459

element of the record is the codeItemId (which identifies the code item, is the identifier of the record "@"), 460

the second, optional, is the codeDescription, that is, the actual value for the code item. An in-Line CodeList 461

cannot be reused. 462

 regexp – is a regular expression. 463

 dataTypeRestriction – constrains the allowed values by restricting dimensionType. 464

 465

Constraints 466

 The scalar-type of the constant codeDescr must be dimensionType. 467

 regexp is a POSIX regular expression. 468

 If the ValueDomain is enumerated, an inLineCodeList must be specified. 469

 The particular restriction for dataTypeRestriction must be coherent with dimensionDataType. In particular: 470

o date: [YYYY | MM | DD | YYYY-MM | > YYYY-MM-DD | < YYYY-MM-DD | >= …] 471

o string: maxLength n, regexp regexp 472

o number: [between a and b | <a | >a | …] 473

 474

 475

Returns 476

This operator defines persistent ValueDomain artefacts that can be referenced by a reference to valueDomainId. 477

References valueDomainRef to valueDomainId are implicitly created in the VTL information model. 478

 479

Semantic specification 480

This operator takes as input an identifier for this ValueDomain and the specification for its dimension. The 481

dimension is in turn a component ValueDomain. 482

Only mono-dimensional ValueDomains can be defined, the multi-dimensional ValueDomain are implicitly 483

defined in the VTL information model as the Cartesian product of the mono-dimensional ones. The allowed 484

25

values are directly those specified by the criteria. Otherwise, in case of n-dimensional ValueDomains, all the 485

combinations of values of the mono-dimensional ValueDomains are possible, which means that the ValueDomain 486

contains the Cartesian product of the values of the single mono-dimensional ValueDomain. 487

The definition of a ValueDomain comports also the implicitly definition of the respective full 488

ValueDomainSubset, that is the subset of the ValueDomain that allows the same values of the ValueDomain, 489

without further restrictions to its domain. 490

The dimension defines a set of allowed values by means of one among different criteria: 1) with an in-line 491

definition of a codeList; 2) by restricting the dimensionType to a subset of allowed values by means of a criterion 492

out of a set of pre-defined ones; 3) by allowing all the values of the specified dimensionType. 493

Notice that a CodeList can only be defined within a ValueDomain or a ValueDomainSubset, using the in-line mode. 494

After the application of the operator, the information model is modified as follows. 495

A ValueDomain identified by valueDomainId is created. Its description ValueDomainDescr is set to the value of 496

valueDomainDescription, when specified, NULL otherwise. Property isEnumerated is set according to parameter 497

isEnumerated. Property DataType is set to dimensionType. 498

Anytime a ValueDomain is specified, are implicitly specified with him all the possible combination between the 499

new ValueDomain and the others. Therefore, the definition of a ValueDomain defined also multi-dimensional 500

ValueDomain. In addition, a ValueDomainSubset full is defined and its ValueDomainRef is set to valueDomainId. 501

For the dimension, a corresponding component ValueDomain identified by the respective compValueDomainId 502

is created in the information model and its properties are set as follows. The property valueDomainDescription 503

contains the string “component ValueDomainSubset of id”, where id amounts to valueDomainId. Property 504

DataType is set to dimensionType. 505

 506

Examples 507

1) This example defines the ValueDomain TimeYears as a restriction of the date type where only the digits 508

representing the years are considered. 509

define ValueDomain TimeYears (“Time values”, date restrict YYYY) 510

 511

2) This example defines the ValueDomain GeoAreas with an in-line CodeList, that is the enumeration of all the 512

allowed values. 513

define ValueDomain GeoAreas(“Geographic areas”, string list(record(@IT, "Italy"), record(@LU, 514

"Luxembourg"),““,…)) 515
 516

defineValueDomainSubset 517

Semantics 518

The operator defineValueDomainSubset defines a ValueDomainSubset in the VTL information model. 519
 520

Syntax 521
defineValueDomainSubset valueDomainSubsetId (522

 {valueDomainSubsetDescription, isEnumerated} 523

valueDomainRef { [inLineSubCodeList | dataTypeRestriction] } 524

) 525

 526

Parameters 527

valueDomainSubsetId : ident 528

valueDomainSubsetDescription : string 529

isEnumberated : Boolean 530

valueDomainRef : valueDomain-ref 531

inLineSubCodeList: list({ record({@codeItemId as ident; { #codeDescr as constant; } }) }*) 532

dataTypeRestriction 533

: restrict [YYYY | MM | DD | YYYY-MM | maxLength n | regexp regexp | between a and b | > b | < n | <= n | 534

>= n] 535

n, a, b : numeric 536

regexp : string 537

 538

 valueDomainSubsetId – is the identifier of the new ValueDomainSubset. 539

 valueDomainSubsetDescription – is a string that describes the new ValueDomainSubset. 540

26

 isEnumerated – specifies whether the ValueDomainSubset is enumerated. 541

 valueDomainRef – is the reference to an existing ValueDomain. 542

 inLineCodeList – is an in line specification of a CodeList. It is a list of records (pairs, in particular). The first 543

element of the record is the codeItemId (which identifies the code item, is the identifier of the record "@"), 544

the second, optional, is the codeDescription, that is, the actual value for the code item. An in-line CodeList 545

cannot be reused. 546

 regexp –is a POSIX regular expression. 547

 dataTypeRestriction – constrains the allowed values by restricting dimensionType of the referred 548

ValueDomain. 549

 550

Constraints 551

 regexp is a POSIX regular expression. 552

 The possible restrictions on the values of the dimension must be coherent with the type of the dimension in 553

the ValueDomain referred to by valueDomainRef. 554

 The criteria according to which the values of the dimension is defined must be the same as in the referred 555

ValueDomain, that is: 1) if an in-Line CodeList is used in the ValueDomain, then in the ValueDomainSubset an 556

in-Line CodeList containing a subset of the values must be used; 2) if a dataTypeRestriction has been used in 557

the ValueDomain, then a dataTypeRestriction must be used in the ValueDomainSubset. 558

 If the ValueDomainSubset is enumerated, an inLineSubCodeList must be specified. 559

 Independently of the way in which the values of the dimension are defined, the allowed values for the 560

dimension of the ValueDomainSubset must be a subset of the allowed values in the referred ValueDomain for 561

the respective dimension. 562

 The particular restriction for dataTypeRestriction must be coherent with dimensionDataType of the referred 563

ValueDomain. In particular: 564

o date : [YYYY | MM | DD | YYYY-MM | > YYYY-MM-DD | < YYYY-MM-DD | >= …] 565

o string: maxLength n, regexp 566

o number: [between a and b | <a | >a | …] 567

 568

Returns 569

This operator defines persistent ValueDomainSubset artefacts that can be referenced by a reference to 570

valueDomainSubsetId. References valueDomainRef to valueDomainId are implicitly created in the VTL 571

information model. 572

 573

Semantic specification 574

This operator takes as input an identifier for this ValueDomainSubset, a reference to an existing ValueDomain 575

and the specification for its dimension in terms of subsets of the dimension of the referred ValueDomain. 576

If no further constraints are posed, all the values that are allowed in the dimension of the ValueDomain are 577

allowed in the ValueDomainSubset as well; alternatively, restrictions on the dimension can be specified 578

according to a set of criteria. 579

Only mono-dimensional ValueDomainSubsets can be defined, the multi-dimensional ValueDomainSubset are 580

implicitly defined in the VTL information model as the Cartesian product of the mono-dimensional ones. The 581

allowed values are directly those specified by the criteria. Otherwise, in case of n-dimensional 582

ValueDomainSubsets, all the combinations of values of the mono-dimensional ValueDomainSubsets are possible, 583

which means that the ValueDomainSubset contains the Cartesian product of the values of the single mono-584

dimensional ValueDomainSubset. 585

The general rule is that the restrictions for the dimension must produce a subset of the values that are present in 586

the ValueDomain for that dimension. 587

The allowed criteria are the following: 1) with an in-line definition of a sub CodeList; 2) by restricting the 588

dimensionType to a subset of allowed values by means of a criterion out of a set of pre-defined ones; 3) by 589

allowing all the values that are allowed in the referred ValueDomain. 590

If in the ValueDomain no restriction is applied, in the ValueDomainSubset any restriction that is coherent with 591

the type of the respective dimension can be applied (hence no restriction, CodeList specification, data type 592

restriction). If in the ValueDomain a CodeList (defining it in an in-line fashion) is specified, the 593

ValueDomainSubset can either inherit all the values (no restriction) or restrict such CodeList specifying an in-594

line subset CodeList. If in the ValueDomain a dataTypeRestriction is adopted, the ValueDomainSubset can either 595

inherit all the values (no restriction) or use another dataTypeRestriction that produces a subset of the parent one 596

when applied to the original dimensionType. 597

After the application of the operator, the information model is modified as follows. 598

A ValueDomainSubset, identified by ValueDomainSubsetId, is created (the value of the property SetId is set to 599

ValueDomainSubsetId). Its description SetDescr is set to the value of valueDomainSubsetDescription, if present, 600

27

NULL otherwise. Property isEnumerated is set according to parameter isEnumerated and coherently with the 601

Propery SetCriterion. Property Criterion is set to “IN_LINE_CODELIST” (in-line CodeList), “RESTRICTION” (type 602

restriction), “FULL” (all the values of the referenced dimension) depending on how the allowed values have been 603

specified. 604

For the dimension, a corresponding component ValueDomainSubset is created and its properties are set as 605

follows. 606

The identifier SetId is set to ValueDomainSubsetId concatenated to the string “_REF_” concatenated to the 607

compValueDomainId of the referred component ValueDomain. The property SetDescr contains the string 608

“component ValueDomainSubset of id”, where id amounts to compValueDomainId of the referred component 609

ValueDomain. Property SetCriterion is set to “IN_LINE_CODELIST” (in-line CodeList), “RESTRICTION” (type 610

restriction), “FULL” (all the values of the referenced dimension) depending on how the allowed values have been 611

specified. 612

Note that unlike in the ValueDomains, the identifiers for the component ValueDomainSubsets are statically 613

specified and cannot be overridden. They are unique for a given ValueDomain and ValueDomainSubsets, so that 614

a ValueDomain can be restricted in different ways. Moreover, note that there is no need for an artefact 615

memorizing the relationship between the component ValueDomainSubsets and the compound ones, since it can 616

be directly inferred from the identifiers conventions. 617

This operator also allows to alter existing ValueDomainSubset in a basic way. If a ValueDomainSubset with the 618

same valueDomainSubsetId already exists in the information model, it is replaced by the newly defined one. The 619

same holds for the respective component. 620

 621

Examples 622

1) This example defines a ValueDomainSubset of positive numbers as a restriction of a ValueDomain allowing 623

any integer number. 624

define ValueDomain Numbers(“Integer Numbers”, integer); 625

define ValueDomainSubset PositiveNumbers (“Number greater than 0”, Numbers, restrict > 0) 626

 627

2) This example defines a ValueDomainSubset for email addresses, as a restriction of a ValueDomain allowing 628

any string. 629

define ValueDomain EmailAddresses(“E-mail addresses”, string-literal); 630

define ValueDomainSubset validEmailAddress(“Valid e-mail addresses”, EmailAddresses, restrict “[a-z]+@[a-631

z].[a-z]+” 632
 633

defineVariable 634

Semantics 635

The operator defineVariable defines a persistent Variable in the VTL information model. 636
 637

Syntax 638

defineVariable variableId 639
 640

Parameters 641

variableId : ident 642

defineDataStructure 643

Semantics 644
The operator defineDataStructure defines a persistent DataStructure in the VTL information model 645

 646

Syntax 647

defineDataStructure dataStructureId (648

 {dataStructureDescr} 649

 { [componentType (componentName [Identifier | Measure | Attribute]) | 650

valueDomainSubsetRef (componentName [Identifier | Measure | Attribute])] ; }+ 651

) 652

 653

 654

28

Parameters 655

dataStructureId : ident 656

dataStructureDescr : string 657

componentType : scalar 658

componentName : ident 659

valueDomainSubsetRef : valueDomainSubset-ref 660

 661

 dataStructureId – is the identifier of the new DataStructure. 662

 dataStructureDescr – is a string that describe the new DataStructure. 663

 componentType – is the type of a Component in the new DataStructure. 664

 componentName – is a string that represents the name of the Component in the new DataStructure. 665

 valueDomainSubsetRef – is a reference to an existing ValueDomainSubset, used to assign a specific type to a 666

Component. 667

 668

Constraints 669

 At least one IdentifierComponent must be defined. 670

 At least one MeasureComponent must be defined. 671

 There cannot be two components with the same componentName. 672

 673

Returns 674

This operator defines a persistent DataStructure artefact that can be referenced by a reference to 675

dataStructureId, in the VTL information model. 676

 677

Semantic specification 678

This operator defines a persistent DataStructure in the information model, allowing to specify its name and the 679

description, along with the characteristics of its Components. It takes as input the identifier for this 680

DataStructure, according to the conventions for it, optionally a description, and the specification for one or more 681

Components. The Components can be defined in two ways: in a simplified form where there is a 682

componentName, and a scalar-type for it is directly specified (componentType); in a fully-fledged form, where 683

there is a componentName, and a ValueDomainSubset (mono-dimensional) is specified to restrict the allowed 684

values. 685

Although in the VTL information model, a Component is always characterized by a ValueDomainSubset, the 686

simplified form is particularly useful, since it prevents the need to define a ValueDomain and a 687

ValueDomainSubset that are the mere renaming of a scalar data type. Let us now consider the fully-fledged form. 688

The ValueDomainSubset is mono-dimensional, it restricts the allowed values for a single Component; 689

For each Component, a role must be declared by using one keyword among Identifier, Measure and Attribute. 690

After the application of the operator, the information model is modified as follows. 691

A DataStructure identified by dataStructureId is created. Its description DataStructureDescr is set to the value of 692

dataStructureDescr, when specified, NULL otherwise. 693

For each Component, a DataStructureComponent is created. Its identifier, componentId, takes its value from the 694

parameter componentName, which is unique within a single DataStructure. The DataStructureComponent is 695

linked to the referred DataStructure by assigning the DataStructureId property. 696

If the Component is specified in the simplified form (only the data type), the created DataStructureComponent is 697

linked (by the property SetId) to a conventional ValueDomainSubset for that type. Notice that a conventional 698

ValueDomainSubset that simply renames each scalar type and the corresponding ValueDomain are assumed to 699

be present in the information model, or created when needed and then reused. 700

If the DataStructureComponent is specified in the fully-fledged form (with its ValueDomainSubset), the single 701

ValueDomainSubset is referred to by the property SetId. 702

In all the cases the property VariableRole is set to “Identifier”, “Measure” and “Attribute” depending on the used 703

keyword. 704

For each component a new RepresentedVariable is created (or an existing one is reused). Its identifier, 705

VariableId, is automatically and the respective property of DataStructureComponent is assigned accordingly. The 706

description of the variable is automatically generated as “RepresentedVariable for <componentId>”. The 707

RepresentedVariable is linked to the ValueDomain it takes its values from (being restricted by a specific 708

ValueDomainSubset when assigned to a DataStructureComponent). 709
 710

Examples 711

1) Definition of a DataStructure where scalar types are used. 712

define DataStructure dstr_1(713

 string ID identifier; 714

29

 string NAME Identifier; 715

 integer AGE Measure; 716

) 717

2) The example below allows to define a data structure using a ValueDomainSubset: 718

define ValueDomain Numbers(“Integer Numbers”, integer); 719

define ValueDomainSubset PositiveNumbers (“Number greater than 0”, Numbers, restrict > 0) 720

 721

define DataStructure dstr_1(722

 string ID Identifier; 723

 string NAME Measure; 724

 PositiveNumbers AGE Measure; 725

) 726

 727

defineDataset 728

Semantics 729

The operator defineDataset defines a persistent Dataset in the VTL information model. 730

 731

Syntax 732

defineDataset datasetId (733

 {datasetDescr,} {IsCollected}, 734

 [dataStructureRef | 735

 { [componentType (componentName [Identifier | Measure | Attribute]) | 736

valueDomainSubsetRef (componentName [Identifier | Measure | Attribute])] ; }+ 737

] 738

) 739

 740

Parameters 741

datasetId : ident 742

datasetDescr : string 743

dataStructureRef : dataStructure-ref 744

componentType : scalar-type 745

componentName : string 746

valueDomainSubsetRef : valueDomainSubset-ref 747

 748

 datasetId - is the identifier of the new Dataset. 749

 datasetDescr – is a string that describes the new Dataset. 750

 isCollected – if present this Dataset is an elementary one, otherwise it is meant to be the result of a 751

calculation. 752

 dataStructureRef – is a reference to an existing DataStructure, used to assign a specific structure to the new 753

Dataset. Optionally the DataStructure for the new Dataset can be defined in-line. 754

 componentType – is the type of a Component in the new Dataset. 755

 componentName – is a string that represents the name of the Component in the new Dataset. 756

 valueDomainSubsetRef – is a reference to an existing ValueDomainSubset, used to assign a specific type to a 757

Component. 758

 759

Constraints 760

 At least one Identifier Component must be defined. 761

 At least one Measure Component must be defined. 762

 There cannot be two components with the same componentName. 763

 764

Returns 765

This operator defines a persistent Dataset artefact that can be referenced by a reference to datasetId, in the VTL 766

information model. 767

 768

Semantic specification 769

30

This operator defines a persistent Dataset in the information model, allowing to specify its name and the 770

description, along with the characteristics of its Components (either specifying an existing DataStructure or 771

defining the Components in an in-line fashion mode). 772

It takes as input the identifier for this Dataset, according to the conventions for it, optionally a description, and 773

the reference to an existent DataStructure or alternatively the specification for one or more Components. The 774

Components can be defined in two ways: in a simplified form where there is a componentName, and a scalar-type 775

for it is directly specified (componentType); in a fully-fledged form, where there is a componentName, and a 776

ValueDomainSubset is specified to restrict the allowed values. 777

Although in the VTL information model, a Component is always characterized by a ValueDomainSubset, the 778

simplified form is particularly useful, since it prevents the need to define a ValueDomain and a 779

ValueDomainSubset that are the mere renaming of a scalar data type. Let us now consider the fully-fledged form. 780

In case of in-line definition of the Components: for each Component, a role must be declared by using one 781

keyword among Identifier, Measure and Attribute. 782

After the application of the operator, the information model is modified as follows. 783

In case of reference to an existing DataStructure. 784

A Dataset identified by datasetId is created. Its description DatasetDescr is set to the value of datasetDescr, when 785

specified, NULL otherwise. The Dataset is linked to the DataStructure referred using dataStructureRef by 786

assigning the DataStructureId property of the DataStructure identifier to the DataStructureId property of the 787

new Dataset. 788

In case of definition of a new DataStructure (not reusable). 789

A Dataset identified by datasetId is created. Its description DatasetDescr is set to the value of datasetDescr, when 790

specified, NULL otherwise. A DataStructure identified by an auto-generated DataStructureId is created for the 791

new Dataset) and linked to it by assigning the generated identifier to the DataStructureId property of the 792

Dataset. The description of the DataStructure is also generated automatically and set to 793

“dataStructure_of_datasetId_description” (if the DataStructure is reused, this convention for the description will 794

be violated). 795

For each Component, a DataStructureComponent is created (or the ones in the existing DataStructure are 796

reused). Its identifier, componentId, takes its value from the parameter componentName (notice that for a 797

DataStructure to be reused, these identifiers must be coherent), which is unique within a single DataStructure. 798

The DataStructureComponent is linked to the referred DataStructure by assigning the DataStructureId property. 799

If the Component is specified in the simplified form (only the data type), the created DataStructureComponent is 800

linked (by the property SetId) to a conventional ValueDomainSubset for that type. Notice that a conventional 801

ValueDomainSubset that simply renames each scalar type and the corresponding ValueDomain are assumed to 802

be present in the information model, or created when needed and then reused. 803

If the StructureComponent is specified in the fully-fledged form (with its ValueDomainSubset, the single 804

ValueDomainSubset is referred to by the property SetId. The property VariableRole is set to “Identifier”, 805

“Measure” and “Attribute” depending on the used keyword. 806

For each component a new RepresentedVariable is created (or an existing one is reused). Its identifier, 807

VariableId, is automatically and the respective property of DataStructureComponent is assigned accordingly. The 808

description of the variable is automatically generated as “RepresentedVariable for <componenId>”. The 809

RepresentedVariable is linked to the ValueDomain it takes its values from (being restricted by a specific 810

ValueDomainSubset when assigned to a StructureComponent). 811

 812

Examples 813

1) Definition of a Dataset, using an existing DataStructure. 814

define Dataset d_1(“Dataset with the same structure of dstr_1”, dstr_1) 815

dstr_1 is a DataStructure previously defined. 816

 817

2) Definition of a Dataset with an in-line DataStructure definition where scalar types are used. 818

define Dataset d_1(819

 string ID identifier; 820

 string NAME Identifier; 821

 integer AGE Measure; 822

) 823

 824

31

VTL-DL - Rulesets 825

 826

define datapoint ruleset 827

Semantics 828

define datapoint ruleset defines a persistent object that contains Rules to be applied to each individual Data 829

Point of a given Dataset. These rulesets are also called “horizontal” taking into account the tabular 830

representation of a Dataset (considered as a mathematical function), in which each (vertical) column represents 831

a Variable and each (horizontal) row represents a Data Point: these rulesets are applied on individual Data 832

Points (rows), i.e. horizontally on the tabular representation. 833

 834

 835

Syntax 836

define datapoint ruleset rulesetId (RulesetSignature) is 837
{ Rule } { ; Rule}* 838

end datapoint ruleset 839

Rule 840

::={ ruleId:} { when antecedentCondition then } consequentCondition 841

{ errorcode (errorCode) } 842

{ errorlevel (errorLevel) } 843

RulesetSignature 844

 ::= variable-signature {, variable-signature}* 845

variable-signature 846

::= variable-ref {as constant-string}? 847

 848

Parameters 849

rulesetId : identifier 850

ruleId : identifier 851

antecedentCondition : Boolean-scalar-expression 852

consequentCondition : Boolean-scalar-expression 853

errorCode : string 854

errorLevel: integer-literal 855

constant-string: string 856

 857

 rulesetId – the identifier of the datapoint ruleset to be defined. 858

 rulesetSignature – the signature of the Ruleset. It specifies the Represented Variables (see the information 859

model) on which the Ruleset is defined. 860

 variable-signature – it specifies a single Represented Variable on which the Ruleset is defined 861

 variable-ref - the reference to a Variable on which the Ruleset is defined. The Variable name can be aliased 862

for the sake of compactness in writing the Rules. If the alias is not specified, the complete name of the 863

Variable must be used in the body of the rules. 864

 rule – the complete specification of a single rule, as defined in the following parameters. 865

 ruleId – the identifier of the specific rule within the Ruleset. The ruleId is optional and, if not specified, is 866

assumed to be the progressive order number of the Rule in the Ruleset (please note that this practice may 867

cause changes of the rule identifiers in case the Ruleset is maintained, e.g. if new rules are added or existing 868

rules are deleted) 869

 antecedentCondition - a Boolean scalar expression. It can contain references to the Variables declared for 870

this Ruleset and Constants. All the Component level operators are allowed. 871

 consequentCondition - a Boolean scalar expression. It is evaluated when the antecedentCondition evaluates 872

to true (missing antecedent conditions are assumed as true). It can contain references to the Variables 873

declared for this Ruleset and Constants. All the Component level operators are allowed. 874

 errorCode – a string denoting the error code associated to the rule, respecting VTL conventions, in case the 875

rule is used for validation. 876

 errorLevel - an integer containing the error level (severity) associated to the rule, in case the rule is used for 877

validation. 878

32

 constant-string: the name assigned to the Variable within the ruleset 879

 880

Constraints 881

 antecedentCondition and consequentCondition cannot use Variables that are not defined in the 882

RulesetSignature 883

 A Variable can appear only once in the RulesetSignature 884

 Either the ruleId is specified for all the rules of the Ruleset or for none. 885

 If specified, the ruleId must be unique within the Ruleset. 886

 887

Returns 888

A persistent DataPoint Ruleset identified by rulesetId, which can be referenced and used both for validation and 889

data filtering (within a filter clause) purposes. 890

 891

Semantic specification 892

A DataPoint Ruleset (also “horizontal ruleset”) is a persistent object that contains Rules to be applied to the Data 893

Points of a given Dataset1. When used for validation, the Rules are aimed at checking the combinations of values 894

of the Data Point Variables, assessing if these values fulfill the conditions expressed by the Rules themselves. The 895

Rules are evaluated independently for each data point, returning a Boolean scalar value (see the check operator 896

and the relevant options). When used for data filtering, the Rules are aimed at filtering the Data Points, 897

maintaining only the ones that fulfill (or, as an option, that do not fulfill) the Rules themselves (see the filter 898

operator and the relevant options). 899

Each rule contains an antecedentCondition Boolean expression followed by a consequentCondition Boolean 900

expression and expresses a logical implication. Each condition states that when the antecedentCondition 901

evaluates to true, for a given Data Point, then the consequentCondition must evaluate to true as well. In case the 902

antecedentCondition is absent then it is assumed to be always true, therefore the consequentCondition must 903

evaluate to true for all the Data Points. See the example below: 904

 905

Rule Meaning

when flow = "CREDIT" or "DEBIT" then

obs_value >= 0

When the Variable named “flow” takes the

value “CREDIT” or the value “DEBIT”, then

the Variable named “obs_value” has a zero

or positive value.

when flow = "BALANCE" then

obs_value between -1.000.000 and

+1.000.000

When the Variable named “flow” takes the

value “BALANCE, then the Variable named

“obs_value” has a value between -

1.000.000 and +1.000.000

 906

The definition of a Ruleset comprises a signature (RulesetSignature), which specifies the Represented Variables 907

on which the Ruleset is defined and a number of rules, that are the Boolean expressions to be applied for each 908

Data Point. The Rules can refer only to the Variables of the Ruleset signature, and must refer to all of them (in 909

either the antecedentCondition or the consequentCondition, or both). 910

In regard to the Information Model, the Variables of the Ruleset signature identify a multi-dimensional space (i.e. 911

a multi-dimensional Represented Variable), while each Rule provides for a criterion that demarcates a Set of 912

values belonging to this space (i.e. a Set of combinations of values of these Variables). 913

A Ruleset can be applied on any Dataset which includes, among its Structure Components, the Variables of the 914

Ruleset signature. More Rulesets having different signatures may be applied on the same Dataset, provided that 915

the previous condition is satisfied. 916

1
 In order to apply the Ruleset to more Datasets, these Datasets must be joined together using the appropriate VTL

operators in order to obtain a single Dataset.

33

Rules are uniquely identified by a ruleId. When the Ruleset is used for validation, two new Variables (the 917

RULESET and the RULE Variables) are added in the Dataset that contains the validation result and filled with 918

rulesetId and ruleId respectively, in order to document to which rules the results are referred. If not explicitly 919

declared, the ruleId is assumed by default to be the progressive order number of the Rule in the Ruleset (please 920

note that using the default mechanism the Rules identifiers can change if the Ruleset is maintained, e.g. if new 921

Rules are added or existing Rules are deleted, and therefore the users that interpret the validation results must 922

be aware of these changes). 923

As said, every rule is applied in a row-wise fashion to each individual Data Point of a Dataset. The references to 924

the Variables defined in the antecedentCondition and consequentCondition are replaced with the values of the 925

respective Variables of the Data Point under evaluation. 926

The semantics of each rule is the typical logical implication: 927

antecedentCondition and consequentCondition 928

The rule evaluates to true if: antecedentCondition evaluates to FALSE or consequentCondition evaluates to TRUE. 929

In practice, the consequentCondition must be evaluated only if the antecedentCondition succeeds and therefore 930

the former can be also interpreted as the precondition to apply the latter. 931

In the case of validation, the outcome is a Dataset (the validation output) having a Boolean measure (TRUE or 932

FALSE) and broken down at least by the Variables RULESET and RULE containing respectively the rulesetId and 933

the ruleId of the applied rule (for more details see the check operator). The variables ERRORCODE and 934

ERRORLEVEL are also added in the output Dataset and valued with the parameters errorCode and errorLevel of 935

the applied Rule in case of validation failure (i.e. FALSE value as outcome of the Rule). 936

These Rulesets can be also used to filter Datasets. In particular, the filter operator can apply a 937

Horizontal|DataPoint Ruleset to all the Data Points of the Dataset to be filtered. The result will be a new Dataset, 938

having the same data structure as the input Dataset and containing only the Data Points for which the Rules of 939

the Ruleset evaluates to TRUE or optionally to FALSE (for more details see the filter operator). 940

 941

 Examples 942

1) Input Dataset: 943

ds_bop

TIME REF_AREA PARTNER FLOW OBS_VALUE OBS_STATUS

2010 EU25 CA AVERAGE 20

2010 BG CA NET 1

2010 RO CA NET 1 M

2010 EU27 CA CREDIT 12 C

 944

define datapoint ruleset ruleset_1 (FLOW as x, OBS_STATUS as y) (945

 flow_dr : when x = “CREDIT” or x = “AVERAGE” then y <> “C” errorcode (-XXXXX) 946

) 947

Meaning: 948

Once ruleset_1 is defined, it is usable to perform validations or apply filters. 949

 2) 950

ds := check(ds_bop, ruleset_1, with measures , only failures) 951

 952

TIME REF_AREA PARTNER FLOW RULE_ID OBS_VALUE OBS_STATUS ERRORCODE

2010 EU27 CA CREDIT ruleset1_flow_dr 12 C -XXXXX

 953

3) 954

ds := ds_bop[filter ruleset_1] 955

 956

TIME REF_AREA PARTNER FLOW OBS_VALUE OBS_STATUS

2010 EU25 CA AVERAGE 20

2010 BG CA NET 1

2010 RO CA NET 1 M

 957

34

define hierarchical ruleset 958

 959

Semantics 960

define hierarchical ruleset defines a persistent object that contains Rules to be applied to individual 961

Components of a given Dataset in order to make validations or calculations according to hierarchical 962

relationships between the relevant Code Items. These rulesets are also called “vertical” taking into account the 963

tabular representation of a Data Set (considered as a mathematical function), in which each (vertical) column 964

represents a Variable and each (horizontal) row represents a Data Point: these Rulesets are applied on Variables 965

(columns), i.e. vertically on the tabular representation of a Data Set. 966

A first purpose of these Rules is to express some more aggregated Code Items (e.g. the continents) in terms of 967

less aggregated ones (e.g., their countries). This kind of relations can be applied to aggregate data, for example 968

to calculate an additive measure (e.g., the population) for the aggregated Code Items (e.g. the continents) as the 969

sum of the corresponding measures of the less aggregated ones (e.g. their countries). If a certain information is 970

available for both, the more and the less aggregated Code Items, these rules can be used for validating their 971

mutual coherence, for example to check if the additive measures relevant to the aggregated Code Items (e.g. the 972

continents) match the sum of the corresponding measures of their component Code Items (e.g. their countries). 973

Another purpose of these Rules is to express the relationships in which a Code Item represents some part of 974

another one, (e.g., “Africa” and “Five largest countries of Africa”, being the latter a detail of the former). This kind 975

of relationships can be used only for validation, for example to check if a positive and additive measure (e.g. the 976

population) relevant to the more aggregated Code Item (e.g., Africa) is greater than the corresponding measure 977

of the other one more detailed (e.g. “5 largest countries of Africa”). 978

The name “hierarchical” comes from the fact that this kind of Ruleset is able to express the hierarchical 979

relationships between Code Items at different levels of detail, in which each (aggregated) Code Item is expressed 980

as a partition of (disaggregated) ones. 981

As a first simple example, the following Hierarchical Ruleset named “BeneluxCountries” contains a single rule 982

that asserts that, in the Value Domain “Geo_Area”, the Code Item BENELUX is the aggregation of the Code Items 983

BELGIUM, LUXEMBOURG and NETHERLANDS: 984

define hierarchical ruleset BeneluxCountriesHierarchy (ValueDomain=Geo_Area) is 985

BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS 986

end hierarchical ruleset 987

 988

Syntax 989

define hierarchical ruleset rulesetId (RulesetSignature) is 990

{ Rule } { ; Rule}* 991

end hierarchical ruleset 992

 993

RulesetSignature 994

 ::= { antecedentSignature,} codeItemRelationSignature 995

antecedentSignature 996

::= antecedentvariables= variable-signature {, variable-signature}* 997

variable-signature 998

::= variable-ref {as constant-string}? 999

codeItemRelationSignature 1000

::= [variable= variable-ref | valuedomain= valuedomain-ref] 1001

Rule 1002

::= { ruleId : }? { when antecedentCondition then }? codeItemRelation 1003

{ errorcode (errorCode) }? 1004

{ errorlevel (errorLevel) }? 1005

antecedentCondition 1006

::= boolean-scalar-expression 1007

codeItemRelation 1008

::= codeItem-reference [= | > | < | >= | <=] [+ | -]? codeItemReference { [+ | -] codeItemReference}* 1009

codeItemReference 1010

 ::= codeItem-ref [from time-ref]? [to time-ref]? 1011

 1012

 1013

Parameters 1014

rulesetId : identifier 1015

ruleId : identifier 1016

35

codeItem-ref : identifier 1017

variable-ref : identifier 1018

valuedomain-ref : identifier 1019

antecedentCondition : boolean-scalar-expression 1020

errorCode : string 1021

errorLevel : integer 1022

time-ref : time-literal 1023

 1024

 rulesetId – the identifier of the Hierarchical Ruleset to be defined. 1025

 rulesetSignature – the signature of the Ruleset. It specifies the space on which the Ruleset is defined. 1026

 antecedentSignature - the signature of the antecedent conditions of the Ruleset. It specifies the Represented 1027

Variables (see the information model) on which the antecedent conditions of the Rules are defined. 1028

 codeItemRelationSignature - the signature of the Code Item Relations of the Ruleset. It specifies either the 1029

Represented Variable or the ValueDomain (see the information model) on which the Code Item Relations of 1030

the Rules are defined. When a Represented Variable is specified, the Ruleset is meant to be applicable to 1031

DataSets having such Variable as a Component. When a Value Domain is specified, the Ruleset is meant to be 1032

applicable to Datasets having a Component which takes values on it. 1033

 variable-signature – It specifies a single Represented Variable on which the Ruleset is defined 1034

 variable-ref – It references a Represented Variable by its name. The Variable name can be aliased for the sake of 1035

compactness in writing the Rules. If the alias is not specified, the complete name of the Variable must be 1036

used in the body of the Rules. 1037

 constant-string: the name assigned to the Variable within the ruleset 1038

 valueDomain-ref – It specifies a Value Domain 1039

 Rule – the complete specification of a single rule, as defined in the following parameters. 1040

 ruleId – the identifier of the specific rule within the Ruleset. The ruleId is optional and, if not specified, is 1041

assumed to be the progressive order number of the Rule in the Ruleset (please note that this practice may 1042

cause changes of the rule identifiers in case the Ruleset is maintained, e.g. if new rules are added or existing 1043

rules are deleted) 1044

 antecedentCondition – a Boolean scalar expression. All the Component level operators are allowed. 1045

 CodeItemRelation – the specification of a Code Item Relation to be evaluated only when the 1046

antecedentCondition evaluates to true (missing antecedent conditions are assumed as true). It expresses a 1047

logical relationship between Code Items belonging to the Value Domain referenced by the Ruleset. The 1048

relation is expressed by one of the symbols “=”, “>”, “>=”, “<”, “<=”, which in this case denote special logical 1049

relationships typical of Code Items (see below). The first member of the relationship is a single Code Item. 1050

The second member of the relationship is the composition of one or more Code Items expressed by the 1051

symbols “+” or “-“, which in their turn also denote special logical operators typical of Code Items (see below). 1052

The meaning of these symbols is explained below. 1053

 codeItemReference –the reference to an existing Code Item of the VTL information model, that is a Value of a 1054

ValueDomain. 1055

 errorCode – a string denoting the error code associated to the rule, respecting VTL conventions, in case the 1056

rule is used for validation. 1057

 errorLevel – an integer containing the error level (severity) associated to the rule, in case the rule is used 1058

for validation. 1059

 1060

Constraints 1061

 valueDomainReference must be enumerated. 1062

 antecedentCondition must refer only to identifiers specified in antecedentConditionIds 1063

 errorCode must respect the conventions of user-defined error codes. 1064

 1065

Returns 1066

A persistent Hierarchical (or vertical) Ruleset identified by rulesetId, which can be referenced and used both for 1067

validation and aggregation purposes. 1068

 1069

Semantic specification 1070

This operator defines a Hierarchical Ruleset, which is a collection of Rules expressing logical relationships 1071

between the Values (Code Items) of a Variable or a Value Domain. 1072

Each rule contains an optional antecedent condition, which defines the cases in which the Rule has to be applied 1073

(if not declared the Rule is applied ever) and a mandatory code item relation, which expresses the relation 1074

36

between Code Items to be enforced. In the relation, one Code Item (the first member of the relation) is put in 1075

relation to a combination of other Code Items. 1076

As for the mathematical meaning of the relation, please note that each Value (Code Item) is the representation of 1077

an event belonging to a space of events (i.e. the relevant Value Domain), according to the notions of “event” and 1078

“space of events” of the probability theory (see also the section on the Generic Models for Variables and Value 1079

Domains in the VTL IM). Therefore the relations between Values (Code Items) express logical implications 1080

between events. 1081

The envisaged types of relations are: “coincides” (=), “implies” (<), “implies or coincides” (<=), “is implied by” (>), 1082

“is implied by or coincides” (>=)2. For example: 1083

UnitedKingdom < Europe means UnitedKingdom implies Europe 1084

In other words, this means that if a point of space belongs to United Kingdom it also belongs to Europe. 1085

January 2000 < year 2000 means January of the year 2000 implies the year 2000 1086

In other word, if a time instant belong to “January 2000” it also belongs to the “year 2000” 1087

The first member of a Relation is a single Code Item. The second member can be either a single code item, like in 1088

the example above, or a logical composition of Code Items giving another Code Item as result. The logical 1089

composition can be defined by means of Code Item Operators, whose goal is to compose some Code Items in 1090

order to obtain another Code Item. 1091

Please note that the symbols “+” and “-“ do not denote the usual operations of sum and subtraction, but logical 1092

operations between Code Items which are seen as events of the probability theory. In other words, two or more 1093

Code Items cannot be summed or subtracted to obtain another Code Item, because they are events and not 1094

numbers, however they can be manipulated through logical operations like “OR” and “Complement”. 1095

Note also that the “+” also acts as a declaration that all the Code Items denoted by “+” in the formula are mutually 1096

exclusive one another (i.e. the corresponding events cannot happen at the same time), as well as the “-“ acts as a 1097

declaration that all the Code Items denoted by “-” in the formula are mutually exclusive one another and 1098

furthermore that each one of them is a part of (implies) the result of the composition of all the Code Items having 1099

the “+” sign. 1100

At intuitive level, the symbol “+” means “with” (Benelux = Belgium with Luxembourg with Netherland) while the 1101

symbol “-“ means “without” (EUwithoutUK = EuropeanUnion without UnitedKingdom). 1102

When these relationships are applied to additive numeric measures (e.g. the population relevant to geographical 1103

areas), they allow to obtain the measure values of the compound Code Items (i.e. the population of Benelux and 1104

EUwithoutUK) by summing or subtracting the measure values relevant to the component Code Items (i.e. the 1105

population of Belgium, Luxembourg and Netherland in the former case, EuropeanUnion and UnitedKingdom in 1106

the latter). This is why these logical operations are denoted in VTL through the same symbols as the usual sum 1107

and subtraction. Please note also that this is valid whichever is the Data Set and whichever is the additive 1108

measure (provided that the possible other Identifier Components of the Data Set Structure have the same 1109

values), so that the Rulesets of this kind are potentially reusable. 1110

The Ruleset Signature specifies the space on which the Ruleset is defined. The “antecedentSignature” specifies 1111

the Variables on which the antecedent conditions of the Rules are defined (the Rules can refer only to these 1112

Variables and must refer to all of them). The “codeItemRelationSignature” specifies either the Represented 1113

Variable or the ValueDomain (see the information model) on which the Code Item Relations can be defined 1114

(when a Represented Variable is specified, the Ruleset is meant to be applicable to DataSets having such Variable 1115

as a Component, when a Value Domain is specified, the Ruleset is meant to be applicable to Datasets having a 1116

Component which takes values on it). 1117

The Hiererchical Ruleset may act on one or more Measures of the input Data Set provided that these measures 1118

are additive (for example it cannot be applied on a measure containing a “mean” because it is not additive). 1119

 1120

If a Hierarchical Ruleset is used for calculation (see also the “Calc” operator), only the Relations expressing 1121

coincidence (“=”) are evaluated (provided that the antecedentCondition is true). The result Data Set will contain 1122

the compound Code Items (the left members of those relations) calculated from the component Code Items (the 1123

right member of those Relations). Moreover, the clauses typical of the validation are ignored (e.g. ErrorCode, 1124

ErrorLevel/Severity). 1125

If some Code Items are defined equal to themselves, the relevant Data Points are brought in the result 1126

unchanged. For example, the following Ruleset will maintain in the result the Data Points of the input Data Set 1127

relevant to Belgium, Luxembourg and Netherland and will add new Data Points containing the calculated value 1128

for Benelux: 1129

define hierarchical ruleset AddBenelux (valuedomain=GeoArea) is 1130

Belgium = Belgium 1131

Luxembourg = Luxembourg 1132

2 “Coincides” means “implies and is implied”

37

Netherlands = Netherlands 1133

Benelux = Belgium + Luxembourg + Netherlands 1134

end hierarchical ruleset 1135

 1136

If a Hierarchical Ruleset is used for validation (see also the “Check” operators for more detailed information), 1137

all the possible Relations (“=”, “>”, “>=”,”<”,”<=”) are evaluated (provided that the antecedentCondition is true). 1138

The Rules are evaluated independently. The Data Points referred both by the left and the right members of the 1139

Relations are taken from the input Dataset. The Antecedent Condition is evaluated and, if “TRUE”, the Code Item 1140

Relation is also evaluated (the operations specified in the right member of the Relation are performed and the 1141

result is compared to the first member according to the specified Relation). The possible relations in which Code 1142

Items are defined as equal to themselves are ignored. The result Data Set will contain, as a Measure, the Boolean 1143

result of the validation, and, as Identifiers, the RulesetId, the RuleId and the Identifiers of the input Data Set. The 1144

possible clauses typical of the validation are applied (e.g. ErrorCode, ErrorLevel/Severity) and generate 1145

additional Measures in the result. Further options are better explained in the Check operator). 1146

Please note again that in case of validation the Data Points relevant to both the members of the Relations are 1147

expected to belong to the input Data Set. As obvious, if the data to be validated are originally in different 1148

DataSets, either they can be merged in advance using other VTL operators or the validation can be done by 1149

comparing those Data Sets directly (see also the Check operator), without using this kind of Ruleset. 1150

The Hierarchical Rulesets allow to declare the time validity of Rules and Relations. Firstly, the Antecedent 1151

Condition may be referred to a time variable, expressing when the Code Item Relation has to be applied (i.e. 1152

when it is considered valid as a whole). Secondly, each Code Item of the second member of the Code Item 1153

Relation can be qualified with a time validity, so expressing when the Code Item participates in the relation. As a 1154

default, when not expressed the validity is considered to be “ever”. 1155

The following two simplified examples show possible ways of defining the European Union in term of Countries. 1156

Example 1 1157

define hierarchical ruleset EuroAreaCountries1 (antecedentvariable=Time, variable=GeoArea) is 1158

when Time between 1.1.1958 and 31.12.1972 1159

then EU = BE + FR + DE + IT + LU + NL 1160

when Time between 1.1.1973 and 31.12.1980 1161

then EU = … same as above … + DK + IE + GB 1162

when Time between 1.1.1981 and 02.10.1985 1163

then EU = … same as above … + GR 1164

when Time between 1.1.1986 and 31.12.1994 1165

then EU = … same as above … + ES + PT 1166

when Time between 1.1.1995 and 30.04.2004 1167

then EU = … same as above … + AT + FI + SE 1168

when Time between 1.5.2004 and 31.12.2006 1169

then EU = … same as above … + CY + CZ + EE + HU + LT + LV + MT + PL + SI + SK 1170

when Time between 1.1.2007 and 30.06.2013 1171

then EU = … same as above … + BG + RO 1172

when Time >= 1.7.2013 1173

then EU = … same as above … + HR 1174

end hierarchical ruleset 1175

Example 2 1176

define hierarchical ruleset EuroAreaCountries2 (valuedomain=Geo_Area) is 1177

EU = AT (from 1.1.1995) + BE (from 1.1.1958) + BG (from 1.1.2007) 1178

 + … + GB (from 1.1.1973) + … 1179

 + SE (from 1.1.1995) + SI (from 1.5.2004) + SK (from 1.5.2004) 1180

end hierarchical ruleset 1181

In this example, when GB will exit from UE, the GB term would become: 1182

+ GB (from 1.1.1973 to … the future date of Brexit …) 1183

The Hierarchical Rulesets allow defining hierarchies either having or not having levels (free hierarchies). 1184

For example, leaving aside the time validity for sake of simplicity: 1185

define hierarchical ruleset GeoHierarchy (valuedomain=Geo_Area) is 1186

World = Africa + America + Asia + Europe + Oceania 1187

38

Africa = Algeria + … + Zimbabwe 1188

America = Argentina + … + Venezuela 1189

Asia = Afghanistan + … + Yemen 1190

Europe = Albania + … + Vatican City 1191

Oceania = Australia + … + Vanuatu 1192

Afghanistan = AF_reg_01 + … + AF_reg_N 1193

… … … … … … 1194

Zimbabwe = ZW_reg_01 + … + ZW_reg_M 1195

EuropeanUnion = … + … + … + … 1196

CentralAmericaCommonMarket = … + … + … + … 1197

OECD_Area = … + … + … + … 1198

end hierarchical ruleset 1199

Hierarchies may be useful for validation in case more levels of detail are contained in the Data Set to be 1200

validated. The Hierarchical Rulesets defines the mutual coherency rules of these different levels of detail. 1201

Because the various Rules can be evaluated independently, their order is not significant. 1202

Hierarchies may also be useful for calculations. For example, they can be used to calculate the upper levels of the 1203

hierarchy if the data relevant to the leafs (or some other intermediate level) are available in the input Data Set. 1204

For example, having additive measures broken by region, it would be possible to calculate these measures 1205

broken by countries, continents and the world. Besides, having additive measures broken by country, it would be 1206

possible to calculate the same measures broken by continents and the world. 1207

In the Hierarchies there can be dependencies between Rules, because the inputs of some Rules can be the output 1208

of other Rules, so the former can be evaluated only after the latter. For example, the data relevant to the 1209

Continents can be calculated only after the calculation of the data relevant to the Countries. As a consequence, 1210

the order of calculation of the Rules is determined by their mutual dependencies and can be different from the 1211

order of the Rules in the Ruleset. The dependencies between the Rules form a directed acyclic graph. 1212

Hierarchical Rulesets allow defining multiple relations for the same Code Item. 1213

Multiple relations are often useful for validation. For example, the Balance of Payments item "Transport" can be 1214

broken down both by type of carrier (Air transport, Sea transport, Land transport) and by type of objects 1215

transported (Passengers and Freights) and both breakdowns must sum up to the whole "Transport" figure. In 1216

the following example a RuleId is assigned to the different methods of breaking down the Transport. 1217

define hierarchical ruleset TransportBreakdown (valuedomain= BoPItem) is 1218

transport_method1 : Transport = AirTransport + SeaTransport + LandTransport, 1219

transport_method2: Transport = PassengersTransport + FreightsTransport 1220

end hierarchical ruleset 1221

Multiple relations can be deemed as useful even in some case of calculation. For example, imagine that the input 1222

Data Set contains data about resident units broken down by region and data about non-residents units broken 1223

down by country. In order to calculate an homogeneous level of aggregation (e.g. by country), a possible Ruleset 1224

might be the following: 1225

define hierarchical ruleset CalcCountryLevel (valuedomain=Geo_Area) is 1226

Country1 = Country1 1227

Country1 = Region11 + … + Region1M 1228

… 1229

CountryN = CountryN 1230

CountryN = Region N1 + … + RegionNM 1231

end hierarchical ruleset 1232

 1233

A warning is opportune about the possible practice of calculating the same Code Item in more Rules (calculation 1234

methods) of the same Ruleset. The Rulesets of this kind, in fact, may produce either right or wrong figures 1235

depending on the content of the input Data Set. 1236

As a matter of fact, in the calculation the outcomes of all the Rules belonging to the Ruleset are aggregated 1237

together to produce the final result, in order to remove possible duplicates in the Identifiers (duplicate values in 1238

the Identifiers cannot be allowed, see also the Information Model). As far as each Code Item is defined just once 1239

as left member of a relation, the values of the Identifiers of the results of the single Rules are all distinct and their 1240

aggregation cannot generate inconsistencies. This is not ever true if a Code Item is defined more than once (e.g. 1241

through more than one calculation method). 1242

In the Ruleset of the example above, each Country is calculated using two calculation methods, whose results 1243

may have the same keys, which will be aggregated together. The output Data Set will be correct provided that, in 1244

the input Data Set, any information is present either by country or by region (never both of them). The output 1245

39

Data Set would contain errors if some information is present in the input Data Set both by country and by region: 1246

the resulting figures would be indicatively (and wrongly) doubled. 1247

In general, if more left members refer to the same Code Item (in other words, if a Code Item is calculated through 1248

more calculation methods), the result may be inconsistent for some input DataSets. It is possible to avoid these 1249

situations by using other approaches for calculating the desired result (e.g. splitting the Ruleset, calculating the 1250

result in more steps, using antecedentConditions, using other VTL operators). This example has been presented 1251

to better clarify the behavior of this kind of Ruleset and warn about possible limitations to its reusability. 1252
 1253

 1254

Examples 1255
1) The Code Item Relation is defined on the Variable “sex”: Total is defined as Male + Female. 1256

 No antecedent conditions are defined. 1257

 1258

define hierarchical ruleset vr_sex (Variable= sex) is 1259

 TOTAL = MALE + FEMALE; 1260

end hierarchical ruleset 1261
 1262

2) BENELUX is the aggregation of the Code Items BELGIUM, LUXEMBOURG and NETHERLANDS, if not true, the 1263

errorcode is 2000 and the errorlevel is high (10) 1264
define hierarchical ruleset BeneluxCountriesHierarchy (valuedomain=Geo_Area) is 1265

BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS errorcode 2000 errorlevel 10 1266

end hierarchical ruleset 1267

 1268
3) American economic partners. The first rule verifies that the value reported for North America is greater than the 1269

value reported for US. This type of validation is useful when the data communicated by the data provider do not cover 1270

the whole composition of the aggregate but only the main elements. No antecedent conditions are defined. 1271

 1272

define hierarchical ruleset vr_american_partners (variable= counterpart_area) is 1273

NORTH_AMERICA > US ; 1274

SOUTH_AMERICA = BR + UY + AR + CL ; 1275

end hierarchical ruleset 1276
 1277

4) Example of item having multiple definitions. The Balance of Payments item "Transport" can be broken down by type 1278

of carrier (Air transport, Sea transport, Land transport) and by type of objects transported (Passengers and Freights) and 1279

both breakdowns must sum up to the total "Transport" figure. 1280

 1281

define hierarchical ruleset vr_bop (variable= bop_item) is 1282

transport_method1 : Transport = AirTransport + SeaTransport + LandTransport, 1283

transport_method2 : Transport = PassengersTransport + FreightsTransport 1284

end hierarchical ruleset 1285

 1286

define mapping ruleset 1287

Semantics 1288

The define mapping allows to transcode a set of values of an Identifier Component 1289

 1290

Syntax 1291

define mapping map_1 (1292

{ condition (IdentifierComponent<?> idCond {, IdentifierComponent<?> idCond } *) } 1293

 map_to (IdentifierComponent<?> idMapTo) 1294

 map_from (IdentifierComponent<?> idMapFrom) 1295

) is 1296

{ MappingRule ; } + 1297

 1298

MappingRule:= { when Component<Boolean> whenCondition then } 1299

IdentifierValue valueTo = IdentifierValue valueFrom 1300

end mapping ruleset 1301

 1302

40

Parameters 1303

idCond : identifier 1304

idMapTo : component-ref 1305

idMapFrom : component-ref 1306

whenCondition : boolean 1307

valueTo : string 1308

valueFrom : string 1309
 1310

 idCond is the identifier used in the condition part. More than one identifier can be used. 1311

 idMapTo is the identifier whose values are resulting from the conversion of values of idMapFrom 1312

 idMapFrom is the identifier whose values are converted to values of idMapTo 1313

 whenCondition is a boolean expression. When whenCondition is evaluated to true then the corresponding 1314

mapping rule is executed. If whenCondition is omitted in a rule then it is implicitly assumed to be true. 1315

 valueTo is a valid value for idMapTo 1316

 valueFrom is a valid value for idMapFrom 1317

 1318

Constraints 1319

idCond, idMapFrom and idMapTo are the names of existing Identifier Components). valueTo is a valid value for 1320

idMapTo and valueFrom is a valid value for idMapFrom. 1321

 1322

Semantic specification 1323

It creates a mapping that can be applied to transcode a set of values using the transcode statement. A mapping is 1324

a set of rules for transcoding values belonging to the code lists of two identifier components. 1325

 1326

Returns 1327

None. 1328

 1329

Examples 1330

See the examples under the transcode operator. 1331

 1332

41

VTL-ML - General purpose operators and functions 1333

 1334

Parentheses () 1335

Semantics 1336

The parenthesis allows to modify the default order of evaluation of the operators. 1337

 1338

Syntax 1339

(expression) 1340

 1341

Constraints 1342

None. 1343

 1344

Semantic specification 1345

 1346

 1347

Assignment := 1348

Semantics 1349

The “:=” symbol allows to assign the value of an expression to a variable parameter. 1350

 1351

Syntax 1352

variable_parameter := expression 1353

 1354

Constraints 1355

None. 1356

 1357

Semantic specification 1358

the expression may evaluate to any data type. 1359

 1360

Examples 1361

Assignment of a Constant<Number> value to a parameter: 1362

numpi := 3.14 1363

Assignment of a String value to a parameter: 1364

str := “hello world” 1365

Assignment of an expression to a parameter: 1366

popA := populationDS + 1 1367

Assignment of a Dataset expression to a parameter: 1368

ds_1 := get(“NAMESPACE/DF_NAME/2000.USD.M.F.A.BOP.ANN.STO.EABL”) 1369

Assignment of a Constant<Boolean> value to a parameter: 1370

bool_var := true 1371
 1372

Membership . 1373

Semantics 1374

The membership operator allows to specify a single component of a Dataset 1375

 1376

Syntax 1377

ds . comp 1378

Parameters 1379

ds : Dataset 1380

42

comp : Dataset component-ref 1381

 1382

 ds – is a Dataset 1383

 comp – a valid component of ds 1384

 1385

Constraints 1386

None. 1387

 1388

Returns 1389

A Dataset having all the identifiers and only one Measure or Attribute c specified by the operator. 1390

 1391

Semantic specification 1392

The membership operator is particularly useful to work with operators that have specific constraints in terms of 1393

the types of the Measure Components or have more than one Measure Component. 1394

 1395

Examples 1396

1) Suppose ds_1 is a multi-measure Dataset, where M1 is a numeric Measure Component and M2 is a string 1397

Measure Component, let ds_2 be a mono-measure Dataset with a single Measure Component M1. ds_1 and ds_2 1398

have the same Identifier Components. Let us supposed the sum ds_1 + ds_2 is desired. 1399

The following syntax: ds_1.M1 + ds_2 represents the resulting Dataset. In this notation ds_1 is temporarily 1400

considered mono-measure 1401

 1402

2) Suppose the comparison operator (“=”) needs to be applied on the Component COUNTRY of the Dataset ds_1. 1403

In this expression: 1404

ds_2 := ds_1.COUNTRY=”Luxembourg” 1405

the membership operator specifies that the Identifier Component COUNTRY is temporarily considered as the 1406

only Measure Component to be used in the comparison. 1407

 1408

3) Suppose it is needed to round an Component. The round operator acts on Measure Components, which must 1409

be all Numeric. Suppose we have a Dataset ds_1 with a string Measure Component DESCRIPTION and a numeric 1410

Component AVERAGE_AGE, which needs to be rounded to the 3rd decimal. The expression: 1411

ds_1 := round(ds_1.AVERAGE_AGE,3) 1412

performs this task. 1413

ds_1.AVERAGE_AGE temporarily considers AVERAGE_AGE the only numeric Measure Component of ds_1. The 1414

round is then normally applied. 1415

 1416

4) Let us suppose we have two multi-measure Datasets ds_1 and ds_2, having the same Identifier Components 1417

K1 and K2, and the same Measure Components M1 (which is a Numeric), M2 which is a String. 1418

The expression: 1419

ds_3 := ds_1.M1 + ds_2.M1 1420

sums only the Measure Component M1. 1421

 1422

5) Let us suppose we have two multi-measure Datasets ds_1 and ds_2, having the same Identifier Components 1423

K1 and K2, and the Measure Components M1 and M2. 1424

The expression: 1425

ds_3 := ds_1.M1 + ds_2.M2 1426

sums the Measure Component M1 with the measure component M2. 1427

Alias as 1428

Semantics 1429

The as operator allows to rename one component of a Dataset or the component resulting by an expression. 1430

 1431

Syntax 1432

ds.comp as alias 1433

 1434

Parameters 1435

ds : Dataset 1436

alias : string 1437

43

 1438

Constraints 1439

This operator works only on Measure components. 1440

Semantics specification 1441

The operator takes as input a Dataset and the identifier of a Measure Component, and returns a new Dataset 1442

having only that Measure Component and all the original Identifier Components. 1443

Examples 1444

1) Let us suppose we have two multi-measure Datasets ds_1 and ds_2, having the same Identifier Components K1 and 1445

K2, and the Measure Components M1and M2. 1446

The expression: 1447

ds_3 := ds_1.M1 + ds_2.M2 as “M1” 1448

sums the Measure Component M1 with the measure component M2. The outcome Dataset has one Measure 1449

Components: M1, which is obtained as the sum of M1 in ds_1 and M2 in ds_2. 1450

 1451

2) Let us suppose we have a Datasets ds_1 and the Measure Components M1. 1452

The expression: 1453

ds_2 := ds_1.M1* 10 as “M2” 1454

returns a Dataset having only one measure components M2 obtained as the product of M1 and 10. 1455

 1456

 1457

alterDataset 1458

Semantics 1459

The alterDataset allows to maintain all or a subset of components of the input Dataset having the identifier role. 1460

 1461

Syntax 1462

alterDataset(ds_1{, compList} { all }); 1463

 1464

Parameters 1465

ds_1 : dataset {identifier <IDENT> as scalar-type}+{measure <IDENT> as scalar-type}* 1466

 {attribute <IDENT> as scalar-type}* 1467

compList : list<list<component-ref>> 1468

 1469

 ds_1 – is the Dataset that the operator uses to produce the resulting Dataset. 1470

 compList– is the set of components belonging to the input Dataset. 1471

 all – its definition implies the presence of all components of ds_1 in the resulting Dataset. 1472

 1473

Constraints 1474

None. 1475

 1476

Returns 1477

This operator returns a Dataset having only Identifiers Components. The components of the returned Dataset are 1478

all the components of the input Dataset that are part of the compList or, if it is not specified, only the identifier 1479

components of the input Dataset. If one or more measures or attributes are included in the list, they will be part 1480

of the returned Dataset but having a role of identifiers. This operator allows removing identifier components 1481

from the input Dataset removing duplications. 1482

 1483

Semantic specification 1484

The Dataset resulting will have only Identifiers also if it contains components that were previously measures. If 1485

the with measures flag is specified then the resulting Set will have as added Identifiers, the Measures 1486

Components of the input one Dataset, too. 1487

 1488

 1489

Examples 1490

 1491

1) alterDataset(ds_1 all) 1492

 1493

44

ds_1

K1 K2 M1

1 A 100

2 B 200

 1494

set_1

K1 K2 M1

1 A 100

2 B 200

 1495

 1496

2) l_1 = list<components-ref> (REF_AREA) 1497

 1498

alterDataset(ds_1,l1) 1499

 1500

IT_nord_pop

TIME REF_AREA OBS_VALUE

2015 ITCD 27799803

2015 ITC 16138643

2015 ITC1 4424467

2015 ITC2 128298

2015 ITC3 1583263

2015 ITC4 10002615

2015 ITD 11661160

2015 ITD1 518518

2015 ITD2 537416

2015 ITD3 4927596

2015 ITD4 1227122

2015 ITD5 4450508

2014 ITCD 27785211

2014 ITC 16130725

2014 ITC1 4436798

2014 ITC2 128591

2014 ITC3 1591939

2014 ITC4 9973397

2014 ITD 11654486

2014 ITD1 515714

2014 ITD2 536237

2014 ITD3 4926818

2014 ITD4 1229363

2014 ITD5 4446354

 1501

 1502

45

set_1

REF_AREA

ITCD

ITC

ITC1

ITC2

ITC3

ITC4

ITD

ITD1

ITD2

ITD3

ITD4

ITD5

 1503

get 1504

Semantics 1505

The get operator allows to fetch all the instances of a Dataset from the system and returns a Dataset containing 1506

them. 1507

 1508

Syntax 1509

get(1510

ds_id {, ds_id}* 1511

{,keep(keepPart {, keepPart }*)} 1512

{,dedup(consResFunctions)} 1513

{,filter(filterPart)} 1514

{,aggregate(aggregateFunction (aggrPart {, aggrPart}*)*)} 1515

) 1516

 1517

Parameters 1518

ds_id : ident 1519

consResFunctions : list<component-ref * (t*t) -> t > (t is the type of the referred Component) 1520

keepPart : component-ref 1521

filterPart : boolean 1522

aggrPart : component-ref (Component<Numeric>) 1523

 1524

 ds_id – is the Persistent Dataset to be fetched. 1525

 keepPart – is a valid reference to a Component of ds_id. 1526

 consResFunctions – is a List of reference to valid Components of ds and conflict resolution Function. 1527

 filterPart – is a boolean Component expression which is evaluated row-wise and states if a row is to be kept 1528

(if evaluates to true) or removed (if it does not evaluate to true) from the result. 1529

 aggrPart – is a valid reference to the numeric Measure Component to aggregate. 1530

 1531

Constraints 1532

 All the input Datasets ds_id must be persistent (see put operator) and must have the same Logical Data 1533

Structure, which is the same Components in number, name and type (static). 1534

 If more than a Dataset ds_id is defined, then the definition of consResFunctions is mandatory. 1535

 The consResFunction List, must defines a conflict resolution function for each Measure Component specified 1536

in the keep clause. For each Component the respective conflict resolution function must return a value of the 1537

46

same type (as explained in the syntax). If consResFunction is not used and duplicated records are present 1538

the get operator return an error. 1539

 keepPart must be a Component expression containing exactly the name of a Component of any ds (complex 1540

Component expressions, combining more than one Component are not allowed) (static). 1541

 aggrPart must be a Component expression containing exactly the name of a Measure Component present in 1542

any ds (no complex Component expressions, combining more than one Component is allowed). If there is at 1543

least one aggrPart, there must be one for each Measure Component that is present in a keepPart. If keepPart 1544

is omitted, all Measure Components must be in the aggregate. This means that there cannot be Measure 1545

Components, kept that are not used in aggregations (static). 1546

 1547

Returns 1548

A Dataset obtained as the union of all the Datasets specified by the identifiers ds, keeping only the columns 1549

specified in the keepParts and the rows in the filterParts, choosing from duplicate Datapoints through 1550

consResFunctions, aggregating over all the Measure Components in aggrParts grouping. 1551

 1552

Semantic specification 1553

The operator get, is the data retrieval command. It takes in input a number (at least one) of Dataset ds. Together 1554

with put, it is the only operator in VTL where a persistent Dataset can be mentioned. 1555

The command operates as follows: considers all the instances of the identified Dataset (selected according to the 1556

semantics of the identifier); builds a union without duplicates (conflicts are resolved using the consResFunctions 1557

specified in the dedup part); keeps in the result only the Components that are present in the keepPart (like SQL 1558

SELECT). If the keep part is omitted, all the Components are preserved in the result; selects the only instances 1559

returning true for the filterPart boolean Component expression. For the filterPart, any complex boolean 1560

Component expression over all the Datasets Components (not only the ones mentioned in the keepPart can be 1561

used) and it is evaluated row-wise (like SQL WHERE). 1562

 Finally, the command aggregates (like SQL aggregations and GROUP BY) applying an aggregation function (see 1563

aggregate function operator) over the Measure Component specified in aggrPart grouping by the Identifier 1564

Components that are kept in the keepPart (or all if there is no keepPart). 1565

NULL values are considered in aggregations only if the “include NULLS” part is present. Specifically, they 1566

propagate as usual resulting in a NULL sum, average or median if at least one NULL is present among the values; 1567

in a NULL minimum or maximum if the only value to aggregate coincides with NULL; they are considered as 1568

always distinct in both count and count_distinct. 1569

Viceversa, if include NULLS part is absent, NULL values are not considered in aggregations. 1570

 1571

Examples 1572

1) The expression: 1573

ds_1 := get("DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO", keep(K1, K2, M1)) 1574

 1575

Retrieves Dataset identified by DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO from the system, keeping the 1576

Identifier Components K1 and K2 and the Measure Component M1. 1577
 1578

DF_NAME/2000-
2010.USD.M.F.A.BOP.ANN.STO

 K1 K2 M1

1 A 5

2 B 7

 1579

 1580

ds_1

K1 K2 M1

1 A 5

2 B 7

 1581

2) The expression: 1582

ds_1 := get("DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO", "DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO", 1583

keep(K1, K2, K3, M1), dedup(M1*min)) 1584

47

 1585

Retrieves the union of Datasets identified by DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO and 1586

DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO, keeping the Identifier Components K1, K2 and K3 and the 1587

Measure Component M1 for all of them. 1588
 1589

DF_NAME/2000-
2010.USD.M.F.A.BOP.ANN.STO

K1 K2 K3 M1

1 A X 5

2 B Y 7

 1590

 1591

DF_NAME/2011-
2012.USD.M.F.A.BOP.ANN.STO

K1 K2 K3 M1

1 A X 6

2 B Y 7

3 C Z 9

 1592

 1593

ds_1

K1 K2 K3 M1

1 A X 5

2 B Y 7

3 C Z 9

 1594

 1595

The union had produced two duplicates: (1,A,X,5) and (1,A,X,6), (2,B,Y,7) and (2,B,Y,7). The min conflict resolution 1596

function take care of the minimum value for M1 between the duplicates. 1597

 1598

 1599

3) The expression: 1600

ds_1 := get("DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO", ("DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO", 1601

keep(K1, K2, K3, M1), dedup(M1*min), filter(K3=”X”))) 1602

 1603

retrieves the union of Datasets identified by DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO and DF_NAME/2011-1604

2012.USD.M.F.A.BOP.ANN.STO keeping the Identifier Components K1, K2 and K3 and the Measure Component M1 1605

for all of them and selecting only the rows where the value of the Component K3 equals to the Constant<String> “X”. 1606

 1607

NAMESPACE/DF_NAME/2000-
2010.USD.M.F.A.BOP.ANN.STO

K1 K2 K3 M1

1 A X 5

2 B Y 7

 1608

 1609

NAMESPACE/DF_NAME/2011-
2012.USD.M.F.A.BOP.ANN.STO

K1 K2 K3 M1

1 A X 6

48

2 B Y 7

3 C Z 9

 1610

 1611

ds_1

K1 K2 K3 M1

1 A X 5

 1612

 1613

4) 1614

The expression: 1615

ds_1 := get(1616

"DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO", "DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO", 1617

keep(K1, K2, M1), dedup(M1*min), aggregate(sum(M1))) 1618

retrieves the union of Datasets identified by 1619

DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO 1620

and 1621

DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO 1622

keeping the Identifier Components K1 and K2 and the Measure Component M1 for all of them. It aggregates over the 1623

Measure Component M1, grouping by the Identifier Components K1 and K2. 1624

 1625

DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO

K1 K2 K3 M1 M2

1 A X 5 2

2 B Y 7 3

 1626

 1627

DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO

K1 K2 K3 M1 M2

1 A Y 6 5

2 B Y 7 7

3 C Z 9 11

 1628

 1629

ds_1

K1 K2 M1

1 A 11

2 B 14

3 C 9

 1630

 1631

5) The expression: 1632

ds_1 := get("DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO", “DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO", 1633

keep(K1, K2, M1,M2), dedup(M1*min, M2*first_value), filter(K3>5 or K3=1), aggregate(sum(M1),max(M2))) 1634

 1635

retrieves the union of Datasets identified by DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO and DF_NAME/2011-1636

2012.USD.M.F.A.BOP.ANN.STO keeping the Identifier Components K1 and K2 and the Measure Components M1 and 1637

M2 for all of them. It selects only the rows where K3 is greater than 5 or exactly 1. It aggregates over the Measure 1638

Component M1 by sum, over the Measure Component M2 by max, grouping by the Identifier Components K1 and K2. 1639

 1640

49

DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO

K1 K2 K3 M1 M2

1 A 10 5 2

2 B 1 7 3

 1641

 1642

DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO

K1 K2 K3 M1 M2

1 A 25 6 5

2 B 1 7 7

3 C 3 9 11

 1643

ds_1

K1 K2 M1 M2

1 A 11 5

2 B 14 7

 1644

put 1645

Semantics 1646

It stores the content of a Dataset expression ds into a persistent Dataset. 1647

 1648

Syntax 1649

put(ds, ds_id) 1650

 1651

Parameters 1652

ds, ds_id : dataset {identifier <IDENT> as scalar-type}+ 1653

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 1654

 1655

 ds – is the Dataset, or Dataset expression which contents must be stored in the system. 1656

 ds_id – is the Dataset that will assumes the contents of ds, it will be persistent in the system. 1657

 1658

Constraints 1659

The Logical Data Structure of ds must conform to the one of the Dataset in the system that is identified by ds_id 1660

(static). 1661

 1662

Returns 1663

A Dataset that is a copy of the input one ds. 1664

 1665

Examples 1666

1) The expression below is to store the ds_1 Dataset. 1667

 1668

ds := put(ds_1, "DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO") 1669

 1670

2) ds := put(log((ds_1 + ds_2),10), "DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO") 1671

The result of logarithm is stored, while the sum is not persistent. 1672

 1673

3) ds := put(log(put(ds_1 + ds_2, "DF_NAME/2000-2011.USD.M.F.A.BOP.ANN.STO"),10),"DF_NAME/2000-1674

2010.USD.M.F.A.BOP.ANN.STO") 1675

Both the results of the sum and the logarithm are stored into the system. The fact that put outputs the input 1676

expression allows for this kind of use. 1677

50

eval 1678

Semantics 1679

The eval operator allows to execute an external, non-VTL program, and returns its result as a Dataset. 1680

 1681

Syntax 1682

 eval (Constant<String> language, 1683

[{script=}Constant<String> script | Constant<String> programPath], 1684

{,{params=}ConstantList<?> parameterList} 1685

, {dataset=}PersistentDataset ds_id) 1686

 1687

Parameters 1688

ds_id : dataset {identifier <IDENT> as scalar-type}+ 1689

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 1690

language: string 1691

script: string 1692

programPath : string 1693

parameterList : list<scalar-type> 1694

 1695

ds_id – the PersistentDataset the program saves into. 1696

language – is the programming language of the script. 1697

script – is the code of the script. 1698

programPath – a path to a script file. 1699

parameterList – the List of input parameters for the script. 1700

 1701

Constraints 1702

 language must be the name of a programming language, meaningful and executable in the target system 1703

(such as a SQL stored-procedure language, R, STATA, etc.) (dynamic). 1704

 script must be the code of a program, valid with respect to the specified language. The program can 1705

perform whatever internal logic, but is forced to calculate and autonomously store exactly one 1706

PersistentDataset, ds_id (dynamic). 1707

 programPath must be a valid path in the target system to a program file, compliant with the specified 1708

language. It does not necessarily correspond to a filesystem file, but can also be the identifier of a DBMS 1709

stored procedure, and so forth (dynamic). 1710

 parameterList must be compatible in order and type with the input parameters of the script (dynamic). 1711

 1712

Semantic specification 1713

The program specified in the eval operator, is user-defined and can perform any internal logic, however it has to 1714

adhere to some conventions: 1715

 it can take as input only String or Numeric parameters, which are directly bound to parameterList; 1716

 it must autonomously store its results into a single Dataset ds_id. Indeed, the operator fetches the saved 1717

Dataset (like a common get operation) and returns it as output, which can be handled within other VTL 1718

expressions; 1719

 it must calculate exactly one Dataset; 1720

 it cannot refer to a parameter variable, but can only work with physical objects, such as relational tables 1721

(for SQL), data frames (for R), which are loaded autonomously by the program with the appropriate 1722

commands. Therefore, if a Dataset that has been calculated in a previous step needs to be used within a 1723

user-defined program, it must be stored (with a put) into the system and loaded appropriately by the 1724

program logic afterwards; 1725

 it must return 0 if it has terminated correctly, a negative number otherwise. 1726

Join expression 1727

Semantics 1728

The join expression implements some of the features of the FLWOR expression described in the VTL User 1729

Manual. 1730

 1731

Syntax 1732

{ [join_clause] } { body } 1733

51

 1734

join_clause ::= { [inner | outer | cross] } { ds { , ds * } on dim { , dim } * } 1735

body := { clause { , clause } * } 1736

clause := calc_clause | drop_clause | filter_clause | keep_clause | rename_clause | unfold_clause | fold_clause 1737

calc_clause := { role } compName = k 1738

drop_clause ::= drop { cmp { , cmp } * } 1739

keep_clause ::= keep { cmp { , cmp } * } 1740

filter_clause ::= filter boolean-expression | dpr 1741

rename_clause ::= rename cmp to cmp { , cmp to cmp } 1742

unfold_clause ::= unfold dim , msr to elem { , elem } 1743

fold_clause ::= fold elem { , elem } to dim , msr 1744

role := identifier | measure | attribute 1745

 1746

Parameters 1747

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type }* 1748

 {attribute <IDENT> as scalar-type} *] 1749

cmp : Component 1750

dim : IdentifierComponent 1751

dpr : name of a data point ruleset 1752

 1753

ds – is a Dataset name 1754

alias – is an alias for a Dataset, to be used when the same Dataset appears several times in 1755

k – is a scalar expression, or a Dataset expression denoting a single measure or attribute 1756

role – is the role of the calculated component c. If omitted then the role is derived from k (if k is a Dataset 1757

expression) otherwise the default role of c is attribute. 1758

dim – is an Identifier Componentcommon to all Datasets specified in the join clause 1759

 1760

Constraints 1761

For inner and outer joins (see below), one of the Datasets specified in the join_clause must contain all Identifier 1762

Components from all other Datasets from the join_clause (with the same name and the basic scalar type, number, 1763

boolean, string, or date) . 1764

The name of the component cannot be filter, keep or rename, or those names must be quoted within "'". 1765

A Dataset ds should appear only once in the list of Datasets. 1766

 1767

Returns 1768

The Dataset returned by the last statement of the body. 1769

 1770

Semantic specification 1771

This operator implements some of the features of the FLWOR expression described in the VTL manual part 1. 1772

Only the features that are useful for validation and transformation purposes are retained in the VTL operator. 1773

First VTL executes the join clause and then the body. 1774

The statements are executed in the specified order and operate on an input working Dataset. 1775

The Dataset resulting from the join clause is the input for the first statement of the body. 1776

The Dataset resulting from a statement is the input for the following statement. 1777

The Dataset returned by the last statement of the body is returned as the final result of the join expression. 1778

 1779

join_clause 1780

The meaning of the inner and the outer join is the same as the meaning of INNER JOIN and FULL OUTER JOIN 1781

constructs, respectively, in the SQL-92 standard. These are the differences: 1782

inner ds1, ds2 the resulting Dataset contains the data points that exist both in ds1 and ds2 (i.e. the common 1783

Identifier Components of ds1 and ds2 have the same values in ds1 and ds2). 1784

outer ds1, ds2 the resulting Dataset contains the data points that exist either in ds1 or ds2. Measures and 1785

attributes of data points that exist only in ds1 or ds2 (but not in both) have the null value. 1786

cross ds1, ds2 the resulting Dataset contains all data points of ds1 combined with all data points of ds2 (i.e. 1787

the Cartesian product of ds1 and ds2). The statements contained in the body are expected to 1788

reduce the number of data points by filtering them as needed. Measures and attributes of 1789

data points that exist only in ds1 or ds2 (but not in both) have the null value. 1790

The join clause builds the input Dataset of the first statement, according to the following rules. 1791

52

 If the join clause contains a single Dataset then that Dataset is the initial working Dataset. It is possible 1792

to refer to the components of the Dataset simply by using their name. Suppose that ds1 has a measure 1793

m, then 1794

[ds1] { a = m +1 } correct 1795

 For inner, outer and cross joins, the initial working Dataset is the result of the inner or outer or cross 1796

join applied to the Datasets specified in the join clause. If the Datasets have common measures or 1797

attributes (i.e. with identical names) then it is mandatory to refer to those components by specifying 1798

both the Dataset name and the measure name. Suppose that ds1 and ds2 have a common measure m, 1799

then: 1800

[ds1,ds2] { a = ds1.m +1 } correct 1801

[ds1,ds2] { a = m + 1 } not correct (ambiguous: m can refer to ds1 or ds2) 1802

The measures can be renamed with the rename clause: 1803

[ds1,ds2] { rename 'ds1.m' to m1 , a = m1 + 1 } correct 1804

The use of the quotation is necessary because ds1.m syntactically is not a valid name (this exception to 1805

the syntax rules is allowed only in the join body). 1806

In the final result of the join expression the common measures and attributes that have not been 1807

renamed are automatically dropped. The same applies when the working Dataset is the input for a filter 1808

that uses a datapoint (horizontal) ruleset. 1809

 If the on clause is specified then the join is possibly defined on a subset of the common Identifier 1810

Components of the Datasets. If the Datasets have common Identifier Components (i.e. with identical 1811

names, data type and values domain) that are not specified in the on clause then it is mandatory to refer 1812

to those Identifier Components by specifying both the Dataset name and the measure name. For 1813

example, if ds1 and ds2 have some common Identifier Components d1, d2 and d3, the following 1814

expression: 1815

[ds1,ds2 on d1, d2] 1816

returns a Dataset with the following Identifier Components: 1817

d1, d2, 'ds1.d3', 'ds2.d3' 1818

 the Identifier Components can be renamed using the rename clause: 1819

[ds1,ds2 on d1, d2] { rename 'ds1.d3' to new1, 'ds2_d3' to new2 } 1820

In the final result of join expression the common Identifier Components that are not listed in the on 1821

clause and have not been renamed are automatically renamed by replacing the "." with an underscore 1822

"_". The same applies when the working Dataset is the input for a filter that uses a datapoint (horizontal) 1823

ruleset. 1824

 The join clause can be omitted. In this case VTL implicitly adds a join clause containing all Datasets that 1825

are used inside the body. For example, the following join expression: 1826

{ a = ds1.m1 + ds2.m1 } 1827

is automatically treated by VTL as equivalent to: 1828

[inner ds1, ds2] { a = ds1.m1 + ds2.m1 } 1829

and 1830

[outer] { a = ds1.m1 + ds2.m1 } 1831

is equivalent to: 1832

[outer ds1, ds2] { a = ds1.m1 + ds2.m1 } 1833

 1834

Examples 1835

1) inner join returns data points that exists in both Datasets 1836

ds3 := [ds1, ds2] { 1837

obs_value = ds1.obs_value + ds2.obs_value , 1838

obs_status = ds1.obs_status 1839

} 1840

 1841

ds1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20 E

2010 BG CA 2 P

2010 RO CA 2 P

 1842

53

ds2

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 10 P

 1843

 1844

ds3

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 30 E

 1845

 the example above can be expressed equivalently as: 1846

ds_bop3 := { 1847

obs_value = ds1.obs_value + ds2.obs_value , 1848

obs_status = ds1.obs_status 1849

} 1850

 1851

2) outer join returns data points that exist in at least one Dataset when a data point does not exist in the other 1852

Dataset, the value of its measures and components is null compare with the following example: 1853

 1854

ds_bop3 := [outer ds1, ds2] { 1855

obs_value = ds1.obs_value + ds2.obs_value , 1856

obs_status = ds1.obs_status 1857

} 1858

ds3

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 30 E

2010 BG CA P

2010 RO CA P

 1859

3) 1860

nvl is used to replace the null value with 0 (compare with the previous example) 1861

ds_bop3 := [outer ds1, ds2] { 1862

obs_value = ds1.obs_value + nvl (ds2.obs_value, 0) , 1863

obs_status = ds1.obs_status 1864

} 1865

ds3

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 30 E

2010 BG CA 2 P

2010 RO CA 2 P

 1866

4) 1867

example of join defined on a subset of the Identifier Components (family_id) 1868

ds_census

PERSON_ID FAMILY_ID REL NATIONALITY

1 1 HEAD IT

2 1 SPOUSE IT

3 1 CHILD IT

54

4 2 HEAD US

5 2 SPOUSE US

6 2 CHILD IT

7 2 CHILD IT

 1869

head := ds_census (rel=HEAD); 1870

spouse := ds_census (rel=SPOUSE); 1871

child := ds_census(rel= CHILD) ; 1872

[head, spouse, child on family_id] { 1873

rename head.person_id to head_id, spouse.person_id to spouse_id, child.person_id to child_id ; 1874

rename head. nationality to head_nationality, spouse. nationality to spouse_nationality, child. nationality to 1875

child_nationality ; 1876

} 1877

 1878

ds_result

FAMILY_ID HEAD_ID SPOUSE_ID CHILD_ID HEAD_NATIO

NALITY

SPOUSE_NAT

IONALITY

CHILD_NATIO

NALITY

1 1 2 3 IT IT IT

2 4 5 6 US US IT

2 4 5 7 US US IT

 1879

calc_clause 1880

 1881

calc_clause := { role } compName = k 1882

 1883

The calc_clause adds a new component (Identifier , Measure or Attribute Component) or replaces an existing 1884

component (Measure or Attribute: the Identifier Components cannot be replaced) of the working Dataset. If 1885

calc_comp coincides with the name of an existing Component in the working Dataset (even with different type), 1886

the calculated one replaces the former, in name, value and type. 1887

 1888

Examples 1889

Suppose merge_flags is a user defined function (not shown here) that returns EP when applied to E, P 1890

ds3 := [ds1, ds2] { 1891

obs_value = ds1.obs_value + ds2.obs_value , 1892

obs_status = merge_flags (ds1.obs_status, ds2.obs_status) 1893

} 1894

 1895

ds3

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 30 EP

 1896

drop_clause 1897

 1898

drop_clause ::= drop { cmp { , cmp } * } 1899

The drop clause drops from the working Dataset the measures and attributes specified. 1900

Examples 1901

ds2 := [ds1] { drop obs_status } 1902

ds1

TIME REF_AREA PARTNER OBS_VALUE

2010 EU25 CA 20

2010 BG CA 2

55

2010 RO CA 2

 1903

keep_clause 1904

keep_clause ::= keep { cmp { , cmp } * } 1905

The keep clause keeps in the working Dataset only the measures and attributes specified. 1906

Examples 1907

ds2 := [ds1] { keep time, ref_area, partner, obs_value } 1908

ds1

TIME REF_AREA PARTNER OBS_VALUE

2010 EU25 CA 20

2010 BG CA 2

2010 RO CA 2

 1909

filter_clause 1910

filter_clause ::= filter boolean-expression | dpr 1911

 1912

When a boolean expression is specified, filter filters out the data points of the working Dataset for which the 1913

boolean expression evaluates to false or null (i.e., only the data points for which the Boolean expression 1914

evaluates to true are maintained). 1915

when a data point ruleset is specified, filter filters out the data points of the working Dataset for which at least 1916

one antecedent condition evaluates to true and its corresponding consequent condition evaluates to false or null 1917

(i.e., only the data points that satisfy the whole ruleset are maintained). 1918

Note that null as a result of a boolean expression is always interpreted as "not satisfied". 1919

 1920

Examples 1921

1) Compute new measure obs_value_neg derived from obs_value, rename ds1.obs_status to keep it in the result. 1922

ds1.obs_value is not kept 1923

ds_bop3 := [outer ds1, ds2] { 1924

filter ds2.obs_value <> 0 , 1925

obs_value = ds1.obs_value / ds2.obs_status , 1926

rename 'ds1.obs_status' to obs_status 1927

} 1928

ds3

TIME REF_AREA PARTNER OBS_VALUE_NEG OBS_STATUS

2010 EU25 CA 2 E

 1929

2) Simple filter 1930

 1931

ds2 := [ds1] { filter obs_value < 10 and time = "2010" } 1932

ds2

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 BG CA 2 P

2010 RO CA 2 P

 1933

rename_clause 1934

rename_clause ::= rename cmp to cmp { , cmp to cmp } 1935

 1936

56

rename allows renaming one or more components (Identifier , Measure or Attribute Component). VTL verifies 1937

that the resulting Dataset, after renaming all the specified components, has unique names of its components 1938

(otherwise an error is raised). Renaming an Identifier Componentimplies that the actual values of it are valid for 1939

the dimension type (usually the code list associated to the Identifier). 1940

 1941

Examples 1942

 compute the measure obs_value_neg derived from obs_value 1943

 rename ds1.obs_status to keep it in the result 1944

 ds1.obs_value is not kept 1945

 1946

ds_bop3 := [outer ds1, ds2] { 1947

obs_value_neg = -ds1.obs_value, 1948

rename 'ds1.obs_status' to obs_status equivalent to obs_status = ds1.obs_status 1949

} 1950

ds3

TIME REF_AREA PARTNER OBS_VALUE_NEG OBS_STATUS

2010 EU25 CA -20 E

2010 BG CA P

2010 RO CA P

 1951

unfold_clause 1952

 1953

unfold_clause ::= unfold dim , msr to elem { , elem } 1954

 1955

unfold creates the resulting Dataset in the following way: drops the Identifier Component dim and the measure 1956

msr from the resulting Dataset, partitions the input Dataset by grouping the values of the remaining Identifiers of 1957

the Dataset, transposes the data points of each group into a single data point of the resulting Dataset and adds 1958

new measures elements (all elem in the list). Then in the newly created data point unfold assigns to the value of 1959

each measure elem the value of msr existing in the input Dataset where dim = elem (if such a data point exists) or 1960

null otherwise. 1961

The data points where "dim not in (elem , …)" are removed from the resulting Dataset. 1962

Note that the attributes created may have names that are not syntactically correct (they may start with a digit, 1963

contain special characters, etc.): those names must be quoted (included in single quote " ' ") in any expression, 1964

and it is not allowed to create a Dataset based on those data. It is also not allowed to return a Dataset as the final 1965

result of the join expression with names not complying with the VTL rules. Note that the names can be renamed 1966

using the rename operator. 1967

 1968

Examples 1969

 Unfold and fold Identifier ref_area and measure obs_value 1970

ds_unfold := [ds1] { unfold ref_area, obs_value to (EU25, BG, RO) } 1971

 1972

ds1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20 E

2010 BG CA 2 P

2010 RO CA 2 P

 1973

 1974

ds_unfold

TIME PARTNER EU25 BG RO

2010 CA 20 2 2

57

 1975

fold_clause 1976

 1977

fold_clause ::= fold elem { , elem } to dim , msr 1978

 1979

fold transposes a single data point of the input Dataset into several data points. It adds Identifier dim and 1980

measure msr to the resulting Dataset, inserts into the resulting Dataset a data point for each value A in the 1981

element list and assigns to the inserted data point dim = A and msr = value of measure A in the input Dataset. 1982

When measure A is null then fold does not create a data point for that measure. 1983

Note that in general unfolding and folding are not exactly symmetric operations, i.e. in some cases the fold 1984

operation applied to the unfolded Dataset does not recreate exactly the original Dataset (before unfolding). 1985

 1986

Examples 1987

ds_fold := [ds_unfold] { fold (EU25, BG, RO) to ref_area, obs_value } 1988

 1989

ds_fold

TIME REF_AREA PARTNER OBS_VALUE

2010 EU25 CA 20

2010 BG CA 2

2010 RO CA 2

 1990

 1991

Function Creation 1992

Semantics 1993

Creates a named function with given arguments, defined by a given expression. 1994

 1995

Syntax 1996

create function function-name (arg-list) 1997

[returns return-type] 1998

as defining-expression 1999

 2000

Parameters 2001

function-name : <IDENT> 2002

arg-list : [arg {, arg }] 2003

arg : arg-name [as arg-type] [:= default-value] 2004

arg-name : <IDENT> 2005

arg-type : type 2006

default-value : literal 2007

defining-expression : expression 2008

return-type : type 2009

 2010

function-name – the name under which the function is created 2011

arg-list – the comma-separated list of formal arguments (can be empty) 2012

arg-name – the name of an individual argument 2013

arg-type – the optionally specified argument type 2014

default-value – the optionally specified argument default value; it can be a scalar literal (number, string, Boolean, 2015

or date) or a function literal (an anonymous function) 2016

return-type – the optionally specified function return type 2017

defining-expression – the expression that defines the function 2018

 2019

Constraints 2020
 2021

58

 Each arg-name must be unique within the arg-list. For each arg-name, element arg-type can be 2022

omitted if the argument type can be inferred from the definition. If both arg-type and default-value 2023

are given, then default-value must be compatible with arg-type. Arguments that have default-value 2024

must come at the end of arg-list. 2025

 If return-type is omitted, the statically inferred type of defining-expression is used as an implicit 2026

return-type. If return-type is given, the inferred type of defining-expression must be compatible 2027

with return-type. 2028

 2029

Returns 2030

Nothing 2031

 2032

Semantic specification 2033

The create function construct creates a named function with zero or more given arguments, defining 2034

expression, and the return type. The function can be called by name followed by the sequence of comma-2035

separated call arguments in parentheses. Each call argument is an expression of type compatible with the 2036

corresponding arg-type, whose result is passed by value. The named function call syntax is: 2037

function-call ::= function-name (call-arg-list) 2038

call-arg-list ::= { call-arg { , call-arg } } 2039

call-arg ::= positional-arg | named-arg 2040

positional-arg ::= arg-value 2041

named-arg ::= arg-name := arg-value 2042

arg-value ::= expression 2043

In call-arg-list, positional arguments and named arguments cannot be arbitrarily mixed: named arguments must 2044

come after all positional arguments (if any). 2045

For function-call to be valid, the following properties are statically checked: 2046

First, the function-name must refer to a function created with create function. 2047

Second, all arguments to function-name that do not have default-value must be supplied. Positional arguments 2048

are supplied in the order in which they appear in the corresponding arg-list. The named arguments can be given 2049

in any order after the positional arguments, but cannot refer to arguments whose values are already given by an 2050

earlier positional-arg or named-arg. 2051

For each arg-name, the type of the provided arg-value must be compatible with the corresponding arg-type. 2052

Values for arguments with default-value must be specified using named-arg, nor positional-arg. 2053

The result of a function-call to a function-name defined using create function is the value of defining-expression 2054

for the values of arg-list as supplied by the call-arg-list. 2055

 2056

Examples 2057

1) 2058

create function compare_integer_descending(x as integer, y as integer) 2059

returns boolean 2060

as x > y 2061

creates function compare_integer_descending which takes two integer arguments, x and y, and returns true if x>y, 2062

otherwise false. Call compare_integer_descending(1, 4) returns false, and call compare_integer_descending(8,0) 2063

returns true. 2064

 2065

2) 2066

define function has_solution(a, b, c) 2067

as b*b-4*a*c>0 2068

creates function has_solution takes three number arguments, a, b and c, and returns true only if the quadratic 2069

equation ax2+bx+c=0 has at least one solution. The types for a, b and c are inferred as number because in the 2070

defining expression the left-hand side of > must be a number to be comparable with the right-hand side 0. Also, 2071

return-type is inferred as Boolean, because that is the result type for the comparison operator > on scalars. 2072

Call has_solution(1,0,0) returns true, and has_solution(1,0,1) returns false. The latter is equivalent to 2073

has_solution(a:=1, b:=0, c:=1), which is also equivalent to has_solution(c:=1, a:=1, b:=0). 2074

 2075

 2076
 2077

59

VTL-ML - String operators and functions 2078

length 2079

Semantics 2080

The length operator returns the length of a character string. 2081

 2082

Syntax 2083

length (ds) 2084

 2085

Parameters 2086

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as string-literal}+ 2087

 {attribute <IDENT> as scalar-type}* | string] 2088

 2089

ds – is a Dataset expression or a string 2090

 2091

Constraints 2092

If ds is a scalar then it must be a string type. 2093

If ds is a Dataset then it must have at least a measure of type string. 2094

 2095

Returns 2096

If ds is a scalar then length returns a scalar integer representing the length of ds. 2097

If ds is a Dataset and has N string measure components, then length returns a Dataset having the Identifier 2098

Components of ds and N numeric Measures with the same name as the string Measures of ds and containing the 2099

length of the corresponding measures. 2100

 2101

Examples 2102

On scalar 2103

A := length ("Hello, World!") A = 13 2104

 2105

On Dataset 2106

ds_r := length(ds_1) 2107

 2108

ds_1

K1 K2 M1

1 A hello

2 B null

 2109

 2110

ds_1

K1 K2 M1

1 A 5

2 B null

 2111

Note: the last value of M1 is null because the corresponding value of ds_1 is null. 2112
 2113

String concatenation || 2114

Semantic 2115

The operator || concatenates two strings. 2116

60

 2117

Syntax 2118

ds_1 || ds_2 2119

Parameters 2120

ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as string }+ 2121

 {attribute <IDENT> as scalar }* | string] 2122

 2123

ds_1,ds_2 – is a Dataset expression or a string 2124

 2125

Constraints 2126

 If ds_1 (ds_2) is a scalar then it must be a string data type. 2127

 If ds_1 (ds_2) is a Dataset then it has at least a measure of string type. 2128

 If both ds_1 and ds_2 are Datasets then they must have at least one Identifier in common (with the same name 2129

and datatype). 2130

 If both ds_1 and ds_2 are Datasets then either they have one or more measures in common, or at least one of 2131

them has only a measure. 2132

 2133

Returns 2134

The operator returns: 2135

If both ds_1 and ds_2 are scalar values then the || operator returns a scalar string value, the concatenation of ds_1 2136

and ds_2. 2137

If either ds_1 or ds_2 is a Dataset then the || operator returns a Dataset having the following components: 2138

 The superset of the Identifier Components of ds_1 and ds_2 2139

 If ds_1 and ds_2 have one or more string measures in common (i.e., with the same name) then the resulting 2140

Dataset has these common string measures, with the same name, containing the concatenation of the 2141

respective measures of ds_1 and ds_2. Otherwise, if ds_1 and ds_2 do not have any measures in common and 2142

have only one measure then the resulting Dataset contains a measure named CONDITION that contains the 2143

concatenation of the single measures of ds_1 and ds_2. 2144

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key 2145

(the same values of the Identifier Components). 2146

 2147

Examples 2148

On scalar 2149

A := "Hello" || ", world! " C = "Hello, world! " 2150

 2151

On Dataset 2152

ds_r := ds_1 || ds_2 2153

ds_1

K1 K2 M1

1 A "hello"

2 B "hi"

 2154

 2155

 2156

ds_2

K1 K2 M1

1 A "world"

2 B "there"

 2157

 2158

ds_r

K1 K2 M1

1 A "helloworld"

2 B "hithere"

61

 2159

trim /rtrim/ltrim 2160

Semantics 2161

The trim /rtrim/ltrim operators eliminate trailing or/and leading whitespace from a string. 2162

 2163

Syntax 2164

[trim | rtrim | ltrim] (ds) 2165

 2166

Parameters 2167

ds : [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as string }+ 2168

 {attribute <IDENT> as scalar-type }* | string] 2169

 2170

ds – is a Dataset expression or a string 2171

 2172

Constraints 2173

If ds is a scalar then it must be a string data type. 2174

If ds is a Dataset then it must have at least a measure of string data type. 2175

 2176

Returns 2177

If ds is a scalar then operators returns a scalar string representing the input string without trailing or/and 2178

leading whitespace. 2179

If ds is a Dataset and has N string measures then operators returns a Dataset having the Identifier Components of 2180

ds and N string measures with the same name as the string measures of ds where the values take the value of the 2181

input ones without whitespaces from left and right (trim), or alternatively without the left (ltrim) or right (rtrim) 2182

whitespaces. 2183

 2184

Semantic specification 2185

The operators trim whitespaces from left and right of it (trim), or alternatively only the left (ltrim) or right 2186

(rtrim) whitespaces. 2187

 2188

Examples 2189

 example on scalar 2190

If A = " Hello, world! ": 2191

B := trim(A) B = "Hello, world!" 2192

 2193

 example on Dataset 2194

ds_1 := trim(ds) 2195

 2196

 2197

ds

K1 K2 M1

1 A " hello world "

2 B "hi "

3 C " help! "

 2198

ds_1

K1 K2 M1

1 A "hello world"

2 B "hi"

3 C "help!"

 2199

 2200

62

upper/lower 2201

Semantics 2202

The upper/lower operators convert all characters of a string to upper / lower case. 2203

Syntax 2204

[upper | lower] (ds) 2205

 2206

Parameters 2207

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as string }+ 2208

 {attribute <IDENT> as scalar-type}*| string] 2209

 2210

ds – is a Dataset expression or a string 2211

 2212

Constraints 2213

If ds is a scalar string then it must be a string data type. 2214

If ds is a Dataset then it must have at least a measure of string data type. 2215

 2216

Returns 2217

If ds is a scalar then operators returns a scalar string that is the upper case or the lower case of the input one. 2218

If ds is a Dataset and has N string measures, then the operators return a Dataset having the Identifier Components 2219

of ds and N string measures with the same name as the string measures of ds where the Measure Components 2220

assumes the upper case or lower case values of the respective input value of the Measure Components’. 2221

 2222

Examples 2223

On scalar 2224

1) If A = "Hello, World!": 2225

B := upper(A) B = "HELLO, WORLD!" 2226

B := lower(A) B = "hello, world!" 2227

 2228

 On Dataset 2229

2) ds_r := upper(ds_1) 2230

 2231

ds_1

K1 K2 M1

1 A "hello world"

2 B "hi"

3 C "help"

 2232

ds_r

K1 K2 M1

1 A "HELLO WORLD"

2 B "HI"

3 C "HELP"

 2233

substr 2234

Semantics 2235

The operator substr extracts a substring from a string 2236

 2237

Syntax 2238

substr (ds, {, startPosition} {, length}) 2239

 2240

Parameters 2241

63

ds: [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as string }+ 2242

 {attribute <IDENT> as scalar-type }*|string] 2243

startPostion : integer 2244

length : integer 2245

 2246

 ds – is the input Dataset or the input string. 2247

 startPostion – is the index of the character in the string from which the substring is performed. 2248

 length – is the number of the characters in the string to be taken starting from startPosition. 2249

 2250

Constraints 2251

 startPostion must be major or equal than 0 and minor than the whole length of the input string. 2252

 startPosition plus length must be minor than the whole length of the input string, otherwise the length 2253

parameter is ignored. 2254

 If ds is a scalar then it must be a string data type. 2255

 If ds is a Dataset then it must have at least a measure of string data type. 2256

 2257

Returns 2258

If ds is a scalar string then operators returns a substring of the input one starting from startPosition and 2259

extracting length characters. 2260

If ds is a Dataset and has N string measures then operators returns a Dataset having the Identifier Components of 2261

ds and N string measures with the same name of the string measures of ds where the Measure Components 2262

assumes substring values of the respective input Measure Components’s values, obtained starting from 2263

startParameters and taking length characters. 2264

 2265

Semantics 2266

The substring of the input string is obtained stating from startPosition and extracting length characters, if length 2267

plus startPosition is greater than the whole length of the input string, then length parameter is ignored. 2268

 2269

Examples 2270

On scalar 2271

1) Assuming that A = "Hello, world!": 2272

B := substr(A, 2) B = "lo, world!" 2273

B := substr(A, 2, 5) B = "lo, w" 2274

B := substr(A, 0, 4) B = "Hell" 2275

 2276

On Dataset 2277

2) ds_r := substr(ds_1,7) 2278
 2279

ds_1

K1 K2 M1

1 A "hello world"

 2280

ds_r

K1 K2 M1

1 A "rld"

 2281

3) ds_r := substr(ds_1,0,5) 2282
 2283

ds_1

K1 K2 M1

1 A "hello world"

ds_r

K1 K2 M1

64

 2284

 2285

 2286

instr 2287

Semantics 2288

The instr operator returns the position of a string in another one 2289

 2290

Syntax 2291

instr (ds, strToSearch {, startPosition} { , occurrence}) 2292

 2293

Parameters 2294

ds : [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as string }+ 2295

 {attribute <IDENT> as scalar-type }*|string] 2296

strToSearch : string 2297

startPosition : integer 2298

occurrence : integer 2299

 2300

 ds – is the input string or the input Dataset. 2301

 strToSearch – is the string to search. 2302

 startPosition – is the index of the character in the string from which start to search. 2303

 occurrence – is the number of occurrences of the strToSearch from which start to search 2304

 2305

Constraints 2306

 If ds is a scalar then it must be a string data type. 2307

 If ds is a Dataset then it must have at least a measure of string data type. 2308

 2309

Returns 2310

If ds is scalar then the operator returns the position of the first character of strToSearch in the string. The 2311

startPosition and occurrence are integers indicating the character of string and the number of occurrences from 2312

which start to search, respectively. 2313

If ds is a Dataset and has N string measures then operators returns a Dataset having the IdentifierComponents of 2314

ds and N string measures with the same name of the string measures of ds where the Measure Components are 2315

integer representing the first character of strToSearch in the string. The startPosition and occurrence are integer 2316

indicating respectively the character of string and the number of occurrences from which start to search. 2317

A negative value of startPosition counts backward from the end of string. 2318

 2319

Semantic specification 2320

If the string to search is not present in str, then the value returned is -1. If startPosition is omitted the start 2321

position is 1, if occurrence is omitted the value is 1. 2322

 2323

Examples 2324

On scalar 2325

1) Assuming that A = "abcde": 2326

B := instr (A, "c") B = 2 2327

 2328

On Dataset 2329

2) ds_2 := instr(ds_1,”hello”) 2330
 2331

ds_1

K1 K2 M1

1 A “hello world”

2 A “say hello”

3 A “he”

4 A “hi, hello!”

1 A "hello"

65

 2332

ds_2

K1 K2 M1

1 A 0

2 A 4

3 A -1

4 A 4

 2333

date_from_string 2334

Semantics 2335

The operator date_from_string converts a string into a date. 2336

 2337

Syntax 2338

date_from_string(ds, format) 2339

 2340

Parameters 2341

ds : [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as string }+ 2342

 {attribute <IDENT> as scalar-type }* |string] 2343

Format : string 2344

 2345

 ds – is the input string or the input Dataset 2346

 format – is the format of the resulting date. 2347

 2348

Constraints 2349

 If ds is a scalar then it must be a string data type. 2350

 If ds is a dataset then it must have at least a measure of string data type. 2351

 format must respect one of these patterns: 2352
 2353

Format Frequency Example Frequency

YYYY 2000 Annual

YYYYSN S 2000S1 Semestrial

YYYYQN Q 2000Q1 Quarterly

YYYYMNN M 2000M01 Monthly

YYYYDNNNN D 2000D0101 Daily

YYYYA A 2000A Annual

YYYYSN S 2000S1 Semestrial

YYYY-QN Q 2000-Q1 Quarterly

YYYY-NN M 2000-01 Monthly

YYYY-NN-NN D, M, Q or A 2000-01-01 Daily, Monthly, Quarterly or Annual

 2354

 2355

 2356

Returns 2357

If ds is a scalar, the operator returns its date representation, based on the chosen format. 2358

If ds is a Dataset having N string Measure Components, the operator returns a Dataset having the same Identifier 2359

Components as ds and N Measure Components varying in type (from string-literal to date) assuming values of 2360

the date representations (on the base of the format) of the dates in the input Measure Components. 2361

 2362

66

Examples 2363

On scalar 2364

1) If A = "2016-02" 2365

B := date_from_string (A, YYYY-MM) B = 2016-02-01 2366

2) If A = "2016-02" 2367

B := date_from_string (A, YYYY-MM-DD) B = 2016-02-01 2368

A date component has always years, months and days. 2369

 2370

On Dataset 2371

3) ds_2:= date_from_string (ds_1, “YYYY-MM”) 2372

 2373
 2374

ds_1

K1 K2 M1

1 A "2015-12"

2 B "2015-06"

3 C "2015-12"

4 E "2015-06"

 2375

 2376

ds_2

K1 K2 M1

1 A 2015-12-01

2 B 2015-06-01

3 C 2015-12-01

4 E 2015-06-01

 2377

replace 2378

Semantics 2379

The replace operator replaces a substring with a given string. 2380

 2381

Syntax 2382

replace(ds, str_old {, str_new }) 2383

 2384

Parameters 2385

ds : [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> }+ 2386

{attribute <IDENT> as scalar-type }*|string] 2387

str_old, str_new : string 2388

 2389

 ds – is the input string or the input Dataset, 2390

 str_old – is the string to be replaced, 2391

 str_new – is the string to replace. If omitted then all occurrences of str_old are removed. 2392

 2393

Constraints 2394

 If ds is a scalar then it must be a string data type. 2395

 If ds is a Dataset then it must have at least a measure of string data type. 2396

 2397

Returns 2398

 If ds is a scalar, the operator returns a string having the ds value obtained replacing str_old with str_new. 2399

 If ds is a Dataset having N string Measure Components, returns a Dataset having the Identifier Component of 2400

ds and N string Measure Components obtained replacing str_old with str_new. 2401

67

 2402

Examples 2403

On scalar 2404

1) If A = "Hello" 2405

B := replace (A,"ello","i") B = "Hi" 2406

 2407

On Dataset 2408

2) ds_2:= replace (ds_1,"ello","i") 2409
 2410

ds_1

K1 K2 M1

1 A “hello world”

2 A “say hello”

3 A “he”

4 A “hello!”

 2411

 2412

ds_2

K1 K2 M1

1 A “hi world”

2 A “say hi”

3 A “he”

4 A “hi!”

 2413

68

VTL-ML - Numeric operators and functions 2414

unary plus + 2415

Semantics 2416

The + operator leaves the sign unaltered. 2417

 2418

Syntax 2419

+ ds 2420

 2421

Parameters 2422

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2423

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*|number] 2424

 2425

ds – is the input scalar number or the input Dataset. 2426

 2427

Constraints 2428

If ds is a scalar then it must be a numeric data type. 2429

If ds is a Dataset then it must have at least a measure of numeric data type. 2430

 2431

Returns 2432

If ds is a scalar then operator return the input number without altering its sign. 2433

If ds is a Dataset and has N numeric measures then operator return a Dataset having the Identifier Components of 2434

ds and N numeric measures without alterations. 2435

 2436

Examples 2437

On scalar 2438

1) A := +B 2439

if B = 5, then A = 5 2440

 2441

unary minus – 2442

Semantics 2443

 The – operator inverts the sign 2444

 2445

Syntax 2446
 - ds 2447

 2448

Parameters 2449

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2450

{measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*|number] 2451

 2452

ds – is the input scalar number or the input Dataset. 2453

 2454

Constraints 2455

If ds is a scalar then it must be a numeric data type. 2456

If ds is a Dataset then it must have at least a measure of numeric data type. 2457

 2458

Returns 2459

If ds is a scalar then operator return the input number negated. 2460

If ds is a Dataset and has N numeric measures then operator return a Dataset having the Identifier Components of 2461

ds and N numeric measures with the sign of the values in the numeric Measure Components inverted. 2462

 2463

Examples 2464

On scalar 2465

69

1) A := -B 2466

if B = 5, then A = -5 2467

if B = -7, then A = 7 2468

 2469

On Dataset 2470

2) ds_2 := - ds_1 2471

 2472

ds_1

K1 K2 M1

1 A 11

2 B -14

3 C 9

 2473

 2474

ds_1

K1 K2 M1

1 A -11

2 B 14

3 C -9

 2475

3) ds_2 := - ds_1 2476

 2477

ds_1

K1 K2 M1 M2 M3

1 A 11 12 “A”

2 B -14 13 “B”

3 C 9 14 “C”

 2478

 2479

 2480

ds_1

K1 K2 M1 M2 M3

1 A -11 -12 “A”

2 B 14 -13 “B”

3 C -9 -14 “C”

 2481

 2482

addition and subtraction + - 2483

Semantics 2484

The operator + or – compute the sum or subtraction 2485

 2486

Syntax 2487

ds_1 [+ | -] ds_2 2488

 2489

Parameters 2490

70

ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2491

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*|number] 2492

 ds_1– is the first input scalar number or the first input Dataset. 2493

 ds_2 – is the second input scalar number or the second input Dataset. 2494

 2495

Constraints 2496

 If ds_1 (ds_2) is a scalar then it must be a numeric data type. 2497

 If ds_1 (ds_2) is a Dataset then it has at least a measure of numeric type. 2498

 If both ds_1 and ds_2 are Datasets then they must have at least one Identifier Component in common (with 2499

the same name and data type). 2500

 If both ds_1 and ds_2 are Datasets then either they have one or more measures in common, or at least one of 2501

them has only a measure. 2502

 2503

Returns 2504

If both ds_1 and ds_2 are scalar values then the operators return the algebraic sum or subtraction of ds_1 and 2505

ds_2. 2506

If either ds_1 or ds_2 is a Dataset then the operators return a Dataset having the following components: 2507

 The superset of the Identifier Components of ds_1 and ds_2 2508

 If ds_1 and ds_2 have one or more numeric measures in common (i.e., with the same name) then the resulting 2509

Dataset has these common string measures, with the same name, containing the algebraic sum or subtraction 2510

of the respective measures of ds_1 and ds_2. Otherwise, if ds_1 and ds_2 do not have any measures in 2511

common and have only one measure then the resulting Dataset contains only a measure named CONDITION 2512

that contains the algebraic sum or subtraction of the single measures of ds_1 and ds_2. 2513

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same values 2514

on the common Identifier Components). 2515

 2516

Semantic specification 2517

See also the operator listsum than returns a data point for those data points that would be ignored. 2518

 2519

Examples 2520

 example on Dataset 2521

1) 2522

In this example, we calculate the total population of a set of countries given two Datasets: one of the male 2523

population, and another, of the female population. They contain one measure each. Thus, the result will contain a 2524

single measure with the results of the addition. 2525

 2526

ds_3 := ds_1 + ds_2 2527
 2528

ds_1

TIME GEO POPULATION

2013 Belgium 5

2013 Denmark 2

2013 France 3

2013 Spain 4

 2529

 2530

ds_2

TIME GEO AGE POPULATION

2013 Belgium Total 10

2013 Greece Total 11

2013 Belgium Y15-24 NULL

2013 Greece Y15-24 2

2013 Spain Y15-24 6

71

 2531

 2532

ds_3

TIME GEO AGE POPULATION

2013 Belgium Total 15

2013 Belgium Y15-24 NULL

2013 Spain Y15-24 10

 2533

Note that the Data Points of ds_1 and ds_2 that has a missing in the other Dataset are not shown in the resulting 2534

one. 2535

 2536

2) ds_bop1 := ds_bop1 + 1 2537

 2538

ds_bop1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20 D

2010 BG CA 2 P

2010 RO CA 2 P

 2539

 2540

ds_bop1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 21 D

2010 BG CA 3 P

2010 RO CA 3 P

 2541

3) ds_plus := ds_bop1 + ds_bop2 2542

 2543

ds_bop1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20 D

2010 BG CA 2 P

2010 RO CA 2 P

 2544

ds_bop2

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 10 D

 2545

 2546

ds_plus

TIME REF_AREA PARTNER OBS_VALUE

2010 EU25 CA 30

72

 2547

multiplication and division * / 2548

Semantics 2549

The operator * or / multiply or divide two numbers. 2550

 2551

Syntax 2552

ds_1 [* | /] ds_2 2553

 2554

Parameters 2555

ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2556

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*|number] 2557

 ds_1– is the first input scalar number or the first input Dataset. 2558

 ds_2 – is the second input scalar number or the second input Dataset. 2559

 2560

Constraints 2561

 If ds_1 (ds_2) is a scalar then it must be a numeric data type. 2562

 If ds_1 (ds_2) is a Dataset then it has at least a measure of numeric type. 2563

 If both ds_1 and ds_2 are Datasets then they must have at least a dimension in common (with the same name 2564

and data type). 2565

 If both ds_1 and ds_2 are Datasets then either they have one or more measures in common, or at least one of 2566

them has only a measure. 2567

Returns 2568

The operators return: 2569

If both ds_1 and ds_2 are scalar values then the operators return the algebraic product or ratio of ds_1 and ds_2. 2570

If either ds_1 or ds_2 is a Dataset then the operators return a Dataset having the following components: 2571

 The superset of the Identifier Components of ds_1 and ds_2 2572

 If ds_1 and ds_2 have one or more numeric measures in common (i.e., with the same name) then the resulting 2573

Dataset has these common numeric measures, with the same name, containing the algebraic sum or 2574

subtraction of the respective measures of ds_1 and ds_2. Otherwise, if ds_1 and ds_2 do not have any 2575

measures in common and have only one measure then the resulting Dataset contains a measure named 2576

CONDITION that contains the algebraic product or ratio of the single measures of ds_1 and ds_2. 2577

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key 2578

(the same values of the Identifier Components). 2579

The algebraic product of the input numbers or the ratio between them. 2580

 2581

Semantic specification 2582

Division by zero results in a runtime exception. 2583

 2584

Examples 2585

 2586

On Dataset 2587

DSr:=total_population[rename POPULATION as PERCENTAGE].PERCENTAGE * 2588

Overcrowding_rate_urbanization.PERCENTAGE 2589

 2590

total_population

TIME GEO AGE POPULATION UNEMPLOYMENT_RATE

2012 Belgium Total 100 7.6

2012 Greece Total 10 24.3

2012 Spain Total 20 25

2012 Belgium Y15-24 30 3.6

2012 Greece Y15-24 5 18.3

2012 Switzerland Y15-24 2 20

73

 2591

Overcrowding_rate_urbanization

TIME GEO PERCENTAGE

2012 Belgium 0.01

2012 Greece 0.1

2012 Spain 0.2

2012 Malta 0.3

2012 Finland 0.4

2012 France 0.5

 2592

DSr

TIME GEO AGE PERCENTAGE

2012 Belgium Total 1

2012 Greece Total 1

2012 Spain Total 4

2012 Greece Y15-24 0.5

 2593

 2594

round/ceil/floor 2595

Semantics 2596

The operators round/ceil/floor round a number. 2597

 2598

Syntax 2599

[round(ds, decimals) | ceil(ds) | floor(ds)] 2600

 2601

Parameters 2602

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2603

 {attribute <IDENT> as scalar-type}*|number] 2604

decimals : integer 2605

 ds – is the input scalar number or the input Dataset. 2606

 decimals – the decimal position to round to. 2607

 2608

Constraints 2609

If ds is a scalar then it must be a numeric data type. 2610

If ds is a Dataset then it must have at least a measure of numeric data type. 2611

decimals – must be an integer greater or equal than zero. 2612

 2613

Returns 2614

If ds is a scalar then the operators return the input number rounded using round, ceil or floor operator. 2615

If ds is a Dataset and has N numeric measures then the operators return a Dataset having the Identifier 2616

Components of ds and N numeric measures rounded using round, ceil or floor operator. 2617

 2618

Semantic specification 2619

The operator round takes as input a number and a number of decimal digits and rounds the former number to 2620

the number of decimal digits specified by the latter. 2621

The operator floor rounds to the largest previous integer, while ceil rounds to the smallest greater integer. 2622

 2623

Examples 2624

On scalar 2625

74

1) If P = 3.14159 2626

A := round(P, 2) A = 3.14 2627

B := round(P, 4) B = 3.1416 2628

C := floor(P) C = 3 2629

D := floor(P) D = 4 2630

 2631

On Dataset 2632

 2633

unemployment

AGE TIME GEO SEX YOUTH_UNEMPLOYMENT UNEMPLOYMENT

From 20 to 29 years 2011 Germany Total 7.5 5.9

From 20 to 29 years 2012 Germany Total 7.1 5.5

From 20 to 29 years 2011 Greece Total 33.7 17.7

From 20 to 29 years 2012 Greece Total 42.5 24.3

 2634

 2635

2) ds_1 := round(unemployment,0) 2636

 2637

ds_1

AGE TIME GEO SEX YOUTH_UNEMPLOYMENT UNEMPLOYMENT

From 20 to 29 years 2011 Germany Total 8 6

From 20 to 29 years 2012 Germany Total 7 6

From 20 to 29 years 2011 Greece Total 34 18

From 20 to 29 years 2012 Greece Total 43 24

 2638

3) ds_1 := round(unemployment.YOUTH_UNEMPLOYMENT, 0) 2639
 2640

ds_1

AGE TIME GEO SEX YOUTH_UNEMPLOYMENT UNEMPLOYMENT

From 20 to 29 years 2011 Germany Total 8 5.9

From 20 to 29 years 2012 Germany Total 7 5.5

From 20 to 29 years 2011 Greece Total 34 17.7

From 20 to 29 years 2012 Greece Total 43 24.3

 2641

4) ds_1 := ceil(unemployment.YOUTH_UNEMPLOYMENT) 2642

 2643

ds_1

AGE TIME GEO SEX YOUTH_UNEMPLOYMENT UNEMPLOYMENT

From 20 to 29 years 2011 Germany Total 8 6

From 20 to 29 years 2012 Germany Total 7 6

From 20 to 29 years 2011 Greece Total 34 18

From 20 to 29 years 2012 Greece Total 43 25

 2644

abs 2645

Semantics 2646

The operator abs calculates the absolute value of a number 2647

75

 2648

Syntax 2649

abs(ds) 2650

 2651

Parameters 2652

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2653

 {attribute <IDENT> as scalar-type}* |number] 2654

ds – is the input scalar number or the input Dataset. 2655

 2656

Constraints 2657

If ds is a scalar then it must be a numeric data type. 2658

If ds is a Dataset then it must have at least a measure of numeric data type. 2659

 2660

Returns 2661

If ds is a scalar then the operator returns the absolute value of the input number. 2662

If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier 2663

Components of ds and the N numeric measures containing the absolute values of the corresponding ones in ds. 2664

 2665

Examples 2666

On scalar 2667

1) Let us assume A = -5: 2668

B := abs(A) B = 5 2669

C := abs(B) C = 5 2670

 2671

On Dataset 2672

2) DatasetB := abs(DatasetA) 2673

 2674

Dataset A

COUNTRY SEX YEAR VALUE

FR Males 2011 0.484183

FR Females 2011 -0.515817

FR Total 2011 -1.000000

 2675

 2676

Dataset B

COUNTRY SEX YEAR VALUE

FR Males 2011 0.484183

FR Females 2011 0.515817

FR Total 2011 1.000000

 2677

3) ds_bop1 := abs (ds_bop1) 2678
 2679

ds_bop1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20 D

2010 BG CA 2 P

2010 RO CA -2 P

 2680

 2681

ds_bop1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

76

2010 EU25 CA 20 D

2010 BG CA 2 P

2010 RO CA 2 P

 2682

trunc 2683

Semantics 2684

The operator trunc truncates the decimal digits of a number. 2685

 2686

Syntax 2687

trunc(ds, decimals) 2688

Parameters 2689

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2690

{attribute <IDENT> as scalar-type}* |number] 2691

decimals : integer 2692

 2693

 ds – is the input scalar number or the input Dataset. 2694

 decimals – the decimal position beyond which the decimal digits are discarded. 2695

 2696

Constraints 2697

If ds is a scalar then it must be a numeric data type. 2698

If ds is a Dataset then it must have at least a measure of numeric data type. 2699

decimals must be greater or equal than zero. 2700

 2701

Returns 2702

If ds is a scalar then the operator returns the input number with the decimal digits discarded beyond the number 2703

of digits specified by decimals. 2704

If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier 2705

Components of ds and the N numeric measures obtained by discarding the decimal digits after the decimals 2706

position. 2707

 2708

Examples 2709

On scalar 2710

1) If P = 3.14159 2711
A := trunc(P, 2) A = 3.14 2712

B := trunc(P, 4) B = 3.1415 2713

 2714

Differ from round: 2715

 B := round(P, 4) B = 3.1416 2716

 2717

 On Dataset 2718

2) ds_1 := trunc(DatasetA, 2) 2719

 2720

DatasetA

COUNTRY SEX YEAR VALUE

FR Males 2011 0.484183

FR Females 2011 0.515817

FR Total 2011 1.000000

 2721

ds_1

COUNTRY SEX YEAR VALUE

FR Males 2011 0.48

77

FR Females 2011 0.51

FR Total 2011 1.00

 2722

exp 2723

Semantics 2724

The exp operator calculates the exponential of a number 2725

 2726

Syntax 2727

exp(ds) 2728

 2729

Parameters 2730

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number} 2731

{ measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* |number] 2732

 2733

ds – is the input scalar number or the input Dataset. 2734

 2735

Constraints 2736

If ds is a scalar then it must be a numeric data type. 2737

If ds is a Dataset then it must have at least a measure of numeric data type. 2738

 2739

Returns 2740

If ds is a scalar then the operator returns e (Napier’s – or Euler’s – constant) raised to ds. 2741

If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier 2742

components of ds and the N numeric measures obtained by elevating e (Nepero’s number) to the value in the 2743

original Measure Component. 2744

 2745

Examples 2746

On scalar 2747

1) If B = 5: 2748

A := exp(B) A = 148.413 2749

2) If B = -1: 2750

A := exp(B) A = 0.368 2751

3) If B = 0: 2752

 A := exp(B) A = 1.0 2753

 2754

On Dataset 2755

 2756

4) DatasetB := exp(DatasetA) 2757

Dataset A

COUNTRY SEX YEAR VALUE

FR Males 2011 5

FR Females 2011 8

FR Total 2011 2

 2758

 2759

Dataset B

COUNTRY SEX YEAR VALUE

FR Males 2011 148.41

FR Females 2011 2980.95

FR Total 2011 7.389

 2760

78

 2761

ln 2762

Semantics 2763

The operator ln calculates the natural logarithm of a number 2764

 2765

Syntax 2766

ln(ds) 2767

 2768

Parameters 2769

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2770

 {attribute <IDENT> as scalar-type}* | number] 2771

 2772

ds – is the input number. 2773

 2774

Constraints 2775

If ds is a scalar then it must be a numeric data type greater than zero. 2776

If ds is a Dataset then it must have at least a measure of numeric data type. 2777

 2778

Returns 2779

If ds is a scalar then the operator returns the natural logarithm (base e) of ds. 2780

If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier 2781

Components of ds and the N numeric measures obtained by calculating the natural logarithm (in base e, Nepero’s 2782

number) of the value in the original Measure Component. 2783

 2784

The logarithm of a zero or negative number results in a runtime exception. 2785

 2786

Examples 2787

On scalar 2788

1) If B = 1: 2789

A := ln(B) A = 0 2790

2) If B = 148: 2791

A := ln(B) A = 4.997 2792

 2793

On Dataset 2794

 2795

3) DatasetB := ln(DatasetA) 2796

 2797

Dataset A

COUNTRY SEX YEAR VALUE

FR Males 2011 148.41

FR Females 2011 2980.95

FR Total 2011 7.389

 2798

Dataset B

COUNTRY SEX YEAR VALUE

FR Males 2011 5

FR Females 2011 8

FR Total 2011 2

 2799

 2800

79

log 2801

Semantics 2802

The log operator calculates the logarithm of a number to a base b 2803

 2804

Syntax 2805

log(ds, base) 2806

 2807

Parameters 2808

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2809

 {attribute <IDENT> as scalar-type}* |number] 2810

base : integer 2811

 2812

 ds – is the input scalar number (greater than zero) or the input Dataset. 2813

 base – the base of the logarithm. 2814

 2815

Constraints 2816

 If ds is a scalar then it must be a numeric data type greater than zero. 2817

 If ds is a Dataset then it must have at least a measure of numeric data type having values greater than zero. 2818

 base must be greater than zero. 2819

 2820

Returns 2821

If ds is a scalar then the operator returns the base logarithm of ds. 2822

If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier 2823

Components of ds and the N numeric Measures are obtained by calculating the logarithm in base of the value in 2824

the original Measure Component. 2825

 2826

The logarithm of a zero or negative number results in a runtime exception. 2827

 2828

Examples 2829

On scalar 2830

1)If B = 1024: 2831

A := log(B, 2) A = 10 2832

A := log(B, 10) A = 3.01 2833

 2834

On Dataset 2835

2) DatasetB := log(2,DatasetA) 2836

Dataset A

COUNTRY SEX YEAR VALUE

FR Males 2011 1024

FR Females 2011 64

FR Total 2011 32

 2837

Dataset B

COUNTRY SEX YEAR VALUE

FR Males 2011 10

FR Females 2011 6

FR Total 2011 5

 2838

power 2839

Semantics 2840

The operator power calculates the power of a number raised to an exponent 2841

80

 2842

Syntax 2843

power(ds, exponent) 2844

 2845

Parameters 2846

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2847

 {attribute <IDENT> as scalar-type}* | number] 2848

exponent : integer 2849

 2850

 ds – is the input scalar number or the input Dataset. 2851

 exponent – is the exponent of the power. 2852

 2853

Constraints 2854

 If ds is a scalar then it must be a numeric data type. 2855

 If ds is a Dataset then it must have at least a measure of numeric data type. 2856

 2857

Returns 2858

If ds is a scalar then the operator returns ds raised to the exponent power. 2859

If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier. 2860

Components of ds and the N numeric measures are obtained by elevating the original Measure Component to the 2861

exponent-th power. 2862

 2863

 2864

Examples 2865

On scalar 2866

1) If A = 2, B = 5: 2867

C := power(B, A) C = 25 2868

 2869

On Dataset 2870

2) DatasetB := power(DatasetA,2) 2871

 2872

Dataset A

COUNTRY SEX YEAR VALUE

FR Males 2011 3

FR Females 2011 4

FR Total 2011 5

 2873

Dataset B

COUNTRY SEX YEAR VALUE

FR Males 2011 9

FR Females 2011 16

FR Total 2011 25

 2874

sqrt 2875

Semantics 2876

The operator sqrt calculates the square root of a number 2877

 2878

Syntax 2879

sqrt(ds) 2880

 2881

Parameters 2882

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2883

81

 {attribute <IDENT> as scalar-type}* |number] 2884

 2885

ds – is the input scalar number or the input Dataset. 2886

 2887

Constraints 2888

 If ds is a scalar then it must be a numeric data type greater than zero. 2889

 If ds is a Dataset then it must have at least a measure of numeric data type having values greater than zero. 2890

 2891

Returns 2892

If ds is a scalar then the operator returns the square root of ds. 2893

If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier. 2894

Components of ds and the N numeric measures are obtained by calculating the square root of the original 2895

Measure Component. 2896

 2897

The square root of a negative number results in a runtime exception. 2898

Examples 2899

On scalar 2900

1) If A = 25: 2901

B := sqrt(A) B = 5 2902

 2903

On Dataset 2904

2) DatasetB := sqrt(DatasetA) 2905

 2906

Dataset A

COUNTRY SEX YEAR VALUE

FR Males 2011 16

FR Females 2011 81

FR Total 2011 64

 2907

Dataset B

COUNTRY SEX YEAR VALUE

FR Males 2011 4

FR Females 2011 9

FR Total 2011 8

 2908

nroot 2909

Semantics 2910

The nroot operator calculates the n-th root of a number 2911

 2912

Syntax 2913

nroot(ds, index) 2914

 2915

Parameters 2916

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2917

 {attribute <IDENT> as scalar-type}* |number] 2918

index : integer 2919

 2920

 ds – is the input scalar number or the input Dataset. 2921

 index – the index of the root. 2922

 2923

Constraints 2924

 If ds is a scalar then it must be a numeric data type greater than zero when index even (dynamic). 2925

82

 If ds is a Dataset then it must have at least a measure of numeric data type having values greater than or 2926

equa to zero when index even (dynamic). 2927

 2928

Returns 2929

 If ds is a scalar then the operator returns the index-th root of ds. 2930

 If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier. 2931

Components of ds and the N numeric measures are obtained by calculating the index-th root of the original 2932

Measure Component. 2933

 2934

Semantic specification 2935

In case of even index and negative argument, it results in a runtime exception. 2936

 2937

Examples 2938

On scalar 2939

1) If A = 2, B = 25: 2940

C := nroot(B, A) C = 5 2941

 2942

 On Dataset 2943

2) DatasetB := nroot(DatasetA,3) 2944

 2945

Dataset A

COUNTRY SEX YEAR VALUE

FR Males 2011 8

FR Females 2011 27

FR Total 2011 64

 2946

 2947

Dataset B

COUNTRY SEX YEAR VALUE

FR Males 2011 2

FR Females 2011 3

FR Total 2011 4

 2948

mod 2949

Semantics 2950

The operator mod calculates the remainder of the division of a number by a denominator 2951

 2952

Syntax 2953

mod(ds, den) 2954

 2955

Parameters 2956

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2957

 {attribute <IDENT> as scalar-type}* |number] 2958

den: integer 2959

 2960

 ds – is the input scalar number or the input Dataset. 2961

 den – is the input denominator. 2962

 2963

Constraints 2964

 If ds is a scalar then it must be a numeric data type. 2965

 If ds is a Dataset then it must have at least a measure of numeric data type. 2966

 den must be greater than zero. 2967

83

 2968

Returns 2969

 If ds is a scalar then the operator returns the remainder of the division of ds by den. 2970

 If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier 2971

Components of ds and the N numeric measures are obtained by calculating the remainder of the division of 2972

the original Measure Component by den. 2973

 2974

Semantics 2975

The operator takes as input a numerator and a denominator and returns the remainder of the division of the 2976

numerator by the denominator. 2977

 2978

Examples 2979

On scalar 2980

1) If A = 5, B = 2: 2981

C := mod(A, B) C = 1 2982

 2983

On Dataset 2984

2) DatasetB := mod(DatasetA,3) 2985

 2986

Dataset A

COUNTRY SEX YEAR VALUE

FR Males 2011 7

FR Females 2011 10

FR Total 2011 12

 2987

Dataset B

COUNTRY SEX YEAR VALUE

FR Males 2011 1

FR Females 2011 1

FR Total 2011 0

 2988

listsum 2989

Semantics 2990
listsum returns the sum of the specified values and replaces the missing data points with a zero value 2991

 2992

Syntax 2993

listsum (ds { , ds } *) 2994

 2995

Parameters 2996

ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2997

 {attribute <IDENT> as scalar-type}* 2998

 2999

ds – is the input Dataset (s). 3000

 3001

Constraints 3002

The Dataset (s) must have at least a measure of numeric data type. 3003

 3004

Returns 3005

A Dataset denoting the sum of the values. If any expression evaluates to an empty data point then the 0 value is 3006

substituted for that expression. If all operands evaluate to empty data points then no data points are returned 3007

(i.e., the result is a Dataset containing no data points). 3008

 3009

84

Semantic specification 3010

The difference with the + operator is that listsum substitutes an empty data point with 0 (therefore returning a 3011

result) while the + operator returns an empty data point when one of the operands is an empty data point. 3012

 3013

Examples 3014

 3015

1) ds_sum := listsum (ds_bop1 , ds_bop2) 3016

 3017

ds_bop1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20 D

2010 BG CA 2 P

2010 RO CA 2 P

 3018

ds_bop2

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 10 D

 3019

ds_sum

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 30 D

2010 BG CA 2 P

2010 RO CA 2 P

 3020

Compare with the "+" operator: 3021

 3022

ds_plus := ds_bop1 + ds_bop2 3023

 3024

ds_plus

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 30 D

 3025

2) ds_sum := listsum (ds_bop1 , - ds_bop2) 3026

 3027

ds_sum

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 10 D

2010 BG CA 2 P

2010 RO CA 2 P

 3028

85

VTL-ML - Boolean operators and functions 3029

equal to = 3030

Semantic 3031

The operator = compares two values to evaluate if they are equal. 3032

 3033

Syntax 3034

 ds_1 = ds_2 3035

 3036

Parameters 3037

ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+ | boolean] 3038

 3039

ds_1,ds_2 – is a Dataset expression or a boolean 3040

 3041

Constraints 3042

 If both ds_1 and ds_2 are Datasets then they must have at least a Identifier Component in common (with the 3043

same name and data type). 3044

 If both ds_1 and ds_2 are Datasets then either they have one or more measures in common, or at least one of 3045

them has only a measure. 3046

 3047

Returns 3048

If both ds_1 and ds_2 are scalar values then the = operator returns a scalar boolean value representing the result 3049

of the equal to validation. 3050

If either ds_1 or ds_2 is a Dataset then the = operator returns a Dataset having the following components: 3051

 The superset of the identifier components of ds_1 and ds_2 3052

 If ds_1 and ds_2 have one or more measures in common (i.e., with the same name) then the resulting Dataset 3053

has these common measures, with the same name concatenated with the suffix “_CONDITION”, containing 3054

the results of the equal to validation of the respective measures of ds_1 and ds_2. Otherwise, if ds_1 and ds_2 3055

do not have any measures in common and have only one measure then the resulting Dataset contains a 3056

measure named CONDITION that contains the result of the equal to validation of the single measures of ds_1 3057

and ds_2. 3058

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key 3059

(the same values of the Identifier Components). 3060

 3061

Semantic specification 3062

If the two values are equal, the the result of the validation will be true false if they differ. 3063

 3064

Examples 3065

On scalar 3066

1) If A = 5, B = 9, C = 5: 3067

D := A = B D = false 3068

D := A = C D = true 3069

2) If A = “hello”, B = “hi”, C = “Hi”: 3070

D := A = B D = false 3071

 3072

On Dataset 3073

3) DSr:=Overcrowding_rate_urbanization = 0.08 3074

 3075

overcrowding_rate_urbanization

TIME GEO AGE SEX VALUE

2012 Belgium Total Total NULL

2012 Greece Total Total 0.286

2012 Spain Total Total 0.064

86

2012 Malta Total Total 0.043

2012 Finland Total Total 0.08

2012 Switzerland Total Total 0.08

 3076

DSr

TIME GEO AGE SEX CONDITION

2012 Belgium Total Total NULL

2012 Greece Total Total false

2012 Spain Total Total false

2012 Malta Total Total false

2012 Finland Total Total true

2012 Switzerland Total Total true

 3077

not equal to <> 3078

Semantic 3079

The operator <> compares two values to evaluate if they are not equal. 3080

 3081

Syntax 3082

 ds_1 <> ds_2 3083

 3084

Parameters 3085

ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+ | boolean] 3086

 3087

ds_1,ds_2 – is a Dataset expression or a boolean 3088

 3089

Constraints 3090

 If both ds_1 and ds_2 are Datasets then they must have at least a Identifier Component in common (with the 3091

same name and data type). 3092

 If both ds_1 and ds_2 are Datasets then either they have one or more measures in common, or at least one of 3093

them has only a measure. 3094

 3095

Returns 3096

If both ds_1 and ds_2 are scalar values then the operator returns a scalar Boolean value representing the result of 3097

the not equal to validation. 3098

If either ds_1 or ds_2 is a Dataset then the operator returns a Dataset having the following components: 3099

 The superset of the Identifier Components of ds_1 and ds_2 3100

 If ds_1 and ds_2 have one or more measures in common (i.e., with the same name) then the resulting Dataset 3101

has these common measures, with the same name concatenated with the suffix “_CONDITION”, containing 3102

the results of the not equal to validation of the respective measures of ds_1 and ds_2. Otherwise, if ds_1 and 3103

ds_2 do not have any measures in common and have only one measure then the resulting Dataset contains a 3104

measure named CONDITION that contains the result of the not equal to validation of the single measures of 3105

ds_1 and ds_2. 3106

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key 3107

(the same values of the Identifier Components). 3108

 3109

Semantic specification 3110

If the values are not equals, the result of the validation will be true, false if they not differ. 3111

Examples 3112

On scalar 3113

1) If A = 5, B = 9, C = 5: 3114

87

D := A <> C D = false 3115

2) If A = “hello”, B = “hi”, C = “Hi”: 3116

D := A <> B D = true 3117

 3118

On Dataset 3119

3) compare_ds := y_unemployment_2012 <> y_unemployment_2011 3120

 3121

Y_unemployment_2012

GEO SEX UNIT C_BIRTH VALUE

Germany Total Percentage Total 7.1

Greece Total Percentage Total NULL

 3122

y_unemployment_2011

GEO SEX UNIT C_BIRTH VALUE

Germany Total Percentage Total 7.5

Greece Total Percentage Total 3

 3123

compare_ds

GEO SEX UNIT C_BIRTH VALUE_CONDITION

Germany Total Percentage Total true

Greece Total Percentage Total NULL

 3124

If VALUE for Greece in the second operand had also been NULL, then the result would still be NULL for Greece. 3125
 3126

greater than > >= 3127

Semantic 3128

The operator > >= compares two values to evaluate if one is greater (or equal) to the other. 3129

 3130

Syntax 3131

 ds_1 [>| >=] ds_2 3132

 3133

Parameters 3134

ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+ | boolean] 3135

 3136

ds_1,ds_2 – is a Dataset expression or a Boolean 3137

 3138

Constraints 3139

 If both ds_1 and ds_2 are Datasets then they must have at least one Identifier Componentin common (with the 3140

same name and data type). 3141

 If both ds_1 and ds_2 are Datasets then either they have one or more measures in common, or at least one of 3142

them has only a measure. 3143

 3144

Returns 3145

If both ds_1 and ds_2 are scalar values then the operator returns a scalar boolean value representing the result of 3146

the comparison greater (or equal) validation. 3147

If either ds_1 or ds_2 is a Dataset then the operator returns a Dataset having the following components: 3148

 The superset of the Identifier Components of ds_1 and ds_2 3149

 If ds_1 and ds_2 have one or more measures in common (i.e., with the same name) then the resulting Dataset 3150

has these common measures, with the same name concatenated with the suffix “_CONDITION”, containing 3151

the results of the comparison greater (or equal) validation of the respective measures of ds_1 and ds_2. 3152

Otherwise, if ds_1 and ds_2 do not have any measures in common and have only one measure then the 3153

88

resulting Dataset contains a measure named CONDITION that contains the result of the comparison greater 3154

(or equal) validation of the single measures of ds_1 and ds_2. 3155

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key 3156

(the same values of the Identifier Components). 3157

 3158

Semantic specification 3159

If the value on the left side is greater (or equal) than the value on the right side, the result of the validation will 3160

be true if, false if not or either of them is NULL. 3161

 3162

Examples 3163

On scalar 3164

1) If A = 5, B = 9, C = 5: 3165

D := A > B D = false 3166

D := A >= C D = true 3167

2) If A = “hello”, B = “hi”, C = “Hi”: 3168

D := A > B D = false 3169

 3170

On Dataset 3171

3) compare_ds := foreign_languages_known > 20 3172

 3173

foreign_languages_known

N_LANG GEO TIME AGE UNIT VALUE

2 Germany 2011 Total Percentage NULL

2 Greece 2011 Total Percentage 12.2

2 Finland 2011 Total Percentage 29.5

 3174

compare_ds

N_LANG GEO TIME AGE UNIT CONDITION

2 Germany 2011 Total Percentage NULL

2 Greece 2011 Total Percentage false

2 Finland 2011 Total Percentage true

 3175

4) compare_ds := y_unemployment_2012 > y_unemployment_2011 3176
 3177

y_unemployment_2012

GEO SEX UNIT C_BIRTH VALUE

Germany Total Percentage Total 7.1

Greece Total Percentage Total 42.5

 3178

y_unemployment_2011

GEO SEX UNIT C_BIRTH VALUE

Germany Total Percentage Total 7.5

Greece Total Percentage Total 33.7

 3179

compare_ds

GEO SEX UNIT C_BIRTH VALUE_CONDITION

Germany Total Percentage Total false

Greece Total Percentage Total true

 3180

89

If the VALUE column for Germany in the y_unemployment_2012 Dataset had a NULL value the result would be: 3181

compare_ds

GEO SEX UNIT C_BIRTH VALUE_ CONDITION

Germany Total Percentage Total NULL

Greece Total Percentage Total true

 3182

less than < <= 3183

Semantic 3184

The operator < <= compares two values to evaluate if one is less (or equal) to the other. 3185

 3186

Syntax 3187

 ds_1 [<| <=] ds_2 3188

 3189

Parameters 3190

ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+ | boolean] 3191

 3192

ds_1,ds_2 – is a Dataset expression or a boolean 3193

 3194

Constraints 3195

 If both ds_1 and ds_2 are Datasets then they must have at least one Identifier Component in common (with 3196

the same name and data type). 3197

 If both ds_1 and ds_2 are Datasets then either they have one or more measures in common, or at least one of 3198

them has only a measure. 3199

 3200

Returns 3201

If both ds_1 and ds_2 are scalar values then the operator returns a scalar Boolean value representing the results 3202

of the comparison less (or equal) than validation. 3203

If either ds_1 or ds_2 is a Dataset then the operator returns a Dataset having the following components: 3204

 The superset of the Identifier Components of ds_1 and ds_2 3205

 If ds_1 and ds_2 have one or more measures in common (i.e., with the same name) then the resulting Dataset 3206

has these common measures, with the same name concatenated with the suffix “_CONDITION”, containing 3207

the results of the comparison less (or equal) than validation of the respective measures of ds_1 and ds_2. 3208

Otherwise, if ds_1 and ds_2 do not have any measures in common and have only one measure then the 3209

resulting Dataset contains a measure named CONDITION that contains the results of the comparison less (or 3210

equal) than validation of the single measures of ds_1 and ds_2. 3211

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key 3212

(the same values of the Identifier Components). 3213

 3214

Semantic specification 3215

f the value on the left side is less (or equal) than the value on the right side the result of the validation will be 3216

true, false if not or if either of them is NULL. 3217

 3218

Examples 3219

On scalar 3220

1) If A = 5, B = 9, C = 5: 3221

D := A < B D = true 3222

D := A <= C D = true 3223

2) If A = “hello”, B = “hi”, C = “Hi”: 3224

D := C < B D = false 3225

 3226

On Dataset 3227

3) compare_ds := total_population < 15000000 3228

total_population

TIME GEO AGE SEX VALUE

90

2012 Belgium Total Total 11094850

2012 Greece Total Total 11123034

2012 Spain Total Total 46818219

2012 Malta Total Total NULL

2012 Finland Total Total 5401267

2012 Switzerland Total Total 7954662

 3229

compare_ds

TIME GEO AGE SEX CONDITION

2012 Belgium Total Total true

2012 Greece Total Total true

2012 Spain Total Total false

2012 Malta Total Total NULL

2012 Finland Total Total true

2012 Switzerland Total Total true

 3230

in, not in 3231

Semantic 3232

The operator in, not in verifies if a value belongs to a set of values of a set or a list 3233

 3234

Syntax 3235

ds {not} in [list | inlineList] 3236

 3237

Parameters 3238

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+|constant<T>] 3239

list : list-ref 3240

inlineList : list({constant<T>}+) 3241

 3242

 ds – is a Dataset expression or a scalar 3243

 list – is a reference to a valid List. 3244

 inlineList – is an in-line specification of a List. The elements of the List are constants. 3245

Constraints 3246

 if ds is a scalar the elements of the List must be of the same type and If set is specified, then it must be a 3247

reference to a mono-dimensional Set. 3248

 if ds is a Dataset, all the Measure Components of ds must have the same type T (which is also the type of the 3249

Set or List), 3250

 3251

Returns 3252

If ds is a scalar then in, not in returns a Boolean value representing the presence of the constant in the List. 3253

If ds is a Dataset and has N measures then in, not in returns a Dataset having the identifier components of ds and 3254

N Boolean Measure Components having the same name concatenated with the suffix “_CONDITION” that states 3255

if the values of ds are (not) in the list. 3256

 3257

Examples 3258

On Dataset 3259

ds_1 := total_population in (11094850, 46818219, 222, 111) 3260

total_population

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 11094850

91

2012 Greece Total Total 11123034

2012 Spain Total Total 46818219

2012 Malta Total Total 417546

2012 Finland Total Total 5401267

2012 NULL Total Total 7954662

 3261

ds_1

TIME GEO AGE SEX POPULATION_CONDITION

2012 Belgium Total Total true

2012 Greece Total Total false

2012 Spain Total Total true

2012 Malta Total Total false

2012 Finland Total Total false

2012 NULL Total Total false

 3262

between 3263

Semantic 3264

The operator between verifies if a value belongs to an interval of values 3265

 3266

Syntax 3267

ds_1 between ds_2 and ds_3 3268

 3269

Parameters 3270

ds_1, ds_2, ds_3 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+ |constant<T>] 3271

 3272

 ds_1 – is the Dataset or the scalar to validate. 3273

 ds_2 – is the lowerbound of a value’s range. 3274

 ds_3 – is the upperbound of a value’s range. 3275

 3276

Constraints 3277

 If ds_1 is a scalar then the defined constants must be all of the same type. 3278

 If ds_1 is a Dataset then: 3279

o At least one Dataset must be defined. 3280

o If two (or three) Datasets are defined, for every pair of Datasets, it must hold that either they have 3281

the same Identifier Components or the ones of the former is a subset of the ones of the latter (static). 3282

o If two (or three) Datasets are defined, they must have the same Measure Components, in name and 3283

number (as explained in the syntax) (static). 3284

o If at least one Constant is defined, the Datasets must have a single Measure Component of type <T> 3285

(static). 3286

 3287

Returns 3288

If ds_1 is a scalar then between returns a Boolean value representing if c_1 is greater or equal than c_2 and less 3289

or equal than c_3. 3290

If ds is a Dataset and has N measures then operator returns a Dataset having the Identifier Components of ds and 3291

N Boolean measures having the same name concatenated with the suffix “_CONDITION” containing the result 3292

of the range comparison. 3293

 3294

Examples 3295

On Dataset 3296

1) comparison_ds := unemployment_rate between 7.5 and 8.0 3297

 3298

92

unemployment_rate

TIME GEO UNEMPLOYMENT_RATE

2013 Finland 8.2

2012 Finland 7.7

2011 Finland 7.8

2010 Finland 8.4

2009 Finland NULL

 3299

comparison_ds

TIME GEO UNEMPLOYMENT_RATE

2013 Finland false

2012 Finland true

2011 Finland true

2010 Finland false

2009 Finland NULL

 3300

2) comparison_ds := overcrowding_rate_urbanization_2011 between Overcrowding_rate_urbanization_2010 3301

and Overcrowding_rate_urbanization_2012 3302

 3303

overcrowding_rate_urbanization_2011

GEO VALUE

Belgium NULL

Greece 0.276

Finland 0.093

Switzerland 0.08

United Kingdom 0.089

France 0.125

 3304

overcrowding_rate_urbanization_2010

GEO AGE SEX VALUE

Belgium Total Total 0.06

Greece Total Total 0.281

Spain Total Total 0.06

Malta Total Total 0.041

Switzerland Total Total NULL

 3305

overcrowding_rate_urbanization_2012

TIME GEO AGE SEX VALUE

2012 Belgium Total Total 0.023

2012 Greece Total Total 0.286

2012 Spain Total Total 0.064

2012 Malta Total Total 0.043

2012 Finland Total Total 0.08

93

2012 Switzerland Total Total 0.08

 3306

 3307

comparison_ds

TIME GEO AGE SEX VALUE_CONDITION

2012 Belgium Total Total NULL

2012 Greece Total Total false

2012 Switzerland Total Total NULL

 3308

isnull 3309

Semantics 3310

The isnull operator, compares the values with the NULL. 3311

 3312

Syntax 3313

isnull(ds) 3314

 3315

Parameters 3316

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type }* 3317

 {attribute <IDENT> as scalar-type}*|constant] 3318

 3319

ds – is a Dataset or a scalar value. 3320

 3321

Constraints 3322

None 3323

 3324

Returns 3325

If ds is a scalar then isnull returns a boolean value representing if the value is (not) NULL. 3326

If ds is a Dataset and has N measures then isnull returns a Dataset having the Identifier Components of ds and N 3327

numeric measures with the same name concatenated with the suffix “_CONDITION” but assuming a boolean 3328

value if the value is (not) NULL. 3329

 3330

Examples 3331

On scalar 3332

1) If C is null: 3333

A := isnull(C) A = true 3334

2) If C is not null: 3335

A := isnull(C) A = false 3336

 3337

On Dataset 3338

3) ds_1 := isnull(population) 3339

 3340

population

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 11094850

2012 Greece Total Total 11123034

2012 Spain Total Total NULL

2012 Malta Total Total 417546

2012 Finland Total Total 5401267

2012 NULL Total Total NULL

 3341

94

ds_1

TIME GEO AGE SEX CONDITION

2012 Belgium Total Total false

2012 Greece Total Total false

2012 Spain Total Total true

2012 Malta Total Total false

2012 Finland Total Total false

2012 NULL Total Total true

 3342

exists_in, not_exists_in/in_all 3343

Semantics 3344

The exists_in, not_exists_in/in_all operators match the existence or not of data points of a Dataset in another 3345

Dataset. 3346

 3347

Syntax 3348

ds_1 [exists_in|exists_in_all|not_exists_in|not_exists_in_all] ds_2 3349

Parameters 3350

ds_1, ds_2 : dataset {identifier <IDENT> as <T>}+ {measure <IDENT> as <T> }* 3351

 {attribute <IDENT> as scalar-type}* 3352

 3353

ds_1, ds_2 – are the input Datasets. 3354

 3355

Constraints 3356

ds_1 and ds_2 must have at least one Identifier Component in common (with the same name and data type). 3357

 3358

Returns 3359

A Dataset with all Identifier Components of the two Datasets and one boolean Measure Component named 3360

CONDITION. The Measure Component value in each Data Points in the output indicates whether a Data Point 3361

with matching key (not) exists in the second argument for the corresponding Data Point of the first argument. 3362

 3363

Semantic specification 3364

If all versions are used, both the true and the false Data Points are kept in the result. Otherwise, only the true 3365

Data Points are kept. 3366

 3367

Examples 3368

1) ds_check := population exists_in_all urbanization_rate 3369
 3370

population

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 11094850

2012 Greece Total Total 11123034

2012 Spain Total Total 46818219

2012 Malta Total Total 417546

2012 Finland Total Total 5401267

2012 Switzerland Total Total 7954662

 3371

urbanization_rate

TIME GEO AGE SEX RATE

95

2012 Belgium Total Total 0.023

2012 Greece Total Total 0.286

2012 Spain Total Total 0.064

2012 Malta Total Total 0.043

2012 Finland Total Total NULL

2012 Switzerland Total Total 0.08

 3372

ds_check

TIME GEO AGE SEX CONDITION

2012 Belgium Total Total true

2012 Greece Total Total false

2012 Spain Total Total true

2012 Malta Total Total false

2012 Finland Total Total false

2012 Switzerland Total Total true

 3373

2) R := C1 exists_in C2 3374

 3375

C1

K1 K2 M1

1 A 100

2 B 200

3 C 700

4 A 550

5 D 120

 3376

C2

K1 K2 M1

1 A 100

2 B 200

5 D 700

 3377

R

K1 K2 CONDITION

1 A True

2 B True

5 D True

 3378

3) R := C1 exists_in_all C2 3379

 3380

C1

K1 K2 M1

1 A 100

96

2 B 200

3 C 700

4 A 550

5 D 120

 3381

 3382

C2

K1 K2 M1

1 A 100

2 B 200

5 D 700

 3383

 3384

R

K1 K2 CONDITION

1 A True

2 B True

3 C False

4 A False

5 D True

 3385

4) R := C1 does not_exist_in C2 3386

 3387

C1

K1 K2 M1

1 A 100

2 B 200

3 C 700

4 A 550

5 D 120

 3388

C2

K1 K2 M1

1 A 100

2 B 200

5 D 700

 3389

R

K1 K2 CONDITION

3 C True

4 A True

 3390

 3391

 3392

 3393

97

5) R := C1 not_exists_in_all C2 3394

 3395

C1

K1 K2 M1

1 A 100

2 B 200

3 C 700

4 A 550

5 D 120

 3396

C2

K1 K2 M1

1 A 100

2 B 200

5 D 700

 3397

R

K1 K2 CONDITION

1 A False

2 B False

3 C True

4 A True

5 D False

 3398

6) R := C1 not_exists_in_all C2 3399

 3400

C2

K1 K2 K3 M1

1 A X 100

2 B Y 200

5 D Z 700

5 D K 1500

 3401

C1

K1 K2 M1

1 A 100

2 B 200

3 C 700

4 A 550

5 D 120

 3402

 3403

R

K1 K2 CONDITION

98

1 A False

2 B False

3 C True

4 A True

5 D False

 3404

match_characters 3405

Semantics 3406

The match_character operator checks whether a value respects a given pattern 3407

 3408

Syntax 3409

Match_characters (ds, pattern {, all}) 3410

 3411

Parameters 3412

ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as string }* 3413

 {attribute <IDENT> as scalar-type}* 3414

pattern : regexp 3415

regexp : string 3416

 3417

 ds – is the input Dataset. 3418

 pattern – is a regular expression that defines a string pattern. 3419

 regexp – is a regular expression. 3420

 3421

Constraints 3422

 ds must have only one string Measure Components (static). 3423

 pattern must be a regular expression according to POSIX extended standard 3424

(http:pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html) (static). 3425

 3426

Returns 3427

A Dataset having the same Identifier and Attribute Components and a Boolean Measure Component for each 3428

string Measure Component in ds with the same name concatenated with the suffix “_CONDITION”, containing 3429

the value resulting from the matching between the values in ds and the specified pattern. 3430

 3431

Semantic specification 3432

The Data Points of ds are copied into the output Dataset; the Boolean Measure Component will have true if the 3433

respective in ds matches with the pattern, false otherwise. 3434

The all flag allows to specify that both true and false Data Points have to be kept in the output. If it is not present, 3435

only true Data Points are kept. 3436

 3437

Examples 3438

ds_r := match_characters(population.TIME,”[123456789,]”,all) 3439
 3440

population

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 11094850

2012A Greece Total Total 11123034

2012 Spain Total Total 46818219

2012 Malta Total Total 417546

2012 Finland Total Total 5401267

2012C Switzerland Total Total 7954662

 3441

http://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html

99

population

TIME GEO AGE SEX POPULATION_CONDITION

2012 Belgium Total Total true

2012A Greece Total Total false

2012 Spain Total Total true

2012 Malta Total Total true

2012 Finland Total Total true

2012C Switzerland Total Total false

 3442

all 3443

Semantics 3444

The all operator verifies that all values in the Dataset are true 3445

 3446

Syntax 3447

all (ds) 3448

 3449

Parameters 3450

ds : dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as boolean }+ 3451

 {attribute <IDENT> as scalar-type }* 3452

 3453

ds – is a Dataset 3454

 3455

Constraints 3456

ds must have at least a measure of type boolean. 3457

 3458

Returns 3459

A Dataset with only one Boolean measure, called CONDITION, equal to true if, for all data points of the input 3460

Dataset, the Boolean measures are equal to true, false otherwise. 3461

 3462

 3463

Examples 3464

1) ds_2 := all(ds_1.VALUE>100) 3465

 3466

ds_1

GENDER TIME VALUE

M 2000 200

F 2000 50

M 2001 150

F 2001 120

 3467

ds_2

CONDITION

FALSE

 3468

 3469

 3470

100

2) ds_2 := all(ds_1[filter time= “2001”].VALUE>100) 3471

 3472

ds_1

GENDER TIME VALUE

M 2000 200

F 2000 50

M 2001 150

F 2001 120

 3473

ds_2

CONDITION

TRUE

 3474

3) ds_2 := all(ds_1.VALUE_2000>100 AND ds_1.VALUE_2001>100) 3475

 3476

ds_1

GENDER VALUE_2000 VALUE_2001

M 200 150

F 50 120

 3477

ds_2

CONDITION

FALSE

 3478

any 3479

Semantics 3480

The any operator verifies that at least one value in the Dataset is true 3481

 3482

Syntax 3483

any (ds) 3484

 3485

Parameters 3486

ds : dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as boolean}+ 3487

 {attribute <IDENT> as scalar-type }* 3488

 3489

ds – is a Dataset 3490

 3491

Constraints 3492

ds must have at least one measure of type Boolean. 3493

 3494

Returns 3495

A Dataset with only one Boolean measure,called CONDITION, equal to true if, for at least one data point of the 3496

input Dataset, the Boolean measures are equal to true, false otherwise. 3497

 3498

 3499

 3500

101

Examples 3501

1) ds_2 := any(ds_1.VALUE>100) 3502

ds_1

GENDER TIME VALUE

M 2000 200

F 2000 50

M 2001 90

F 2001 120

 3503

ds_2

CONDITION

TRUE

 3504

2) ds_2 := any (ds_1.VALUE_2000>100 AND ds_1. VALUE_2001>100) 3505

 3506

ds_1

GENDER VALUE_2000 VALUE_2001

M 200 90

F 50 120

 3507

ds_2

CONDITION

FALSE

 3508

3) ds_2 := any (ds_1.VALUE_2000>100 AND ds_1.VALUE_2001>100) 3509

 3510

ds_1

GENDER VALUE_2000 VALUE_2001

M 200 90

F 50 120

 3511

ds_2

CONDITION

TRUE

 3512

 3513

 3514

 3515

102

unique 3516

Semantics 3517

The unique operator verifies the presence of one single Data Point having true as the value for the Measure 3518

component. 3519

 3520

Syntax 3521

unique (ds) 3522

 3523

Parameters 3524

ds : dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as boolean }+ 3525

 {attribute <IDENT> as scalar-type }* 3526

 3527

ds – is a Dataset 3528

 3529

Constraints 3530

ds must have at least a measure of type boolean. 3531

 3532

Returns 3533

A Dataset with only one boolean measure,called CONDITION, equal to true if, for only one data point of the input 3534

Dataset, the boolean measures are is equal to true, false otherwise. 3535

 3536

Examples 3537

1) ds_2 := unique (ds_1.VALUE>100) 3538

 3539

ds_1

GENDER TIME VALUE

M 2000 200

F 2000 150

M 2001 90

F 2001 120

 3540

ds_2

CONDITION

FALSE

 3541

 3542

 3543

2) ds_2 := unique (ds_1.VALUE_2000>100 AND ds_1.VALUE_2001>100) 3544

 3545

ds_1

GENDER VALUE_2000 VALUE_2001

M 200 90

F 150 120

 3546

ds_2

CONDITION

TRUE

103

 3547

3) ds_2 := unique (ds_1.VALUE_2000>100 AND ds_1.VALUE_2001>100) 3548

 3549

ds_1

GENDER VALUE_2000 VALUE_2001

M 200 90

F 150 120

 3550

ds_2

CONDITION

FALSE

 3551

func_dep 3552

Semantics 3553

The func_dep operator checks the functional dependency between components of a Dataset. 3554

 3555

Syntax 3556

func_dep (ds , listCompFrom , listCompTo) 3557

 3558

listCompFrom : (comp { , comp } *) 3559

listCompTo : (comp { , comp } *) 3560

 3561

Parameters 3562

ds : dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as scalar-type }+ 3563

 {attribute <IDENT> as scalar-type }* 3564

 3565

listCompFrom –the components that form the left side of the functional dependency 3566

listCompTo – the components that form the right side of the functional dependency 3567

 3568

Constraints 3569

None 3570

 3571

Returns 3572

A Dataset having the only measure CONDITION, assuming value true if the functional dependency between the 3573

left and the right side is respected. 3574

 3575

Semantic specification 3576

The func_dep operator verifies the existence of a functional dependency from the components in listCompFrom 3577

to the the components in listCompTo (listCompFrom listCompTo), that is, each combination of values of the 3578

components listCompFrom corresponds to one combination of values of the components listCompTo. 3579

 3580

 3581

Examples 3582

1) ds_2 := func_dep (ds_1, (FISCAL_CODE), (NAME)) 3583

 3584

ds_1

FISCAL_CODE NAME DATE_OF_BIRTH PLACE_OF_BIRTH

FC1 John Smith 10/09/1968 London

FC2 Helen Brown 18/10/1976 London

104

FC3 Steve McGill 21/08/1966 Dublin

FC4 Helen Brown 26/02/2001 Dublin

 3585

ds_2

CONDITION

TRUE

 3586

2) ds_3:= func_dep (ds_1, (FISCAL_CODE), (NAME, DATE_OF_BIRTH,PLACE_OF_BIRTH)) 3587

 3588

ds_3

CONDITION

TRUE

 3589

3) ds_2 := func_dep (NAME), (FISCAL_CODE)) 3590

 3591

ds_2

CONDITION

FALSE

 3592

and 3593

Semantics 3594

The and operator calculates the logical AND 3595

 3596

Syntax 3597

ds_1 and ds_2 3598

 3599

Parameters 3600

ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as boolean}+ 3601

 {attribute <IDENT> as scalar-type}*|boolean] 3602

 3603

ds_1, ds_2 – are the input Dataset or boolean scalars. 3604

 3605

Constraints 3606

 If ds_1 (ds_2) is a scalar then it must be a boolean data type. 3607

 If ds_1 (ds_2) is a Dataset then it has at least a measure of boolean type. 3608

 If both ds_1 and ds_2 are Datasets then they must have at least one Identifier Component in common (with 3609

the same name and data type). 3610

 If both ds_1 and ds_2 are Datasets then either they have one or more boolean measures in common, or at least 3611

one of them has only a boolean measure. 3612

 3613

Returns 3614

If both ds_1 and ds_2 are scalar values then the and operator returns a boolean value that is the result of the and 3615

operation. 3616

If either ds_1 or ds_2 is a Dataset then the and operator returns a Dataset having the following components: 3617

 The superset of the Identifier Componentsof ds_1 and ds_2 3618

 If ds_1 and ds_2 have one or more Boolean measures in common (i.e., with the same name) then the resulting 3619

Dataset has these common Boolean measures, with the same name, varied on the base of the logical and 3620

105

between the Measure Components of ds_1 and ds_2. Otherwise, if ds_1 and ds_2 do not have any measures in 3621

common and have only one measure then the resulting Dataset contains a measure named CONDITION that 3622

contains a Boolean value that is the result of the and operation. 3623

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key 3624

(the same values of the Identifier Components). 3625

 3626

Examples 3627

On scalar 3628

1) If A = True, B = False 3629

C := A and B C = False 3630

 3631

On Dataset 3632

2) ds_r:=population.sex=”M” and population.age=”Y15-64” 3633
 3634

population

SEX AGE GEO TIME VALUE

M Y_LT15 BE 2013 970428

M Y15-64 BE 2013 3678355

M Y_GE65 BE 2013 838653

F Y_LT15 BE 2013 927644

F Y15-64 BE 2013 3625561

F Y_GE65 BE 2013 1121001

M Y_LT15 UK 2013 5757444

M Y15-64 UK 2013 20748657

M Y_GE65 UK 2013 4917238

F Y_LT15 UK 2013 5488356

F Y15-64 UK 2013 20915924

F Y_GE65 UK 2013 6068452

 3635

 3636

ds_r

SEX AGE GEO TIME CONDITION

M Y_LT15 BE 2013 false

M Y15-64 BE 2013 true

M Y_GE65 BE 2013 false

F Y_LT15 BE 2013 false

F Y15-64 BE 2013 false

F Y_GE65 BE 2013 false

M Y_LT15 UK 2013 false

M Y15-64 UK 2013 true

M Y_GE65 UK 2013 false

F Y_LT15 UK 2013 false

F Y15-64 UK 2013 false

F Y_GE65 UK 2013 false

 3637

106

or 3638

Semantics 3639

The or operator calculates the logical OR 3640

 3641

Syntax 3642

ds_1 or ds_2 3643

 3644

Parameters 3645

ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as boolean}+ 3646

 {attribute <IDENT> as scalar-type}*|boolean] 3647

 3648

ds_1, ds_2 – are the input Dataset or boolean scalars. 3649

 3650

Constraints 3651

 If ds_1 (ds_2) is a scalar then it must be a boolean data type. 3652

 If ds_1 (ds_2) is a Dataset then it has at least a measure of boolean type. 3653

 If both ds_1 and ds_2 are Datasets then they must have at least one Identifier Component in common (with 3654

the same name and data type). 3655

 If both ds_1 and ds_2 are Datasets then either they have one or more boolean Measures in common, or at least 3656

one of them has only a boolean measure. 3657

 3658

Returns 3659

If both ds_1 and ds_2 are scalar values then the or operator returns a boolean value that is the result of the or 3660

operation. 3661

If either ds_1 or ds_2 is a Dataset then the or operator returns a Dataset having the following components: 3662

 The superset of the Identifier Components of ds_1 and ds_2 3663

 If ds_1 and ds_2 have one or more boolean Measures in common (i.e., with the same name) then the resulting 3664

Dataset has these common boolean Measures, with the same name, varied on the base of the logical or 3665

between the Measure Components of ds_1 and ds_2. Otherwise, if ds_1 and ds_2 do not have any Measures in 3666

common and have only one Measure then the resulting Dataset contains a Measure named CONDITION that 3667

contains a boolean value that is the result of the or operation. 3668

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key 3669

(the same values of the Identifier Components). 3670

 3671

Examples 3672

On scalar 3673

1) If A = True, B = False 3674

C := A or B C = True 3675

 3676

On Dataset 3677

2) ds_r:=population.sex=”M” OR population.age_group=”Y15-64” 3678

population

SEX AGE GEO TIME CONDITION

M Y_LT15 BE 2013 970428

M Y15-64 BE 2013 3678355

M Y_GE65 BE 2013 838653

F Y_LT15 BE 2013 927644

F Y15-64 BE 2013 3625561

F Y_GE65 BE 2013 1121001

M Y_LT15 UK 2013 5757444

M Y15-64 UK 2013 20748657

M Y_GE65 UK 2013 4917238

F Y_LT15 UK 2013 5488356

107

F Y15-64 UK 2013 20915924

F Y_GE65 UK 2013 6068452

 3679

 3680

DS_or

SEX AGE GEO TIME CONDITION

M Y_LT15 BE 2013 true

M Y15-64 BE 2013 true

M Y_GE65 BE 2013 true

F Y_LT15 BE 2013 false

F Y15-64 BE 2013 true

F Y_GE65 BE 2013 false

M Y_LT15 UK 2013 true

M Y15-64 UK 2013 true

M Y_GE65 UK 2013 true

F Y_LT15 UK 2013 false

F Y15-64 UK 2013 true

F Y_GE65 UK 2013 true

 3681

 3682

xor 3683

Semantics 3684

The xor operator calculates the logical XOR 3685

 3686

Syntax 3687

ds_1 xor ds_2 3688

 3689

Parameters 3690

ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as boolean}+ 3691

 {attribute <IDENT> as scalar-typer }*|boolean] 3692

 3693

ds_1, ds_2 – are the input Dataset or boolean scalars. 3694

 3695

Constraints 3696

 If ds_1 (ds_2) is a scalar then it must be a boolean data type. 3697

 If ds_1 (ds_2) is a Dataset then it has at least a Measure of boolean type. 3698

 If both ds_1 and ds_2 are Datasets then they must have at least one Identifier Componentin common (with the 3699

same name and data type). 3700

 If both ds_1 and ds_2 are Datasets then either they have one or more boolean Measures in common, or at least 3701

one of them has only a Boolean Measure. 3702

 3703

Returns 3704

 3705

If both ds_1 and ds_2 are scalar values then the xor operator returns a boolean value that is the result of the xor 3706

operation. 3707

If either ds_1 or ds_2 is a Dataset then the xor operator returns a Dataset having the following components: 3708

 The superset of the identifier components of ds_1 and ds_2 3709

 If ds_1 and ds_2 have one or more boolean Measures in common (i.e., with the same name) then the resulting 3710

Dataset has these common boolean Measures, with the same name, varied on the base of the logical xor 3711

108

between the Measure Components of ds_1 and ds_2. Otherwise, if ds_1 and ds_2 do not have any Measures in 3712

common and have only one Measure then the resulting Dataset contains a Measure named CONDITION that 3713

contains a boolean value that is the result of the xor operation. 3714

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key 3715

(the same values of the Identifier Components). 3716

 3717

Examples 3718

On scalar 3719

1) If A = True, B = False 3720

C := A or B C = True 3721

 3722

On Dataset 3723

2) DS_xor:=population.sex=”M” xor population.age_group=”Y15-64” 3724

 3725

DS_xor

SEX AGE GEO TIME CONDITION

M Y_LT15 BE 2013 970428

M Y15-64 BE 2013 3678355

M Y_GE65 BE 2013 838653

F Y_LT15 BE 2013 927644

F Y15-64 BE 2013 3625561

F Y_GE65 BE 2013 1121001

M Y_LT15 UK 2013 5757444

M Y15-64 UK 2013 20748657

M Y_GE65 UK 2013 4917238

F Y_LT15 UK 2013 5488356

F Y15-64 UK 2013 20915924

F Y_GE65 UK 2013 6068452

 3726

 3727

DS_xor

SEX AGE GEO TIME CONDITION

M Y_LT15 BE 2013 true

M Y15-64 BE 2013 false

M Y_GE65 BE 2013 true

F Y_LT15 BE 2013 false

F Y15-64 BE 2013 true

F Y_GE65 BE 2013 false

M Y_LT15 UK 2013 true

M Y15-64 UK 2013 false

M Y_GE65 UK 2013 true

F Y_LT15 UK 2013 false

F Y15-64 UK 2013 true

F Y_GE65 UK 2013 false

 3728

109

not 3729

Semantics 3730

The not operator calculates the logical negation of a boolean condition 3731

 3732

Syntax 3733

not ds_1 3734

 3735

Parameters 3736

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as string-literal}+ 3737

 {attribute <IDENT> as scalar-type}* | boolean] 3738

 3739

ds – is a Dataset expression or a string 3740

 3741

Constraints 3742

If ds is a scalar then it must be a boolean type. 3743

If ds is a Dataset then it must have at least a Measure of type boolean. 3744

 3745

Returns 3746

If ds is a scalar then not returns the logical negation of ds. 3747

If ds is a Dataset and has N boolean Measures then not returns a Dataset having the Identifier Components of ds 3748

and N numeric Measures with the same name of the boolean Measures of ds and containing the logical negation 3749

of the corresponding Measures. 3750

 3751

Examples 3752

On scalar 3753

1) If A = True 3754

B := not A B = False 3755

 3756

On Dataset 3757

2) ds_r:=not population.sex=”M” 3758
 3759

population

SEX AGE GEO TIME CONDITION

M Y_LT15 BE 2013 970428

M Y15-64 BE 2013 3678355

M Y_GE65 BE 2013 838653

F Y_LT15 BE 2013 927644

F Y15-64 BE 2013 3625561

F Y_GE65 BE 2013 1121001

M Y_LT15 UK 2013 5757444

M Y15-64 UK 2013 20748657

M Y_GE65 UK 2013 4917238

F Y_LT15 UK 2013 5488356

F Y15-64 UK 2013 20915924

F Y_GE65 UK 2013 6068452

 3760

 3761

ds_r

SEX AGE GEO TIME CONDITION

M Y_LT15 BE 2013 false

110

M Y15-64 BE 2013 false

M Y_GE65 BE 2013 false

F Y_LT15 BE 2013 true

F Y15-64 BE 2013 true

F Y_GE65 BE 2013 true

M Y_LT15 UK 2013 false

M Y15-64 UK 2013 false

M Y_GE65 UK 2013 false

F Y_LT15 UK 2013 true

F Y15-64 UK 2013 true

F Y_GE65 UK 2013 true

 3762

111

VTL-ML - Date operators and functions 3763

extract 3764

Semantics 3765

The operator extract returns an integer that is part of a given date, based on the value assumed by the part 3766

parameter. 3767

 3768

Syntax 3769

extract(ds, part) 3770

 3771

Parameters 3772

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as date}+ 3773

 {attribute <IDENT> as scalar-type}*| date] 3774

part : string 3775

 3776

ds – is the input Dataset or date. 3777

part – is the part of date (year, month or day) to extract. 3778

 3779

Constraints 3780

 part can assume a restricted number of values (“A”, "S", "Q", “M” , "W", “D”). 3781

If ds is a Dataset, it must have only date Measure Component. 3782

Returns 3783

If ds is a date value then the extract operator returns an integer value that is the part of ds specified in the part 3784

parameter. 3785

If ds is a Dataset then the extract operator returns a Dataset having all the Identifier, Measure and Attribute 3786

Components of ds, where the Measure Components change the data in type (from date to integer) and assume 3787

the values of part of the dates (on the base of the part) in the input Measure Components 3788

 3789

Examples 3790

On date 3791

1) If A = 28/02/2016 3792

B := extract (A, “Y”) B = 2016 3793

B := extract (A, “M”) B = 2 3794

 3795

On Dataset 3796

2) ds_2:= extract (ds_1, “Y”) 3797

 3798

ds_1

K1 K2 M1

1 A 2015/12/10

2 B 2016/06/11

3 C 2015/12/10

4 E 2013/06/11

 3799

ds_2

K1 K2 M1

1 A 2015

2 B 2016

3 C 2015

4 E 2013

112

 3800

string from date 3801

Semantics 3802

The operator string_from_date converts a date value into a string. 3803

 3804

Syntax 3805

string_from_date(ds, format) 3806

 3807

Parameters 3808

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as date}+ 3809

 {attribute <IDENT> as scalar-type}*|date] 3810

format : string-literal 3811

 3812

date – is the input Dataset or date. 3813

format – is the format of the resulting string. 3814

 3815

Constraints 3816

 If ds is a Dataset then it must have only one date Measure Component, 3817

 format must respect one of the following patterns: 3818
 3819

Format Frequency Example Frequency

YYYY 2000 Annual

YYYYSN S 2000S1 Semestrial

YYYYQN Q 2000Q1 Quarterly

YYYYMNN M 2000M01 Monthly

YYYYDNNNN D 2000D0101 Daily

YYYYA A 2000A Annual

YYYYSN S 2000S1 Semestrial

YYYY-QN Q 2000-Q1 Quarterly

YYYY-NN M 2000-01 Monthly

YYYY-NN-NN D, M, Q or A 2000-01-01 Daily, Monthly, Quarterly or Annual

 3820

Returns 3821

If ds is a date then the operator returns a string representation of the input date, based on the chosen format. 3822

If ds is a Dataset then the operatorreturns a Dataset having all the Identifier, Measure and Attribute Components 3823

of the ds, where the Measure Components change in the data type (from date to string-literal) and assume the 3824

values of the string representations (on the base of the format) of the dates in the input Measure Components. 3825

 3826

Semantic specification 3827

If the format does not conform to any of the formats expressed in the constraints section, then a runtime 3828

exception is raised. 3829

 3830

Examples 3831

On date 3832

1) If A = 28/02/2016 3833

B := string_from_date (A, YYYY-MM) B = "2016-02" 3834

 3835

 On Dataset 3836

2) ds_2:= string_from_date (ds_1, “YYYY-MM”) 3837

 3838

ds_1

113

K1 K2 M1

1 A 2015/12/10

2 B 2015/06/11

3 C 2015/12/10

4 E 2015/06/11

 3839

 3840

ds_2

K1 K2 M1

1 A “2015-12”

2 B “2015-06”

3 C “2015-12”

4 E ”2015-06”

 3841

 3842

current_date 3843

Semantic 3844

The operator current_date returns the current date. 3845

 3846

Syntax 3847

current_date() 3848

 3849

Parameters 3850

None 3851

 3852

Constraints 3853

None 3854

 3855

Returns 3856

A Dataset having only one date Measure Component, with only one single Data Point representing the current 3857

date. 3858

 3859

114

VTL-ML - Set functions 3860

union 3861

Semantics 3862

The operator union takes as input a list of Datasets and returns a single Dataset containing all the Data Points, 3863

without duplicates, that appear in any of them. 3864

 3865

Syntax 3866

union (ds {, ds}* {,dedup(consResFunction) }?) 3867

 3868

Parameters 3869

ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}* 3870

 {attribute <IDENT> as scalar-type}+ 3871

consResFunctions : list<component-ref * (t*t) -> t > (t is the type of the referred Component) 3872

 3873

 ds – are the input Datasets. 3874

 consResFunction is a list of functions used to solve conflicts caused by the presence of Data Points with the 3875

same values for the Identifier Components. 3876

 3877

Constraints 3878

All the ds Datasets must have the same Identifier and Measure Components, in name and type (static). 3879

 3880

Returns 3881

The operator allows to eliminate duplicates through consResFunction. If the resulting set of data contains 3882

duplicates then union generates a run-time error. 3883

 3884

Semantic specification 3885

The operator takes as input a list of Datasets and returns a Dataset with the same structure as the input one and 3886

containing all the Data Points from every ds without duplicates. The consResFunction allows the user to specify 3887

a strategy to eliminate duplicates. In particular, for any single n-uple of duplicate Data Points, the function is 3888

applied recursively so as to reduce the duplicates to one single Data Point.If only a Dataset is specified, then it is 3889

returned unchanged. 3890

 3891

Examples 3892

1) ds_r := union(total_population1, total_population2) 3893
 3894

total_population1

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 5

2012 Greece Total Total 2

2012 France Total Total 3

2012 Malta Total Total 7

2012 Finland Total Total 9

2012 Switzerland Total Total 12

 3895

 3896

 3897

Total_population2

TIME GEO AGE SEX POPULATION

2012 Netherlands Total Total 23

115

2012 Greece Total Total 2

2012 Spain Total Total 5

2012 Iceland Total Total 1

 3898

 3899

ds_r

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 5

2012 Greece Total Total 2

2012 France Total Total 3

2012 Malta Total Total 7

2012 Finland Total Total 9

2012 Switzerland Total Total 12

2012 Netherlands Total Total 23

2012 Spain Total Total 5

2012 Iceland Total Total 1

 3900

2) ds_r := union(total_population1, total_population2) 3901
 3902

total_population1

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 1

2012 Greece Total Total 2

2012 France Total Total 3

2012 Malta Total Total 4

2012 Finland Total Total 5

2012 Switzerland Total Total 6

 3903

 3904

total_population2

TIME GEO AGE SEX POPULATION

2011 Belgium Total Total 10

2012 Greece Total Total 20

2012 France Total Total 30

2012 Malta Total Total 40

2012 Finland Total Total 50

2012 Switzerland Total Total 60

 3905

 3906

total_population1

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 1

2012 Greece Total Total 2

116

2012 France Total Total 3

2012 Malta Total Total 4

2012 Finland Total Total 5

2012 Switzerland Total Total 6

2011 Belgium Total Total 10

 3907

 3908

3) total_population := union (total_population1, total_population2) 3909

 3910

total_population1

TIME GEO POPULATION

2012 Belgium 5

2012 Greece 2

2012 France 3

2012 Malta 7

2012 Finland 9

2012 Switzerland 12

 3911

total_population2

TIME GEO POPULATION

2012 Netherlands 23

2012 Greece 2

2012 Spain 5

2012 Iceland 1

 3912

total_population

TIME GEO POPULATION

2012 Belgium 5

2012 Greece 2

2012 France 3

2012 Malta 7

2012 Finland 9

2012 Switzerland 12

2012 Netherlands 23

2012 Spain 5

2012 Iceland 1

 3913

4) time_geo := union (time_geo1, time_geo2) 3914

 3915

time_geo1

TIME GEO

2012 Belgium

2012 Greece

117

2012 France

2012 Malta

2012 Finland

2012 Switzerland

 3916

time_geo2

TIME GEO

2012 Netherlands

2012 Greece

2012 Spain

2012 Iceland

 3917

time_geo

TIME GEO

2012 Belgium

2012 Greece

2012 France

2012 Malta

2012 Finland

2012 Switzerland

2012 Netherlands

2012 Spain

2012 Iceland

 3918

intersect 3919

Semantics 3920

The operator intersect takes as input Datasets and returns another Dataset with the intersection of the input 3921

Datasets. 3922

 3923

Syntax 3924

intersect (ds {, ds}* {,dedup(consResFunction) }?) 3925
 3926

Parameters 3927

ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}* 3928

 {attribute <IDENT> as scalar-type}+ 3929

consResFunctions : list<component-ref * (t*t) -> t > (t is the type of the referred Component) 3930

 3931

 ds – are the input Datasets. 3932

 consResFunction is a list of functions used to solve conflicts caused by the presence of Data Points with the 3933

same values for the Identifier Components. 3934

 3935

Constraints 3936

All the Datasets ds must have the same Identifier and Measure Components, in name and type (static). 3937

 3938

Returns 3939

A Dataset having the same Identifier, Measure and Attribute Components of the input ones, containing all the 3940

Data Points that are present in every ds. 3941

118

 3942

Semantic specification 3943

The operator takes as input Datasets and returns another one Dataset with the same structure of the input ones 3944

containing all the Data Points that are present in every ds, which is their intersection. If two Data Points appear 3945

in all the input Datasets, but with different values for the Measure Components, then the values for the Measures 3946

are determined by combining the input ones with a consResFunction that solves the conflicts. 3947

 3948

Examples 3949

 3950

d_r := intersect(total_population1, total_population2) 3951

 3952

total_population1

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 1

2012 Greece Total Total 2

2012 France Total Total 3

2012 Malta Total Total 4

2012 Finland Total Total 5

2012 Switzerland Total Total 6

 3953

total_population2

TIME GEO AGE SEX POPULATION

2011 Belgium Total Total 10

2012 Greece Total Total 2

2011 France Total Total 30

2011 Malta Total Total 40

2011 Finland Total Total 50

2011 Switzerland Total Total 60

 3954

d_r

TIME GEO AGE SEX POPULATION

2012 Greece Total Total 2

 3955

symdiff 3956

Semantics 3957

The operator symdiff takes as input two Datasets and returns another Dataset with the symmetric difference of 3958

the input Datasets. 3959

 3960

Syntax 3961

symdiff (ds_1, ds_2) 3962

 3963

 3964

Parameters 3965

ds_1, ds_2 : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}* 3966

 {attribute <IDENT> as scalar-type}+ 3967

 3968

 ds_1 – is the first input Dataset. 3969

 ds_2 – is the second input Dataset. 3970

119

 3971

Constraints 3972

ds_1 and ds_2 must have the same Identifier and Measure Components in name and type (static). 3973

 3974

Returns 3975

A Dataset having the same Identifier, Measure and Attribute Components of the input ones, containing all the 3976

Data Points that are present either in ds_1 or in ds_2 but not in both. 3977

 3978

Semantic specification 3979

The operator takes as input two Datasets and returns another one Dataset with the same structure of the input 3980

ones containing all the Data Points that are present either in ds_1 or in ds_2 but not in both. 3981

 3982

Examples 3983

d_r := symdiff(total_population1, total_population2) 3984

total_population1

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 1

2012 Greece Total Total 2

2012 France Total Total 3

2012 Malta Total Total 4

2012 Finland Total Total 5

2012 Switzerland Total Total 6

 3985

total_population2

TIME GEO AGE SEX POPULATION

2011 Belgium Total Total 1

2012 Greece Total Total 2

2012 France Total Total 3

2012 Malta Total Total 4

2012 Finland Total Total 5

2012 Switzerland Total Total 6

 3986

d_r

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 1

2011 Belgium Total Total 1

 3987

setdiff 3988

Semantics 3989

The operator setdiff takes as input two Datasets and returns another Dataset with the difference of the input 3990

Datasets. 3991

 3992

Syntax 3993

setdiff (ds_1 , ds_2) 3994

 3995

Parameters 3996

ds_1, ds_2 : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}* 3997

120

 {attribute <IDENT> as scalar-type}+ 3998

 3999

 ds_1 – is the first input Dataset. 4000

 ds_2 – is the second input Dataset. 4001

 4002

Constraints 4003

ds_1 and ds_2 must have the same Identifier and Measure Components in name and type (static). 4004

 4005

Returns 4006

A Dataset having the same Identifier, Measure and Attribute Components of the input ones, containing all the 4007

Data Points that are present in ds_1 but not in ds_2. 4008

 4009

Semantic specification 4010

The operator takes as input two Datasets and returns another Dataset with the same structure as the input ones 4011

containing all the Data Points that are present in either ds_1 but not in ds_2, which is their difference. 4012

 4013

Examples 4014

1) d_r := setdiff (total_population1,total_population2) 4015
 4016

total_population1

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 10

2012 Greece Total Total 20

2012 France Total Total 30

2012 Malta Total Total 40

2012 Finland Total Total 50

2012 Switzerland Total Total 60

 4017

total_population2

TIME GEO AGE SEX POPULATION

2011 Belgium Total Total 10

2012 Greece Total Total 20

2012 France Total Total 30

2012 Malta Total Total 40

2012 Finland Total Total 50

2012 Switzerland Total Total 60

 4018

d_r

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 10

 4019

2) DatasetC := setdiff (DatasetA ,DatasetB) 4020

Dataset A

COUNTRY SEX YEAR VALUE

FR Males 2011 7

FR Females 2011 10

FR Total 2011 12

 4021

121

Dataset B

COUNTRY SEX YEAR VALUE

FR Males 2011 7

FR Females 2011 10

 4022

Dataset C

COUNTRY SEX YEAR VALUE

FR Total 2011 12

 4023

subscript 4024

Semantics 4025

The operator subscript takes as input a Dataset and a sequence of Identifier Components with their respective 4026

values, and returns another Dataset having only the data points that contains the values specified in the 4027

subscript for the respective Identifier Component. 4028

 4029

Syntax 4030

ds [comp = comp_value1 { , comp = comp_value2 } *] 4031

 4032

Parameters 4033

 ds – is the input Dataset 4034

 comp – Dataset component-ref 4035

 comp_value1, comp_value2 – is a valid value for component 4036

 4037

Constraints 4038

 comp must be a valid Identifier of ds component. 4039

 comp_value1, comp_value2 must be a valid value for the related component. 4040

 4041

Returns 4042

A Dataset having the same Measure and Attribute Components as the input one, and all the Identifier 4043

Components that are not specified as parameters (comp). The Data points of the returned Dataset are all those of 4044

ds whose values having for the subscripted identifier component(s) concide with the values specified in the 4045

subscript. 4046

 4047

Semantic specification 4048

This operator removes identifiers components of the Dataset performing before a filter over the components 4049

values specified in the subscript. This avoids inconsistency on the returned Dataset. 4050

 4051

Examples 4052

1) ds_2 := ds_1 [time = 2010, ref_area = EU25] 4053
 4054

ds_1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20 D

2010 BG CA 1 P

2010 RO CA 1 P

2010 EU27 CA 23 P

 4055

 4056

122

ds_2

PARTNER OBS_VALUE OBS_STATUS

CA 20 D

 4057

2) ds_2 := ds_1 [time = 2010, ref_area = EU25, partner = CA] 4058
 4059

ds_2

OBS_VALUE OBS_STATUS

20 D

 4060

3) ds_2 := ds_1 [ref_area = EU25] + ds_1[ref_area = BG] + ds_1 [ref_area = RO] 4061
 4062

ds_2

TIME PARTNER OBS_VALUE

2010 CA 22

 4063

4) ds_2 := ds_1 [time = 2010, ref_area = EU25] 4064
 4065

ds_1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20 D

2010 EU25 NF 1 P

2010 RO CA 1 P

2010 EU27 CA 23 P

 4066

ds_2

PARTNER OBS_VALUE OBS_STATUS

CA 20 D

NF 1 P

 4067

transcode 4068

Semantics 4069

The transcode operator recodes the identifiers values using a map Dataset or a mapping object. 4070

 4071

Syntax 4072

transcode(ds.comp, [ds_map| mapping]) 4073

 4074

Parameters 4075

ds.comp : Component-ref 4076

ds : dataset {identifier <IDENT> as scalar-type}+ 4077

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 4078

ds_map : dataset {identifier MAPS_FROM as scalar-type; } {measure MAPS_TO as scalar-type; } 4079

 4080

 ds.comp – is a valid Identifier Component of the Dataset. 4081

123

 ds_map – is the Dataset that the defines the mapping. It has an Identifier Component, MAPS_FROM, that 4082

specifies the values to be transformed and a Measure Component, MAPS_TO, specifying the target value for 4083

each of them. 4084

 mapping – a mapping, persistent object created with define mapping 4085

 4086

Constraints 4087

The following conditions guarantee that the resulting Dataset does not have duplicates: 4088

 All the values of the Measure Component MAPS_TO must be distinct. 4089

 For each distinct value of the Identifier Component to be recoded, there is a value (and only one) in the 4090

Identifier Component MAPS_FROM in ds_map or in the mapping object 4091

 4092

Returns 4093

A Dataset that has the same Identifier, Measure and Attribute Components as the input one. The values of the 4094

Identifier Component are recoded into the corresponding values in the MAPS_TO Measure Component of the 4095

Dataset ds_map. 4096

 4097

Semantic specification 4098

This operator allows to transform an input Dataset by mapping the values of one Identifier Component into 4099

corresponding values, as specified by a mapping Dataset. Since the mapping Dataset is guaranteed to have one 4100

distinct target value for each input one, and the input values appear only once, the resulting Dataset will contain 4101

no duplicates. 4102

All the Data Points of ds are also present in the result and the values of the Identifier Component ds.comp are 4103

modified as follows. For each data points of the Dataset, the value v of ds.comp is replaced by the value included in 4104

the ds_map or in the mapping corresponding to v. 4105

 4106

Examples 4107

ds_2 := transcode(ds, ds_map, REF_AREA) 4108
 4109

ds_map

MAPS_FROM MAPS_TO

LU LUX

BE BEL

IT ITA

 4110

ds

REF_AREA VALUE

LU 10

BE 11

IT 13

 4111

ds_2

REF_AREA VALUE

LUX 10

BEL 11

ITA 13

aggregate 4112

Semantics 4113

The operator aggregate takes as input a Dataset and returns a new Dataset with the data aggregated based on 4114

the rules and Boolean conditions specified in the hierarchical ruleset. 4115

124

 4116

Syntax 4117

aggregate (ds, hr , { [total | partial] } , { [return aggregates | return all data points] }); 4118

 4119

Parameters 4120

ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as numeric}+ 4121

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 4122

 4123

 ds – is the input Dataset to aggregate. 4124

 hr – is the hierarchical ruleset (see define hierarchical ruleset) where the rules and the conditions to 4125

perform the aggregate operation are defined. 4126

 total – a keyword to specify that the aggregation is performed only when all the elements in the right-hand 4127

elements of the aggregation conditions in vr are not NULL (default behaviour). 4128

 partial – a keyword to specify that the aggregation is performed when at least one element of the right-hand 4129

side of the aggregation conditions in vr is not NULL and, in this case, all the NULLs are treated as zero (that 4130

is, ignored in the summation). 4131

 return aggregates – a keyword to specify that the output Dataset contains only the data points resulting from 4132

aggregations (default behaviour). 4133

 return all data points – a keyword to specify that the output Dataset contains data points resulting from 4134

aggregations as well as the data points of the input Dataset ds. 4135

 4136

Constraints 4137

 ds must have at least one numeric Measure. 4138

 hr must be defined for calculation purposes (hence following the respective constraints). 4139

 4140

Returns 4141

A Dataset with all the Identifier and Measure Components of ds, with the data aggregated on the basis of the 4142

rules and Boolean conditions specified in the hierarchical (vertical) Ruleset hr. 4143

 4144

Semantic specification 4145

The aggregate operator takes as input a Dataset, with at least a numeric Measure Component, and a hierarchical 4146

ruleset and returns a new Dataset, with the data aggregated based on the rules and Boolean conditions specified 4147

in the ruleset. 4148

The operator computes the numeric Measure Components associated to the aggregates defined in the left side of 4149

the rules in hr. The aggregation is prerformed computing all aggregates in a single operation according to a 4150

bottom-up calculation. 4151

The rules are executed in an appropriate order. In practice, if a rule in the ruleset depends on another one, the 4152

latter is evaluated before, and its output exploited by the former. The functional constraints ensure that each 4153

aggregate is calculated once. 4154

By default, the aggregation is performed only when all element of the right side of an aggregation rule in the 4155

hierarchical (vertical) Ruleset of input hr are not NULL in the input Dataset ds (total clause). By specifying the 4156

partial clause the aggregation is performed either if there are NULL values. 4157

The Dataset’s data points that are not implied in the aggregation are not shown in the resulting Dataset, 4158

essentially the data points containing values that are not involved in the aggregation will be lost (return 4159

aggregates clause). Specifying the return all data points clause, the returned Dataset will contain also the 4160

disaggregated data points of the input Dataset ds. 4161

 4162

Examples 4163

In this example an aggregation is performed using the following hierarchical ruleset. 4164

 4165

define hierarchical ruleset hr_ref_area (condition (time) rule (ref_area)) is 4166

EU15 = AT + BE + LU + DE + ES + FI + FR + EL + IE + IT + NL + PT + DK + UK + SE ; 4167

EU25 = EU15 + CY + CZ + ES + HU + LT + LV + MT + PL + SK + SI ; 4168

EU27 = EU25 + BG + RO ; 4169

EU28 = EU27 + HR ; 4170

when time between 1995 and 2003 then EU = EU15 ; 4171

when time between 2004 and 2005 then EU = EU25 ; 4172

when time between 2006 and 2012 then EU = EU27 ; 4173

when time >= 2013 then EU = EU28 4174

EEA15 = EU15 + IS + NO + LI ; 4175

125

EEA25 = EU25 + IS + NO + LI ; 4176

EEA27 = EU27 + IS + NO + LI ; 4177

EEA30 = EU27 + IS + NO + LI ; 4178

when time between 1995 and 2003 then EEA = EEA15 ; 4179

when time between 2004 and 2005 then EEA = EEA25 ; 4180

when time between 2006 and 2012 then EEA = EEA27 ; 4181

when time >= 2013 then EEA = EEA30 ; 4182

end hierarchical ruleset 4183

 4184

The Dataset to aggregate: 4185
 4186

ds_bop

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20 D

2010 BG CA 1 P

2010 RO CA 1 P

2010 EU27 CA 25 P

2010 HR CA 2 P

 4187

1) ds_2 := aggregate(ds_bop, hr_ref_area); 4188
 4189

ds_2

TIME REF_AREA PARTNER OBS_VALUE

2010 EU27 CA 22

2010 EU28 CA 27

 4190

2) ds_2 := aggregate(ds_bop, hr_ref_area, return all data points); 4191

 4192

ds_2

TIME REF_AREA PARTNER OBS_VALUE

2010 EU25 CA 20

2010 BG CA 1

2010 RO CA 1

2010 EU27 CA 22

2010 HR CA 2

 4193

3) In this example an aggregation is performed using the following hierarchical ruleset. 4194

 4195

define hierarchical ruleset hr_ref_area (condition (time) rule (ref_area)) is 4196

when time = 2010 then EU= IT+BE+LU; 4197

when time = 2010 the AS=IN+CH; 4198

end hierarchical ruleset 4199

 4200

ds_2 := aggregate(ds_bop, hr_ref_area); 4201

 4202

126

ds_bop

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 IT CA 2 P

2010 BE CA 1 P

2010 LU CA 1 P

2010 IN CA 3 D

2010 CH 5 D

 4203

ds_2

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU CA 4 P

2010 AS CA 8 D

 4204

4) In this example the Italian northern population has been obtained summing the population of nord_east and 4205

nord-west (rule 1) and summing the population of all the regions being part of the nord (rule 2). 4206

Hierarchical (vertical) Ruleset: 4207

define hierarchical ruleset hr_IT_north_pop (rule (ref_area)) is 4208

ITCD = ITC + ITD; 4209

ITCD =ITC1+ITC2+ITC3+ITC4+ITD1+ITD2 4210

 end hierarchical ruleset 4211

 4212

ds_2 := aggregate(IT_nord_bop, hr_IT_nord_pop); 4213

 4214

IT_nord_pop

TIME REF_AREA OBS_VALUE

2015 ITCD 27799803

2015 ITC 16138643

2015 ITC1 4424467

2015 ITC2 128298

2015 ITC3 1583263

2015 ITC4 10002615

2015 ITD 11661160

2015 ITD1 518518

2015 ITD2 537416

2015 ITD3 4927596

2015 ITD4 1227122

2015 ITD5 4450508

 4215

ds_2

TIME REF_AREA OBS_VALUE

2015 ITCD 27799803

 4216

127

VTL-ML - Statistical functions 4217

Aggregate functions 4218

Semantics 4219

VTL includes a set of statistical functions, that can be used to aggregate data. 4220

 4221

Syntax 4222

aggregateFunction (ds {, other_parameters }) { [group by | along] (idComp {, idComp }*) } 4223

 4224

Parameters 4225

ds : dataset {identifier <IDENT> as scalar-type; }+ 4226

[{measure <IDENT> as numeric}+ | {attribute <IDENT> as numeric}+] 4227

{measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 4228

idComp : component-ref 4229

 4230

 aggregateFunction – is one of the aggregate functions described in the table below. 4231

 other_parameters – specific parameters additional to ds, related to the function used (see table List of 4232

aggregate functions) 4233

 ds – is the input Dataset to which the aggregate function is applied. 4234

 group by – represents the VTL groups data composed by the Identifier Components specified as idComp. 4235

 along – represents the VTL groups data composed by the Identifier Components of ds that are not specified 4236

as idComp. With the along clause the same VTL program can be reused for all Datasets that contain the 4237

Identifier Components specified in the along clause. 4238

 idComp – a component identifier of ds 4239

 4240

Constraints 4241

 If ds has more than one Measure Component, then a Measure or attribute must be defined using the 4242

membership operator. 4243

 idComp must be a valid reference to an existing Identifier Component owned by ds. 4244

 4245

Returns 4246

A Dataset having the Identifier Components of ds specified in the group by clause (or not specified in the along 4247

clause) and the Measure Components (or the implicit Measure Component deduced in a mono-Measure Dataset), 4248

with the data aggregated on the basis of the specific aggregate function and the partitions defined by group by or 4249

along. 4250

 4251

Semantic specification 4252

An aggregate function groups together, evaluating a value that is specific for each aggregate function, the values 4253

of multiple data points having the same values of the specified Identifier Components idComp. 4254

The operator takes as input a Dataset, a Measure Component (specified with the membership operator on ds, or 4255

implicitly selected if ds has only one Measure component) on which the aggregate function will compute the 4256

result, and a sequence of Identifier Components idComp that will be used for the partitioning (the aggregate 4257

function is then applied separately for each partition). It returns another Dataset having the Identifier 4258

Components of ds, specified in the group by or along, and the Measure Component used for the aggregation. The 4259

other Identifier Components are removed from the resulting Dataset. 4260

If neither a group by or along clause is specified, then the aggregate function returns a single Data Point that has 4261

zero Identifier Components and only one Measure Component that is the one specified for the aggregation with 4262

the membership operator (or deduced from ds). 4263

Most of the aggregate functions can be also used as analytic functions (with a different syntax): See analytic 4264

functions. 4265
 4266

 4267

 4268

128

List of aggregate functions

Aggregate function Description

avg (ds_1) average value of the not null values of ds_1

corr (ds_1, ds_2) Coefficient of correlation of (ds_1, ds_2)

covar_pop (ds_1, ds_2) population covariance of (ds_1, ds_2)

covar_samp (ds_1, ds_2) sample covariance of (ds_1, ds_2)

count (ds_1) number of non-empty data points of ds_1

median (ds_1) median value of the not null values of ds_1

min (ds_1) minimum value of ds_1

max (ds_1) maximum value of ds_1

percentile_cont (ds_1, constant) order
by expression [asc | desc]

inverse distribution function that assumes a continuous distribution
model

percentile_disc (ds_1 , constant) order
by expression [asc | desc]

inverse distribution function that assumes a discrete distribution
model

rank (ds_1) rank of a value in a group of values

regr_slope (ds_1, ds_2) linear regression (slope of the line)

regr_intercept (ds_1, ds_2) linear regression (y-intercept)

regr_count (ds_1, ds_2) linear regression (count non-null number pairs)

regr_r2 (ds_1, ds_2) linear regression (coefficient of determination)

regr_avgx (ds_1, ds_2) linear regression (average of independent variable ds_2)

regr_avgy (ds_1, ds_2) linear regression (average of dependent variable ds_1)

regr_sxx (ds_1, ds_2) linear regression (auxiliary function)

regr_syy (ds_1, ds_2) linear regression (auxiliary function)

regr_sxy (ds_1, ds_2) linear regression (auxiliary function)

stddev_pop (ds_1) population standard deviation of ds_1

stddev (ds_1) standard deviation of ds_1

sum (ds_1) sum of values of ds_1

var_pop (ds_1) population variance of ds_1

var_samp (ds_1) sample variance of ds_1

variance (ds_1) variance of ds_1

129

 4269

Examples 4270

1) ds_agg := avg (ds_bop.obs_value) group by time 4271

 4272

ds_bop

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20

2010 BG CA 1

2010 RO CA 1

2010 EU27 CA 23

2011 EU25 CA 20 P

2011 BG CA 1 P

2011 RO CA -1 P

2011 EU27 CA 20 P

2012 LU CA 40 P

2012 EU25 CA 30 P

 4273

ds_agg

TIME OBS_VALUE

2010 11.25

2011 11.25

2012 30

 4274

Note: the example above can be rewritten equivalently in the following forms: 4275

ds_agg := avg (ds_bop) along ref_area, partner 4276

ds_agg := avg (bop) group by time 4277

 4278

2) ds_agg := avg (ds_bop.obs_value) group by time, ref_area 4279

 4280

ds_agg

TIME REF_AREA OBS_VALUE

2010 EU25 20

2010 BG 1

2010 RO 1

2010 EU27 23

2011 EU25 20

2011 BG 1

2011 RO -1

2011 EU27 20

2012 LU 40

2012 EU25 30

 4281

 4282

 4283

130

3) ds_agg := avg (ds_bop) 4284

 4285

ds_agg

OBS_VALUE

15.5

 4286

4) ds_agg := max (ds_bop.obs_value) as max_value, min (ds_bop.obs_value) as min_value group by time 4287

 4288

ds_agg

TIME REF_AREA MIN_VALUE MAX_VALUE

2010 EU25 23 1

2011 RO 20 -1

2012 EU25 40 30

 4289

Time aggregate functions 4290

Semantics 4291

The time aggregate functions represent a set of statistical functions used to aggregate data on the time 4292

dimension. 4293

 4294

Syntax 4295

aggregateFunction (ds 4296

, freqFrom 4297

, freqTo 4298

{ , minPeriods } 4299

{ , timePeriodName } 4300

{ , timeFormatFrom } 4301

{ , timeFormatTo } 4302

) 4303

 4304

Parameters 4305

ds : dataset {identifier <IDENT> as scalar-type}+ 4306

[{measure <IDENT> as numeric}+ | {attribute <IDENT> as numeric}+] 4307

{measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 4308

 4309

 aggregateFunction - is one of the aggregate functions described in the paragraph "Aggregate functions". 4310

 ds – is the input Dataset to which the aggregate function is applied. 4311

 freqFrom – is the frequency from which the data will be aggregated 4312

 freqTo – is the frequency to which the data will be aggregated. freqTo must be a lower frequency than 4313

freqFrom 4314

 minPeriods – is an Integer number describing the minimum number of values required to perform the time 4315

based aggregation. If minPeriods is omitted then the aggregation is performed only if all the periods needed 4316

for the aggregation are present. 4317

 timePeriodName – is the name of the time period component of the Dataset. Default name is "time". 4318

 timeFormatFrom – is the format of the time period relative to freqFrom. It must be specified only when 4319

freqFrom is C (custom). 4320

 timeFormatTo – is the format of the time period relative to freqTo. It must be specified only when freqTo is C 4321

(custom). 4322

 4323

Constraints 4324

 If ds has more than one Measure Component, then a Measure or attribute must be specified using the 4325

membership operator on ds. 4326

 timePeriodName is the name of an Identifier Component owned by ds. 4327

131

 freqFrom must be a higher frequency compared with freqTo, e.g. freqFrom = “M” and freqTo = “Q” is correct, 4328

while the reverse is not correct. 4329

 4330

Possible values for freqFrom and freqTo: 4331

Frequency symbol Frequency

A Annual

S Semestrial

Q Quarterly

M Monthly

W Weekly

D Daily

 4332

Returns 4333

A Dataset with the Identifier Components of ds and a Measure Component containing data of ds aggregated from 4334

freqFrom to freqTo. All aggregate functions can be used. 4335

 4336

Semantic specification 4337

The aggregateFunction first partitions the data set in groups of data having the frequency freqFrom, then the 4338

data are aggregated to obtain data aggregated having the frequency freqTo. 4339

Convert the data contained in ds and having the time format specified in freqFrom to the format specified in 4340

freqTo. If freqFrom and freqTo have different value then an aggregation could occur. 4341

 4342

Data in ds having the frequency different from freqFrom will not be involved by the operator and they will be 4343

discarded from the output Dataset. 4344

 4345

By default this operator computes the aggregated value only when the values of all sub-periods exist. 4346

To override this behaviour the user can specify a value for the optional argument minPeriods: this is a lower 4347

bound for the number of periods that must exist in order to produce the aggregation. This means that if the 4348

optional parameter minPeriods is present, then the aggregation can be performed either if the timeseries Dataset 4349

of input does not contain all the necessary DataPoints needed. 4350

 4351

Time format: 4352

Format Frequency Example Frequency Possible values

yyyy

yyyyA

A 2000 Annual yyyy = 1900, …, 9999

yyyySs

yyyy-Ss

S 2000S1 Semestrial s = 1, 2

yyyyQq Q 2000Q1 Quarterly q = 1, 2, 3, 4

yyyy-Qq Q 2000Q1 Quarterly q = 1, 2, 3, 4

yyyyMmm

yyyy-mm

M 2000M01 Monthly mm = 01, 02, …, 12

yyyyWnn W 2000D0101 Weekly nn = 01, 02, …, 52

yyyyMmmDdd

D 2000D0101 Daily mm = 01, 02, …, 12

dd = 01, 02, …, 31

yyyy-mm-dd N 2000-01-01 Date (frequency not
specified)

mm = 01, 02, …, 12

dd = 01, 02, …, 31

Combination of
yyyy, mm and dd

C 01-01-2000 Custom date format yyyy = 1900, …, 9999

mm = 01, 02, …, 12

dd = 01, 02, …, 31

 4353

 4354

132

Examples 4355

1) ds_abop := sum (bp_qbop) time_aggregate ("Q", "A") 4356

ds_qbop

TIME REF_AREA PARTNER OBS_VALUE

2010Q1 EU25 CA 20

2010Q2 EU25 CA 20

2010Q3 EU25 CA 20

2010Q4 EU25 CA 20

2010Q1 EU27 CA 30

2010Q2 EU27 CA 30

2010Q3 EU27 CA 30

2010Q4 EU27 CA 30

2010Q1 IT CA 10

2010Q2 IT CA 10

2010Q3 IT CA 10

2010Q4 IT CA 10

 4357

The above operation perform a frequency change from quarterly data, where the date has the pattern “YYYYQN”, 4358

to annual data with the pattern “YYYY”. Due to the pattern of the Component TIME, the frequency is deduced and 4359

the frequency_name parameter can be omitted. 4360

 4361

ds_abop

TIME REF_AREA PARTNER OBS_VALUE

2010 EU25 CA 80

2011 EU27 CA 120

2010 IT CA 40

 4362

ds_1

DATE VALUE

1939-01-01 4400.0

1939-02-01 4400.0

1939-03-01 10600.0

1939-04-01 6800.0

 4363

2) ds_2 := sum (ds_1, "M", "A", 4, date, "yyyy-mm-dd", "yyyy-mm-dd") 4364

 4365

Due to the value of minPeriods (4), the annual aggregation is performed when at least 4 data points exist 4366

relative to the 1939’s months. 4367

ds_2

DATE VALUE

1939-01-01 26200.0

 4368

133

 4369

Analytic functions 4370

Semantics 4371

The Analytic functions allow to specify operations to be applied on groups of Data Points within a Dataset. The 4372

Data Points of the Dataset are first partitioned into groups. Then, in each group, each Data Point is combined with 4373

(some of) the others in a customizable way, and for each input Data Point, an output one is produced. 4374

Groups are determined by a list of names of Identifier Components, in such a way that Data Points having the 4375

same values for those Identifiers are assigned to the same group. 4376

A sliding window is then declared to define for each input Data Point in the window (current Data Point), how 4377

to produce the corresponding Data Point in the output, by combining its Measure Components with the ones of 4378

the other Data Points in the same window. For each window and for each Data Point, the sliding window spans 4379

the Data Points to be combined and while moving from the first to the last Data Point in the group, produces the 4380

output Data Points. In other words, for each group, the sliding window determines the moving range of Data 4381

Points to be combined for each input one. At one extreme, the sliding window can span one single Data Point at a 4382

time, implying that Data Points are not combined with the others, producing independent values of the Measures 4383

for all the input Data Points; at the other extreme, the sliding window spans the entire window, producing the 4384

same value for all the Data Points. 4385

The size of the sliding window is either based on the number Data Points to be included or the specification of a 4386

numerical interval. 4387

Finally, there are a number of possible functions that can be applied to combine the Data Points within a sliding 4388

window, such as the average value within a sliding window, the cumulative sum, and so on. 4389

 4390

Syntax 4391

analyticFunction (ds {, extraParams }) over ({ partitionBy } { orderBy } { windowingClause }) 4392

partitionBy ::= partition by c_p { , c_p } * 4393

orderBy ::= order by c_o { , c_o } * { [asc | desc] } 4394

windowingClause ::= 4395

[rows | range] 4396

 between 4397

 [num preceding |num following | current row | unbounded preceding | unbounded following] 4398

and 4399

 [num preceding |num following | current row | unbounded preceding | unbounded following] 4400

 4401

Parameters 4402

 ds – is the input Dataset. 4403

 extraParams – additional parameters (depending on the analytic function). 4404

 partitionBy – partitions ds into groups based on the value of one or more Identifier Components. If omitted, 4405

the function treats all rows of the Dataset as a single partition. 4406

 c_p – are valid Identifier Components of ds used for the partitioning expressed by partitionBy. 4407

 orderBy - specifies how Data Points are ordered within each windows (asc is the default). 4408

 c_o – are references to valid Components on which the sort is performed within the respective pre-calculated 4409

windows. 4410

 The keywords rows and range define for each row a "sliding window" (set of rows) used for calculating the 4411

result of the analytic function. The analytic function is then applied to all the Data Points in the sliding 4412

window. The sliding window "slides" through the windows from top to bottom. In particular: 4413

o rows – defines a sliding window using a specified number of preceding and following data points 4414

relative to the current data point (according to the orderBy clause) 4415

o range – defines a sliding window as a numerical offset relative to the current data point (according to 4416

the orderBy clause) 4417

 unbounded preceding - indicates that the sliding window starts at the first Data Point of the window. 4418

 unbounded following - indicates that the sliding window ends at the last Data Point of the window. 4419

 current row – specifies that the window starts or ends at the current Data Point. 4420

 preceding – specifies the start point of the sliding window as number of data points preceding the current 4421

data point. 4422

 following – specifies the end point of the sliding window as number of data points following the current data 4423

point. 4424

 4425

134

Constraints 4426

 ds must have at least one Measure Component (as explicated in the syntax). 4427

 Analytic functions cannot be nested. 4428

Returns 4429

A Dataset having the same Identifier, Measure and Attribute Components as the input one, where the Measure 4430

Components take values depending on the definition of windows, sliding windows and the specific analytic 4431

function. 4432

 4433

Semantic specification 4434

The operator takes a Dataset as input, optionally the specification for the partitioning and the internal order of 4435

the windows; optionally, it also takes as input the information to define a sliding window. If omitted, there is one 4436

single sliding window, coinciding with each of the windows. The operator returns a Dataset with the same 4437

Identifier Components, Measure Components and Attribute Components as ds, where the value of all the 4438

Measure Components take values that depend on the specific analytic function, the partitioning criteria and the 4439

Data Points in each sliding window. 4440

The functions that can be used as analytic functions are the aggregate functions described in the previous 4441

chapter and some specific functions described below. 4442

 4443

first_value 4444

 4445

Semantics 4446

For each sliding window and for each Measure Component, the operator calculates the first value according to 4447

the specified order. 4448

 4449

Examples 4450

 4451

ds := first_value (ds_bop) over (partition by ref_area , partner order by time) 4452

 4453

ds_bop

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 3

LU CA 1994 4

LU CA 1996 10

LU CA 1997 20

LU US 1993 400

LU US 1996 500

LU US 1997 600

LU WORLD 1994 1000

 4454

ds

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 3

LU CA 1994 3

LU CA 1996 3

LU CA 1997 3

LU US 1993 400

LU US 1996 400

LU US 1997 400

LU WORLD 1994 1 000

 4455

 4456

135

lag lead 4457

 4458

Semantics 4459

The operator swaps the values of all Measure Components of the current Data Point with the ones of the 4460

corresponding Measure Components of the Data Point that is referred to by the offset. If the offset exceeds the 4461

boundaries of the sliding window, the default value is used for the swap. If omitted, 0 is implied as the default. 4462

 4463

Parameters 4464

This analytic function takes as input the following extra parameters: 4465

 offset – it allows to individuate a Data Point by specifying the relative position from the current Data Point as 4466

an offset, negative if moving towards from the beginning to the end of the define ordering, positive if moving 4467

from the end to the beginning of the defined order. 4468

 default - the value that a Data Point has to take if the Data Point, whose position is calculated using the offset, 4469

is NULL. 4470

 4471

Examples 4472

 4473

ds := lag (ds_bop , -1, -100) over (partition by ref_area , partner order by time) 4474

 4475

ds_bop

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 3

LU CA 1994 4

LU CA 1996 10

LU CA 1997 20

LU US 1993 400

LU US 1996 500

LU US 1997 600

LU WORLD 1994 1000

 4476

ds

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 -100

LU CA 1994 3

LU CA 1996 4

LU CA 1997 10

LU US 1993 -100

LU US 1996 400

LU US 1997 500

LU WORLD 1994 -100

 4477

last_value 4478

 4479

Semantics 4480

For each sliding window and for each Measure Component, the operator calculates the first value according to 4481

the specified order. 4482

 4483

Examples 4484

 4485

ds := last_value (ds_bop) over (partition by ref_area , partner order by time) 4486

136

 4487

ds_bop

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 3

LU CA 1994 4

LU CA 1996 10

LU CA 1997 20

LU US 1993 400

LU US 1996 500

LU US 1997 600

LU WORLD 1994 1000

 4488

ds

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 20

LU CA 1994 20

LU CA 1996 20

LU CA 1997 20

LU US 1993 600

LU US 1996 600

LU US 1997 600

LU WORLD 1994 1 000

 4489

In spite of the general syntax for analytic functions, the following ones do not allow the definition of any sliding 4490

window, that is, it always coincide with the entire window. 4491
 4492

ntile 4493

 4494

Semantics 4495

For each Data Point of each window, the operator produces a Data Point where the values of the numeric 4496

Measures Components are set to a unique window number. The values of the non-numeric Measure Components 4497

are just copied. For each windows a unique number (incrementally generated, starting with 1) is assigned. Note 4498

that the order by clause of analytic functions operates within each window; therefore, the windows are not 4499

mutually ordered. 4500

 4501

Examples 4502

 4503

ds := ntile (ds_bop) over (partition by REF_AREA, partner order by time) 4504
 4505

ds_bop

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 3

LU CA 1994 4

LU CA 1996 10

LU CA 1997 20

LU US 1993 400

137

LU US 1996 500

LU US 1997 600

LU WORLD 1994 1000

 4506

ds

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 1

LU CA 1994 1

LU CA 1996 1

LU CA 1997 1

LU US 1993 2

LU US 1996 2

LU US 1997 2

LU WORLD 1994 3

 4507

percent_rank 4508

 4509

Semantics 4510

The operator calculates the percent rank of each Data Point with respect to the other Data Points of the same 4511

window. For each Data Point and for each numeric Measure Component, the percent rank is calculated as the 4512

rank of that Data Point minus one divided by the number of total Data Points in the partition. Data Points with 4513

equal values for the ranking criteria receive the same percent rank. The values of each numeric Measure 4514

Component are assigned to the respective percent rank. All the values of the non-numeric Measure Components 4515

are just copied. 4516

Examples 4517

ds := percent_rank (ds_bop) over (partition by ref_area, partner order by time) 4518

 4519

ds_bop

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 3

LU CA 1994 4

LU CA 1996 10

LU CA 1997 20

LU US 1993 400

LU US 1996 500

LU US 1997 600

LU WORLD 1994 1000

 4520

ds

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 0

LU CA 1994 0.25

LU CA 1996 0.5

LU CA 1997 0.75

138

LU US 1993 0

LU US 1996 0.33

LU US 1997 0.67

LU WORLD 1994 0

 4521

rank 4522

 4523

Semantics 4524

The operator calculates the rank of each Data Point with respect to the other Data Points in the same window. 4525

For each Data Point and for each numeric Measure Component, the rank is calculated as the relative position of 4526

the Data Point in the window. The values of each numeric Measure Component is assigned to the respective rank. 4527

All the values of the non-numeric Measure Components are just copied. 4528

Examples 4529

ds_1 := rank (ds_bop) over (partition by ref_area, partner order by time) 4530

 4531

ds_bop

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 3

LU CA 1994 4

LU CA 1996 10

LU CA 1997 20

LU US 1993 400

LU US 1996 500

LU US 1997 600

LU WORLD 1994 1000

 4532

ds_1

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 1

LU CA 1994 2

LU CA 1996 3

LU CA 1997 4

LU US 1993 1

LU US 1996 2

LU US 1997 3

LU WORLD 1994 1

 4533

ratio_to_report 4534

 4535

Semantics 4536

The operator calculates the percentage amount of the value of each Data Point in the respective window (ratio to 4537

report). 4538

For each Data Point and for each numeric Measure Component, the ratio to report is calculated as the percentage 4539

amount of the value of Measure Component in the sum of the values for the same Measure Component of the 4540

other Data Points in the window. The values of each numeric Measure Component is assigned to the respective 4541

ratio to report. All the values of the non-numeric Measure Components are just copied. 4542

139

Examples 4543

ds_1 := ratio_to_report (ds_bop) over (partition by REF_AREA, partner) 4544

 4545

ds_bop

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 3

LU CA 1994 4

LU CA 1996 10

LU CA 1997 20

LU US 1993 400

LU US 1996 500

LU US 1997 600

LU WORLD 1994 1000

 4546

ds_1

REF_AREA PARTNER TIME OBS_VALUE

LU CA 1993 0.08108

LU CA 1994 0.10810

LU CA 1996 0.27027

LU CA 1997 0.54054

LU US 1993 0.26667

LU US 1996 0.33333

LU US 1997 0.40000

LU WORLD 1994 0.10000

 4547

hierarchy 4548

Semantics 4549

VTL foresees the existence of set relations among Code Items in Code List. 4550

Many Enumerated Value Domains have an intrinsic Boolean algebraic structure, in the sense that a Boolean 4551

algebra can be defined on the respective Code Items. 4552

In general, a Boolean algebra is an algebraic structure (elements and operators having some properties) that 4553

summarizes the properties of set operators (union, intersection, complement) and logical operators (or, and, not). 4554

Elements of a Boolean Value Domain can be combined with the elementary set operators3; e.g. the item C is the 4555

union of the items D and E; the item K is the complement of S with respect to J (so the elements in J that are not 4556

in S), the item A is the intersection of B and C and so on. 4557

Only considering the set union, there are two possible organizations for hierarchical Code Lists: classifications 4558

and free hierarchies. 4559

In classifications, every element is uniquely classified by a single partition, so that the overall structure is a tree 4560

and, consequently, every Code Item can be given a specific level. An example is the usual geographical 4561

classification of the world into continents, each partitioned into nations. 4562

3
 Here we refer to elementary set operations and not to any operator of the language.

140

 4563
Figure 1 - example of hierarchical Code List 4564

 4565

In free hierarchies each item can be partitioned according to multiple criteria; in turn, every element can be 4566

used to compose multiple other elements. The overall structure is not a tree and isolated Items can be present. 4567

An example is the hierarchy of European countries, where Belgium, Holland and Luxembourg contribute to the 4568

“European Countries” Code Item and to the “Benelux” Code Item. 4569

 4570

 4571
 4572

Figure 2 - Example of free hierarchy 4573

More sophisticated hierarchical organizations can indeed exist if intersection and complement set operators are 4574

also considered. For example the element “Benelux” could also be defined as the complement of the European 4575

Union with respect to all the countries except Holland, Belgium and Luxembourg. 4576

Therefore we would have: 4577

BENELUX = EU – (ITALY AUSTRIA …) 4578

In order to support multiple classifications of Code Items in Code Lists and allow for the adoption of all the set 4579

operators, we introduce two concepts hierarchical aggregations and mappings (that will be used in the 4580

hierarchy operator). 4581

A hierarchical aggregation is a set of mappings, each transforming a Code Item into another Code Item. All the 4582

mappings within a hierarchical aggregation associate Code Items of the same Code List with Code Items of a 4583

single Code List. 4584

Hierarchical aggregations and mappings can be easily expressed in tabular form and referred to in the language 4585

(in hierarchy operator) by an identifier (hierarchyName). However, there is also an inline syntactical form. 4586

Suppose we want to express the hierarchical relationship BENELUX = Belgium Holland Luxembourg. There 4587

will be a hierarchical aggregation Benelux_aggr, with the following mappings: 4588

 4589

HIERARCHY
NAME

MAPS FROM MAPS
TO

START
DATE

END
DATE

SIGN LEVEL OUTPUT

Benelux_aggr Belgium Benelux …. … + 1 true

Benelux_aggr Holland Benelux … … + 1 true

Benelux_aggr Luxembourg Benelux … … + 1 true

141

 4590

It maps each component item into the compound one. 4591

Each mapping has a Sign. It specifies if the contribution of the MAPS FROM Code Item in the composition is 4592

positive (UNION) or negative (COMPLEMENT). Notice that there is not a particular convention to represent 4593

intersection, as it can be obtained with an appropriate composition of UNION and COMPLEMENT. 4594

For instance, if we want to define in the element EuropeWithoutItaly, a possible definition could be the one 4595

complementing Italy, with respect to the entire Europe (i.e. subtracting Italy from Europe), as shown in the 4596

following table: 4597

 4598

HIERARCHY
NAME

MAPS
FROM

MAPS
TO

START
DATE

END
DATE

SIGN LEVEL OUTPUT

Eu_no_Italy_aggr Europe EuropeWith

outItaly

…. … + 1 true

Eu_no_Italy_aggr Italy EuropeWith

outItaly

… … - 1 true

 4599

Moreover, mappings are divided into levels, in the sense that a complete tree can be embedded into one 4600

hierarchy. The OUTPUT property, for each MAPS TO, indicates if the value must be preserved in the output or is 4601

only to be used for aggregations at a higher level. 4602

For instance, suppose we want to express the hierarchical relationship in Figure2, there will be a hierarchy 4603

World_aggr, with the following correspondences: 4604

 4605

HIERARCHY
NAME

MAPS FROM MAPS
TO

START
DATE

END
DATE

SIGN LEVEL OUTPUT

World_aggr Italy Europe …. … + 1 false

World_aggr France Europe … … + 1 false

World_aggr Luxembourg Europe … … + 1 false

World_aggr … Europe + 1 false

World_aggr Asia World + 2 true

World_aggr Europe World + 2 true

World_aggr America World + 2 true

World_aggr Oceania World + 2 true

World_aggr Africa World + 2 true

 4606

Output false for LEVEL 1, indicates that the aggregations into Europe (and into the other countries) are only 4607

functional to LEVEL 2 and the MAPS TO values with false will not be in the output. 4608

Summarizing, the set of mappings within a hierarchy has to be interpreted as follows. 4609

For every level, from the lowest to the highest, each MAPS TO Code Item is the set difference between the UNION 4610

of all the corresponding MAPS FROM Code Items with positive SIGN and the UNION of all the corresponding 4611

MAPS FROM Code Items with the negative SIGN. 4612

Rules inherently represent hierarchies in Code Lists, but, at the same time, only refer to Code Items. Thus, can be 4613

applied on different Identifier Components referring to different Code Lists. 4614

 4615

Syntax 4616

hierarchy 4617

({dataset=} ds_1, {component=} comp, 4618

[4619

{hierarchy_name=} hierarchyname | 4620

({ (({from=} maps_from, {level=} level, {sign=} [+|-]) 4621

{,({from=} maps_from, {level=} level, {sign=} [+|-])}*) 4622

to {to=} maps_to}+) as hierarchyname 4623

], 4624

142

{isFilter=} isFilter 4625

{, {aggregation=} [sum|prod] } 4626

) 4627

 4628

Parameters 4629

ds_1 : Dataset<?,MeasureComponent<Numeric>+> 4630

comp : Identifier Component 4631

hierarchyname : string 4632

maps_from, maps_to : Constant 4633

level : integer 4634

hierarchyname : string 4635

isFilter : boolean 4636

 4637

ds_1 – the Dataset to be aggregated 4638

comp – the IdentifierComponent to aggregate upon 4639

hierarchyname – the name of the hierarchical aggregation of the information model, which can be optionally 4640

replaced by an inline specification of the rule 4641

maps_from – an input value in an inline aggregation rule 4642

level – the level of hierarchy of a correspondence in an aggregation rule 4643

sign – the sign of the contribution of a maps_from value in an aggregation rule 4644

maps_to – an output value in an inline aggregation rule 4645

isFilter – if the aggregation must be interpreted as a filter (excluding non matching records) 4646

 4647

Constraints 4648

 hierarchyname denotes an hierarchical aggregation either externally configured in a table or embedded in 4649

the operator with the inline notation (static). 4650

 level > 0 (static). 4651

 All the MeasureComponents of ds_1 must be Numeric (static). 4652

 4653

Semantic specification 4654

It applies a hierarchical aggregation with name hierarchyname on an Identifier Component comp in a Dataset 4655

ds_1, aggregating all the Measure Components according to an aggregation function (algebraic sum or product). 4656

hierarchyname can be the identifier of an aggregation that is externally configured in a table, with an associated 4657

set of mappings, each with a sign and a level. 4658

Alternatively, a hierarchical aggregation can be expressed in an inline fashion, where maps_from constants are 4659

mapped into maps_to ones in the specific level and sign. 4660

For the given aggregation, for each level, all the mappings are considered and orderly applied with the following 4661

logic. 4662

For each value of the IdentifierComponent of all the records of the considered Dataset, if the value is present in 4663

maps_from for any mapping, it is turned into the respective maps_to value; if the value is not present in 4664

maps_from for any correspondence, the entire record is discarded if isFilter is TRUE, the original value is 4665

preserved if isFilter is false. 4666

Aggregations are typically hierarchical, in the sense that they map many maps_from values into fewer maps_to 4667

values: often, multiple component Code Items collapse into the same compound Code Item. 4668

Therefore, at this stage, there may be multiple records having the same values for all the IdentifierComponents, as 4669

the differentiating ones have been aggregated into the same one. 4670

The records having the same value for all the IdentifierComponents are aggregated by algebraic sum (sum) or 4671

product (prod) of their MeasureComponents. If the aggregation function is omitted, sum is implied. 4672

Sum implies that the MeasureComponents have to be algebraically summed, considered with positive or negative 4673

sign depending on the Sign of the used mapping. 4674

Prod implies that the MeasureComponents have to be multiplied, considered with -1 exponent when the negative 4675

Sign is used in the mapping. 4676

Notice that the use of prod as aggregation function is meaningful only when the IdentifierComponent is a measure 4677

dimension. 4678

Hierarchies and measure dimensions 4679

As it is well known, an IdentifierComponent in a Dataset can play the role of measure dimension, meaning that the 4680

Dataset is indeed multi-measure, but represented as mono-measure with a further, measure-qualifying 4681

dimension. 4682

IdentifierComponents in hierarchy can also be a measure dimension, although in this case the aggregation 4683

inherently assumes a different meaning. 4684

143

In facts, Data Points with all coinciding IdentifierComponents, except for the measure dimension, are nothing but 4685

an expression of different measures for the same data point. An aggregation over the measure dimension is 4686

conceptually an operation involving the measures of the same Data Point (algebraic sum or multiplication). 4687

Hierarchies as transcodings 4688

The presented mapping method can be used intuitively to express a transcoding in a synthetic way. In this case, 4689

the involved Component value is mapped into another one, which is not hierarchically related with the first, but 4690

simply represents the same value expressed in another coding standard. 4691

Hierarchies as filters 4692

isFilter parameter in hierarchy allows choosing whether an input Data Point is to be kept in the output even if 4693

there are not mappings having the maps_from value corresponding to the Identifier Component of that Data 4694

Point. 4695

Indeed, this mechanism lends itself to the construction of reusable filters, independent of the specific Dataset 4696

and Identifier Component they are applied on. 4697

Such rules comprise a set of (XX, Y, …, ZZ) correspondences preserving the values X, Y and Z of the 4698

IdentifierComponents and filtering out the Data Points having a value for the IdentifierComponent different from 4699

X, Y or Z. 4700

 4701

Returns 4702

The aggregated Dataset 4703

 4704

Examples 4705

1) The expression: 4706

Income_by_country_and_nace_ISO := hierarchy(“Income_by_country_and_nace_UN”, GEO, un_to_ISO_aggr, false) 4707

or its equivalent inline form: 4708

Income_by_country_and_nace_ISO := hierarchy(“Income_by_country_and_nace_UN”, GEO, 4709

((“ITA”,1,+)) to “IT”, ((“ALB”,1,+)) to AL, ((“BEL”,1,+)) to “BE”) as un_to_ISO_aggr, false) 4710

 4711

Converts the values of the GEO Identifier Component from the United Nations 3-letter standard into the ISO 2- 4712

letter one. 4713

 4714

HIERARCHY
NAME

MAPS FROM MAPS
TO

START
DATE

END
DATE

SIGN LEVEL OUTPUT

un_to_ISO_aggr ITA IT …. … + 1 TRUE

un_to_ISO_aggr ALB AL … … + 1 TRUE

un_to_ISO_aggr BEL BE … … + 1 TRUE

 4715

2) The expression: 4716

Income_by_continent_and_nace := hierarchy(“Income_by_state_and_nace”, GEO, Continent_aggr, false) 4717

Takes as input the Dataset of the income, broken down by states and NACE and aggregates to continent level. 4718

The expression: 4719

 4720

HIERARCHY
NAME

MAPS FROM MAPS
TO

START
DATE

END
DATE

SIGN LEVEL OUTPUT

Continent_aggr Italy Europe …. … + 1 TRUE

Continent_aggr France Europe … … + 1 TRUE

Continent_aggr Luxembourg Europe … … + 1 TRUE

Continent_aggr … Europe + 1 TRUE

Continent_aggr China Asia + 1 TRUE

Continent_aggr India Asia + 1 TRUE

Continent_aggr USA America + 1 TRUE

Continent_aggr … … + 1 TRUE

144

 4721

Income_by_state_and_nace

GEO NACE VALUE

Italy IND 10

Italy TECH 20

France IND 31

France TECH 50

Spain IND 30

Spain TECH 15

China IND 250

China TECH 250

India IND 30

India TECH 100

Luxembourg IND 10

Luxembourg TECH 12

 4722

 4723

INCOME_BY_CONTINENT_AND_NACE

GEO NACE VALUE

Europe IND 81

Europe TECH 97

Asia IND 280

Asia TECH 359

 4724

3) The expression: 4725

Income_by_world_and_nace := hierarchy(“Income_by_state_and_nace”, GEO, World_aggr, false) 4726

Takes as input the Dataset of the income, broken down by states and NACE and aggregates to the 4727

world level. World_aggr is a 2 levels Rule. LEVEL 1 is only a temporary output and its MAPS TO 4728

Code Items do not appear in the final result. 4729

 4730

HIERARCHY
NAME

MAPS FROM MAPS
TO

START
DATE

END
DATE

SIGN LEVEL OUTPUT

World_aggr Italy Europe …. … + 1 false

World_aggr France Europe … … + 1 false

World_aggr Luxembourg Europe … … + 1 false

World_aggr … Europe + 1 false

World_aggr … Europe + 1 false

World_aggr China Asia + 1 false

World_aggr India Asia + 1 false

World_aggr USA America + 1 false

World_aggr Asia World + 2 true

145

World_aggr Europe World + 2 true

World_aggr America World + 2 true

World_aggr Oceania World + 2 true

World_aggr Africa World + 2 true

 4731

 4732

Income_by_state_and_nace

GEO NACE VALUE

Italy IND 10

Italy TECH 20

France IND 31

France TECH 50

Spain IND 30

Spain TECH 15

China IND 250

China TECH 250

India IND 30

India TECH 100

Luxembourg IND 10

Luxembourg TECH 12

 4733

 4734

Income_world

GEO NACE VALUE

WORLD IND 361

WORLD TECH 444

 4735

4) The expression: 4736

Income_world_and_nace_par := hierarchy(“Income_by_state_and_nace”, World_aggr_par, false) 4737

Or its equivalent inline version: 4738

Income_world_and_nace_par := hierarchy (Income_by_state_and_nace, GEO, 4739

((“Italy”,1,+),(”France”,1,+),(”Luxembourg”,1,+) to “Europe, 4740

((“China”,1,+),(”India”,1,+)) to “Asia”, 4741

((“USA”,1,+)) to “America, 4742

((“Asia”,2,+),(”Europe”,2,+),(”America”,2,+), 4743

(”Oceania”,2,+),(”Africa”,2,+)) to “World”) 4744

as World_aggr_par, 4745

false) 4746

Takes as input the Dataset of the income, broken down by states and NACE and aggregates to the World level. 4747

Differently from example 2, it preserves the first level in the output. 4748

 4749

HIERARCHY
NAME

MAPS FROM MAPS
TO

START
DATE

END
DATE

SIGN LEVEL OUTPUT

World_aggr_par Italy Europe …. … + 1 true

World_aggr_par France Europe … … + 1 true

146

World_aggr_par Luxembourg Europe … … + 1 true

World_aggr_par … Europe + 1 true

World_aggr_par … Europe + 1 true

World_aggr_par China Asia + 1 true

World_aggr_par India Asia + 1 true

World_aggr_par USA America + 1 true

World_aggr_par Asia World + 2 true

World_aggr_par Europe World + 2 true

World_aggr_par America World + 2 true

World_aggr_par Oceania World + 2 true

World_aggr_par Africa World + 2 true

 4750

 4751

Income_by_state_and_nace

GEO NACE VALUE

Italy IND 10

Italy TECH 20

France IND 31

France TECH 50

Spain IND 30

Spain TECH 15

China IND 250

China TECH 250

India IND 30

India TECH 100

Luxembourg IND 10

Luxembourg TECH 12

 4752

 4753

Income_world_and_nace_par

GEO NACE VALUE

World IND 361

World TECH 444

Europe IND 81

Europe TECH 97

Asia IND 280

Asia TECH 359

 4754

 4755

5) The expression: 4756

Italian_income_by_nace:= hierarchy(“Income_by_state_and_nace”, Italy_filter, true) 4757

147

Takes as input the Dataset of the income, broken down by states and NACE and filters out all the incomes that do 4758

not refer to Italy. 4759

HIERARCHY
NAME

MAPS FROM MAPS
TO

START
DATE

END
DATE

SIGN LEVEL OUTPUT

Italy_filter Italy Italy …. … + 1 TRUE

 4760

 4761

Income_by_state_and_nace

GEO NACE VALUE

Italy IND 10

Italy TECH 20

France IND 31

France TECH 50

Spain IND 30

Spain TECH 15

China IND 250

China TECH 250

India IND 30

India TECH 100

Luxembourg IND 10

Luxembourg TECH 12

 4762

 4763

Italian_income_by_nace

GEO NACE VALUE

Italy IND 10

Italy TECH 20

 4764

 4765

6) The expression: 4766

income_prod_2:= hierarchy(“Income_by_state_and_nace_mm”, GEO, mult_rule, false, prod) . 4767

Takes as input the Dataset of the income, broken down by states and NACE in a measure dimension form and 4768

aggregates by calculating INC2 / INC1 into INC. 4769

HIERARCHY
NAME

MAPS FROM MAPS
TO

START
DATE

END
DATE

SIGN LEVEL OUTPUT

Mult_measure INC1 INC …. … - 1 TRUE

Mult_measure INC2 INC …. … + 1 TRUE

 4770

Income_by_state_and_nace

GEO NACE MEASURE VALUE

Italy IND INC1 10

Italy IND INC2 20

Italy TECH INC1 20

148

Italy TECH INC2 40

France IND INC1 31

France IND INC2 61

France TECH INC1 50

France TECH INC2 100

China IND INC1 250

China IND INC2 500

China TECH INC1 250

China TECH INC1 500

India IND INC1 30

India IND INC2 60

India TECH INC1 100

India TECH INC2 200

 4771

 4772

Income_prod2

GEO NACE MEASURE VALUE

Italy IND INC 2

Italy TECH INC 2

France IND INC 2

France TECH INC 2

China IND INC 2

China TECH INC 2

India IND INC 2

India TECH INC2 2

 4773

 4774

149

VTL-ML - Data validation functions 4775

check 4776

 4777

check (with datapoint rulesets) 4778

Semantics 4779

This check operator applies one or more datapoint Ruleset on a Dataset. 4780

 4781

Syntax 4782

check (4783

ds , 4784

dpr+ 4785

{ , not valid | valid | all } 4786

{ , condition | measures } 4787

) 4788

Parameters 4789

ds : dataset-type 4790

 4791

 ds is the Dataset to check 4792

 dpr is a data point Ruleset 4793

 valid returns the valid data points of ds according to dpr 4794

 not valid returns the not valid data points of ds according to dpr (default) 4795

 all returns all data points of ds, independently of whether a specific rule of a Ruleset is respected or not 4796

 condition returns a Boolean Measure named CONDITION with true values for the Data Points that satisfy 4797

the a specific rule of a Ruleset and false otherwise 4798

 measures returns the original Measures and attributes of ds (default). The parameter mMasures cannot be 4799

used in combination with all. 4800

 4801

Constraints 4802

ds has exactly the variables that are defined in the signature of dpr. 4803

 4804

Returns 4805

It Returns a Dataset having the same identifiers as the input Dataset plus the RULE_ID identifier. The values of 4806

RULE_ID are the concatenation of the name of the Data Point ruleset applied (which is meaningful, since the 4807

operator can apply multiple rules to the same Dataset) and the name of the rule within the Ruleset. The 4808

Measures returned depend on the specified option: 4809

 With the condition option: returns a Dataset having all Identifier Components of ds, the Identifier Component 4810

RULE_ID, the Measure CONDITION with a Boolean value holding the outcome of the validation and the 4811

attributes ERRORMESSAGE and ERRORLEVEL. If ERRORMESSAGE and ERRORLEVEL are not specified in the 4812

datapoint (horizontal) rule the values of the related attributes will be NULL for all the data points . 4813

 With the measures option: returns a Dataset having all Identifier Components of ds, the Identifier RULE_ID, 4814

all the original Measures of ds and the attributes ERRORMESSAGE and ERRORLEVEL. If ERRORMESSAGE and 4815

ERRORLEVEL are not specified in the datapoint ruleset the values of the related attributes will be NULL for 4816

all the data points. 4817

The attributes of the Dataset will be: 4818

 ERRORMESSAGE, containing the error message specified in the rule 4819

 ERRORLEVEL, containing the error level (severity) specified in the rule 4820

150

If ERRORMESSAGE and ERRORLEVEL are not specified in the datapoint (horizontal) rule the values of the 4821

related attributes will be NULL for all the data points . 4822

If not valid is specified then check returns the data points of ds that do not satisfy at least a rule of dpr. If a data 4823

point in ds does not satisfy several data rules then several data points are returned, one for each rule that is not 4824

satisfied, with the associated rule_id, error message and error level. 4825

If valid is specified then check returns the data points of ds that do satisfy all rules of dpr. 4826

If all is specified then check returns all data points of ds. This option is normally used in combination with 4827

condition. 4828

See also the examples under define datapoint ruleset. 4829

 4830

Examples 4831

ds_labour

TIME PERSON_ID AGE EDU

2011 1 15 5

2011 2 20 3

2011 3 17 6

2011 4 19 4

2011 5 32 6

2011 6 17 14

2011 7 25 14

2011 8 18 10

2011 9 15 3

2011 10 40 5

 4832

Where the variable edu is coded using the following classification: 4833

edu descr

1 No title

2 Elementary License / Certificate of final evaluation

3 Middle School (or professional training)/ Diploma in Education secondary level

4 Professional qualifications Diploma of secondary school 2-3 years which does not allow
enrollment at the University

5 High School Diploma / Secondary Education degree higher than 4-5 years which allows
enrollment at the University

6 Academy Diploma (Fine Arts, Dramatic Arts National, National Dance), Higher Institute of
Artistic Industries, State Conservatory of Music

7 University degree of two / three years, direct school for special purposes, school equivalent
education

8 bachelor's degree (three years)

9 Specialist / Master's degree (two years)

10 4-6 years Degree: Bachelor's degree from the old system or graduate specialization / teaching
single-cycle

13 VET Certificate of professional qualification (operator) / Professional diploma IFP technical

151

(Three-year pathways / four-year education and training)

14 higher technical specialization certificate (HTE)

15 Higher Technical Diploma (ITS)

 4834

define datapoint ruleset dpr_ labour (AGE as a) (4835

rule_1 when a between 14 and 17 then edu <> 5 ; 4836

rule_2 when a between 16 and 19 then edu <> 6 ; 4837

rule_3 when a between 17 and 20 then edu <> 7 and edu <> 8 ; 4838

rule_4 when a between 18 and 21 then edu <> 10 ; 4839

rule_5 when a between 14 and 16 then edu <> 13 ; 4840

rule_6 when a between 16 and 18 then edu <> 14 ; 4841

rule_7 when a between 17 and 20 then edu <> 15 ; 4842

) ; 4843

 4844

ds_validation_report := check (ds_labour, dpr_labour, not valid, condition) 4845

 4846

ds_validation_report

TIME PERSON_ID RULE_ID AGE EDU CONDITION ERRORMESSAGE ERRORLEVEL

2011 1 hr_labour_rule_1 15 5 FALSE

2011 3 hr_labour_rule_2 17 6 FALSE

2011 6 hr_labour_rule_6 17 14 FALSE

2011 8 hr_labour_rule_4 18 10 FALSE

 4847

 4848

check (with hierarchical rulesets) 4849

 4850

Semantics 4851

This check operator applies one or more hierarchical (vertical) ruleset on a Dataset. 4852

 4853

Syntax 4854

check (4855

ds, 4856

hr+ 4857

{ , threshold (threshold) } 4858

{ , not valid | valid | all } 4859

{ , measures | condition } 4860

) 4861

 4862

Parameters 4863

ds : dataset-type 4864

threshold : numeric-constant 4865

 4866

 ds is the Dataset to check 4867

 hr is a code item compatibility ruleset 4868

 threshold is the threshold (tolerance value) to be applied as the upper limit of the difference between the left 4869

and right side of the rules. In the simplest case threshold is a numeric constant. A more sophisticated form 4870

exists where threshold is an expression involving the following predefined values: 4871

o left_side the value of the left-hand side of the rule 4872

152

o right_side the value of the right-hand side of the rule (the value computed by VTL) 4873

o nr_items the number of items in the right-hand side of the rule 4874

Examples of possible threshold expressions: 4875

threshold (3) 4876

threshold (abs (left_side - right_side) > 3) equivalent to the above */ 4877

threshold (abs (left_side / right_side) > abs (50 * left_side)) can differ up to 50 % of left side*/ 4878

threshold (abs (left_side - right_side) > 0.5 * nr_items) can differ up to 0.5 for each item % */ 4879

 valid returns the valid data points of ds according to vr 4880

 not valid return the non valid data points of ds according to hr (default) 4881

 all returns all data points of ds, independently of whether a specific rule of a Ruleset is respected or not 4882

 condition returns a Boolean Measure Boolean attribute "condition" named CONDITION with true values for 4883

the Data Points that satisfy a specific rule of a ruleset and false otherwise 4884

 measures returns the original Measures and attributes of ds (default). The parameter measures cannot be 4885

used in combination with all. 4886

Constraints 4887

 ds has the variables specified in the code item compatibility ruleset hr. 4888

 The ruleset must be explicitly defined for validation purposes. 4889

Returns 4890

It returns a Dataset having all Identifier Components of ds plus the Identifier RULE_ID, which allows to 4891

distinguish between validation rules in the various rulesets when ambiguities arise. The values of RULE_ID are 4892

built as the concatenation of the ruleset identifier and the rule identifier. 4893

The Measures of the Dataset returned depend on the specified option: 4894

 With the condition option: it returns a Dataset having the Measure CONDITION (true/false) 4895

 With the measures option: it returns a Dataset having all the Measures of ds 4896

Additional Measures are: 4897

 value_CONDITION: containing the value computed by executing the rule 4898

 rule: containing the returning text related to the rule 4899

The attributes of the Dataset will be: 4900

 errorcode, containing the error message specified in the rule 4901

 errorlevel, containing the error level (severity) specified in the rule 4902

If errormessage and errorlevel are not specified in the ruleset, then the values of the related attributes will be 4903

NULL for all the data points . 4904

 4905

Examples 4906

See to the examples for hierarchical (vertical) rulesets. 4907

 4908

check (single rule) 4909

 4910

Semantics 4911

The check operator takes as input a Boolean VTL expression and uses it as the indication of a validation. 4912

Syntax 4913

check (4914

ds 4915

{ , threshold (threshold) } 4916

{ , not valid | valid | all } 4917

153

{ , measures | condition } 4918

{ , imbalance (imbalance) } 4919

{ , errorcode (errorcode) } 4920

{ , errorlevel (errorlevel) } 4921

) 4922

 4923

Parameters 4924

ds : dataset {identifier <IDENT> as scalar-type; }+ {measure <IDENT> as numeric; }+ 4925

 {measure <IDENT> as boolean-type; }* {attribute <IDENT> as scalar-type; }* 4926

threshold : scalar-constant 4927

imbalance : numeric-constant 4928

errormessage : string-constant 4929

errorlevel : integer-constant 4930

 4931

 ds is the Boolean VTL expressions, hence yielding a Boolean Dataset, that represents the validation. 4932

 threshold is a tolerance number. It requires the presence of an imbalance. If this latter value is below the 4933

threshold, then the data point is considered valid, thus the Boolean Measure CONDITION is true; false in all 4934

the other cases. 4935

 valid returns only the valid data points 4936

 not valid returns only the non valid data points 4937

 all returns all data points, independently of their validity 4938

 condition returns a Boolean Measure "CONDITION" with values true for the data points that satisfy the 4939

ruleset and false otherwise 4940

 measures returns a Boolean Measure "CONDITION" with values true for the data points that satisfy the 4941

ruleset and false otherwise (default) 4942

 imbalance is the imbalance to be computed. Imbalance has a number datatype. If not specified in the check, it 4943

will be not in the output. 4944

 errorcode is the error code to be produced when the validation fails. 4945

 errorlevel is the error level (severity) of the validation rule. Errorlevel has a string datatype. If not specified 4946

in the check, it will be not in the output. 4947

Constraints 4948

 The input Dataset must have all Boolean Measure Components. 4949

 When a threshold is specified, the imbalance must be specified as well. 4950

Returns 4951

It returns a Dataset with all the Identifier Components of ds . 4952

The measures of the Dataset returned, depend on the option specified: 4953

 With the condition option: returns the Measure CONDITION (true/false) . 4954

 With the measures option: returns all the Measures of ds . 4955

Additional measures are: 4956

 CONDITION, when the the Boolean value computed by executing the rule (true/false) (depending on the 4957

optional parameter (condition or Measures): 4958

 imbalance, imbalance to be computed 4959

The attributes of the Dataset will be: 4960

 errorcode, containing the error code specified in the rule 4961

 errorlevel , containing the error level (severity) specified in the rule 4962

154

Semantic specification 4963

It takes as input a Boolean VTL expression and uses it as the indication of a validation. It returns an output 4964

Dataset that specifies the outcome of the validation. It can report in the output Dataset what are the violations, 4965

what are the original data, what is the imbalance between the expected values and the actual ones also applying 4966

thresholds. It can also link the failed validations to specific error codes and error levels for further processing. 4967

 4968

Examples 4969

ds_bop

TIME REF_AREA PARTNER FLOW OBS_VALUE

2010 IT US NET 10

2011 IT US NET 20

2012 IT US NET 50

2013 IT US NET 40

2014 IT US NET 50

2015 IT US NET 60

2010 DE US NET 25

2011 DE US NET 35

2012 DE US NET 45

2013 DE US NET 55

2014 DE US NET 65

2015 DE US NET 75

 4970

Check that the difference between each value and the average of that value, its preceding value and following 4971

value is lower than 10 (in absolute value). 4972

 4973

ds_moving_average := avg (ds_bop) over (4974

partition by ref_area, partner 4975

order by time 4976

rows between 1 preceding and 1 following) ; 4977

ds_outliers := check (abs (ds_bop.obs_value – ds_moving_average.obs_value) <= 10) ; 4978

 4979

ds_outliers

TIME REF_AREA PARTNER FLOW OBS_VALUE IMBALANCE ERRORMESSAGE ERRORLEVEL

2012 IT US NET 50

 4980

check value domain subset 4981

Semantics 4982

The check_value_domain_subset operator checks if the values of the specified Components owned by the 4983

Dataset are part of the restricted domain of the ValueDomain. 4984

 4985

Syntax 4986

check_value_domain_subset (ds, [components | { compList ({compIndent}+), valueDomain }], vds); 4987

 4988

Parameters 4989

ds : dataset {identifier <IDENT> as scalar-type}+ 4990

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 4991

155

vds : valueDomainSubset-ref 4992

components : list <component-ref> 4993

compList : list<list<component-ref>> 4994

compIndentm: list <component-ref> 4995

valueDomainm: list <dimension-ref> 4996

 4997

 ds – is the starting Dataset. 4998

 components - is the List containing the Components owned by ds to be validated. 4999

 compList – is the list containing the Components (divided in lists compIndent) that must be checked 5000

according to the restrictions defined in the ValueDomainSubset vds passed as input. 5001

 valueDomain – is the list containing the dimension of the ValueDomainSubset that are used to validate the 5002

Components referred in compList and compIndent 5003

 vds – is the ValueDomainSubset containing the restrictions to be verified in ds. 5004

 5005

Constraints 5006

 if only components are defined then vds must be mono-dimensional. 5007

 if both compList and compIndent are defined they must be of the same dimension. 5008

 5009

Returns 5010

A Dataset with all the Identifier, Measure and Attribute Components of the input one enriched by a Boolean 5011

Measure Component for each Component specified in components or compList, that contains the result of the 5012

check, against the ValueDomainSubset restrictions, for the respective values. 5013

 5014

Semantic specification 5015

The operator checks if the values of the specified Components owned by ds are part of the restricted domain of 5016

the ValueDomain in vds, returning a Dataset with the same structure of the input one and a Boolean Measure 5017

Component for each Component specified in the signature (the name of the new Component is 5018

“COMPONENT_NAME” + “_CONDITION”). For each Datapoint the new Boolean Measure Component assumes the 5019

value TRUE if the value of the respective Component is part of the restricted domain of the respective 5020

ValueDomain in vds, FALSE otherwise. 5021

The operator can work in two mode: mono-dimensional and multi-dimensional mode. 5022

In the mono-dimensional version (only components defined) it takes as input a Dataset, a List of Components and 5023

a mono-dimensional ValueDomainSubset. It evaluates if all the values inside the specified Components of ds are 5024

part of the restricted domain defined by the mono-dimensional ValueDomainSubset. 5025

In the multi-dimensional version (both compList and valueDomains defined) it takes as input a Dataset, two Lists 5026

and a multi-dimensional ValueDomainSubset. The first list is a List of Lists containing names of components 5027

owned by ds, the second List contains reference to the ValueDomain owned by vds. The Components specified in 5028

the first element of compList will be checked against the ValueDomain specified in the first element of 5029

valueDomains, and so on (it follows that the two Lists must have the same size and order of the elements 5030

matters). 5031

 5032

Examples 5033

1) 5034

 5035

ds_1

TIME REF_AREA PARTNER OBS_VALUE OBS_STATUS

2010 EU25 CA 20 D

2010 BG CA 1 P

2010 RO CA 1 P

2010 EU27 CA 23 P

 5036

l_1 = list<components-ref> (REF_AREA) 5037

 5038

ds_1 := check_value_domain_subset (ds_1, l_1, vds_1) 5039

 5040

156

vds_1 is a mono-dimensional enumerated ValueDomainSubset, the CodeList referenced by its ValueDomain 5041

contains the values: [“EU25”,”EU27”,”EU28”] 5042
 5043

ds_2

TIME REF_AREA REF_AREA_CONDITION PARTNER OBS_VALUE OBS_STATUS

2010 EU25 TRUE CA 20 D

2010 BG FALSE CA 1 P

2010 RO FALSE CA 1 P

2010 EU27 TRUE CA 23 P

 5044

2) 5045

compList := list<list<component-ref>>(list<component-ref>(REF_AREA), list<component-ref>(OBS_VALUE)) 5046

ds_2 := check_dataset_values (ds_1, compList, list<valueDomain-ref>(D1, D2), vds_1) 5047

 5048

vds_1 is a multi-dimensional ValueDomainSubset with two dimensions D1 and D2. D1 take its domain from the 5049

values of a CodeList defined as [“EU25”,”EU27”,”EU28”], D2 is a numeric restricted domain that allows only 5050

positive integers. 5051

 5052

Returned Dataset: 5053

ds_2

TIME REF_AREA REF_AREA_CONDITION PARTNER OBS_VALUE OBS_VALUE_CONDITION OBS_STATUS

2010 EU25 TRUE CA 20 TRUE D

2010 BG FALSE CA 1 TRUE P

2010 RO TRUE CA 1 TRUE P

2010 EU27 FALSE CA 23 TRUE P

 5054

 5055

157

VTL-ML - Time series functions 5056

fill_time_series 5057

Semantics 5058

The operator fill_time_series replaces each missing data point in the input Dataset (from the lowest to the 5059

highest time period found in the Dataset) with a data point having the values of Measures and attributes set to 5060

null. 5061

 5062

Syntax 5063

fill_time_series (ds, freq, { , timePeriodName { , timeFormat }) 5064

 5065

Parameters 5066

ds : dataset {identifier <IDENT> as scalar-type}+ {identifier <IDENT> as date} 5067

 {measure <IDENT> as numeric}+ 5068

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 5069

 5070

ds – is the input Dataset whose missing data points in the series will be filled in. 5071

 5072

Constraints 5073

The Dataset ds must have the specified the Identifier Component timePeriodName or the default "time". 5074

 5075

Returns 5076

A Dataset having the same Identifier, Measure and Attribute Components as the input one. The missing data 5077

points in each series will be filled in. 5078

 5079

Semantic specification 5080

fill_time_series allows to fill in all series of ds (no need to process the series one by one). 5081

The time format can be specified as described in the table under "Time aggregate functions". 5082

 5083

Examples 5084

ds_bop

TIME REF_AREA PARTNER FLOW OBS_VALUE

2010 IT US NET 10

2012 IT US NET 50

2010 DE US NET 25

 5085

ds_fill_ts := fill_time_series (ds_bop, "A", time) 5086

ds_fill_ts

TIME REF_AREA PARTNER FLOW OBS_VALUE

2010 IT US NET 10

2011 IT US NET null

2012 IT US NET 50

2010 DE US NET 25

2011 DE US NET null

2012 DE US NET null

 5087

Note: the Dataset contains data from 2010 to 2012 therefore 1 data point is inserted for the series (IT, US, NET) 5088

and 2 data points are inserted for the series (DE, US, NET). 5089
 5090

158

flow_to_stock 5091

Semantics 5092

The operator flow_to_stock consists in the transformation from a flow interpretation of a Dataset (with one 5093

single date Identifier Component), where the numeric Measures represent relative modifications of the stock 5094

level (flow), to the corresponding stock interpretation of it, where the numeric Measures represent stock levels 5095

Measured at a specific time (stock). 5096

 5097

Syntax 5098

flow_to_stock (ds) 5099

 5100

Parameters 5101

ds : dataset {identifier <IDENT> as scalar-type}+ {identifier <IDENT> as date} 5102

 {measure <IDENT> as numeric}+ 5103

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 5104

 5105

ds – the input Dataset containing time series. 5106

 5107

Constraints 5108

 ds must be a Dataset that contains only one date Identifier Component (as in the syntax). 5109

 ds must be regular, that is, once the Data Points have been ordered by the only date Identifier, for each pair 5110

of consecutive Data Points, the distance in time between the respective date values must be constant (and 5111

typically one year, one quarter, one day and so on). 5112

 5113

Returns 5114

A Dataset having the same Identifier, Measure and Attribute Components as the input one. The values of the 5115

numeric Measure Components are computed as the stock interpretation of the respective input values, which are 5116

considered according to a stock interpretation. 5117

 5118

Semantic specification 5119

The operator takes as input a Dataset ds and returns another one with the same Identifier, Measure and 5120

Attribute Components as the input one. We say that two Data Points dp1 and dp2 of ds are consecutive if they 5121

have the same values for all the Identifier Components but the one with date data type and, once all the Data 5122

Points with the same values for all the Identifier Components have been ordered by date Component, they are 5123

adjacent. 5124

The Data Points of the output are calculated as follows. Data Points in ds are partitioned in blocks having the 5125

same values for all the Identifier Components but the date one. For each block, the first Data Point is copied into 5126

the output. Then, for each pair of consecutive Data Points dp1 and dp2 (that is, dp2 follows dp1) of ds, a new data 5127

Point appears in the output. The value of all the Identifier Components, non-numeric Measure Components and 5128

Attribute Components of the output Dataset are copied from dp2. The value of each numeric Measure 5129

Component is calculated as the sum of the value in the output of the previously copied Data Point and the value 5130

of the Measure Component of dp2. Note that the operator actually performs the cumulative sum and no Data 5131

Points are neglected. 5132

 5133

Examples 5134

ts_1

DATE VALUE

1939-01-01 4400.0

1939-02-01 0.0

1939-03-01 6200.0

1939-04-01 -38000.0

 5135

 ts_2 := flow_to_stock (ts_1) 5136
 5137

159

ts_2

DATE VALUE

1939-01-01 4400.0

1939-02-01 4400.0

1939-03-01 10600.0

1939-04-01 6800.0

 5138

stock_to_flow 5139

Semantics 5140

The operator stock_to_flow consists in the transformation from a stock interpretation of a Dataset (with one 5141

single date Identifier Component), where the numeric Measures represent stock levels measured at a specific 5142

time (stock), to the corresponding flow interpretation of it, where the numeric Measures represent relative 5143

modifications of the stock level (flow). 5144

 5145

Syntax 5146

stock_to_flow (ds) 5147

 5148

Parameters 5149

 ds : dataset {identifier <IDENT> as scalar-type}+ {identifier <IDENT> as date} 5150

 {measure <IDENT> as numeric}+ 5151

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 5152

 5153

ds – the input Dataset. 5154

 5155

Constraints 5156

 ds must be a Dataset that contains only one date Identifier Component (as in the syntax). 5157

 ds must be regular, that is, once the Data Points have been ordered by the only date Identifier, for each pair 5158

of consecutive Data Points, the distance in time between the respective date values must be constant (and 5159

typically one year, one quarter, one day and so on). 5160

 5161

Returns 5162

A Dataset having the same Identifier, Measure and Attribute Components as the input one. The values of the 5163

numeric Measure Components are computed as the flow interpretation of the respective input values, which are 5164

considered according to a stock interpretation. 5165

 5166

Semantic specification 5167

The operator takes as input a Dataset ds and returns another one with the same Identifier, Measure and 5168

Attribute Components as the input one. We say that two Data Points dp1 and dp2 of ds are consecutive if they 5169

have the same values for all the Identifier Components but the one with date data type and, once all the Data 5170

Points with the same values for all the Identifier Components have been ordered by date Component, they are 5171

adjacent. 5172

The Data Points of the output are calculated as follows. Data Points in ds are partitioned in blocks having the 5173

same values for all the Identifier Components but the date one. For each block, the first Data Point is copied into 5174

the output. Then, for each pair of consecutive Data Points dp1 and dp2 (that is, dp2 follows dp1) of ds, a new data 5175

Point appears in the output. The value of all the Identifier Components, non-numeric Measure Components and 5176

Attribute Components of the output Dataset are copied from dp2. The value of each numeric Measure 5177

Component is calculated as the difference of the respective numeric Measure. 5178

 5179

 5180

 5181

 5182

160

Examples 5183

ts_1

DATE VALUE

1939-01-01 4400.0

1939-02-01 4400.0

1939-03-01 10600.0

1939-04-01 6800.0

 5184

 ts_2 := stock_to_flow(ts_1) 5185
 5186

ts_2

DATE VALUE

1939-01-01 4400.0

1939-02-01 0

1939-03-01 6200.0

1939-04-01 -3800.0

 5187

timeshift 5188

Semantics 5189

The operator timeshift returns the input Dataset with its time component shifted by the amount of time 5190

specified as parameter. 5191

 5192

Syntax 5193

timeshift (ds, timeId, unit = [A|M|Q|D], lag) 5194

 5195

Parameters 5196

ds : dataset {identifier <IDENT> as scalar-type}+ 5197

 {[identifier|measure] <IDENT> as date} 5198

 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 5199

timeId : component-ref 5200

lag : integer 5201

 5202

 ds – the input Dataset containing time series. 5203

 timeId – is the reference to a valid Component representing the time of the time series of ds, that is the 5204

Component on which the shift operation must be performed. 5205

 unit – represents the unit of time to be shifted. The possibilities are: Y=year, M=Month, Q=Quarter, 5206

D=Day 5207

 5208

Constraints 5209

timeId must refer to a Component of ds, whose type is date (as in the syntax). 5210

 5211

Returns 5212

A Dataset having the same Identifier, Measure and Attribute Components as the input one, with each value of the 5213

timeId Component modified of lag units. 5214

 5215

Semantic specification 5216

161

The operator takes as input a Dataset, a valid date Component of ds (timeId) and the specification of the unit and 5217

amount of time (lag) to shift. It returns a Dataset with the same structure as the input one. For each Data Point in 5218

ds, the result contains the same Data Points (so with the same values for all the Identifier, Measure and Attribute 5219

Components), except for the values of the Identifier Component timeId, which are modified by summing the 5220

relative amount unit x lag (note that lag may also be negative). 5221

 5222

Examples 5223

ts_1

DATE VALUE

1939-01-01 4400.0

1939-02-01 4400.0

1939-03-01 10600.0

1939-04-01 6800.0

 5224

 ts_2 := timeshift(ts_1, A, 1) 5225

 equivalent forms: 5226

 ts_2 := timeshift(ts_1, M,12) 5227

 ts_2 := timeshift(ts_1, Q, 3) 5228

ts_2

DATE VALUE

1940-01-01 4400.0

1940-02-01 4400.0

1940-03-01 10600.0

1940-04-01 6800.0

 5229

162

VTL-ML - Conditional operators 5230

if-then-else 5231

Semantics 5232

The operator if-then-else returns one of two possible dataset or values depending on the input conditions. 5233

 5234

Syntax 5235

if ds_cond_1 then ds_1 { elseif ds_cond_2 then ds_2 }* else ds_3 5236

 5237

Parameters 5238

ds_cond_1, ds_cond_2 5239

 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as boolean}|boolean] 5240

ds_1, ds_2, ds_3 5241

 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}+|constant] 5242

 5243

 ds_cond_1 – is the first Boolean condition 5244

 ds_1 – can be: 5245

o a Dataset from which the Data Points are retrieved anytime that ds_cond_1 evaluate true. 5246

o a constant constant returned if ds_cond_1 evaluated true. 5247

 ds_cond_2 – is an optional Boolean condition 5248

 ds_2 – can be: 5249

o a Dataset from which the Data Points are retrieved anytime that ds_cond_2 evaluate true 5250

o a constant constant returned if ds_cond_2 evaluated true. 5251

 ds_3 – can be: 5252

o a Dataset from which the Data Points are retrieved anytime that ds_cond_2 not evaluate true. 5253

o a constant constant returned if ds_cond_2 not evaluated true 5254

 5255

Constraints 5256

 If ds_1, ds_2 and ds_3 are constant values, they must have the same type. 5257

 If ds_cond_1, ds_cond_2, ds_1, ds_2 and ds_3 are Datasets, they must have the same Identifier Components, in 5258

name and type. 5259

 If ds_cond_1 and ds_cond_2 are Datasets, they must have only one boolean Measure Component (as expressed 5260

in the syntax). 5261

 If ds_1,ds_2 and ds_3 are Datasets, they must have the same Measure Components. 5262

 5263

Returns 5264

If the input parameters are Boolean scalars then the operator returns the constant of the first evaluated true 5265

condition. If no condition evaluates true then c_3 is returned. 5266

If the input parameters are Datasets then the operator returns a Dataset having all the Identifier and Measure 5267

Components of the input ones, composed by Data Points retrieved in the input Datasets when the relative 5268

condition on the relative boolean Measure Component evaluate true. 5269

 5270

Semantic specification 5271

If the input parameters are Boolean scalars then the operator takes as input a series of Boolean condition with 5272

the respective values to return in case of positive validation, it returns the constant of the first evaluated true 5273

condition or c_3 if not a condition evaluate true. 5274

If the input parameters are Datasets then the operator takes as input a number of condition Datasets ds_cond_1, 5275

having exactly one boolean Measure Component and, for each of them a Dataset ds to return in case of positive 5276

evaluation (then) of the condition. Besides it takes in input a default case (else) Dataset to be returned if all the 5277

previous conditions evaluate to False. Starting from ds_cond_1, for each Data Point, if the Measure Component is 5278

True, it looks up in the corresponding Datasets (ds_1) all the Data Point for the corresponding values of the 5279

Identifier Components and returns them in the output Dataset. If the Measure Component is False, it looks up in 5280

the following elseif Dataset (ds_cond_2) for the corresponding values of the Identifier Components. If no Data 5281

Point is found, the elaboration skips to the next Data Point of ds_cond_1. If any Data Points are found and 5282

ds_cond_2 is True for them, the corresponding then Dataset (ds_2) is returned; otherwise, the evaluation 5283

continues likewise, until the else part is reached (in case every previous conditional Datasets evaluate to False) 5284

163

and, if any matching Data Points are found in ds_3 they are returned. Then the elaboration is repeated for all the 5285

Data Points in ds_cond_1. 5286

 5287

Examples 5288

On scalar 5289

1) Expressions evaluating to Component types are typically used to calculate Measure Components or evaluate 5290

filters. 5291

Some examples follow: 5292

K1 + K2 < K3 5293

K1 – K2 > 5.5 5294

K2 + round(K2, 3) 5295

K1 > 3 and k1 < 5 5296

if k1>4 then K2 else K3 + 3 5297

K1 in (1,2,3,4) and K3 not in (‘a’,’b’,’c’) 5298

 5299

On Datasets 5300

2) ds_1 := if (population.SEX=”F”).CONDITION 5301

then unemp_rates_1 5302

else unemp_rates_2 5303
 5304

population

TIME GEO AGE SEX POPULATION

2012 Belgium Total M 5451780

2012 Belgium Total F 5643070

2012 Greece Total M 5449803

2012 Greece Total F 5673231

2012 Spain Total M 23099012

2012 Spain Total F 23719207

2012 France Total M 31616281

2012 France Total F 33671580

2012 Italy Total M 28726599

2012 Italy Total F 30667608

2012 Austria Total M NULL

2012 Austria Total F NULL

 5305

unemp_rates_1

TIME GEO AGE SEX RATE

2012 Spain Total F 25.8

2012 France Total F NULL

2012 Italy Total F 20.9

2012 Austria Total M 6.3

 5306

unemp_rates_2

TIME GEO AGE SEX RATE

2012 Belgium Total M 0.12

2012 Greece Total M 22.5

2012 Spain Total M 23.7

2012 Austria Total F NULL

164

 5307

 5308

ds_1

TIME GEO AGE SEX RATE

2012 Belgium Total M 0.12

2012 Greece Total M 22.5

2012 Spain Total M 23.7

2012 Spain Total F 25.8

2012 France Total F NULL

2012 Italy Total F 20.9

 5309

population.SEX allows to consider SEX into the only Measure Component, which is compared with “F” by the 5310

operator “=”. Correctly, it acts on the only Measure Component as POPULATION is temporarily not considered. 5311

The comparison returns CONDITION as the only boolean Measure Component 5312

Thus, as the if operators requires a Dataset with a single boolean Measure Componen, the membership operator 5313

"." is applied again in order to isolate SEX_ CONDITION as the only boolean Measure Component 5314

nvl 5315

Semantics 5316

The operator nvl replaces null values with a value given as a parameter. 5317

 5318

Syntax 5319

nvl (ds, rep_value) 5320

 5321

Parameters 5322

ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}+ 5323

 {attribute <IDENT> as scalar-type}*|scalar-type] 5324

rep_value : scalar-type 5325

 5326

 ds can be an scalar-type value or an input Dataset 5327

 rep_value is the value that replace the values in ds when them are NULL. 5328

 5329

Constraints 5330

 If ds is a scalar value, ds and rep_value must be equal in type between themselves. 5331

 If ds is a Dataset, all its Measure Components must be of the same type and rep_value must be of the same type 5332

of the ds Measure Components. 5333

 5334

Returns 5335

If ds is a scalar value, it returns ds if it is not NULL, rep_value otherwise. 5336

If ds is a Dataset, it returns a new Dataset having all the Identifier, Measure and Attribute Components of the 5337

input one, where the NULL values of the input Dataset Measure Components are replaced with the specified 5338

rep_value. 5339

 5340

Examples 5341

On scalar 5342

1) If C is NULL: 5343

A := nvl(C, 5) A = 5 5344

2) If COMPX is not NULL and equal to 10: 5345

A := nvl(C, 5) A = 10 5346

 5347

On Dataset 5348

3) ds_1 := nvl(population,0) 5349
 5350

165

population

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 11094850

2012 Greece Total Total 11123034

2012 Spain Total Total NULL

2012 Malta Total Total 417546

2012 Finland Total Total 5401267

2012 NULL Total Total NULL

 5351

ds_1

TIME GEO AGE SEX POPULATION

2012 Belgium Total Total 11094850

2012 Greece Total Total 11123034

2012 Spain Total Total 0

2012 Malta Total Total 417546

2012 Finland Total Total 5401267

2012 NULL Total Total 0

 5352

166

VTL-ML - Clause operators 5353

rename 5354

Semantics 5355
The rename operator, allows to change the name and the role of Measures or Attributes component of a dataset 5356

 5357

Syntax 5358

ds_1 [rename k as compName 5359

{role=[MEASURE|IDENTIFIER|ATTRIBUTE]} 5360

{, k as compName 5361

{role=[MEASURE|IDENTIFIER|ATTRIBUTE]} 5362

}*] 5363

 5364

Parameters 5365

ds_1 : Dataset<?> 5366

k : Measure or Attribute Component 5367

compName : string 5368

 5369

ds_1– the input Dataset 5370

k – each Component to rename 5371

compName – the new name for each Component 5372

role – the new role for each Component 5373

 5374

Returns 5375

The Dataset with renamed Components and changed roles. 5376

 5377

Constraints 5378

 k is a Component expression that can have only Component literals of ds_1 (static). 5379

 role can be one of : “MEASURE”, “IDENTIFIER”, “ATTRIBUTE” (static). 5380

 5381

Semantics 5382
It renames each Measure or Attribute in ds_1 that is mentioned in the operator with the new name given in compName 5383

and the role given in role variable. If role variable is not specified, the role is left unmodified. All the data points in ds_1 5384

are copied into ds_2. 5385

Returns a new Dataset ds_2 with the same Identifier of ds_1. 5386

The Dataset ds_2 will have the same Measure and Attributes Components of ds_1 except for those components changed 5387

in the role by the rename operator. 5388

 5389

Examples 5390

ds_2 := ds_1[rename M1 as “I1” role IDENTIFIER] 3154 5391

The expression above renames MeasureComponent M1 into I1 and alters its role to IdentifierComponent. 5392

filter 5393

Semantics 5394

The operator filter returns the input Dataset filtered by evaluating the boolean component expression specified 5395

as a parameter. 5396

 5397

Syntax 5398

ds [filter f | dpr] 5399

 5400

Parameters 5401

ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}* 5402

 {attribute <IDENT> as scalar-type}* 5403

f : {role <IDENT> as boolean} 5404

167

dpr : a previously defined datapoint ruleset 5405

 5406

 ds – is the input Dataset. 5407

 f – is a Boolean expression involving Components of ds. 5408

 5409

Constraints 5410

f is a Component expression over the Components of ds (static). 5411

 5412

Returns 5413

A Dataset with the same Identifier, Measure and Attribute Components of the input one, containing only the Data 5414

Points of ds that satisfy the Boolean expression f or the datapoint (horizontal) ruleset 5415

 5416

Semantic specification 5417

The operator takes as input a Dataset and a Boolean expression involving the Components owned by ds and 5418

returns another Dataset with the same structure of the input one. For each Data Point the expression f is applied; 5419

only the Data Points for which the expression is evaluated true will be part of the output Dataset. 5420

 5421

 5422

Examples 5423

Dr:=population1 [filter SEX = “F"] 5424
 5425

 5426

population1

SEX AGE GEO TIME POPULATION

M Y_LT15 BE 2013 970428

M Y15-64 BE 2013 3678355

M Y_GE65 BE 2013 838653

F Y_LT15 BE 2013 927644

F Y15-64 BE 2013 3625561

F Y_GE65 BE 2013 1121001

M Y_LT15 UK 2013 5757444

M Y15-64 UK 2013 20748657

M Y_GE65 UK 2013 4917238

F Y_LT15 UK 2013 5488356

F Y15-64 UK 2013 20915924

F Y_GE65 UK 2013 6068452

 5427

 5428

Dr

SEX AGE GEO TIME POPULATION

F Y_LT15 BE 2013 927644

F Y15-64 BE 2013 3625561

F Y_GE65 BE 2013 1121001

F Y_LT15 UK 2013 5488356

F Y15-64 UK 2013 20915924

F Y_GE65 UK 2013 6068452

 5429

168

keep 5430

Semantics 5431

The operator keep returns the input Dataset with only the Identifier and Measures Components specified as 5432

parameters. 5433

 5434

Syntax 5435

ds [keep cmp {, cmp}] 5436

 5437

Parameters 5438

ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}* 5439

 {attribute <IDENT> as scalar-type}* 5440

cmp : component-ref 5441

 5442

 ds – is the input Dataset. 5443

 cmp – is an existing Component of ds. 5444

 5445

Constraints 5446

 cmp is a Component expression over the Components of ds containing only Component literals (i.e. names of 5447

the Components of ds) (static). 5448

 cmp cannot be a reference to an Identifier Component. 5449

 5450

Returns 5451

A Dataset having all the Identifier Components of ds and the Measure Components and Attribute Components 5452

selected in cmp. 5453

 5454

Semantic specification 5455

The operator takes as input a Dataset ds and a subset of the Components owned by ds, it returns another Dataset 5456

having all the Identifier Components of the input one (Identifier Components are not affected by the keep) and 5457

all the Measure Components and Attribute Components selected in cmp. 5458

 5459

Examples 5460

ds_1 := population1[keep SEX, GEO, POPULATION] 5461
 5462

population1

SEX AGE GEO TIME POPULATION

M Y_LT15 BE 2013 970428

M Y15-64 BE 2013 3678355

M Y_GE65 BE 2013 838653

F Y_LT15 BE 2013 927644

F Y15-64 BE 2013 3625561

F Y_GE65 BE 2013 1121001

M Y_LT15 UK 2013 5757444

M Y15-64 UK 2013 20748657

M Y_GE65 UK 2013 4917238

F Y_LT15 UK 2013 5488356

F Y15-64 UK 2013 20915924

F Y_GE65 UK 2013 6068452

 5463

population1

SEX GEO POPULATION

M BE 970428

169

M BE 3678355

M BE 838653

F BE 927644

F BE 3625561

F BE 1121001

M UK 5757444

M UK 20748657

M UK 4917238

F UK 5488356

F UK 20915924

F UK 6068452

calc 5464

Semantic 5465

The operator calc returns the input Dataset with new components calculated based on the expressions specified 5466

as parameters. 5467

 5468

Syntax 5469

ds [calc k as compName {role [Measure | Identifier | Attribute]} {viral } 5470

 {, k as compName {role [Measure | Identifier | Attribute]} {viral} }* 5471

] 5472

 5473

Parameters 5474

ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}* 5475

 {attribute <IDENT> as scalar-type}* 5476

k : expr 5477

compName : ident 5478

role : constant 5479

 5480

 ds –is the input Dataset. 5481

 k – is an expression involving ds Components. 5482

 role – is the role of the calculated Component. 5483

 compName – is the name of the new Component. 5484

 5485

Constraints 5486

 role can be one of: “Measure”, “Identifier”, “Attribute”. 5487

 k is an expression on ds Components. 5488

 5489

Return 5490

A Dataset having the same Identifier and Measure Components of the input one, enriched by others Components 5491

calculated using the defined k expressions. 5492

 5493

Semantic specification 5494

The operator takes in as input a Dataset ds and a series of expressions to calculate new Components, and returns 5495

a new Dataset with the same Identifier and Measure Components. 5496

It adds to the output Datset a Component for each Component expression k specified in the clause, calculating it 5497

row-wise according to the Component expression. 5498

The added Component is named compName and is given a role (Identifier, Measure or Attribute Component) 5499

according to role Constant. If the role is omitted, “MEASURE” is implied. 5500

If any k coincides with the name of an existing Component in ds (even with different type), the calculated one 5501

replaces the former, in name, value and type. 5502

Special care must be paid to the handling of Attribute Components. If a Component expression has the same 5503

name as an existing Attribute Component, the previous one is overridden, independently of its virality. In this 5504

170

sense, calc clause overrides virality. On the other hand, if no Attribute Component expressions override an 5505

existing Component, it will be kept in the result, only if viral, with unaltered virality. In general, when an 5506

Attribute Component is calculated, its virality can be set by the use of keyword viral. If it is omitted, the Attribute 5507

Component is non viral by default. As a special case of this, a calc can be also used simply to alter the virality of 5508

an Attribute Component. 5509

 5510

Examples 5511

1) 5512

ds_2 := ds_1[calc M1*M2/3 as “M4” role MEASURE] 5513

The expression above calculates a Measure Componet by combining the ones of the involved Datasets. 5514

2) 5515

ds_2 := ds_1[calc M1-1 as “M1” role MEASURE, M1+M2 as M2, if M2>3 then M2 else M3 as M3] 5516

Like the preceding example, but with a conditional logic. 5517

3) 5518

ds_2 := ds_1[calc A1 + A2 as “A3” role ATTRIBUTE viral] 5519

The expression above calculates Attribute Component A3 as a combination of A1 and A2. 5520
 5521

attrcalc 5522

Semantics 5523

The operator attrcalc returns the input Dataset with new Attribute components calculated based on the 5524

expressions specified as parameters. 5525

 5526

Syntax 5527

ds [attrcalc k as compName {viral } {, k as compName {viral} }*] 5528

 5529

Parameters 5530

ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}* 5531

 {attribute <IDENT> as scalar-type}+ 5532

k : expr 5533

compName : ident 5534

 5535

 ds –is the input Dataset, containing Attribute Components. 5536

 k – is an expression involving ds Components. 5537

 role – is the role of the calculated Component. 5538

 compName – is the name of the new Attribute Component. 5539

 5540

Constraints 5541

k is an expression on ds Components or on Components used to calculate ds properly qualified (static). 5542

 5543

Returns 5544

A Dataset with all the Identifier and Measure Components of the input one, and an Attribute Component, for each 5545

expression k specified, named compName. 5546

 5547

Semantic specification 5548

The operator takes as input a Dataset ds (which, in general, can be a complex expression of type Dataset) and 5549

returns a new Dataset ds with the same Identifier Components and Measure Components. 5550

The output Dataset has an Attribute Component named compName for each Attribute Component expression k 5551

specified in the clause. k is a component expression, evaluated row-wise. 5552

Special care must be paid to the handling of Attribute Components. If a Component expression has the same 5553

name as an existing Attribute Component, the previous one is overridden, independently of its virality. In this 5554

sense, attrcalc clause overrides virality. On the other hand, if no Attribute Component expressions override an 5555

existing Component, it will be kept in the result, only if viral, with unaltered virality. In general, when an 5556

Attribute Component is calculated, its virality can be set by the use of keyword viral. If it is omitted, the Attribute 5557

Component is non viral by default. As a special case of this, an attrcalc can be also used simply to alter the 5558

virality of an Attribute Component. 5559

 5560

171

Examples 5561

1) ds_2 := ds_1[attrcalc QUALITY+1 as QUALITY] 5562

The expression calculates ds_2, keeping the QUALITY Attribute Component in ds_1, but adding 1 to its value. 5563

 5564

ds_1

K1 K2 M1 QUALITY

1 A 1 1

2 B 3 2

3 C 5 3

 5565

ds_2

K1 K2 M1 QUALITY

1 A 1 2

2 B 3 3

3 C 5 4

 5566

2) ds_r := (ds_1 + ds_2)[attrcalc ds_1.QUALITY + ds_2.QUALITY as QUALITY] 5567

 5568

The expression calculates ds_r as the sum of Datasets ds_1 and ds_2. Besides, it calculates the QUALITY attribute 5569

as the sum of the two. 5570
 5571

ds_1

K1 K2 M1 QUALITY

1 A 1 1

2 B 3 2

3 C 5 3

 5572

ds_2

K1 K2 M1 QUALITY

1 A 6 2

2 B 7 3

3 C 8 4

 5573

ds_r

K1 K2 M1 QUALITY

1 A 7 3

2 B 10 5

3 C 13 7

 5574

3) 5575

ds_r := (ds_1 + ds_2) 5576

[5577

 attrcalc if ds_1.QUALITY=”A” and ds.2QUALITY=”B” then “C” 5578

 elseif ds_1.QUALITY=”K” and ds.2QUALITY=”K” then “M” 5579

 else “Z” AS AGGREGATED_QUALITY 5580

] 5581

172

The expression calculates the AGGREGATED_QUALITY attribute as a combination of QUALITY Attribute 5582

Components of the operands according to a decision rule. 5583

In particular, if ds_1 quality is “A” and ds_2 quality is “B”, then the AGGREGATED_QUALITY will be “C”. Else, if ds_1 5584

quality is “K” and ds_2 quality is “K”, then “M” is returned. Otherwise “Z” is the AGGREGATED_QUALITY value. 5585
 5586

ds_1

K1 K2 M1 QUALITY

1 A 1 A

2 B 3 B

3 C 5 K

 5587

ds_2

K1 K2 M1 QUALITY

1 A 6 B

2 B 7 A

3 C 8 K

 5588

ds_r

K1 K2 M1 QUALITY

1 A 7 C

2 B 10 Z

3 C 13 M

 5589

4) 5590

ds_r := (ds_1 + ds_2)[attrcalc ds_1.QUALITY_1 + ds_2.QUALITY_1 as QUALITY_1, ds_2.QUALITY_2 as QUALITY_2] 5591

The expression sums two multi-measure Datasets and calculates two Attribute Components with different 5592

formulas: QUALITY_1 is the sum of ds_1.QUALITY_1 and ds_2.QUALITY_1, while QUALITY_2 is simply copied from 5593

ds_2. 5594

ds_1

K1 K2 M1 M2 QUALITY_1 QUALITY_2

1 A 1 5 1 2

2 B 3 3 2 7

3 C 5 1 3 4

 5595

ds_2

K1 K2 M1 M2 QUALITY_1 QUALITY_2

1 A 6 1 2 1

2 B 7 1 3 3

3 C 8 1 4 1

 5596

ds_r

K1 K2 M1 M2 QUALITY_1 QUALITY_2

1 A 7 6 3 1

2 B 10 4 5 3

3 C 13 2 7 1

 5597

