1	SDMX Technical Working Group
2	VTL Task Force
2	
3	
4	
5	
6	
7	
8	VTL - version 1.1
9	(Validation & Transformation Language)
10	
11	Part 2 - Reference Manual
12	
13	
14	(DRAFT FOR PUBLIC REVIEW)
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	October 201/
28 29	October 2016
29	

31 Foreword

32

The Task force for the Validation and Transformation Language (VTL), created in 2012-2013 under the initiative of the SDMX Secretariat, is pleased to present the draft version of VTL 1.1.

The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the 35 consideration that SDMX already had a package for transformations and expressions in its 36 information model, while a specific implementation language was missing. To make this 37 framework operational, a standard language for defining validation and transformation rules 38 (operators, their syntax and semantics) had to be adopted, while appropriate SDMX formats 39 for storing and exchanging rules, and web services to retrieve them, had to be designed. The 40 present VTL 1.1 package is only concerned with the first element, i.e. a formal definition of 41 each operator, together with a general description of VTL, its core assumptions and the 42 information model it is based on. 43

The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM 44 communities and the work started in summer 2013. The intention was to provide a language 45 usable by statisticians to express logical validation rules and transformations on data, 46 47 whether described as dimensional tables or as unit-record data. The assumption is that this logical formalization of validation and transformation rules could be converted into specific 48 49 programming languages for execution (SAS, R, Java, SQL, etc.) but would provide a "neutral" expression at business level of the processing taking place, against which various 50 implementations can be mapped. Experience with existing examples suggests that this goal 51 would be attainable. 52

An important point that emerged is that several standards are interested in such a language. 53 However, each standard operates on its model artefacts and produces artefacts within the 54 same model (property of closure). To cope with this, VTL has been built upon a very basic 55 information model (VTL IM), taking the common parts of GSIM, SDMX and DDI, mainly using 56 artefacts from GSIM 1.1, somewhat simplified and with some additional detail. This way, 57 existing standards (GSIM, SDMX, DDI, others) may adopt VTL by mapping their information 58 model against the VTL IM. Therefore, although a work-product of SDMX, the VTL language in 59 itself is independent of SDMX and will be usable with other standards as well. Thanks to the 60 possibility of being mapped with the basic part of the IM of other standards, the VTL IM also 61 makes it possible to collect and manage the basic definitions of data represented in different 62 standards. 63

For the reason described above, The VTL specifications are designed at a logical level, independently of any other standard, including SDMX. The VTL specifications, therefore, are self-standing and can be implemented either on their own or by other standards (including SDMX). In particular, the work for the SDMX implementation of VTL is going in parallel to the work for designing the VTL 1.1 version, and will entail a future update of the SDMX documentation.

The first public consultation on VTL (version 1.0) was held in 2014. Many comments were incorporated in the VTL 1.0 version, published in March 2015. Other suggestions for improving the language, received afterwards, fed the discussion for building the present draft version 1.1, which contains many new features.

- 75 The VTL 1.1 package, containing the general VTL specifications independent of other
- ⁷⁶ standards possible implementations, will include, in its final release:
- a) Part 1 the user manual, highlighting the main characteristics of VTL, its core assumptions and the information model the language is based on;
- b) Part 2 the reference manual, containing the full library of operators ordered by
 category, including examples; this version will support more validation and
 compilation needs compared to VTL 1.0.
- c) eBNF notation (extended Backus-Naur Form) which is the technical notation to be
 used as a test bed for all the examples.
- 84 The present document (part 2) contains the reference manual with the full library of
- 85 operators ordered by category.
- 86 The latest version of VTL is freely available online at <u>https://sdmx.org/?page_id=5096</u>
- 87

88 Acknowledgements

- 89 The VTL specifications have been prepared thanks to the collective input of experts from Bank
- of Italy, Bank for International Settlements (BIS), European Central Bank (ECB), Eurostat, ILO,
- 91 INEGI-Mexico, ISTAT-Italy, OECD, Statistics Netherlands, and UNESCO. Other experts from the
- 92 SDMX Technical Working Group, the SDMX Statistical Working Group and the DDI initiative
- 93 were consulted and participated in reviewing the documentation.
- 94 The list of contributors and reviewers includes the following experts: Sami Airo, Foteini
- 95 Andrikopoulou, David Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio Capaccioli,
- 96 Vincenzo Del Vecchio, Fabio Di Giovanni, Jens Dossé, Heinrich Ehrmann, Bryan Fitzpatrick,
- 97 Tjalling Gelsema, Luca Gramaglia, Arofan Gregory, Gyorgy Gyomai, Edgardo Greising, Dragan
- 98 Ivanovic, Angelo Linardi, Juan Munoz, Chris Nelson, Stratos Nikoloutsos, Marco Pellegrino,
- 99 Michele Romanelli, Juan Alberto Sanchez, Roberto Sannino, Angel Simon Delgado, Daniel
- 100 Suranyi, Olav ten Bosch, Laura Vignola, Fernando Wagener and Nikolaos Zisimos.
- Feedback and suggestions for improvement are encouraged and should be sent to the SDMX
 Technical Working Group (twg@sdmx.org).
- 103

104 Table of contents

1	05	
T	US.	

106	Foreword	
107	Table of contents	5
108	Introduction	9
109	Structure of the document	
110	Diagram of the Operators	
111	List of the Operators/Functions	
112	VTL-DL Operators	
113	VTL-ML Standard Library	
114	Operators and functions applied on Datasets and scalar values	
115	List of standard library operators and functions	14
116	VTL-ML - Evaluation order of the Operators	
117	Syntactical conventions	22
118	VTL-DL – Artefacts Definition	24
119	defineValueDomain	24
120	define Value Domain Subset	25
121	defineVariable	27
122	defineDataStructure	
123	define Dataset	29
124	VTL-DL - Rulesets	
125	define datapoint ruleset	
126	define hierarchical ruleset	
127	define mapping ruleset	39
128	VTL-ML - General purpose operators and functions	41
129	Parentheses ()	41
130	Assignment :=	41
131	Membership	41
132	Alias as	42
133	alter Dataset	43
134	get	45
135	put	
136	eval	50

137	Join expression	
138	join_clause	
139	calc_clause	
140	drop_clause	
141	keep_clause	
142	filter_clause	
143	rename_clause	
144	unfold_clause	
145	fold_clause	
146	Function Creation	
140	VTL-ML - String operators and functions	
148	length	
149	String concatenation	
150	trim /rtrim/ltrim	
151	upper/lower	
152	substr	
153	instr	
154	date_from_string	
155	replace	
156	VTL-ML - Numeric operators and functions	
157	unary plus +	
158	unary minus –	
159	addition and subtraction +	
160	multiplication and division * /	
161	round/ceil/floor	
162	abs	
163	trunc	
164	exp	
165	In	
166	log	
167	power	
168	sqrt	
169	nroot	
	mod	

171	listsum	83
172	VTL-ML - Boolean operators and functions	85
173	equal to =	85
174	not equal to <>	86
175	greater than > >=	87
176	less than < <=	89
177	in, not in	90
178	between	
179	isnull	
180	exists_in, not_exists_in/in_all	
181	match_characters	
182	all	
183	any	100
184	unique	102
185	func_dep	103
186	and	104
187	or	106
188	xor	107
189	not	109
190	VTL-ML - Date operators and functions	
191	extract	111
192	string from date	112
193	current_date	113
194	VTL-ML - Set functions	
195	union	114
196	intersect	117
197	symdiff	118
198	setdiff	119
199	subscript	121
200	transcode	122
201	aggregate	123
202	VTL-ML - Statistical functions	
203	Aggregate functions	127
204	Time aggregate functions	130
205	Analytic functions	133

206	first_value	
207	lag lead	
208	last_value	
209	ntile	
210	percent_rank	
211	rank	
212	ratio_to_report	
213	hierarchy	
214	VTL-ML - Data validation functions	
215	check	
216	check (with datapoint rulesets)	
217	check (with hierarchical rulesets)	
218	check (single rule)	
219	check value domain subset	
220	VTL-ML - Time series functions	
221	fill_time_series	
222	flow_to_stock	
223	stock_to_flow	
224	timeshift	
225	VTL-ML - Conditional operators	
226	if-then-else	
227	nvl	
228	VTL-ML - Clause operators	
229	rename	
230	filter	
231	keep	
232	calc	
233	attrcalc	
234		

235 Introduction

- The VTL 1.1 library of the Operators is described hereinafter. The operators included in this version of VTL are summarized in the diagrams and tables below.
- VTL 1.1 is made of two main parts: the VTL Definition Language (VTL-DL) and the VTL
 Manipulation Language (VTL-ML).

The former (VTL-DL) did not exist in VTL 1.0, because at that time VTL was intended to work on top of existing standards, like SDMX, DDI, GSIM or others, and therefore the definition of the artefacts to be manipulated (Data and their structures, Variables, Value Domains and so on) was assumed to be made using the implementing standards and not VTL itself. In other words, VTL 1.0 was not meant to define its artefacts and therefore only contained a manipulation language.

- During the work for VTL 1.1, it was acknowledged as very recommendable and useful to have a complete definition language, able to define all the artefacts that VTL can manipulate. This is, first, to express structural and reusable definitions directly in VTL (even independently of other standards); second, to facilitate the use of VTL on top of other standards (through a proper mapping, the structural definitions of the other standards could be translated in VTL definitions and vice-versa); third, to make it possible to check at parsing time the coherency of the VTL manipulation expressions against the structure of the artefacts to be manipulated
- 253 (even defined through VTL).
- Therefore, VTL 1.1 has been equipped also with a definition language for VTL artefacts.

As for the manipulation language, VTL 1.0 contains a flat list of operators, in principle not related one another. A main suggestion for VTL 1.1 was to identify a core set of primitive operators able to express all the other operators of the language. This is in order to specify more formally the semantics of the available operators, avoiding possible ambiguities about their behaviour and fostering coherent implementations. The distinction between the core and standard library is mainly of interest of the VTL technical implementers.

The suggestion above has been acknowledged, so that the VTL 1.1 manipulation language is made of a core set of primitive operators and a standard library of derived operators, definable in term of the primitive ones. The standard library contains VTL 1.0 operators (possibly enhanced) and the new operators introduced in VTL 1.1.

The VTL core includes a mechanism called FLWOR expressions (For-Let-Where-Order-Return), which allows to define derived operators and their behaviour, including custom operators (not existing in the standard library) for specific purposes.

268 Structure of the document

269 This manual describes in detail the operators of VTL 1.1 and is organized as follows.

In this chapter, the following paragraph (Diagrams of the Operators) summarizes all the available operators (for the VTL-DL, VTL-ML - Core Operators, VTL-ML – Standard Library) through a diagram. Then, in the paragraph "List of the Operators/Functions", two corresponding lists are given, specifying for each operator some basic information. In "Evaluation Order", the precedence rules for evaluation of the VTL-ML operators are described. Finally, the "Syntactical conventions" section illustrates the meta-syntax used in the other chapters for describing formally the syntax of the operators.

The remainder of the document is structured in chapters, each one dedicated to the description of a category of Operators. For each Operator there is a specific section explaining the syntax, the semantics and giving some examples. Each of these sections has the following structure:

- 281 282 • Semant
 - Semantics: an informal extract of the behaviour;
- **Syntax**: a specification of the complete syntax of the operator at hand. It is expressed in terms of the types of the Core (cfr. part 1) by means of a specific meta-syntax;
- **Parameters**: the input parameters, described in detail, with respect to the types of the Core;
- **Returns**: the output parameters, described in detail, with respect to the types of the Core;
- **Constraints**: semantic constraints and syntactical constraints that cannot be specified with the meta-syntax but need a textual explanation; sometimes for the sake of clarity, even syntactical constraints are also repeated.
- Semantic specification: an extensive explanation of the behaviour of the operator in terms of the syntactical elements described in the sections Syntax, Parameters and Returns. Sometimes, when particularly complex, specific constraints are explained also in this section.
 - **Examples**: a series of examples proving the behaviour of the operator.

The last chapter illustrates the use case of a real questionnaire and the possible use of VTL for defining validation rules.

300

296

103 List of the Operators/Functions

The following tables list the VTL Operators and describe their main characteristics. The tables are relevant to the VTL-DL and the VTL-ML Standard Library. The operators of the Standard Library are ordered by category except for the clauses, which are the operators having a postfix syntax that are shown all together in the end.

The VTL-ML Standard Library includes operators that may act on both Data Set and on Structure Components of the Data Sets. The last column shows if the Operator acts on Dataset, Components or both, when meaningful. The Component version takes as input and returns in output Component expressions. They are part of the syntax of other operators or clauses, where specifically required for row-wise processing.

311 VTL-DL Operators

Operator/Functions	Category	Syntax	Description	Operand Data Sets	Component version
defineValueDomain	Information Model artefacts definition	Functional	defines a ValueDomain in VTL information model.	-	-
defineValueDomainSu bset	Information Model artefacts definition	Functional	defines a ValueDomainSubset in VTL information model	-	-
Define Variable	Information Model artefacts definition	Functional	defines a persistent Variable in the VTL information model	-	-
defineDataStructure	Information Model artefacts definition	Functional	defines a persistent DataStructure in the information model	-	-
defineDataset	Information Model artefacts definition	Functional	defines a persistent Dataset in the information model	-	-
define datapoint ruleset	Ruleset	Functional	defines a persistent object that contains Rules to be applied to the Data Points	-	-
define hierarchical ruleset	Ruleset	Functional	defines a persistent object that contains Rules to be applied to the code items of a Dataset component.	-	-
define mapping	Ruleset	Functional	defines a persistent object that contains Rules to be applied to recode codes of a component in a Dataset	-	-

314 VTL-ML Standard Library

315

320 321

322 323

324

325

313

316 Operators and functions applied on Datasets and scalar values

317
318 Most of the single data points operators and functions can be applied to both Datasets and scalar values. The
319 operands of the operators and functions can take the following forms:

- Scalar expression, e.g. 1+2.
 - Dataset expression, with a single measure or attribute selected using the membership operator ".", e.g. ds_bop.obs_value. In this case the operator or function is applied to the specified measure or attribute.
 - Dataset expression, with no measure or attribute selected, e.g. ds_bop. In this case the operator or function is applied to all measures of the Dataset having the data type accepted by the operator.

When a VTL operator or function is applied to two or more Datasets then at least an Identifier Component must appear in all Datasets with the same name and data type. In this case the function is applied on the measures having the same name and data type (accepted by the operator) and for the matching data points, i.e., the data points that have the same values of the common Identifier Components.

Assuming that f is a VTL function or operator, ds, ds1 and ds2 are Datasets and c is a scalar value (constant), the following table shows the VTL rules in the case of binary operators or functions:

Case	Result	Computation rule	Examples
f(c,c)	A scalar value	<i>f</i> is applied to the scalar operands	1 + 1 round (10.52, 1) "abc" "cde"
f (ds , c)	components Identifiers and Attributes Components) of <i>ds</i> . The Measure Components returned are only those having data type	fis applied to all data points of ds	<i>ds</i> + 1 round (<i>ds</i> , 1)
f (ds1 , ds2)	A Dataset having all the Identifier Components (without duplicates) and the common measures of <i>ds1</i> and <i>ds2</i> having data type accepted by the operator. The other Measures will be discarded. The attributes of <i>ds1</i> and <i>ds2</i> are ignored (do not appear in the resulting Dataset).	<i>f</i> is applied to all matching data points of <i>ds1</i> and <i>ds2</i> (those having the same values of the common Identifier Components) and to the Measures having data type	<i>ds1 + ds2</i> mod (ds1, ds2)
f (ds.m , c)	A Dataset having all the Identifier Components of ds , the specified Measure Component m and the Attribute Components of ds .	f is applied to the specifiedMeasure Components of ds.f is applied to all data points of ds.	round (<i>ds</i> .obs_value, 1) <i>ds</i> .obs_comment "."

		The cardinality of the resulting Dataset (number of data points) is the same of ds.	
f (ds1.m1 , ds2.m1)	Components (without duplicates) of <i>ds1</i> and <i>ds2</i> , and the Measure Component <i>m1</i> . The same Measure must be selected in both Datasets.	f is applied to all matching data points of ds1 and ds2 (those having the same values of the common Identifier Components)	mod (<i>ds1</i> .obs_value, <i>ds2</i> .obs_value)

333

To apply the function f to measures having different names (in different Datasets) is possible using the operator **as**, e.g.:

336 ds1.obs_value + (ds2.obsval as obs_value)

A Dataset contains a set of data points. A data point (statistical observation) can be thought of as a row in a relational table or as a cell in a hypercube.

Scalars are also supported. As we will show, many operators allow for a kind of hybrid combination, involving Datasets and scalars. In this case the scalar value is combined (according to the semantics of the operator at hand) with all the Data Points in the Dataset, and in particular with the respective values of the Measure Component.

- 343 For example:
- 344 ds2 := ds1 + 1

produces a Dataset ds2 with the same structure as ds1, where the constant numeric value 1 has been added to the value of the Measure Component of every single Data Point in ds1. Seen in another perspective, with this behavior, we propose a kind of implicit "promotion" of a scalar value into a somehow special Dataset, with one single Data Point, having one Measure Component (with the constant value) and with no Identifier Components.

In such a case, this single Data Point will match with all the Data Points of the involved Data Set as a limit but straightforward case, since, indeed, there are no Identifier Components to be matched at all.

351

352 List of standard library operators and functions

2	5	2
2	2	5

Operator/ Functions	Category	Syntax	Description	Operand Data Sets	Component version	Core/ Standard
Round parenthesis ()	General purpose	Functional	Specifies the evaluation precedence	1	YES	Standard
assignment :=	General purpose	Infix	Assigns an Expression to a model artefact	2	NO	Standard
Membership	General purpose	Infix	Identifies a Component within a Data Set	1	NO	Standard
Alias as	General purpose	Infix	Define an alias for a component or for the result of an expression	1	YES (ONLY)	Standard

alterDataset	General purpose	Functional	Modify the Dataset with all or a subset of input components having only the Identifier role	1	NO	Standard
get	General Purpose	Functional	Retrieves a Data Set	1N	NO	Standard
put	General Purpose	Functional	Stores a Data Set	1	NO	Standard
eval	General Purpose	Functional	Evaluates an external routine	1	NO	Standard
join expression	General Purpose	Functional	Implements the FLWOR expression	1N	YES	Core
Function creation	General Purpose	Functional	Creates a function	1N	YES	Core
null	General Purpose	Functional	null literal	0	YES	Core
length	String	Functional	Returns the length of a string	1	YES	Standard
concatenation 	String	Functional	Concatenates two strings	2	YES	both
trim/ltrim/rtrim	String	Functional	Eliminates trailing or/and leading whitespace from a String	1	YES	Standard
upper/lower	String	Functional	Makes a string upper / lower case	1	YES	Standard
substr	String	Functional	Extracts a substring from a string	1	YES	Standard
instr	String	Functional	Returns the position of a String in another one	1	YES	Standard

date_from_string	String	Functional	Change a string into a date	1	YES	Standard
replace	String	Functional	Replace a string with another one into a string	1	YES	Standard
unary plus +	Numeric	Infix	Leaves the sign unaltered	1	YES	both
unary minus -	Numeric	Infix	Changes the sign	1	YES	both
addition + and subtraction -	Numeric	Infix	Sum or subtract two numbers	2	YES	both
multiplication * and division /	Numeric	Infix	Multiply or divide two numbers	2	YES	both
round/ceil/floor	Numeric	Functional	Rounds a number	1	YES	Standard
abs	Numeric	Functional	Calculates the absolute value	1	YES	Standard
trunc	Numeric	Functional	Truncates the values	1	YES	Standard
exp	Numeric	Functional	Calculates the exponential	1	YES	both
ln	Numeric	Functional	Calculates the natural logarithm	1	YES	Standard
log	Numeric	Functional	Calculates the a base b logarithm	1	YES	Standard
power	Numeric	Functional	Calculates the power	1	YES	Standard
sqrt	Numeric	Functional	Calculates the square root of a number	1	YES	Standard
nroot	Numeric	Functional	Calculates the	1	YES	Standard

			n-th root			
mod	mod Numeric Func		Calculates the modulo	1	YES	both
listsum	Numeric	Functional	Sums numbers replacing null with zero	1N	YES	Standard
equal to =	Boolean	Infix	Compares the values	2	YES	both
not equal to <>	Boolean	Infix	Compares the values	2	YES	both
Greater than >,>=	Boolean	Infix	Compares the values	2	YES	both
Less than <, <=	Boolean		Compares the values	2	YES	both
in, not in	in, not in Boolean		Verify if a value belongs to a set of values	1	YES	Standard
between	n Boolean Infix		Verify if a value belongs to a range of values	1	YES	both
isnull	isnull Boolean F		Compares the values with the NULL literal	1	YES	both
exists_in, not_exists_in, exists_in_all, not_exists_in_all	Boolean	Infix	Checks the Identifiers and the foreign keys	2	NO	Standard
match_characters	Boolean	Functional	Checks if a value respects or not a pattern	1	YES	Standard
all	Boolean	Functional	Verifies that all values in the Dataset are true	1	YES	Standard
any Boolean Functiona		Functional	Verifies that at least one value in the	1	YES	Standard

			Dataset are true			
unique	Boolean	Functional	Verifies that at only one value in the Dataset are true	1	YES	Standard
func_dep	Boolean	Functional	Checks the functional dependency between components of a Dataset	1	YES	Standard
and	Boolean	Infix	Calculates the logical AND	2	YES	both
or	Boolean	Infix	Calculates the logical OR	2	YES	both
xor	Boolean	Infix	Calculates the logical XOR	2	YES	both
not	Boolean	Infix	Calculates the logical NOT	1	YES	both
extract	Date operator	Functional	Returns an integer that is part of a given date	1	YES	Standard
string_from_date	Date operator	Functional	Converts a date value into a string	1	YES	Standard
current_date	Date operator	Functional	returns the current date and time	0	YES	Standard
union	Set	Functional	Computes the union of datasets	1N	NO	Standard
intersect	Set	Infix	Computes the intersection of datasets	1N	NO	Standard
symdiff	Set	Functional	Computes the symmetric difference of 2 datasets	2	NO	Standard
setdiff	Set	Infix	Computes the difference of 2 datasets	2	NO	Standard

subscript	Set	Postfix	Assigns a fixed value to the identifires and remove them	1	NO	Standard
transcode	Set	Functional	Functional Recodes the identifiers mapping ruleset		YES	Standard
aggregate	Set	Functional	Functional Aggregates data using a hierarchical ruleset.		YES	Standard
aggregateFunctions	Statistical function	Functional	Set of statistical functions used to aggregate data	1	YES	Standard
time_aggregate	Statistical function	Functional	Set of statistical functions used to aggregate data using time constraints	1	YES	Standard
analytic function	Statistical function	Functional	Allows to specify operations on groups of Data Points	1	YES	Standard
hierarchy	Statistical function	Functional	Applies a hierarchical aggregation	1	YES	Standard
check (with datapoint ruleset)	Validation	Functional	Applies one or more datapoint Ruleset on a Dataset.	1	YES	Standard
check (with hierarchical ruleset)	Validation	Functional	Applies one or more hierarchical ruleset on a Dataset.	1	YES	Standard
check (single rule)	Validation	Functional	Checks if an expression verifies a condition	1	NO	Standard
check value domain subset	Validation	Functional	Checks if the Value Domain Subset is respected	1	NO	Standard
fill_time_series	Time series	Functional	Replaces each missing data point in the input Dataset	1	YES	Standard

flow_to_stock	Time series	Functional	Transforms from a flow interpretation of a Dataset to stock	1	YES	Standard
stock_to_flow	Time series	Functional	transforms from a stock interpretation of a Dataset to flow	1	YES	Standard
timeshift	Time series	Functional	Shifts the time component of a specified range of time	1	YES	Standard
if-then-else	Conditional	Functional	Makes different calculations according to a condition	1	YES	Standard
nvl	Conditional	Functional	Replaces the null value with a value	1	YES	Standard
rename	Clause	Clause (Postfix Operator)	change the name and the role of Measures or Attributes component	1	YES (ONLY)	Standard
filter	Clause	Clause (Postfix Operator)	Filters the Data Points	1	YES (ONLY)	Standard
keep	Clause	Clause (Postfix Operator)	Alters the Data Structure	1	YES (ONLY)	Standard
calc	Clause	Clause (Postfix Operator)	Calcuates the values of a Structure 1 Component		YES (ONLY)	Standard
attrcalc	Clause	Clause (Postfix Operator)	Calculates the values of an Attribute	1	YES (ONLY)	Standard

356 VTL-ML - Evaluation order of the Operators

Within a single expression of the manipulation language, the operators are applied in sequence, according to the
 precedence order. Operators with the same precedence level are applied according to associativity rules.
 Precedence and associativity orders are reported in the following table.

360

Order	Operator	Description	Associativity
I	0	Round parenthesis. To alter the default order.	Left-to-right
II	All VTL functional operators	The majority of the operators of the VTL	Left-to-right
III	Clauses and membership		Left-to-right
IV	unary plus unary minus not	Unary minus Unary plus Logical negation	Right-to-left
v	*, /	Multiplication Division	Left-to-right
VI	+, -	Addition Subtraction	Left-to-right
VII	>>= <<= in, not in between	Greater than Less than In (not in) a value list In a range	Left-to-right
VIII	exists_in not_exists_in exists_in_all not_exists_in_all	Identifiers matching	Left-to-right
IX	= <>	Equal-to Not-equal-to	Left-to-right
Х	and	Logical AND	Left-to-right
XI	or xor	Logical OR Logical XOR	Left-to-right
XII	if-then-else	Conditional (if-then-else)	Right-to-left
XIII	:=	Assignment	Right-to-left

Syntactical conventions 362 In the remainder of the document, and in the Syntax sections in particular, a meta-syntax is 363 used to describe the syntax of the operators. The meta-syntax is described in this section and 364 is **not part** of the VTL language, but has only presentation purposes. 365 For denoting the type of a Variable Parameter, we refer to the - VTL types (See User 366 Manual, Section "Objects and Types"). 367 Operator names and parameters are case sensitive. 368 • In general, some operators have infix style, others have functional style and the 369 • clauses have postfix style. 370 The syntax of the operators is defined by *meta-expressions*, which denotes the signature of an 371 operator, that is, its **name**, the list of **the input parameters**, the possible special **keywords** 372 and the respective **types**. For readability reasons, a meta-expression is often partitioned into 373 374 concatenated sub-meta-expressions (or simply sub-expressions), as follows: meta-expression ::= sub-expr1 sub-expr2 ... sub-exprN 375 sub-expr1 ::= sub-meta-expression ... 376 377 sub-exprN ::= sub-meta-expression ... 378 In this representation: 379 The *sub-expr1*, ... *sub-exprN* are meta-variables, that is, placeholders for sub-• 380 expressions. In the text, they are in italic. 381 The symbol ::== means "defined as" and denotes the assignment of a sub-expression to 382 a meta-variable. 383 The operator names and the special keywords that appear in the various sub-384 expressions are in **bold**. 385 Sub-expressions can be composed into the meta-expression adopting a particular restriction 386 of regular expression patterns as follows: 387 *{optional}, {optional}?, [optional]? : alternative ways to denote an optional sub-*388 expression 389 *{one-or-more}+: a sub-expression that is repeated from 1 to many occurrences* 390 • {zero-or-more}*: a sub-expression that is repeated from 0 to many occurrences 391 • [part1|part2|part3]: alternative sub-expressions 392 • [part1|part2|part3]+: alternative sub-expressions, from 1 to many occurrences 393 • [part1|part2|part3]*: alternative sub-expressions, from 0 to many occurrences 394 • Example 395 [trim | ltrim | rtrim] (ds) 396 397 ds : dataset {identifier <IDENT> as scalar-type}+ 398 {measure <IDENT> as string-literal}+ 399 {attribute <IDENT> as scalar-type}* 400 401

402 The meta-expression above synthesizes:

- **trim, ltrim, rtrim**, "(", ")" are the operator names (reserved keywords);
- They take s input an expression ds, which is a meta-sub-expression and defined accordingly;
- the type of ds is constrained to be a *Dataset* with one or more Identifier Components and one or more string Measure Component. No particular constraints are introduced for attributes.
- *ds* is the only parameter of the operators in the example and denotes a Dataset.
 Specifically, <IDENT> is a placeholder for any identifier (measure or attribute, in the different cases).
- 412
- 413

414 From this template, it is possible to infer some valid instances of the operators:

418

The two examples above are compliant with the template. In facts, **ltrim** and **rtrim** are recognized as VTL operators of the library and ds_2 and ds_3 are two Datasets. Also observe that the example implies a previous definition of ds_2 and ds_3, for example importing the Datasets from the database (as we will see, with the GET operator). The restrictions on the specific structure of the input Datasets, in terms of allowed Identifier and Measure Components, are also checked, but do not have effects on the syntax.

425

426

427

428

430 VTL-DL - Artefacts Definition

431 defineValueDomain

432	Semantics
433	The operator defineValueDomain defines a ValueDomain in the VTL information model.
434	
435	Syntax
436	defineValueDomain valueDomainId (
437	{valueDomainDescription, isEnumerated}
438	dimensionType { [inLineCodeList dataTypeRestriction] }
439)
440	Devenue terre
441	Parameters
442	valueDomainId : ident
443	valueDomainDescription : string
444	isEnumeraed : boolean
445	dimensionType : scalar
446	<pre>inLineCodeList : list({ record({@codeItemId as ident; { #codeDescr as constant; } }) }*) ac deltem Id : ident</pre>
447	codeltemId : ident
448	codeDescr : constant
449	dataTypeRestriction
450	: restrict [YYYY MM DD YYYY-MM maxLength n regexp regexp between a and b > b < n
451 452	<= n >= n] <i>n</i> , <i>a</i> , <i>b</i> : numeric
452	
455	<i>regexp</i> : string
455	• <i>valueDomainId</i> – is the identifier of the new ValueDomain.
456	 valueDomainDescription – is a string that describes the new ValueDomain.
457	• <i>isEnumerated</i> – is a Boolean that denotes whether the new ValueDomain is enumerated.
458	• <i>dimensionType</i> – is the data type of the Identifier Component.
459	• <i>inLineCodeList</i> – is an in line specification of a CodeList. It is a list of records (pairs, in particular). The first
460	element of the record is the <i>codeltemId</i> (which identifies the code item, is the identifier of the record "@"),
461	the second, optional, is the codeDescription, that is, the actual value for the code item. An <i>in-Line CodeList</i>
462	cannot be reused.
463	• <i>regexp</i> – is a regular expression.
464	 <i>dataTypeRestriction</i> – constrains the allowed values by restricting <i>dimensionType</i>.
465	Constructionte
466	Constraints
467	The scalar-type of the constant codeDescr must be dimensionType.
468	regexp is a POSIX regular expression.
469	If the ValueDomain is enumerated, an inLineCodeList must be specified.
470	• The particular restriction for <i>dataTypeRestriction</i> must be coherent with <i>dimensionDataType</i> . In particular:
471	• date: [YYYY MM DD YYYY-MM > YYYY-MM-DD < YYYY-MM-DD >=]
472	 string: maxLength n, regexp regexp
473	• number: [between a and b $ >a]$
474	
475	
476	Returns
477	This operator defines persistent ValueDomain artefacts that can be referenced by a reference to <i>valueDomainId</i> .
478	References valueDomainRef to <i>valueDomainId</i> are implicitly created in the VTL information model.
479	Commutic on a if continu
480	Semantic specification
481	This operator takes as input an identifier for this ValueDomain and the specification for its dimension. The

482 dimension is in turn a component ValueDomain.

483 Only mono-dimensional ValueDomains can be defined, the multi-dimensional ValueDomain are implicitly

defined in the VTL information model as the Cartesian product of the mono-dimensional ones. The allowed

- values are directly those specified by the criteria. Otherwise, in case of n-dimensional ValueDomains, all the
 combinations of values of the mono-dimensional ValueDomains are possible, which means that the ValueDomain
 contains the Cartesian product of the values of the single mono-dimensional ValueDomain.
- The definition of a ValueDomain comports also the implicitly definition of the respective full ValueDomainSubset, that is the subset of the ValueDomain that allows the same values of the ValueDomain, without further restrictions to its domain.
- The dimension defines a set of allowed values by means of one among different criteria: 1) with an in-line definition of a codeList; 2) by restricting the *dimensionType* to a subset of allowed values by means of a criterion out of a set of pre-defined ones; 3) by allowing all the values of the specified *dimensionType*.
- 494 Notice that a CodeList can only be defined within a *ValueDomain* or a *ValueDomainSubset*, using the in-line mode.
 495 After the application of the operator, the information model is modified as follows.
- A ValueDomain identified by valueDomainId is created. Its description ValueDomainDescr is set to the value of
 valueDomainDescription, when specified, NULL otherwise. Property isEnumerated is set according to parameter
 isEnumerated. Property DataType is set to dimensionType.
- Anytime a ValueDomain is specified, are implicitly specified with him all the possible combination between the new ValueDomain and the others. Therefore, the definition of a ValueDomain defined also multi-dimensional ValueDomain. In addition, a ValueDomainSubset full is defined and its ValueDomainRef is set to *valueDomainId*.
- 502 For the dimension, a corresponding **component** ValueDomain identified by the respective *compValueDomainId*
- is created in the information model and its properties are set as follows. The property valueDomainDescription contains the string "component ValueDomainSubset of *id*", where *id* amounts to *valueDomainId*. Property DataType is set to *dimensionType*.

506 507 *Examples*

- 508 1) This example defines the ValueDomain TimeYears as a restriction of the date type where only the digits
- 509 representing the years are considered.
- define ValueDomain TimeYears ("Time values", date restrict YYYY)
- 512 2) This example defines the ValueDomain GeoAreas with an in-line CodeList, that is the enumeration of all the513 allowed values.
- 514 **define** ValueDomain GeoAreas("Geographic areas", string list(record(@IT, "Italy"), record(@LU,
- 515 "Luxembourg"),""**,...)**
- 516

517 defineValueDomainSubset

518 Semantics

The operator defineValueDomainSubset defines a ValueDomainSubset in the VTL information model.
 520

521 Syntax

 522
 defineValueDomainSubset valueDomainSubsetId (

 523
 {valueDomainSubsetDescription, isEnumerated}

 524
 valueDomainRef { [inLineSubCodeList | dataTypeRestriction] }

 525
)

 526

527 Parameters

- 528 valueDomainSubsetId : ident
- 529 valueDomainSubsetDescription : string
- 530 isEnumberated : Boolean
- 531 *valueDomainRef* : valueDomain-ref
- 532 inLineSubCodeList: list({ record({@codeItemId as ident; { #codeDescr as constant; } }) }*)
- 533 dataTypeRestriction
 - : restrict [YYYY | MM | DD | YYYY-MM | maxLength n | regexp regexp | between a and b | > b | < n | <= n |
- 535 >= n]
- 536 *n, a, b* : numeric
- 537 *regexp* : string 538

- *valueDomainSubsetId* is the identifier of the new ValueDomainSubset.
- *valueDomainSubsetDescription* is a string that describes the new ValueDomainSubset.

- *isEnumerated* specifies whether the ValueDomainSubset is enumerated.
- *valueDomainRef* is the reference to an existing ValueDomain.
- inLineCodeList is an in line specification of a CodeList. It is a list of records (pairs, in particular). The first *element* of the record is the codeItemId (which identifies the code item, is the identifier of the record "@"), the second, optional, is the codeDescription, that is, the actual value for the code item. An in-line CodeList cannot be reused.
- 547 *regexp* –is a POSIX regular expression.
- *dataTypeRestriction* constrains the allowed values by restricting dimensionType of the referred
 ValueDomain.

551 Constraints

- *regexp* is a POSIX regular expression.
- The possible restrictions on the values of the dimension must be coherent with the type of the dimension in the *ValueDomain* referred to by *valueDomainRef*.
- The criteria according to which the values of the dimension is defined must be the same as in the referred *ValueDomain*, that is: 1) if an *in-Line CodeList* is used in the *ValueDomain*, then in the *ValueDomainSubset* an *in-Line CodeList* containing a subset of the values must be used; 2) if a *dataTypeRestriction* has been used in the *ValueDomain*, then a *dataTypeRestriction* must be used in the *ValueDomainSubset*.
- If the ValueDomainSubset is enumerated, an inLineSubCodeList must be specified.
- Independently of the way in which the values of the dimension are defined, the allowed values for the dimension of the *ValueDomainSubset* must be a subset of the allowed values in the referred *ValueDomain* for the respective dimension.
- The particular restriction for *dataTypeRestriction* must be coherent with *dimensionDataType* of the referred *ValueDomain*. In particular:
 - date : [YYYY | MM | DD | YYYY-MM | > YYYY-MM-DD | < YYYY-MM-DD | >= ...]
 - string: maxLength n, regexp
 - number: [**between** a **and** \hat{b} | <a | >a | ...]

569 *Returns*

565

566

567

568

573

570 This operator defines persistent *ValueDomainSubset* artefacts that can be referenced by a reference to 571 *valueDomainSubsetId*. References *valueDomainRef* to *valueDomainId* are implicitly created in the VTL 572 information model.

574 Semantic specification

This operator takes as input an identifier for this ValueDomainSubset, a reference to an existing ValueDomain and the specification for its dimension in terms of subsets of the dimension of the referred ValueDomain.

- 577 If no further constraints are posed, all the values that are allowed in the dimension of the ValueDomain are 578 allowed in the ValueDomainSubset as well; alternatively, restrictions on the dimension can be specified 579 according to a set of criteria.
- 580 Only mono-dimensional ValueDomainSubsets can be defined, the multi-dimensional ValueDomainSubset are 581 implicitly defined in the VTL information model as the Cartesian product of the mono-dimensional ones. The 582 allowed values are directly those specified by the criteria. Otherwise, in case of n-dimensional 583 ValueDomainSubsets, all the combinations of values of the mono-dimensional ValueDomainSubsets are possible, 584 which means that the ValueDomainSubset contains the Cartesian product of the values of the single mono-
- 585 dimensional ValueDomainSubset.
- The general rule is that the restrictions for the dimension must produce a subset of the values that are present in the ValueDomain for that dimension.
- The allowed criteria are the following: 1) with an in-line definition of a sub CodeList; 2) by restricting the dimensionType to a subset of allowed values by means of a criterion out of a set of pre-defined ones; 3) by allowing all the values that are allowed in the referred ValueDomain.
- 591 If in the ValueDomain no restriction is applied, in the ValueDomainSubset any restriction that is coherent with
- the type of the respective dimension can be applied (hence no restriction, CodeList specification, data type restriction). If in the ValueDomain a CodeList (defining it in an in-line fashion) is specified, the
- ValueDomainSubset can either inherit all the values (no restriction) or restrict such CodeList specifying an in-
- 595 line subset CodeList. If in the ValueDomain a *dataTypeRestriction* is adopted, the ValueDomainSubset can either
- inherit all the values (no restriction) or use another *dataTypeRestriction* that produces a subset of the parent one
 when applied to the original *dimensionType*.
- 598 After the application of the operator, the information model is modified as follows.
- A ValueDomainSubset, identified by ValueDomainSubsetId, is created (the value of the property SetId is set to ValueDomainSubsetId). Its description SetDescription is present
- 600 ValueDomainSubsetId). Its description SetDescr is set to the value of *valueDomainSubsetDescription*, if present,

- NULL otherwise. Property isEnumerated is set according to parameter *isEnumerated* and coherently with the
- 602 Propery SetCriterion. Property Criterion is set to "IN_LINE_CODELIST" (in-line CodeList), "RESTRICTION" (type
- restriction), "FULL" (all the values of the referenced dimension) depending on how the allowed values have beenspecified.
- For the dimension, a corresponding **component** ValueDomainSubset is created and its properties are set as follows.
- The identifier SetId is set to ValueDomainSubsetId concatenated to the string "_REF_" concatenated to the compValueDomainId of the referred component ValueDomain. The property SetDescr contains the string "component ValueDomainSubset of *id*", where *id* amounts to compValueDomainId of the referred component ValueDomain. Property SetCriterion is set to "IN_LINE_CODELIST" (in-line CodeList), "RESTRICTION" (type restriction). "FULL" (all the values of the referenced dimension) depending on how the allowed values have been
- restriction), "FULL" (all the values of the referenced dimension) depending on how the allowed values have beenspecified.
- Note that unlike in the ValueDomains, the identifiers for the component ValueDomainSubsets are statically specified and cannot be overridden. They are unique for a given ValueDomain and ValueDomainSubsets, so that
- a ValueDomain can be restricted in different ways. Moreover, note that there is no need for an artefact memorizing the relationship between the component ValueDomainSubsets and the compound ones, since it can be directly informed from the identifiant conventions.
- 617 be directly inferred from the identifiers conventions.
- This operator also allows to alter existing ValueDomainSubset in a basic way. If a ValueDomainSubset with the same valueDomainSubsetId already exists in the information model, it is replaced by the newly defined one. The
- 620 same holds for the respective component.
- 621

622 Examples

- 1) This example defines a ValueDomainSubset of positive numbers as a restriction of a ValueDomain allowingany integer number.
- 625 **define** ValueDomain Numbers("Integer Numbers", integer);
- 626 define ValueDomainSubset PositiveNumbers ("Number greater than 0", Numbers, restrict > 0) 627
- 628 2) This example defines a ValueDomainSubset for email addresses, as a restriction of a ValueDomain allowing629 any string.
- 630 **define** ValueDomain EmailAddresses("E-mail addresses", string-literal);
- define ValueDomainSubset validEmailAddress("Valid e-mail addresses", EmailAddresses, restrict "[a-z]+@[a z].[a-z]+"
- 633

634 defineVariable

635 Semantics

- The operator **defineVariable** defines a persistent Variable in the VTL information model.
- 637 638 *Syntax*
- 639 **defineVariable** variableId
- 640
- 641 *Parameters*
- 642 variableId : ident

643 defineDataStructure

644 Semantics

645 The operator **defineDataStructure** defines a persistent DataStructure in the VTL information model

646 647 Syntax

047	Syntux
648	defineDataStructure dataStructureId (
649	{dataStructureDescr}
650	{ [componentType (componentName [Identifier Measure Attribute])
651	valueDomainSubsetRef (componentName [Identifier Measure Attribute])] ; }+
652)
653	
654	

655 *Parameters*

- 656 *dataStructureId* : ident
- 657 *dataStructureDescr* : string
- 658 *componentType* : scalar
- 659 *componentName* : ident

660 *valueDomainSubsetRef* : valueDomainSubset-ref

661

668 669

673

- *dataStructureId* is the identifier of the new *DataStructure*.
- *dataStructureDescr* is a string that describe the new *DataStructure*.
- *componentType* is the type of a Component in the new *DataStructure*.
- *componentName* is a string that represents the name of the Component in the new *DataStructure*.
- *valueDomainSubsetRef* is a reference to an existing *ValueDomainSubset*, used to assign a specific type to a
 Component.

Constraints

- At least one IdentifierComponent must be defined.
- At least one MeasureComponent must be defined.
- There cannot be two components with the same *componentName*.

674 Returns

This operator defines a persistent DataStructure artefact that can be referenced by a reference to *dataStructureId*, in the VTL information model.

677 678 Semantic specification

- This operator defines a persistent DataStructure in the information model, allowing to specify its name and the description, along with the characteristics of its Components. It takes as input the identifier for this DataStructure, according to the conventions for it, optionally a description, and the specification for one or more Components. The Components can be defined in two ways: in a simplified form where there is a *componentName*, and a scalar-type for it is directly specified (*componentType*); in a fully-fledged form, where there is a *componentName*, and a ValueDomainSubset (mono-dimensional) is specified to restrict the allowed values.
- Although in the VTL information model, a Component is always characterized by a ValueDomainSubset, the
 simplified form is particularly useful, since it prevents the need to define a ValueDomain and a
 ValueDomainSubset that are the mere renaming of a scalar data type. Let us now consider the fully-fledged form.
 The ValueDomainSubset is mono-dimensional, it restricts the allowed values for a single Component;
- For each Component, a role must be declared by using one keyword among **Identifier**, **Measure** and **Attribute**.
- After the application of the operator, the information model is modified as follows.
- A DataStructure identified by *dataStructureId* is created. Its description DataStructureDescr is set to the value of *dataStructureDescr*, when specified, NULL otherwise.
- For each Component, a DataStructureComponent is created. Its identifier, componentId, takes its value from the parameter *componentName*, which is unique within a single DataStructure. The DataStructureComponent is
- 696 linked to the referred DataStructure by assigning the DataStructureId property.
- 697 If the Component is specified in the simplified form (only the data type), the created DataStructureComponent is
- linked (by the property SetId) to a conventional ValueDomainSubset for that type. Notice that a conventionalValueDomainSubset that simply renames each scalar type and the corresponding ValueDomain are assumed to
- 700 be present in the information model, or created when needed and then reused.
- If the DataStructureComponent is specified in the fully-fledged form (with its ValueDomainSubset), the single
 ValueDomainSubset is referred to by the property SetId.
- In all the cases the property VariableRole is set to "Identifier", "Measure" and "Attribute" depending on the used
 keyword.
- 705 For each component a new RepresentedVariable is created (or an existing one is reused). Its identifier,
- VariableId, is automatically and the respective property of DataStructureComponent is assigned accordingly. The
- description of the variable is automatically generated as "RepresentedVariable for <componentId>". The
 RepresentedVariable is linked to the ValueDomain it takes its values from (being restricted by a specific
 ValueDomainSubset when assigned to a DataStructureComponent).
- 710

711 Examples

- 1) Definition of a DataStructure where scalar types are used.
- 713 **define DataStructure** dstr_1(
- 714 string ID **identifier**;

- 715 string NAME Identifier;
- 716 integer AGE Measure;
- 717)
- 718 2) The example below allows to define a data structure using a ValueDomainSubset:
- define ValueDomain Numbers("Integer Numbers", integer); 719
- 720 define ValueDomainSubset PositiveNumbers ("Number greater than 0", Numbers, restrict > 0)
- 721 722 define DataStructure dstr 1(
- 723 string ID Identifier;
- 724 string NAME Measure;
- 725 PositiveNumbers AGE Measure;
- 726) 727
- defineDataset 728
- 729 Semantics
- 730 The operator **defineDataset** defines a persistent Dataset in the VTL information model.
- 731 732 **Svntax**
- 733 defineDataset datasetId (
- 734 {*datasetDescr*,} {**IsCollected**},
- 735 [dataStructureRef |
- 736 { [componentType (componentName [Identifier | Measure | Attribute]) | 737
- valueDomainSubsetRef (componentName [Identifier | Measure | Attribute])]; }+ 738]

 -)

739

- 740 741 **Parameters**
- 742 *datasetId* : ident
- 743 *datasetDescr* : string
- 744 dataStructureRef: dataStructure-ref
- 745 *componentType* : scalar-type
- 746 componentName : string
- 747 valueDomainSubsetRef : valueDomainSubset-ref 748
- 749 *datasetId* - is the identifier of the new Dataset. ٠
- 750 • *datasetDescr* – is a string that describes the new Dataset.
- 751 isCollected - if present this Dataset is an elementary one, otherwise it is meant to be the result of a • 752 calculation.
- 753 dataStructureRef – is a reference to an existing DataStructure, used to assign a specific structure to the new ٠ 754 Dataset. Optionally the DataStructure for the new Dataset can be defined in-line.
- 755 • *componentType* – is the type of a Component in the new Dataset.
- 756 *componentName* – is a string that represents the name of the Component in the new Dataset.
- 757 • valueDomainSubsetRef – is a reference to an existing ValueDomainSubset, used to assign a specific type to a Component. 758

760 **Constraints**

- 761 At least one Identifier Component must be defined. •
- 762 At least one Measure Component must be defined. ٠
- 763 There cannot be two components with the same *componentName*. •

Returns

766 This operator defines a persistent Dataset artefact that can be referenced by a reference to *datasetId*, in the VTL information model. 767

768

759

764 765

769 Semantic specification

- This operator defines a persistent Dataset in the information model, allowing to specify its name and the description, along with the characteristics of its Components (either specifying an existing DataStructure or defining the Components in an in-line fashion mode).
- 1773 It takes as input the identifier for this Dataset, according to the conventions for it, optionally a description, and
- the reference to an existent DataStructure or alternatively the specification for one or more Components. The
- Components can be defined in two ways: in a simplified form where there is a *componentName*, and a scalar-type
- for it is directly specified (*componentType*); in a fully-fledged form, where there is a *componentName*, and a
- 777 ValueDomainSubset is specified to restrict the allowed values.
- Although in the VTL information model, a Component is always characterized by a ValueDomainSubset, the simplified form is particularly useful, since it prevents the need to define a ValueDomain and a ValueDomainSubset that are the mere renaming of a scalar data type. Let us now consider the fully-fledged form.
- 781 In case of in-line definition of the Components: for each Component, a role must be declared by using one
- 782 keyword among **Identifier**, **Measure** and **Attribute**.
- 783 After the application of the operator, the information model is modified as follows.
- 784 In case of reference to an existing DataStructure.
- A Dataset identified by *datasetId* is created. Its description DatasetDescr is set to the value of *datasetDescr*, when
- specified, NULL otherwise. The Dataset is linked to the DataStructure referred using *dataStructureRef* by assigning the DataStructureId property of the DataStructure identifier to the DataStructureId property of the new Dataset.
- 789 In case of definition of a new DataStructure (not reusable).
- A Dataset identified by *datasetId* is created. Its description DatasetDescr is set to the value of *datasetDescr*, when
- specified, NULL otherwise. A DataStructure identified by an auto-generated DataStructureId is created for the
 new Dataset) and linked to it by assigning the generated identifier to the DataStructureId property of the
 Dataset. The description of the DataStructure is also generated automatically and set to
 "dataStructure_of_datasetId_description" (if the DataStructure is reused, this convention for the description will
- 795 be violated).
- For each Component, a DataStructureComponent is created (or the ones in the existing DataStructure are reused). Its identifier, *componentId*, takes its value from the parameter *componentName* (notice that for a DataStructure to be reused, these identifiers must be coherent), which is unique within a single DataStructure.
- The DataStructureComponent is linked to the referred DataStructure by assigning the DataStructureId property.
- If the Component is specified in the simplified form (only the data type), the created DataStructureComponent is
 linked (by the property SetId) to a conventional ValueDomainSubset for that type. Notice that a conventional
 ValueDomainSubset that simply renames each scalar type and the corresponding ValueDomain are assumed to
- 803 be present in the information model, or created when needed and then reused.
- 804 If the StructureComponent is specified in the fully-fledged form (with its ValueDomainSubset, the single
 805 ValueDomainSubset is referred to by the property SetId. The property VariableRole is set to "Identifier",
 806 "Measure" and "Attribute" depending on the used keyword.
- For each component a new RepresentedVariable is created (or an existing one is reused). Its identifier, VariableId, is automatically and the respective property of DataStructureComponent is assigned accordingly. The description of the variable is automatically generated as "RepresentedVariable for <componenId>". The RepresentedVariable is linked to the ValueDomain it takes its values from (being restricted by a specific ValueDomainSubset when assigned to a StructureComponent).
- 812
- 813 Examples
- 1) Definition of a Dataset, using an existing DataStructure.
- 815 **define Dataset** d_1("Dataset with the same structure of dstr_1", dstr_1)
- 816 dstr_1 is a DataStructure previously defined.
- 817
- 818 2) Definition of a Dataset with an in-line DataStructure definition where scalar types are used.
- 819 **define Dataset** d_1(
- 820 string ID **identifier**;
- 821 string NAME Identifier;
- 822 integer AGE **Measure**;
- 823 824

)

825 VTL-DL - Rulesets

826

834

827 define datapoint ruleset

828 Semantics

define datapoint ruleset defines a persistent object that contains Rules to be applied to each individual Data Point of a given Dataset. These rulesets are also called "horizontal" taking into account the tabular representation of a Dataset (considered as a mathematical function), in which each (vertical) column represents a Variable and each (horizontal) row represents a Data Point: these rulesets are applied on individual Data Points (rows), i.e. horizontally on the tabular representation.

835 836 *Syntax*

830	Syntax
837	define datapoint ruleset rulesetId (RulesetSignature) is
838	{ <i>Rule</i> } { ; <i>Rule</i> }*
839	end datapoint ruleset
840	Rule
841	::={ ruleId:} { when antecedentCondition then } consequentCondition
842	{ errorcode (errorCode) }
843	{ errorlevel (errorLevel) }
844	RulesetSignature
845	::= variable-signature {, variable-signature}*
846	variable-signature
847	::= variable-ref { as constant-string}?
848	
849	Parameters
850	<i>rulesetId</i> : identifier
851	<i>ruleId</i> : identifier
852	antecedentCondition : Boolean-scalar-expression
853	consequentCondition : Boolean-scalar-expression
854	errorCode : string
855	errorLevel: integer-literal
856	constant-string: string
857	
858	• <i>rulesetId</i> – the identifier of the datapoint ruleset to be defined.
859	• <i>rulesetSignature</i> – the signature of the Ruleset. It specifies the Represented Variables (see the information
860	model) on which the Ruleset is defined.
861	• <i>variable-signature</i> – it specifies a single Represented Variable on which the Ruleset is defined
862	• <i>variable-ref</i> - the reference to a Variable on which the Ruleset is defined. The Variable name can be aliased
863	for the sake of compactness in writing the Rules. If the alias is not specified, the complete name of the
864	Variable must be used in the body of the rules.
865	 <i>rule</i> – the complete specification of a single rule, as defined in the following parameters.
866	 <i>ruleId</i> – the identifier of the specific rule within the Ruleset. The <i>ruleId</i> is optional and, if not specified, is
867	assumed to be the progressive order number of the Rule in the Ruleset (please note that this practice may
868	cause changes of the rule identifiers in case the Ruleset is maintained, e.g. if new rules are added or existing
869	rules are deleted)
870	• <i>antecedentCondition</i> - a Boolean scalar expression. It can contain references to the Variables declared for
870 871	this Ruleset and Constants. All the Component level operators are allowed.
872	 consequentCondition - a Boolean scalar expression. It is evaluated when the antecedentCondition evaluates
872	to true (missing antecedent conditions are assumed as true). It can contain references to the Variables
873 874	declared for this Ruleset and Constants. All the Component level operators are allowed.
	• •
875 876	• <i>errorCode</i> – a string denoting the error code associated to the rule, respecting VTL conventions, in case the
876	rule is used for validation.
877	• <i>errorLevel</i> - an integer containing the error level (severity) associated to the rule, in case the rule is used for
878	validation.

• *constant-string*: the name assigned to the Variable within the ruleset

881 Constraints

880

887

- antecedentCondition and consequentCondition cannot use Variables that are not defined in the
 RulesetSignature
- A Variable can appear only once in the RulesetSignature
- Either the *ruleId* is specified for all the rules of the Ruleset or for none.
- If specified, the *ruleId* must be unique within the Ruleset.

888 Returns

A persistent DataPoint Ruleset identified by *rulesetId*, which can be referenced and used both for validation and
 data filtering (within a filter clause) purposes.

891892 Semantic specification

A DataPoint Ruleset (also "horizontal ruleset") is a persistent object that contains Rules to be applied to the Data Points of a given Dataset¹. When used for validation, the Rules are aimed at checking the combinations of values of the Data Point Variables, assessing if these values fulfill the conditions expressed by the Rules themselves. The Rules are evaluated independently for each data point, returning a Boolean scalar value (see the **check** operator and the relevant options). When used for data filtering, the Rules are aimed at filtering the Data Points, maintaining only the ones that fulfill (or, as an option, that do not fulfill) the Rules themselves (see the **filter** operator and the relevant options).

Each rule contains an *antecedentCondition* Boolean expression followed by a *consequentCondition* Boolean expression and expresses a logical implication. Each condition states that when the *antecedentCondition* evaluates to **true**, for a given Data Point, then the *consequentCondition* must evaluate to **true** as well. In case the *antecedentCondition* is absent then it is assumed to be always true, therefore the *consequentCondition* must evaluate to true for all the Data Points. See the example below:

905

Rule		Meaning
<pre>when flow = "CREDIT" or "DEBIT" tl obs_value >= 0</pre>	_	When the Variable named "flow" takes the value "CREDIT" or the value "DEBIT", then the Variable named "obs_value" has a zero or positive value.
when flow = "BALANCE" the test of test	hen	When the Variable named "flow" takes the
obs_value between -1.000.000 a +1.000.000		value "BALANCE, then the Variable named "obs_value" has a value between - 1.000.000 and +1.000.000

- 907 The definition of a Ruleset comprises a **signature** (*RulesetSignature*), which specifies the Represented Variables 908 on which the Ruleset is defined and a number of **rules**, that are the Boolean expressions to be applied for each 909 Data Point. The Rules can refer only to the Variables of the Ruleset signature, and must refer to all of them (in 910 either the *antecedentCondition* or the *consequentCondition*, or both).
- 911 In regard to the Information Model, the Variables of the Ruleset signature identify a multi-dimensional space (i.e. 912 a multi-dimensional Represented Variable), while each Rule provides for a criterion that demarcates a Set of
- 913 values belonging to this space (i.e. a Set of combinations of values of these Variables).
- A Ruleset can be applied on any Dataset which includes, among its Structure Components, the Variables of the
- 915 Ruleset signature. More Rulesets having different signatures may be applied on the same Dataset, provided that
- 916 the previous condition is satisfied.

¹ In order to apply the Ruleset to more Datasets, these Datasets must be joined together using the appropriate VTL operators in order to obtain a single Dataset.

- 917 Rules are uniquely identified by a *ruleId*. When the Ruleset is used for validation, two new Variables (the
- RULESET and the RULE Variables) are added in the Dataset that contains the validation result and filled with
- 919 *rulesetId* and *ruleId* respectively, in order to document to which rules the results are referred. If not explicitly 920 declared, the *ruleId* is assumed by default to be the progressive order number of the Rule in the Ruleset (please
- 920 declared, the *ruleId* is assumed by default to be the progressive order number of the Rule in the Ruleset (please 921 note that using the default mechanism the Rules identifiers can change if the Ruleset is maintained, e.g. if new
- Rules are added or existing Rules are deleted, and therefore the users that interpret the validation results must
- be aware of these changes).
- As said, every **rule** is applied in a row-wise fashion to each individual Data Point of a Dataset. The references to
- the Variables defined in the *antecedentCondition* and *consequentCondition* are replaced with the values of the respective Variables of the Data Point under evaluation.
- 927 The semantics of each rule is the typical logical implication:
- 928 antecedentCondition and consequentCondition
- The rule evaluates to true if: *antecedentCondition* evaluates to FALSE or *consequentCondition* evaluates to TRUE.
 In practice, the *consequentCondition* must be evaluated only if the *antecedentCondition* succeeds and therefore
- 931 the former can be also interpreted as the precondition to apply the latter.
- In the case of validation, the outcome is a Dataset (the validation output) having a Boolean measure (TRUE or FALSE) and broken down at least by the Variables RULESET and RULE containing respectively the *rulesetId* and the *ruleId* of the applied rule (for more details see the **check** operator). The variables ERRORCODE and ERRORLEVEL are also added in the output Dataset and valued with the parameters *errorCode* and *errorLevel* of the applied Rule in case of validation failure (i.e. FALSE value as outcome of the Rule).
- 937 These Rulesets can be also used to filter Datasets. In particular, the filter operator can apply a
- Horizontal|DataPoint Ruleset to all the Data Points of the Dataset to be filtered. The result will be a new Dataset,
- having the same data structure as the input Dataset and containing only the Data Points for which the Rules of
- the Ruleset evaluates to TRUE or optionally to FALSE (for more details see the filter operator).
- 941
- 942 Examples
- 943 1) Input Dataset:

	ds_bop									
TIME	REF_AREA	PARTNER	FLOW	OBS_VALUE	OBS_STATUS					
2010	EU25	CA	AVERAGE	20						
2010	BG	CA	NET	1						
2010	RO	CA	NET	1	М					
2010	EU27	CA	CREDIT	12	С					

- 944
- 945 946

define datapoint ruleset ruleset_1 (FLOW as x, OBS_STATUS as y) (

flow_dr : when x = "CREDIT" or x = "AVERAGE" then y <> "C" errorcode (-XXXXX)

947 **)** 948 Meaning:

2)

3)

949 Once ruleset_1 is defined, it is usable to perform validations or apply filters.

950

ds := check(ds_bop, ruleset_1, with measures , only failures)

951 952

TIME	REF_AREA	PARTNER	FLOW	RULE_ID	OBS_VALUE	OBS_STATUS	ERRORCODE
2010	EU27	CA	CREDIT	ruleset1_flow_dr	12	С	-XXXXX

953 954

955 ds := ds_bop[**filter** ruleset_1]

956

TIME	REF_AREA	PARTNER	FLOW	OBS_VALUE	OBS_STATUS
2010	EU25	CA	AVERAGE	20	
2010	BG	CA	NET	1	
2010	RO	CA	NET	1	М

define hierarchical ruleset 958

959

960 **Semantics**

961 define hierarchical ruleset defines a persistent object that contains Rules to be applied to individual Components of a given Dataset in order to make validations or calculations according to hierarchical 962 relationships between the relevant Code Items. These rulesets are also called "vertical" taking into account the 963 964 tabular representation of a Data Set (considered as a mathematical function), in which each (vertical) column 965 represents a Variable and each (horizontal) row represents a Data Point: these Rulesets are applied on Variables 966 (columns), i.e. vertically on the tabular representation of a Data Set.

967 A first purpose of these Rules is to express some more aggregated Code Items (e.g. the continents) in terms of 968 less aggregated ones (e.g., their countries). This kind of relations can be applied to aggregate data, for example 969 to calculate an additive measure (e.g., the population) for the aggregated Code Items (e.g. the continents) as the 970 sum of the corresponding measures of the less aggregated ones (e.g. their countries). If a certain information is 971 available for both, the more and the less aggregated Code Items, these rules can be used for validating their 972 mutual coherence, for example to check if the additive measures relevant to the aggregated Code Items (e.g. the 973 continents) match the sum of the corresponding measures of their component Code Items (e.g. their countries).

974 Another purpose of these Rules is to express the relationships in which a Code Item represents some part of 975 another one, (e.g., "Africa" and "Five largest countries of Africa", being the latter a detail of the former). This kind 976 of relationships can be used only for validation, for example to check if a positive and additive measure (e.g. the 977 population) relevant to the more aggregated Code Item (e.g., Africa) is greater than the corresponding measure 978 of the other one more detailed (e.g. "5 largest countries of Africa").

The name "hierarchical" comes from the fact that this kind of Ruleset is able to express the hierarchical 979 980 relationships between Code Items at different levels of detail, in which each (aggregated) Code Item is expressed 981 as a partition of (disaggregated) ones.

982 As a first simple example, the following Hierarchical Ruleset named "BeneluxCountries" contains a single rule 983 that asserts that, in the Value Domain "Geo_Area", the Code Item BENELUX is the aggregation of the Code Items BELGIUM, LUXEMBOURG and NETHERLANDS: 984

985	define hierarchical ruleset BeneluxCountriesHierarchy (ValueDomain=Geo_Area) is
986	BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS
987	end hierarchical ruleset
988	
989	Syntax
990	define hierarchical ruleset rulesetId (RulesetSignature) is
991	{ Rule } { ; Rule}*
992	end hierarchical ruleset
993	
994	RulesetSignature
995	::= { antecedentSignature, } codeItemRelationSignature
996	antecedentSignature
997	::= antecedentvariables= variable-signature {, variable-signature}*
998	variable-signature
999	::= variable-ref { as constant-string}?
1000	codeItemRelationSignature
1001	::= [variable = variable-ref valuedomain = valuedomain-ref]
1002	Rule
1003	<pre>::= { ruleId : }? { when antecedentCondition then }? codeItemRelation</pre>
1004	{ errorcode (errorCode) }?
1005	{ errorlevel (errorLevel) }?
1006	antecedentCondition
1007	:= boolean-scalar-expression
1008	codeItemRelation
1009	$::= codeltem \cdot reference [= > < > = < =] [+ -]? codeltem Reference \{ [+ -] \ codeltem Reference \}^*$
1010	codeItemReference
1011	::= codeItem-ref [from time-ref]? [to time-ref]?
1012	
1013	
1014	Parameters
1015	<i>rulesetId</i> : identifier
1016	<i>ruleId</i> : identifier

- 1017 *codeltem-ref* : identifier
- 1018 *variable-ref* : identifier
- 1019 valuedomain-ref: identifier
- 1020 *antecedentCondition* : boolean-scalar-expression
- 1021 *errorCode* : string
- 1022 *errorLevel* : integer

1024

- 1023 *time-ref* : time-literal
- 1025 *rulesetId* the identifier of the Hierarchical Ruleset to be defined.
- 1026 *rulesetSignature* the signature of the Ruleset. It specifies the space on which the Ruleset is defined.
- *antecedentSignature* the signature of the antecedent conditions of the Ruleset. It specifies the Represented
 Variables (see the information model) on which the antecedent conditions of the Rules are defined.
- *codeltemRelationSignature* the signature of the Code Item Relations of the Ruleset. It specifies either the Represented Variable or the ValueDomain (see the information model) on which the Code Item Relations of the Rules are defined. When a Represented Variable is specified, the Ruleset is meant to be applicable to DataSets having such Variable as a Component. When a Value Domain is specified, the Ruleset is meant to be applicable to DataSets having a Component which takes values on it.
- 1034 variable-signature It specifies a single Represented Variable on which the Ruleset is defined
- *variable-ref* It references a Represented Variable by its name. The Variable name can be aliased for the sake of
 compactness in writing the Rules. If the alias is not specified, the complete name of the Variable must be
 used in the body of the Rules.
- 1038 *constant-string*: the name assigned to the Variable within the ruleset
- 1039 valueDomain-ref It specifies a Value Domain
- 1040 *Rule* the complete specification of a single rule, as defined in the following parameters.
- *ruleld* the identifier of the specific rule within the Ruleset. The ruleId is optional and, if not specified, is assumed to be the progressive order number of the Rule in the Ruleset (please note that this practice may cause changes of the rule identifiers in case the Ruleset is maintained, e.g. if new rules are added or existing rules are deleted)
- 1045 *antecedentCondition* a Boolean scalar expression. All the Component level operators are allowed.
- 1046 CodeItemRelation - the specification of a Code Item Relation to be evaluated only when the 1047 antecedentCondition evaluates to true (missing antecedent conditions are assumed as true). It expresses a logical relationship between Code Items belonging to the Value Domain referenced by the Ruleset. The 1048 relation is expressed by one of the symbols "=", ">", ">=", "<", "<=", which in this case denote special logical 1049 relationships typical of Code Items (see below). The first member of the relationship is a single Code Item. 1050 The second member of the relationship is the composition of one or more Code Items expressed by the 1051 symbols "+" or "-", which in their turn also denote special logical operators typical of Code Items (see below). 1052 1053 The meaning of these symbols is explained below.
- *codeItemReference* the reference to an existing *Code Item* of the VTL information model, that is a Value of a ValueDomain.
- *errorCode* a string denoting the error code associated to the rule, respecting VTL conventions, in case the rule is used for validation.
- *errorLevel* an integer containing the error level (severity) associated to the rule, in case the rule is used for validation.

1061 *Constraints*

- *valueDomainReference* must be enumerated.
- 1063 antecedentCondition must refer only to identifiers specified in antecedentConditionIds
- 1064 *errorCode* must respect the conventions of user-defined error codes.

Returns

1067 A persistent Hierarchical (or vertical) Ruleset identified by *rulesetId*, which can be referenced and used both for1068 validation and aggregation purposes.

1069

1060

1065 1066

1070 Semantic specification

1071 This operator defines a Hierarchical Ruleset, which is a collection of Rules expressing logical relationships 1072 between the Values (Code Items) of a Variable or a Value Domain.

- 1073 Each rule contains an optional antecedent condition, which defines the cases in which the Rule has to be applied
- 1074 (if not declared the Rule is applied ever) and a mandatory code item relation, which expresses the **relation**

1075 between Code Items to be enforced. In the relation, one Code Item (the first member of the relation) is put in 1076 relation to a combination of other Code Items.

As for the mathematical meaning of the relation, please note that each Value (Code Item) is the representation of 1077

1078 an event belonging to a space of events (i.e. the relevant Value Domain), according to the notions of "event" and

1079 "space of events" of the probability theory (see also the section on the Generic Models for Variables and Value

Domains in the VTL IM). Therefore the relations between Values (Code Items) express logical implications 1080 1081 between events.

The envisaged types of relations are: "coincides" (=), "implies" (<), "implies or coincides" (<=), "is implied by" (>), 1082 1083 "is implied by or coincides" $(>=)^2$. For example:

1084 UnitedKingdom < Europe means UnitedKingdom implies Europe

1085 In other words, this means that if a point of space belongs to United Kingdom it also belongs to Europe.

1086 January 2000 < year 2000 means January of the year 2000 implies the year 2000 1087

In other word, if a time instant belong to "January 2000" it also belongs to the "year 2000"

The first member of a Relation is a single Code Item. The second member can be either a single code item, like in 1088 the example above, or a logical composition of Code Items giving another Code Item as result. The logical 1089 1090 composition can be defined by means of Code Item Operators, whose goal is to compose some Code Items in 1091 order to obtain another Code Item.

Please note that the symbols "+" and "-" do not denote the usual operations of sum and subtraction, but logical 1092 operations between Code Items which are seen as events of the probability theory. In other words, two or more 1093 1094 Code Items cannot be summed or subtracted to obtain another Code Item, because they are events and not 1095 numbers, however they can be manipulated through logical operations like "OR" and "Complement".

1096 Note also that the "+" also acts as a declaration that all the Code Items denoted by "+" in the formula are mutually 1097 exclusive one another (i.e. the corresponding events cannot happen at the same time), as well as the "-" acts as a declaration that all the Code Items denoted by "-" in the formula are mutually exclusive one another and 1098 1099 furthermore that each one of them is a part of (implies) the result of the composition of all the Code Items having the "+" sign. 1100

At intuitive level, the symbol "+" means "with" (Benelux = Belgium with Luxembourg with Netherland) while the 1101 1102 symbol "-" means "without" (EUwithoutUK = EuropeanUnion without UnitedKingdom).

1103 When these relationships are applied to additive numeric measures (e.g. the population relevant to geographical areas), they allow to obtain the measure values of the compound Code Items (i.e. the population of Benelux and 1104 1105 EUwithoutUK) by summing or subtracting the measure values relevant to the component Code Items (i.e. the 1106 population of Belgium, Luxembourg and Netherland in the former case, EuropeanUnion and UnitedKingdom in 1107 the latter). This is why these logical operations are denoted in VTL through the same symbols as the usual sum 1108 and subtraction. Please note also that this is valid whichever is the Data Set and whichever is the additive measure (provided that the possible other Identifier Components of the Data Set Structure have the same 1109 1110 values), so that the Rulesets of this kind are potentially reusable.

The Ruleset Signature specifies the space on which the Ruleset is defined. The "antecedentSignature" specifies 1111 1112 the Variables on which the antecedent conditions of the Rules are defined (the Rules can refer only to these Variables and must refer to all of them). The "codeItemRelationSignature" specifies either the Represented 1113 1114 Variable or the ValueDomain (see the information model) on which the Code Item Relations can be defined (when a Represented Variable is specified, the Ruleset is meant to be applicable to DataSets having such Variable 1115 1116 as a Component, when a Value Domain is specified, the Ruleset is meant to be applicable to Datasets having a

1117 Component which takes values on it).

- 1118 The Hiererchical Ruleset may act on one or more Measures of the input Data Set provided that these measures 1119 are additive (for example it cannot be applied on a measure containing a "mean" because it is not additive).
- 1120 1121 If a Hierarchical Ruleset is used for calculation (see also the "Calc" operator), only the Relations expressing coincidence ("=") are evaluated (provided that the *antecedentCondition* is true). The result Data Set will contain 1122 1123 the compound Code Items (the left members of those relations) calculated from the component Code Items (the right member of those Relations). Moreover, the clauses typical of the validation are ignored (e.g. ErrorCode, 1124 1125 ErrorLevel/Severity).

1126 If some Code Items are defined equal to themselves, the relevant Data Points are brought in the result 1127 unchanged. For example, the following Ruleset will maintain in the result the Data Points of the input Data Set 1128 relevant to Belgium, Luxembourg and Netherland and will add new Data Points containing the calculated value 1129 for Benelux:

1130	define hierarchical ruleset AddBenelux (valuedomain=GeoArea) is
1131	Belgium = Belgium
1132	Luxembourg = Luxembourg

² "Coincides" means "implies and is implied"

1133	Netherlands = Netherlands
1134	Benelux = Belgium + Luxembourg + Netherlands
1135	end hierarchical ruleset

1136 1137 If a **Hierarchical Ruleset** is **used for validation** (see also the "Check" operators for more detailed information), all the possible Relations ("=", ">", ">=","<","<=") are evaluated (provided that the *antecedentCondition* is true). 1138 1139 The Rules are evaluated independently. The Data Points referred both by the left and the right members of the Relations are taken from the input Dataset. The Antecedent Condition is evaluated and, if "TRUE", the Code Item 1140 Relation is also evaluated (the operations specified in the right member of the Relation are performed and the 1141 result is compared to the first member according to the specified Relation). The possible relations in which Code 1142 1143 Items are defined as equal to themselves are ignored. The result Data Set will contain, as a Measure, the Boolean result of the validation, and, as Identifiers, the RulesetId, the RuleId and the Identifiers of the input Data Set. The 1144 1145 possible clauses typical of the validation are applied (e.g. ErrorCode, ErrorLevel/Severity) and generate additional Measures in the result. Further options are better explained in the Check operator). 1146

Please note again that in case of validation the Data Points relevant to both the members of the Relations are expected to belong to the input Data Set. As obvious, if the data to be validated are originally in different DataSets, either they can be merged in advance using other VTL operators or the validation can be done by comparing those Data Sets directly (see also the Check operator), without using this kind of Ruleset.

1151 The Hierarchical Rulesets allow to declare the time validity of Rules and Relations. Firstly, the Antecedent 1152 Condition may be referred to a time variable, expressing when the Code Item Relation has to be applied (i.e. 1153 when it is considered valid as a whole). Secondly, each Code Item of the second member of the Code Item 1154 Relation can be qualified with a time validity, so expressing when the Code Item participates in the relation. As a 1155 default, when not expressed the validity is considered to be "ever".

1156 The following two simplified examples show possible ways of defining the European Union in term of Countries.

1	157	Example 1	

1158	define hierarchical ruleset EuroAreaCountries1 (antecedentvariable=Time, variable=GeoArea) is		
1158			
1160	then $EU = BE + FR + DE + IT + LU + NL$		
1160	when Time between $1.1.1973$ and $31.12.1980$		
1162	then $EU = same as above + DK + IE + GB$		
1162	when Time between 1.1.1981 and 02.10.1985		
1165	then $EU = same as above + GR$		
1165	when Time between 1.1.1986 and 31.12.1994		
1165	then $EU = same as above + ES + PT$		
1167	when Time between 1.1.1995 and 30.04.2004		
1168	then $EU = same as above + AT + FI + SE$		
1169	when Time between 1.5.2004 and 31.12.2006		
1170	then $EU = same as above + CY + CZ + EE + HU + LT + LV + MT + PL + SI + SK$		
1171	when Time between 1.1.2007 and 30.06.2013		
1172	then EU = same as above + BG + RO		
1173	when Time >= 1.7.2013		
1174	then EU = same as above + HR		
1175	end hierarchical ruleset		
1176	Example 2		
1177	define hierarchical ruleset EuroAreaCountries2 (valuedomain=Geo_Area) is		
1178	EU = AT (from 1.1.1995) + BE (from 1.1.1958) + BG (from 1.1.2007)		
1179	+ + GB (from 1.1.1973) +		
1180	+ SE (from 1.1.1995) + SI (from 1.5.2004) + SK (from 1.5.2004)		
1181	end hierarchical ruleset		
1182	In this example, when GB will exit from UE, the GB term would become:		
1183	+ GB (from 1.1.1973 to the future date of Brexit)		
1184 1185	The Hierarchical Rulesets allow defining hierarchies either having or not having levels (free hierarchies). For example, leaving aside the time validity for sake of simplicity:		
1186 1187	define hierarchical ruleset GeoHierarchy (valuedomain=Geo_Area) <i>is</i> World = Africa + America + Asia + Europe + Oceania		

1188	Africa = Algeria + + Zimbabwe
1189	America = Argentina + + Venezuela
1190	Asia = Afghanistan + + Yemen
1191	Europe = Albania + + Vatican City
1192	Oceania = Australia + + Vanuatu
1193	Afghanistan = AF_reg_01 + + AF_reg_N
1194	
1195	Zimbabwe = ZW_reg_01 + + ZW_reg_M
1196	EuropeanUnion = + + +
1197	CentralAmericaCommonMarket = + + +
1198	OECD_Area = + + +
1199	end hierarchical ruleset

Hierarchies may be useful for validation in case more levels of detail are contained in the Data Set to be
validated. The Hierarchical Rulesets defines the mutual coherency rules of these different levels of detail.
Because the various Rules can be evaluated independently, their order is not significant.

Hierarchies may also be useful for calculations. For example, they can be used to calculate the upper levels of the hierarchy if the data relevant to the leafs (or some other intermediate level) are available in the input Data Set. For example, having additive measures broken by region, it would be possible to calculate these measures broken by countries, continents and the world. Besides, having additive measures broken by country, it would be possible to calculate the same measures broken by continents and the world.

1208 In the Hierarchies there can be dependencies between Rules, because the inputs of some Rules can be the output 1209 of other Rules, so the former can be evaluated only after the latter. For example, the data relevant to the 1210 Continents can be calculated only after the calculation of the data relevant to the Countries. As a consequence, 1211 the order of calculation of the Rules is determined by their mutual dependencies and can be different from the 1212 order of the Rules in the Ruleset. The dependencies between the Rules form a directed acyclic graph.

1213 Hierarchical Rulesets allow defining multiple relations for the same Code Item.

Multiple relations are often useful for validation. For example, the Balance of Payments item "Transport" can be broken down both by type of carrier (Air transport, Sea transport, Land transport) and by type of objects transported (Passengers and Freights) and both breakdowns must sum up to the whole "Transport" figure. In the following example a RuleId is assigned to the different methods of breaking down the Transport.

1218

1233

- 1219
- 1220 1221

define hierarchical ruleset *TransportBreakdown* **(valuedomain=** BoPItem **)** *is* transport method1: Transport = AirTransport + SeaTransport + LandTransport,

transport_method2: Transport = PassengersTransport + FreightsTransport

end hierarchical ruleset

Multiple relations can be deemed as useful even in some case of calculation. For example, imagine that the input
Data Set contains data about resident units broken down by region and data about non-residents units broken
down by country. In order to calculate an homogeneous level of aggregation (e.g. by country), a possible Ruleset
might be the following:

- 1226define hierarchical rulesetCalcCountryLevel (valuedomain=Geo_Area) is1227Country1 = Country11228Country1 = Region11 + ... + Region1M1229...1230CountryN = CountryN1231CountryN = Region N1 + ... + RegionNM1232end hierarchical ruleset
- A warning is opportune about the possible practice of calculating the same Code Item in more Rules (calculation
 methods) of the same Ruleset. The Rulesets of this kind, in fact, may produce either right or wrong figures
 depending on the content of the input Data Set.

As a matter of fact, in the calculation the outcomes of all the Rules belonging to the Ruleset are aggregated together to produce the final result, in order to remove possible duplicates in the Identifiers (duplicate values in the Identifiers cannot be allowed, see also the Information Model). As far as each Code Item is defined just once as left member of a relation, the values of the Identifiers of the results of the single Rules are all distinct and their aggregation cannot generate inconsistencies. This is not ever true if a Code Item is defined more than once (e.g. through more than one calculation method).

1243 In the Ruleset of the example above, each Country is calculated using two calculation methods, whose results 1244 may have the same keys, which will be aggregated together. The output Data Set will be correct provided that, in

1245 the input Data Set, any information is present either by country or by region (never both of them). The output

1246 Data Set would contain errors if some information is present in the input Data Set both by country and by region: 1247 the resulting figures would be indicatively (and wrongly) doubled. In general, if more left members refer to the same Code Item (in other words, if a Code Item is calculated through 1248 1249 more calculation methods), the result may be inconsistent for some input DataSets. It is possible to avoid these 1250 situations by using other approaches for calculating the desired result (e.g. splitting the Ruleset, calculating the result in more steps, using antecedentConditions, using other VTL operators). This example has been presented 1251 1252 to better clarify the behavior of this kind of Ruleset and warn about possible limitations to its reusability. 1253 1254 1255 **Examples** 1) The Code Item Relation is defined on the Variable "sex": Total is defined as Male + Female. 1256 1257 No antecedent conditions are defined. 1258 1259 define hierarchical ruleset vr sex (Variable= sex) is 1260 TOTAL = MALE + FEMALE: 1261 end hierarchical ruleset 1262 1263 2) BENELUX is the aggregation of the Code Items BELGIUM, LUXEMBOURG and NETHERLANDS, if not true, the 1264 errorcode is 2000 and the errorlevel is high (10) 1265 define hierarchical ruleset BeneluxCountriesHierarchy (valuedomain=Geo Area) is 1266 BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS errorcode 2000 errorlevel 10 1267 end hierarchical ruleset 1268 1269 3) American economic partners. The first rule verifies that the value reported for North America is greater than the 1270 value reported for US. This type of validation is useful when the data communicated by the data provider do not cover 1271 the whole composition of the aggregate but only the main elements. No antecedent conditions are defined. 1272 1273 define hierarchical ruleset vr american partners (variable= counterpart area) is 1274 NORTH AMERICA > US ; 1275 SOUTH AMERICA = BR + UY + AR + CL; 1276 end hierarchical ruleset 1277 1278 4) Example of item having multiple definitions. The Balance of Payments item "Transport" can be broken down by type 1279 of carrier (Air transport, Sea transport, Land transport) and by type of objects transported (Passengers and Freights) and both breakdowns must sum up to the total "Transport" figure. 1280 1281 define hierarchical ruleset vr bop (variable= bop item) is 1282 1283 transport_method1 : Transport = AirTransport + SeaTransport + LandTransport, 1284 transport method2 : Transport = PassengersTransport + FreightsTransport 1285 end hierarchical ruleset 1286 define mapping ruleset 1287 1288 **Semantics** The **define mapping** allows to transcode a set of values of an Identifier Component 1289 1290 1291 **Syntax** 1292 **define mapping** *map_1* ({ condition (IdentifierComponent<?> idCond {, IdentifierComponent<?> idCond } *) } 1293 1294 **map to (**IdentifierComponent<?> idMapTo) 1295 map_from (IdentifierComponent<?> idMapFrom) 1296) is 1297 { MappingRule ; } + 1298 1299 MappingRule:= { when Component<Boolean> whenCondition then } 1300 IdentifierValue *valueTo* = IdentifierValue *valueFrom* 1301 end mapping ruleset 1302

- 1303 *Parameters*
- 1304 *idCond* : identifier
- 1305 *idMapTo* : component-ref
- 1306 *idMapFrom* : component-ref
- 1307 *whenCondition* : boolean
- 1308 valueTo: string
- 1309 *valueFrom* : string1310
- *idCond* is the identifier used in the condition part. More than one identifier can be used.
- 1312 *idMapTo* is the identifier whose values are resulting from the conversion of values of *idMapFrom*
- 1313 *idMapFrom* is the identifier whose values are converted to values of *idMapTo*
- *whenCondition* is a boolean expression. When *whenCondition* is evaluated to true then the corresponding mapping rule is executed. If *whenCondition* is omitted in a rule then it is implicitly assumed to be true.
- 1316 *valueTo* is a valid value for *idMapTo*
- *valueFrom* is a valid value for *idMapFrom*

1319 Constraints

idCond, idMapFrom and *idMapTo* are the names of existing Identifier Components). *valueTo* is a valid value for
 idMapTo and *valueFrom* is a valid value for *idMapFrom*.

1323 Semantic specification

- 1324 It creates a mapping that can be applied to transcode a set of values using the **transcode** statement. A mapping is 1325 a set of rules for transcoding values belonging to the code lists of two identifier components.
- 1326 1327 *Returns*
- 1328 None.
- 1329 1330 *Examples*
- 1331 See the examples under the **transcode** operator.
- 1332

¹³³³ VTL-ML - General purpose operators and functions

1334

1335 Parentheses ()

1336	Semantics
1337	The parenthesis allows to modify the default order of evaluation of the operators.
1338	
1339	Syntax
1340	(expression)
1341	
1342	Constraints
1343	None.
1344	
1345	Semantic specification
1346	
1347	

1348 Assignment :=

1349	Semantics
1350	The ":=" symbol allows to assign the value of an expression to a variable parameter.
1351	
1352	Syntax
1353	variable_parameter := expression
1354	
1355	Constraints
1356	None.
1357	
1358	Semantic specification
1359	the <i>expression</i> may evaluate to any data type.
1360	
1361	Examples
1362	Assignment of a Constant <number> value to a parameter:</number>
1363	numpi := 3.14
1364	Assignment of a String value to a parameter:
1365	str := "hello world"
1366	Assignment of an expression to a parameter:
1367	popA := populationDS + 1
1368	Assignment of a Dataset expression to a parameter:
1369	ds_1 := get("NAMESPACE/DF_NAME/2000.USD.M.F.A.BOP.ANN.STO.EABL")
1370	Assignment of a Constant <boolean> value to a parameter:</boolean>
1371	bool_var := true
1372	

1373 Membership

1374	Semar	itics

1375	The membership operator allows to specify a single component of a Dataset
1376	
1377	Syntax
1378	ds.comp
1379	Parameters
1380	ds : Dataset

•

1381	<i>comp</i> : Dataset component-ref
1382	
1383	• <i>ds</i> – is a Dataset
1384	• <i>comp</i> – a valid component of ds
1385	
1386	Constraints
1387	None.
1388	
1389	Returns
1390	A Dataset having all the identifiers and only one Measure or Attribute c specified by the operator.
1391	
1392	Semantic specification
1393	The membership operator is particularly useful to work with operators that have specific constraints in terms of
1394	the types of the Measure Components or have more than one Measure Component.
1395	
1396	Examples
1397	1) Suppose ds_1 is a multi-measure Dataset, where M1 is a numeric Measure Component and M2 is a string
1398	Measure Component, let ds_2 be a mono-measure Dataset with a single Measure Component M1. ds_1 and ds_2
1399	have the same Identifier Components. Let us supposed the sum ds_1 + ds_2 is desired.
1400	The following syntax: ds_1.M1 + ds_2 represents the resulting Dataset. In this notation ds_1 is temporarily
1401	considered mono-measure
1402	
1403	2) Suppose the comparison operator ("=") needs to be applied on the Component COUNTRY of the Dataset ds_1.
1404	In this expression:
1405	ds_2 := ds_1.COUNTRY="Luxembourg" the membership operator specifies that the Identifier Component COUNTRY is temporarily considered as the
1406 1407	only Measure Component to be used in the comparison.
1407	only Measure component to be used in the comparison.
1408	3) Suppose it is needed to round an Component. The round operator acts on Measure Components, which must
1409	be all Numeric. Suppose we have a Dataset ds_1 with a string Measure Component DESCRIPTION and a numeric
1411	Component AVERAGE_AGE, which needs to be rounded to the 3rd decimal. The expression:
1412	ds_1 := round(ds_1.AVERAGE_AGE,3)
1413	performs this task.
1414	ds_1.AVERAGE_AGE temporarily considers AVERAGE_AGE the only numeric Measure Component of ds_1. The
1415	round is then normally applied.
1416	
1417	4) Let us suppose we have two multi-measure Datasets ds_1 and ds_2, having the same Identifier Components
1418	K1 and K2, and the same Measure Components M1 (which is a Numeric), M2 which is a String.
1419	The expression:
1420	$ds_3 := ds_1.M1 + ds_2.M1$
1421	sums only the Measure Component M1.
1422	
1423	5) Let us suppose we have two multi-measure Datasets ds_1 and ds_2, having the same Identifier Components
1424	K1 and K2, and the Measure Components M1 and M2.
1425	The expression:
1426	$ds_3 := ds_1.M1 + ds_2.M2$
1427	sums the Measure Component M1 with the measure component M2.
1428	Alias as

Semantics

1430 The **as** operator allows to rename one component of a Dataset or the component resulting by an expression.

- *Syntax*
- *ds.comp* **as** alias
- *Parameters*
- *ds* : Dataset
- *alias* : string

- 1438
- 1439 *Constraints*
- 1440 This operator works only on Measure components.
- 1441 Semantics specification
- 1442 The operator takes as input a Dataset and the identifier of a Measure Component, and returns a new Dataset
- 1443 having only that Measure Component and all the original Identifier Components.
- 1444 Examples
- 1445 1) Let us suppose we have two multi-measure Datasets ds_1 and ds_2, having the same Identifier Components K1 and
- 1446 K2, and the Measure Components M1 and M2.
- 1447 The expression:
 - ds_3 := ds_1.M1 + ds_2.M2 as "M1"
- sums the Measure Component M1 with the measure component M2. The outcome Dataset has one Measure
- 1450 Components: M1, which is obtained as the sum of M1 in ds_1 and M2 in ds_2.
- 1451

- 1452 2) Let us suppose we have a Datasets ds_1 and the Measure Components M1.
- 1453 The expression:
- 1454 ds_2 := ds_1.M1* 10 as "M2"
- returns a Dataset having only one measure components M2 obtained as the product of M1 and 10.
- 1456 1457

1464

1473

1458 alterDataset

1459 Semantics

- 1460 The **alterDataset** allows to maintain all or a subset of components of the input Dataset having the identifier role.
 1461
- 1462 *Syntax*

1463 **alterDataset(** *ds_1{, compList}* { **all** } **)**;

1465 Parameters

1466 *ds_1* : dataset {identifier <IDENT> as scalar-type}+{measure <IDENT> as scalar-type}*

- 1467 {attribute <IDENT> as scalar-type}*
- 1468 compList : list<list<component-ref>>
 1469
- 1470 *ds_1* is the Dataset that the operator uses to produce the resulting Dataset.
- 1471 *compList* is the set of components belonging to the input Dataset.
- *all* its definition implies the presence of all components of *ds_1* in the resulting Dataset.

1474 *Constraints*

1475 None.

1476 1477 *Returns*

- 1478This operator returns a Dataset having only Identifiers Components. The components of the returned Dataset are1479all the components of the input Dataset that are part of the *compList* or, if it is not specified, only the identifier1480components of the input Dataset. If one or more measures or attributes are included in the list, they will be part1481of the returned Dataset but having a role of identifiers. This operator allows removing identifier components1482from the input Dataset removing duplications.
- 1484 Semantic specification
- 1485The Dataset resulting will have only Identifiers also if it contains components that were previously measures. If1486the with measures flag is specified then the resulting Set will have as added Identifiers, the Measures1487Components of the input one Dataset, too.
- 1488
- 1489 1490
- 1490 *Examples*1491

1492 1) alterDataset(ds_1 all)

ds_1		
К1	К2	M1
1	A	100
2	В	200

set_1		
К2	M1	
А	100	
В	200	
	A	

2) I_1 = list<components-ref> (REF_AREA)

alterDataset(ds_1,l1)

ancibatasetta

IT_nord_pop			
TIME	REF_AREA	OBS_VALUE	
2015	ITCD	27799803	
2015	ІТС	16138643	
2015	ITC1	4424467	
2015	ITC2	128298	
2015	ITC3	1583263	
2015	ITC4	10002615	
2015	ITD	11661160	
2015	ITD1	518518	
2015	ITD2	537416	
2015	ITD3	4927596	
2015	ITD4	1227122	
2015	ITD5	4450508	
2014	ITCD	27785211	
2014	ІТС	16130725	
2014	ITC1	4436798	
2014	ITC2	128591	
2014	ITC3	1591939	
2014	ITC4	9973397	
2014	ITD	11654486	
2014	ITD1	515714	
2014	ITD2	536237	
2014	ITD3	4926818	
2014	ITD4	1229363	
2014	ITD5	4446354	

set_1		
REF_AREA		
ITCD		
ІТС		
ITC1		
ITC2		
ITC3		
ITC4		
ITD		
ITD1		
ITD2		
ITD3		
ITD4		
ITD5		

get 1504

1505 **Semantics**

1506 The get operator allows to fetch all the instances of a Dataset from the system and returns a Dataset containing 1507 them.

1508

1509 **Syntax** 1510 get(*ds_id* {, *ds_id*}* 1511 1512 {,**keep(**keepPart {, keepPart }*)} {,**dedup**(*consResFunctions*)} 1513 1514 {,**filter(***filterPart***)**} 1515 {,aggregate(aggregateFunction (aggrPart {, aggrPart}*)*)}) 1516 1517 **Parameters** 1518 1519 ds id : ident consResFunctions : list<component-ref * (t*t) -> t > (t is the type of the referred Component) 1520 1521 *keepPart* : component-ref *filterPart* : boolean 1522 1523 aggrPart : component-ref (Component<Numeric>) 1524 1525 *ds_id* – is the Persistent Dataset to be fetched. • 1526 *keepPart* – is a valid reference to a Component of ds_id. consResFunctions – is a List of reference to valid Components of ds and conflict resolution Function. 1527 1528 filterPart – is a boolean Component expression which is evaluated row-wise and states if a row is to be kept • (if evaluates to true) or removed (if it does not evaluate to true) from the result. 1529 *aggrPart* – is a valid reference to the numeric Measure Component to aggregate. 1530 • 1531 1532

Constraints

- 1533 All the input Datasets ds_id must be persistent (see put operator) and must have the same Logical Data 1534 Structure, which is the same Components in number, name and type (static).
- If more than a Dataset ds_id is defined, then the definition of consResFunctions is mandatory. 1535
- The consResFunction List, must defines a conflict resolution function for each Measure Component specified 1536 • 1537 in the keep clause. For each Component the respective conflict resolution function must return a value of the

- same type (as explained in the syntax). If consResFunction is not used and duplicated records are presentthe get operator return an error.
- keepPart must be a Component expression containing exactly the name of a Component of any ds (complex Component expressions, combining more than one Component are not allowed) (static).
- aggrPart must be a Component expression containing exactly the name of a Measure Component present in 1543 any ds (no complex Component expressions, combining more than one Component is allowed). If there is at 1544 least one aggrPart, there must be one for each Measure Component that is present in a keepPart. If keepPart 1545 is omitted, all Measure Components must be in the aggregate. This means that there cannot be Measure 1546 Components, kept that are not used in aggregations (static).

1547 1548 *Returns*

- 1549 A Dataset obtained as the union of all the Datasets specified by the identifiers *ds*, keeping only the columns
- 1550 specified in the *keepParts* and the rows in the *filterParts*, choosing from duplicate Datapoints through
- 1551 *consResFunctions*, aggregating over all the Measure Components in *aggrParts* grouping.
- 1552
- 1553 Semantic specification
- 1554 The operator **get**, is the data retrieval command. It takes in input a number (at least one) of Dataset *ds*. Together 1555 with *put*, it is the only operator in VTL where a persistent Dataset can be mentioned.
- The command operates as follows: considers all the instances of the identified Dataset (selected according to the semantics of the identifier); builds a union without duplicates (conflicts are resolved using the *consResFunctions*
- specified in the dedup part); keeps in the result only the Components that are present in the *keepPart* (like SQL
 SELECT). If the keep part is omitted, all the Components are preserved in the result; selects the only instances
- returning *true* for the *filterPart* boolean Component expression. For the *filterPart*, any complex boolean Component expression over all the Datasets Components (not only the ones mentioned in the *keepPart* can be used) and it is evaluated row-wise (like SQL WHERE).
- Finally, the command aggregates (like SQL aggregations and GROUP BY) applying an aggregation function (see aggregate function operator) over the Measure Component specified in *aggrPart* grouping by the Identifier Components that are kept in the *keepPart* (or all if there is no *keepPart*).
- NULL values are considered in aggregations only if the "*include NULLS*" part is present. Specifically, they propagate as usual resulting in a NULL sum, average or median if at least one NULL is present among the values; in a NULL minimum or maximum if the only value to aggregate coincides with NULL; they are considered as always distinct in both count and count_distinct.
- 1570 Viceversa, if *include* NULLS part is absent, NULL values are not considered in aggregations.
- 1571

1572 Examples

- 1573 1) The expression:
- 1574 ds_1 := **get**("*DF_NAME*/2000-2010.USD.M.F.A.BOP.ANN.STO", keep(K1, K2, M1))
- 1575
- Retrieves Dataset identified by *DF_NAME*/2000-2010.USD.M.F.A.BOP.ANN.STO from the system, keeping the
 Identifier Components K1 and K2 and the Measure Component M1.
- 1578

DF_NAME/2000- 2010.USD.M.F.A.BOP.ANN.STO				
K1 K2 M1				
1	А	5		
2 B 7				

1579 1580

ds_1				
К1	К2	M1		
1	А	5		
2	В	7		

1581

1582 2) The expression:

1583 ds_1 := get("DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO", "DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO",

1584 keep(K1, K2, K3, M1), dedup(M1*min))

- Retrieves the union of Datasets identified by DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO and
- DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO, keeping the Identifier Components K1, K2 and K3 and the
- Measure Component M1 for all of them.

DF_NAME/2000- 2010.USD.M.F.A.BOP.ANN.STO					
К1	K2 K3 M1				
1	А	х	5		
2 B Y 7					

DF_NAME/2011- 2012.USD.M.F.A.BOP.ANN.STO				
К1	K1 K2 K3 M1			
1	А	х	6	
2	В	Y	7	
3	С	Z	9	

ds_1				
К1	К2	КЗ	M1	
1	А	х	5	
2	В	Y	7	
3	С	Z	9	

The union had produced two duplicates: (1,A,X,5) and (1,A,X,6), (2,B,Y,7) and (2,B,Y,7). The min conflict resolution function take care of the minimum value for M1 between the duplicates.

3) The expression:

ds_1 := get("DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO", ("DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO",

keep(K1, K2, K3, M1), dedup(M1*min), filter(K3="X")))

retrieves the union of Datasets identified by DF NAME/2000-2010.USD.M.F.A.BOP.ANN.STO and DF NAME/2011-2012.USD.M.F.A.BOP.ANN.STO keeping the Identifier Components K1, K2 and K3 and the Measure Component M1

for all of them and selecting only the rows where the value of the Component K3 equals to the Constant<String> "X".

NAMESPACE/DF_NAME/2000- 2010.USD.M.F.A.BOP.ANN.STO				
K1 K2 K3 M1				
1	А	х	5	
2	В	Y	7	

NAMESPACE/DF_NAME/2011- 2012.USD.M.F.A.BOP.ANN.STO						
K1 K2 K3 M1						
1	1 A X 6					

2	В	Y	7
3	С	Z	9

ds_1				
K1 K2 K3 M1				
1	А	х	5	

4)

- The expression:
- ds 1 := get(
- "DF NAME/2000-2010.USD.M.F.A.BOP.ANN.STO", "DF NAME/2011-2012.USD.M.F.A.BOP.ANN.STO",
- keep(K1, K2, M1), dedup(M1*min), aggregate(sum(M1)))
- retrieves the union of Datasets identified by
- DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO
- and
- DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO
- keeping the Identifier Components K1 and K2 and the Measure Component M1 for all of them. It aggregates over the
- Measure Component M1, grouping by the Identifier Components K1 and K2.

DF NAME/2000-2010.USD.M.F.A.BOP.ANN.STO

К1	К2	КЗ	M1	M2
1	А	х	5	2
2	В	Y	7	3

DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO					
К1	К2	КЗ	M1	M2	
1	А	Y	6	5	
2	В	Y	7	7	
3	С	Z	9	11	

ds_1				
К1	К2	M1		
1	А	11		
2	В	14		
3	С	9		

5) The expression:

ds_1 := get("DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO", "DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO", keep(K1, K2, M1,M2), dedup(M1*min, M2*first value), filter(K3>5 or K3=1), aggregate(sum(M1),max(M2)))

retrieves the union of Datasets identified by DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO and DF_NAME/2011-

2012.USD.M.F.A.BOP.ANN.STO keeping the Identifier Components K1 and K2 and the Measure Components M1 and

M2 for all of them. It selects only the rows where K3 is greater than 5 or exactly 1. It aggregates over the Measure

Component M1 by sum, over the Measure Component M2 by max, grouping by the Identifier Components K1 and K2.

DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO					
K1 K2 K3 M1 M2					
1	А	10	5	2	
2	В	1	7	3	

DF_NAME/2011-2012.USD.M.F.A.BOP.ANN.STO					
К1	К2	КЗ	M1	M2	
1	А	25	6	5	
2	В	1	7	7	
3	С	3	9	11	

ds_1					
К1	К2	M1	M2		
1	А	11	5		
2	В	14	7		

put

t stores the content of a Dataset expression ds into a persistent Dataset.
<i>Syntax</i>
put(ds, ds_id)
Parameters
<i>ls, ds_id</i> : dataset {identifier <ident> as scalar-type}+</ident>
{measure <ident> as scalar-type}* {attribute <ident> as scalar-type}*</ident></ident>
<i>ds</i> – is the Dataset, or Dataset expression which contents must be stored in the system.
<i>ds_id</i> – is the Dataset that will assumes the contents of ds, it will be persistent in the system.
-
Constraints
The Logical Data Structure of <i>ds</i> must conform to the one of the Dataset in the system that is identified by <i>ds_id</i>
static).
Returns
A Dataset that is a copy of the input one <i>ds.</i>
Examples
1) The expression below is to store the ds_1 Dataset.
ls := put(ds_1, "DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO")
?) ds := put(log((ds_1 + ds_2),10), "DF_NAME/2000-2010.USD.M.F.A.BOP.ANN.STO")
The result of logarithm is stored, while the sum is not persistent.
B) ds := put(log(put(ds_1 + ds_2, "DF_NAME/2000-2011.USD.M.F.A.BOP.ANN.STO"),10),"DF_NAME/2000-
2010.USD.M.F.A.BOP.ANN.STO")
Both the results of the sum and the logarithm are stored into the system. The fact that put outputs the input expression allows for this kind of use.

1678	eval
1679	Semantics
1680	The eval operator allows to execute an external, non-VTL program, and returns its result as a Dataset.
1681	
1682	Syntax
1683	eval (Constant <string> language,</string>
1684	[{ script= }Constant <string> <i>script</i> Constant<string> <i>programPath</i>],</string></string>
1685	{,{ params= }ConstantList parameterList}
1686	, { dataset= }PersistentDataset <i>ds_id</i>)
1687	
1688	Parameters
1689	<i>ds_id</i> : dataset {identifier <ident> as scalar-type}+</ident>
1690	{measure <ident> as scalar-type}* {attribute <ident> as scalar-type}*</ident></ident>
1691	language: string
1692	script: string
1693 1694	programPath : string
1694 1695	parameterList : list <scalar-type></scalar-type>
1695	<i>ds_id</i> – the PersistentDataset the program saves into.
1697	<i>language</i> – is the programming language of the script.
1698	<i>script</i> – is the code of the script.
1699	<i>programPath</i> – a path to a script file.
1700	<i>parameterList</i> – the List of input parameters for the script.
1701	
1702	Constraints
1703	• language must be the name of a programming language, meaningful and executable in the target system
1704	(such as a SQL stored-procedure language, R, STATA, etc.) (dynamic).
1705	• script must be the code of a program, valid with respect to the specified language. The program can
1706	perform whatever internal logic, but is forced to calculate and autonomously store exactly one
1707	PersistentDataset, ds_id (dynamic).
1708	• programPath must be a valid path in the target system to a program file, compliant with the specified
1709	language. It does not necessarily correspond to a filesystem file, but can also be the identifier of a DBMS
1710	stored procedure, and so forth (dynamic).
1711	• parameterList must be compatible in order and type with the input parameters of the script (dynamic).
1712	Com antio an additation
1713 1714	<i>Semantic specification</i> The program specified in the eval operator, is user-defined and can perform any internal logic, however it has to
1714	adhere to some conventions:
1715	 it can take as input only String or Numeric parameters, which are directly bound to parameterList;
1710	 it must autonomously store its results into a single Dataset ds_id. Indeed, the operator fetches the saved
1718	Dataset (like a common get operation) and returns it as output, which can be handled within other VTL
1719	expressions;
1720	 it must calculate exactly one Dataset;
1721	• it cannot refer to a parameter variable, but can only work with physical objects, such as relational tables
1722	(for SQL), data frames (for R), which are loaded autonomously by the program with the appropriate
1723	commands. Therefore, if a Dataset that has been calculated in a previous step needs to be used within a
1724	user-defined program, it must be stored (with a put) into the system and loaded appropriately by the
1725	program logic afterwards;
1726	• it must return 0 if it has terminated correctly, a negative number otherwise.
1727	Join expression

Semantics The join expression implements some of the features of the FLWOR expression described in the VTL User Manual. 1729

1732 1733 Syntax
{[join_clause]}{body} 1737 clause := calc_clause | drop_clause | filter_clause | keep_clause | rename_clause | unfold_clause | fold_clause calc_clause := { role } compName = k 1738 1739 drop_clause ::= drop { cmp { , cmp } * } *keep_clause* ::= **keep** { cmp { , cmp } * } 1740 1741 *filter clause* ::= **filter** boolean-expression | dpr 1742 rename clause ::= rename cmp to cmp { . cmp to cmp } 1743 unfold clause ::= unfold dim , msr to elem { , elem } 1744 fold clause ::= fold elem {, elem } to dim, msr 1745 role := identifier | measure | attribute 1746 1747 **Parameters** 1748 ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type }* {attribute <IDENT> as scalar-type} *] 1749 1750 *cmp* : Component 1751 dim : IdentifierComponent 1752 *dpr* : name of a data point ruleset 1753 1754 ds – is a Dataset name 1755 alias – is an alias for a Dataset, to be used when the same Dataset appears several times in 1756 k – is a scalar expression, or a Dataset expression denoting a single measure or attribute role – is the role of the calculated component c. If omitted then the role is derived from k (if k is a Dataset 1757 1758 expression) otherwise the default role of *c* is **attribute**. *dim* – is an Identifier Componentcommon to all Datasets specified in the join clause 1759 1760 1761 **Constraints** For inner and outer joins (see below), one of the Datasets specified in the *join_clause* must contain all Identifier 1762 Components from all other Datasets from the join_clause (with the same name and the basic scalar type, number, 1763 1764 boolean, string, or date). 1765 The name of the component cannot be **filter**, **keep** or **rename**, or those names must be quoted within "'". 1766 A Dataset ds should appear only once in the list of Datasets. 1767 1768 Returns 1769 The Dataset returned by the last statement of the body. 1770 1771 Semantic specification 1772 This operator implements some of the features of the FLWOR expression described in the VTL manual part 1. 1773 Only the features that are useful for validation and transformation purposes are retained in the VTL operator. First VTL executes the join clause and then the body. 1774 1775 The statements are executed in the specified order and operate on an input working Dataset. 1776 The Dataset resulting from the join clause is the input for the first statement of the body. The Dataset resulting from a statement is the input for the following statement. 1777 1778 The Dataset returned by the last statement of the body is returned as the final result of the join expression. 1779 1780 join_clause The meaning of the **inner** and the **outer** join is the same as the meaning of INNER JOIN and FULL OUTER JOIN 1781 1782 constructs, respectively, in the SOL-92 standard. These are the differences: 1783 **inner** ds1, ds2 the resulting Dataset contains the data points that exist both in ds1 and ds2 (i.e. the common Identifier Components of ds1 and ds2 have the same values in ds1 and ds2). 1784 1785 outer ds1, ds2 the resulting Dataset contains the data points that exist either in ds1 or ds2. Measures and 1786 attributes of data points that exist only in ds1 or ds2 (but not in both) have the **null** value. the resulting Dataset contains all data points of ds1 combined with all data points of ds2 (i.e. 1787 **cross** ds1, ds2 the Cartesian product of ds1 and ds2). The statements contained in the body are expected to 1788 reduce the number of data points by filtering them as needed. Measures and attributes of 1789 1790 data points that exist only in ds1 or ds2 (but not in both) have the null value. 1791 The join clause builds the input Dataset of the first statement, according to the following rules.

join clause ::= { [inner | outer | cross] } { ds { , ds * } on dim { , dim } * }

body := { clause { , clause } * }

1734

1792	•	If the join clau	use contains	a single <i>Datase</i>	t then that Datas	<i>Set</i> is the initial working <i>Dataset</i> . It is possible			
1793				-		their name. Suppose that ds1 has a measure			
1794		m, then	1		1 5 5 0	11			
1795] { a = m +1 }	correct					
1796	•				al working Data	<i>set</i> is the result of the inner or outer or cross			
1797						the <i>Dataset</i> s have common measures or			
1798		attributes (i.e. with identical names) then it is mandatory to refer to those components by specifying							
1799		•	both the <i>Dataset</i> name and the measure name. Suppose that ds1 and ds2 have a common measure m,						
1800		then:		a the measure i	iuniei suppose u				
1801		[ds1,ds2] { a = ds1.m +1 } correct							
1802			$\{a = m + 1\}$		ect (ambiguous:	m can refer to ds1 or ds2)			
1803				med with the re		··· · · · · · · · · · · · · · · · · ·			
1804		[ds1,ds2] { re	name 'ds1.m	n' to m1 , a = m1	+1} correct				
1805					-	ctically is not a valid name (this exception to			
1806		the syntax rul	es is allowed	l only in the join	body).				
1807						measures and attributes that have not been			
1808		renamed are a	automatically	y dropped. The	same applies wh	en the working Dataset is the input for a filter			
1809		that uses a da	tapoint (hori	zontal) ruleset.					
1810	•	If the on claus	se is specified	d then the join is	s possibly defined	d on a subset of the common Identifier			
1811		Components	s of the <i>Data</i> s	sets. If the Data	<i>set</i> s have comm	on Identifier Components (i.e. with identical			
1812		names, data t	ype and valu	es domain) that	are not specified	l in the on clause then it is mandatory to refer			
1813		to those Iden	tifier Comp	onents by spec	ifying both the D	<i>ataset</i> name and the measure name. For			
1814		example, if ds	1 and ds2 ha	ve some comm	on Identifier Con	ponents d1, d2 and d3, the following			
1815		expression:							
1816			ds2 on d1, d						
1817					fier Components	::			
1818			2, 'ds1.d3', 'd						
1819					d using the renar				
1820					new1, 'ds2_d3' t				
1821						fier Components that are not listed in the on			
1822						amed by replacing the "." with an underscore			
1823			applies whe	n the working L	Dataset is the inpl	it for a filter that uses a datapoint (horizontal)			
1824		ruleset.				dde e ising shows containing all Datasate that			
1825	•	,				adds a join clause containing all <i>Datasets</i> that			
1826 1827		$are used inside {a = ds1.m1 + }$		for example, the	e following join e	xpression:			
1827		-	-	v VTL as equival	ontto				
1828				m1 + ds2.m1					
1830		and	5 2] (a – us i.i	111 · U32.1111 J					
1831		[outer] { a =	ds1.m1 + ds	2.m1 }					
1832		is equivalent t		,					
1833				m1 + ds2.m1 }					
1834		- , - ,		,					
1835	Example	25							
1836			data points	s that exists in	both Datasets				
1837		ds1, ds2] {	-						
1838	•	obs_value = ds	s1.obs_value	+ ds2.obs_value	<u>,</u>				
1839		obs_status = d							
1840		}							
1841									
	ds1								
	TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS				
	2010	EU25	СА	20	E				
				-					

2010

BG

RO

CA

CA

2

2

P P

ds2					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS	
2010	EU25	CA	10	Р	

ds3					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS	
2010	EU25	CA	30	E	

1846	the example above can be expressed equivalently as:
1847	ds_bop3 := {
1848	obs_value = ds1.obs_value + ds2.obs_value ,
1849	obs_status = ds1.obs_status
1850	}
1851	

obs_status = ds1.obs_status

2) outer join returns data points that exist in at least one Dataset when a data point does not exist in the other Dataset, the value of its measures and components is null compare with the following example:

ds_bop3 := **[outer** ds1, ds2 **]** { obs_value = ds1.obs_value + ds2.obs_value ,

ds_bop3 := **[outer** ds1, ds2 **]** {

obs_status = ds1.obs_status

}

ds3	ds3					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS		
2010	EU25	CA	30	E		
2010	BG	CA		Р		
2010	RO	СА		Р		

nvl is used to replace the null value with 0 (compare with the previous example)

3)

	}						
ds3							
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS			
2010	EU25	CA	30	E			
2010	BG	CA	2	Р			
2010	RO	CA	2	Р			

obs_value = ds1.obs_value + nvl (ds2.obs_value, 0),

example of join defined on a subset of the Identifier Components (family_id)

ds_census

4)

PERSON_ID	FAMILY_ID	REL	NATIONALITY
1	1	HEAD	IT
2	1	SPOUSE	IT
3	1	CHILD	IT

4	2	HEAD	US
5	2	SPOUSE	US
6	2	CHILD	IT
7	2	CHILD	IT

1870 head := ds_census (rel=HEAD);

1871 spouse := ds_census (rel=SPOUSE);

1872 child := ds_census(rel= CHILD);

1873 [head, spouse, child on family_id] {

1874 **rename** head.person_id to head_id, spouse.person_id to spouse_id, child.person_id to child_id ;

rename head. nationality to head_nationality, spouse. nationality to spouse_nationality, child. nationality to
 child_nationality;

1877 1878

ds_result						
FAMILY_ID	HEAD_ID	SPOUSE_ID	CHILD_ID	HEAD_NATIO	SPOUSE_NAT	CHILD_NATIO
				NALITY	IONALITY	NALITY
1	1	2	3	IT	IT	IT
2	4	5	6	US	US	IT
2	4	5	7	US	US	IT

1880 calc clause

}

1881 1882

1883

1888

1879

calc_clause := { role } compName = k

1884 The calc_clause adds a new component (Identifier, Measure or Attribute Component) or replaces an existing 1885 component (Measure or Attribute: the Identifier Components cannot be replaced) of the working Dataset. If 1886 *calc_comp* coincides with the name of an existing Component in the working Dataset (even with different type), 1887 the calculated one replaces the former, in name, value and type.

1889 *Examples*

1890 Suppose merge_flags is a user defined function (not shown here) that returns EP when applied to E, P 1891 $ds_3 := [ds_1, ds_2] \{$

1891 u 1892

obs_value = ds1.obs_value + ds2.obs_value , obs_status = merge_flags (ds1.obs_status, ds2.obs_status)

1893 1894 1895

ds3				
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS
2010	EU25	CA	30	EP

1896 1897

1898 1899 drop_clause

drop_clause ::= **drop** { cmp { , cmp } * }

}

- 1900 The **drop** clause drops from the working Dataset the measures and attributes specified.
- 1901 Examples

1902 ds2 := [ds1] { drop obs_status }

ds1				
TIME	REF_AREA	PARTNER	OBS_VALUE	
2010	EU25	СА	20	
2010	BG	CA	2	

2010	RO	CA	2
------	----	----	---

- 1904 keep_clause
- 1905 keep_clause ::= **keep** { cmp { , cmp } * }
- 1906 The **keep** clause keeps in the working Dataset only the measures and attributes specified.
- 1907 Examples

1908 ds2 := [ds1] { keep time, ref_area, partner, obs_value }

ds1			
TIME	REF_AREA	PARTNER	OBS_VALUE
2010	EU25	CA	20
2010	BG	СА	2
2010	RO	CA	2

1909

1910 filter_clause

- 1911 filter_clause ::= **filter** boolean-expression | dpr
- When a boolean expression is specified, filter filters out the data points of the working Dataset for which the
 boolean expression evaluates to false or null (i.e., only the data points for which the Boolean expression
- 1915 evaluates to true are maintained).
- 1916 when a data point ruleset is specified, **filter** filters out the data points of the working Dataset for which at least 1917 one antecedent condition evaluates to true and its corresponding consequent condition evaluates to false or null
- (i.e., only the data points that satisfy the whole ruleset are maintained).
- 1919 Note that **null** as a result of a boolean expression is always interpreted as "not satisfied".

1921 Examples

- 1922 1) Compute new measure obs_value_neg derived from obs_value, rename ds1.obs_status to keep it in the result.
- 1923 ds1.obs_value is not kept
- 1924 ds_bop3 := **[outer** ds1, ds2 **]** {

1925 1926

1920

filter ds2.obs_value <> 0 , obs_value = ds1.obs_value / ds2.obs_status , rename 'ds1.obs_status' to obs_status

1927 1928

ds3				
TIME	REF_AREA	PARTNER	OBS_VALUE_NEG	OBS_STATUS
2010	EU25	CA	2	E

1929

1930 2) Simple filter

1931

1932 ds2 := [ds1] { filter obs_value < 10 and time = "2010" }

ds2				
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS
2010	BG	CA	2	Р
2010	RO	СА	2	Р

1933

1934 rename_clause

1935 rename_clause ::= **rename** cmp **to** cmp **{**, cmp **to** cmp **}**

- 1937 **rename** allows renaming one or more components (Identifier , Measure or Attribute Component). VTL verifies
- that the resulting Dataset, after renaming all the specified components, has unique names of its components

equivalent to obs_status = ds1.obs_status

- 1939 (otherwise an error is raised). Renaming an Identifier Componentimplies that the actual values of it are valid for
- 1940 the dimension type (usually the code list associated to the Identifier).

1942 Examples

- 1943 compute the measure obs_value_neg derived from obs_value
- 1944 rename ds1.obs_status to keep it in the result
- 1945 ds1.obs_value is not kept

ļ

1946 1947

1948

1941

- ds_bop3 := **[outer** ds1, ds2 **] {**
 - obs_value_neg = -ds1.obs_value,

rename 'ds1.obs_status' to obs_status

1949 1950

ds3				
TIME	REF_AREA	PARTNER	OBS_VALUE_NEG	OBS_STATUS
2010	EU25	CA	-20	E
2010	BG	CA		Р
2010	RO	CA		Р

1951

1952 unfold_clause

1953 1954

1955

unfold_clause ::= **unfold** dim , msr **to** elem { , elem }

1956 unfold creates the resulting Dataset in the following way: drops the Identifier Component *dim* and the measure 1957 *msr* from the resulting Dataset, partitions the input Dataset by grouping the values of the remaining Identifiers of 1958 the Dataset, transposes the data points of each group into a single data point of the resulting Dataset and adds 1959 new measures elements (all *elem* in the list). Then in the newly created data point **unfold** assigns to the value of 1960 each measure *elem* the value of *msr* existing in the input Dataset where dim = *elem* (if such a data point exists) or 1961 **null** otherwise.

1962 The data points where "dim **not in** (*elem*, ...)" are removed from the resulting Dataset.

1963 Note that the attributes created may have names that are not syntactically correct (they may start with a digit,

1964 contain special characters, etc.): those names must be quoted (included in single quote " ' ") in any expression,

and it is not allowed to create a Dataset based on those data. It is also not allowed to return a Dataset as the final result of the join expression with names not complying with the VTL rules. Note that the names can be renamed

1967 using the **rename** operator.

1968

1969 *Examples*

1970 Unfold and fold Identifier ref_area and measure obs_value

1971 ds_unfold := [ds1] { unfold ref_area, obs_value to (EU25, BG, RO) }

1972

ds1				
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS
2010	EU25	CA	20	E
2010	BG	CA	2	Р
2010	RO	СА	2	Р

ds_unfold					
TIME	PARTNER	EU25	BG	RO	
2010	CA	20	2	2	

1976 fold_clause

1978 fold_clause ::= fold elem { , elem } to dim , msr

fold transposes a single data point of the input Dataset into several data points. It adds Identifier dim and
measure msr to the resulting Dataset, inserts into the resulting Dataset a data point for each value A in the
element list and assigns to the inserted data point dim = A and msr = value of measure A in the input Dataset.

1983 When measure A is null then **fold** does not create a data point for that measure.

Note that in general unfolding and folding are not exactly symmetric operations, i.e. in some cases the fold operation applied to the unfolded Dataset does not recreate exactly the original Dataset (before unfolding).

Examples

1988 ds_fold := [ds_unfold] { fold (EU25, BG, RO) to ref_area, obs_value }

ds_fold			
TIME	REF_AREA	PARTNER	OBS_VALUE
2010	EU25	CA	20
2010	BG	CA	2
2010	RO	CA	2

1992 Function Creation

1993 Semantics

1994 Creates a named function with given arguments, defined by a given expression.

Syntax

```
create function function-name ( arg-list )
[ returns return-type ]
as defining-expression
```

2001 Parameters

- *function-name* : <IDENT>
- *arg-list* : [arg {, arg }]
- *arg* : arg-name [**as** arg-type] [:= default-value]
- *arg-name* : <IDENT>
- *arg-type* : type
- *default-value* : literal
- *defining-expression* : expression
- *return-type* : type
- *function-name* the name under which the function is created
- *arg-list* the comma-separated list of formal arguments (can be empty)
- *arg-name* the name of an individual argument
- *arg-type* the optionally specified argument type
- *default-value* the optionally specified argument default value; it can be a scalar literal (number, string, Boolean,
- 2016 or date) or a function literal (an anonymous function)
- *return-type* the optionally specified function return type
- *defining-expression* the expression that defines the function
- *Constraints*

- Each arg-name must be unique within the arg-list. For each arg-name, element arg-type can be omitted if the argument type can be inferred from the definition. If both arg-type and default-value are given, then default-value must be compatible with arg-type. Arguments that have default-value must come at the end of arg-list.
- If return-type is omitted, the statically inferred type of defining-expression is used as an implicit return-type. If return-type is given, the inferred type of defining-expression must be compatible with return-type.
- 2029 2030 *Returns*
- 2031 Nothing

20322033 Semantic specification

The **create function** construct creates a named function with zero or more given arguments, defining expression, and the return type. The function can be called by name followed by the sequence of commaseparated call arguments in parentheses. Each call argument is an expression of type compatible with the corresponding *arg-type*, whose result is passed by value. The named function call syntax is:

- 2038 *function-call* ::= function-name (call-arg-list)
- 2039 *call-arg-list* ::= { *call-arg* { , *call-arg* } }
- 2040 *call-arg* ::= positional-arg | named-arg
- 2041 *positional-arg* ::= arg-value
- 2042 *named-arg* ::= *arg-name* := arg-value
- 2043 *arg-value* ::= expression
- In *call-arg-list*, positional arguments and named arguments cannot be arbitrarily mixed: named arguments must come after all positional arguments (if any).
- 2046 For *function-call* to be valid, the following properties are statically checked:
- 2047 First, the *function-name* must refer to a function created with **create function**.
- Second, all arguments to *function-name* that do not have *default-value* must be supplied. Positional arguments are supplied in the order in which they appear in the corresponding *arg-list*. The named arguments can be given in any order after the positional arguments, but cannot refer to arguments whose values are already given by an
- 2051 earlier *positional-arg* or *named-arg*.
- 2052 For each *arg-name*, the type of the provided *arg-value* must be compatible with the corresponding *arg-type*.
- 2053 Values for arguments with *default-value* must be specified using *named-arg*, nor *positional-arg*.
- The result of a *function-call* to a *function-name* defined using **create function** is the value of *defining-expression*
- for the values of *arg-list* as supplied by the *call-arg-list*.
- 2056 2057

Examples

2058 1)

2059 **create function** compare_integer_descending(x **as integer**, y **as integer**)

2060 returns boolean

2061 **as** x > y

creates function *compare_integer_descending* which takes two integer arguments, *x* and *y*, and returns **true** if *x>y*,
 otherwise **false**. Call *compare_integer_descending*(1, 4) returns **false**, and call *compare_integer_descending*(8,0)
 returns **true**.

2065 2066

2066 2)
 2067 define function has_solution(a, b, c)

2068 **as** b*b-4*a*c>0

2069 creates function *has_solution* takes three number arguments, *a*, *b* and *c*, and returns **true** only if the quadratic 2070 equation $ax^2+bx+c=0$ has at least one solution. The types for *a*, *b* and *c* are inferred as *number* because in the 2071 defining expression the left-hand side of > must be a number to be comparable with the right-hand side 0. Also,

- *return-type* is inferred as *Boolean*, because that is the result type for the comparison operator > on scalars.
- 2073 Call *has_solution*(1,0,0) returns **true**, and *has_solution*(1,0,1) returns **false**. The latter is equivalent to
- 2074 *has_solution*(*a*:=1, *b*:=0, *c*:=1), which is also equivalent to *has_solution*(*c*:=1, *a*:=1, *b*:=0).
- 2075
- 2076
- 2077

2078 VTL-ML - String operators and functions

	tics		
The le		or returns the leng	th of a character string.
1110 101	Ben operat	or recurns the reng	
Syntax			
<i>by</i> noun	length (d	(s)	
	8(-	- ,	
Param			
as : [aa			ccalar-type}+ {measure <ident> as string-literal}+</ident>
	{attribu	te <ident> as scal</ident>	lar-type}" string]
da ia	a Data ant arr	nucceion ou o strin	-
as - is a	a Dataset ex	pression or a string	8
Constru	ainta		
Constru			
		n it must be a strin	1g type. least a measure of type string .
II as is	a Dataset th	en it must nave at	least a measure of type string .
Return	<i>.</i>		
		n longth noturns o	scalar integer representing the length of <i>ds</i> .
			asure components, then length returns a Dataset having the Identifier
		0	asures with the same name as the string Measures of <i>ds</i> and containing th
		sponding measure	
length	of the corre	sponding measure	5.
Examp	los		
On scal			
		o, World!")	A = 13
	ingen (men	o, worra. j	11 15
On Dat	aset		
On Dat ds_r :=	aset length(ds_	1)	
		1)	_
		1)	
ds_r :=		1) M1	
ds_r :=	length(ds_		
ds_r := ds_1 K1	length(ds_	M1	
ds_r := ds_1 K1 1	length(ds_ K2 A	M1 hello	
ds_r := ds_1 K1 1	length(ds_ K2 A	M1 hello	
ds_r := ds_1 K1 1	length(ds_ K2 A	M1 hello	
ds_r := ds_1 K1 1 2	length(ds_ K2 A	M1 hello	
ds_r := ds_1 K1 1 2 ds_1	length(ds_	M1 hello null	
ds_r := ds_1 K1 1 2 ds_1 K1 1 1	length(ds_ K2 A B V K2 K2 A A A A A A A A A	M1 hello null M1 5	
ds_r := ds_1 K1 1 2 ds_1 K1 K1	length(ds_ K2 A B K2 K2 K2	M1 hello null M1	
ds_r := ds_1 K1 1 2 ds_1 K1 1 2	length(ds_ K2 A B V K2 A B V K2 A B C C C C C C C C C	M1 hello null M1 5 null	ause the corresponding value of ds_1 is null.
ds_r := ds_1 K1 1 2 ds_1 K1 1 2	length(ds_ K2 A B V K2 A B V K2 A B C C C C C C C C C	M1 hello null M1 5 null	ause the corresponding value of ds_1 is null.

- 2115 Semantic
- 2116 The operator || concatenates two strings.

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146	Syntax ds_1 ds_2 Parameters ds_1, ds_2 : [dataset {identifier <ident> as scalar-type }+ {measure <ident> as string }+ {attribute <ident> as scalar }* string] ds_1, ds_2 - is a Dataset expression or a string Constraints • If ds_1 (ds_2) is a scalar then it must be a string data type. • If ds_1 (ds_2) is a Dataset then it has at least a measure of string type. • If both ds_1 and ds_2 are Datasets then they must have at least one Identifier in common (with the same name and datatype). • If both ds_1 and ds_2 are Datasets then either they have one or more measures in common, or at least one of them has only a measure. Returns The operator returns: If both ds_1 and ds_2 are scalar values then the operator returns a scalar string value, the concatenation of ds_1 and ds_2. If either ds_1 or ds_2 is a Dataset then the operator returns a Dataset having the following components: • The superset of the Identifier Components of ds_1 and ds_2 • If ds_1 and ds_2 have one or more string measures in common (i.e., with the same name) then the resulting Dataset has these common string measures in common (i.e., with the same name) then the resulting Dataset contains at the resulting Dataset contains at the resulting Dataset contains at data point for each pair of data points of ds_1 and ds_2 that have the same key (the same values of the Identifier Components).</ident></ident></ident>
2146	(the same values of the Identifier Components).
2147 2148	Examples
2149	On scalar
2150	A := "Hello" ", world! " C = "Hello, world! "
2150	
2151	On Dataset
2152	

2153 ds_r := ds_1 || ds_2

ds_1			
К1	К2	M1	
1	А	"hello"	
2	В	"hi"	

ds_2		
К1	К2	M1
1	А	"world"
2	В	"there"

ds_r			
К1	К2	M1	
1	A	"helloworld"	
2	В	"hithere"	

2168

2169 2170 2171

2172 2173

2160 trim /rtrim/ltrim

2161	Semantics
2162	The trim

- The **trim /rtrim/ltrim** operators eliminate trailing or/and leading whitespace from a string.
- 2164 *Syntax*
- 2165 [trim | rtrim | ltrim] (ds) 2166

2167 Parameters

ds : [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as string }+ {attribute <IDENT> as scalar-type }* | string]

ds – is a Dataset expression or a string

Constraints

2174 If *ds* is a scalar then it must be a **string** data type.

2175 If *ds* is a Dataset then it must have at least a measure of **string** data type. 2176

2177 Returns

- 2178 If *ds* is a scalar then operators returns a scalar string representing the input string without trailing or/and
- 2179 leading whitespace.
- If *ds* is a Dataset and has N string measures then operators returns a Dataset having the Identifier Components of *ds* and N string measures with the same name as the string measures of *ds* where the values take the value of the input ones without whitespaces from left and right (trim), or alternatively without the left (ltrim) or right (rtrim) whitespaces.
- 2183 wh 2184
- 2185 Semantic specification
- The operators trim whitespaces from left and right of it (trim), or alternatively only the left (ltrim) or right
 (rtrim) whitespaces.

2189 Examples

2107	илитрись	
2190	example on scalar	
2191	If A = " Hello, world! ":	
2192	B := trim(A)	B = "Hello, world!"
2193		

```
        2194
        example on Dataset

        2195
        ds_1 := trim(ds)
```

2196 2197

ds		
К1	К2	M1
1	А	" hello world "
2	В	"hi "
3	С	" help! "

ds_1		
К1	К2	M1
1	А	"hello world"
2	В	"hi"
3	С	"help!"

2201 upper/lower

2202	Semantics				
2203	The upper/l	ower operator	s convert all characters of a st	ring to upper / lower case.	
2204	Syntax				
2205	[upper lower] (ds)				
2206					
2207	Parameters				
2208	<i>ds</i> : [dataset {identifier <ident> as scalar-type}+ {measure <ident> as string }+</ident></ident>				
2209	{a	ttribute <iden< td=""><td>T> as scalar-type}* string]</td><td></td></iden<>	T> as scalar-type}* string]		
2210					
2211	ds – is a Data	set expression o	or a string		
2212					
2213	Constraints				
2214			must be a string data type.		
2215	If <i>ds</i> is a Data	set then it must	t have at least a measure of st	'ing data type.	
2216					
2217	Returns				
2218				is the upper case or the lower case of the input one.	
2219				ators return a Dataset having the Identifier Components	
2220				ing measures of ds where the Measure Components	
2221	assumes the	upper case or l	ower case values of the respec	tive input value of the Measure Components'.	
2222					
2223	Examples				
2224	On scalar				
2225	1) If A = "Hel			5. 5.W	
2226		upper(A)	B = "HELLO, WO		
2227	B := lower(A) B = "hello, world!"				
2228	0				
2229	On Dataset				
2230	2) ds_r := up	per(as_1)			
2231				1	
	ds_1				
	K1	К2	M1		
	1	А	"hello world"		
	2	В	"hi"		
	3	С	"help"]	
2232	L	I	•		
]	
	ds_r				

ds_r		
К1	К2	M1
1	А	"HELLO WORLD"
2	В	"HI"
3	С	"HELP"

2234 substr

2235	Semantics

2236
2236

Syntax

substr (*ds*, {, *startPosition*} {, *length*} **)**

Parameters

- 2242 *ds*: [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as string }+
- 2243 {attribute <IDENT> as scalar-type }*|string]
- 2244 *startPostion* : integer
- 2245 *length* : integer 2246
- *ds* is the input Dataset or the input string.
- *startPostion* is the index of the character in the string from which the substring is performed.
- *length* is the number of the characters in the string to be taken starting from *startPosition*. 2250

Constraints

2251

2258

2265

- *startPostion* must be major or equal than 0 and minor than the whole length of the input string.
- *startPosition* plus length must be minor than the whole length of the input string, otherwise the length parameter is ignored.
- If ds is a scalar then it must be a **string** data type.
- If ds is a Dataset then it must have at least a measure of **string** data type. 2257

Returns

If *ds* is a scalar string then operators returns a substring of the input one starting from *startPosition* and extracting *length* characters.

If *ds* is a Dataset and has N string measures then operators returns a Dataset having the Identifier Components of *ds* and N string measures with the same name of the string measures of *ds* where the Measure Components assumes substring values of the respective input Measure Components's values, obtained starting from *startParameters* and taking length characters.

2266 Semantics

The substring of the input string is obtained stating from *startPosition* and extracting length characters, if *length* plus *startPosition* is greater than the whole length of the input string, then *length* parameter is ignored.

- 2269 2270 *Examples*
- 2271 On scalar

1) Assuming that A = "Hello, world!":

- 2273
 B := substr(A, 2)

 2274
 B := substr(A, 2, 5)

 2275
 B := substr(A, 0, 4)
- B = "lo, world!" B = "lo, w" B = "Hell"

2276 2277 On Dataset

- 2278 2) ds_r := **substr(**ds_1,7**)**
- 2279

ds_1		
К1	К2	M1
1	А	"hello world"

2280

ds_r		
К1	К2	M1
1	А	"rld"

2281

2282 3) ds_r := **substr(**ds_1,0,5**)** 2283

ds_1		
К1	К2	M1
1	А	"hello world"
ds r		

ds_r		
K1	К2	M1

1	Δ	"hello"	2284
-	~	iiciio	2285
			2205

insti	~		
Seman	tics		
The in	str operator retur	rns the position of a string in a	other one
	•		
Syntax			
		<pre>tartPosition} { , occurrence})</pre>	
, c	, ,		
Param	eters		
<i>ds</i> : [da	taset {identifier <	IDENT> as scalar-type }+ {mea	sure <ident> as string }+</ident>
		oute <ident> as scalar-type }</ident>	
strToSe	earch : string		
	sition : integer		
	ence : integer		
occurre	ence i integer		
• ds	_ is the input strip	ng or the input Dataset.	
	<i>ToSearch</i> – is the		
			tring from which start to accurch
			tring from which start to search.
• 00	<i>currence</i> – is the i	number of occurrences of the s	<i>rToSearch</i> from which start to search
C .			
Constru			
		it must be a string data type.	
• If c	is is a Dataset thei	n it must have at least a measu	e of string data type.
Return			
			of the first character of <i>strToSearch</i> in the string.
			e character of string and the number of occurrences f
	start to search, re		
			ors returns a Dataset having the IdentifierComponent
			tring measures of <i>ds</i> where the Measure Components
			in the string. The <i>startPosition</i> and <i>occurrence</i> are inte
			umber of occurrences from which start to search.
A nega	tive value of start	Position counts backward from	the end of string.
	tic specification		
			e returned is -1. If <i>startPosition</i> is omitted the start
positio	n is 1, if <i>occurren</i> d	ce is omitted the value is 1.	
Ехатр	les		
On sca			
1) Assı	uming that A = "al		
-	B := instr (A, "c'		
	•	-	
On Dat	aset		
2) ds_2	2 := instr(ds_1,"he	llo")	
	-		
ds_1			_
К1	К2	M1	_
1	A	"hello world"	

"say hello"

"hi, hello!"

"he"

2

3

4

A A

А

2332			
	ds_2		
	К1	К2	M1
	1	А	0
	2	А	4
	2	٨	1

A

2333

2337

2339

2340

2346

2347

2348 2349

2334 date_from_string

2335 Semantics

4

2336 The operator **date_from_string** converts a string into a date.

4

2338 Syntax

date_from_string(ds, format)

2341 *Parameters*

2342 *ds* : [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as string }+

- 2343 {attribute <IDENT> as scalar-type }* |string]
- 2344 *Format* : string 2345
 - *ds* is the input string or the input Dataset
 - *format* is the format of the resulting date.

Constraints

- If ds is a scalar then it must be a **string** data type.
- If ds is a dataset then it must have at least a measure of **string** data type.
- e format must respect one of these patterns:

Format	Frequency	Example	Frequency
YYYY		2000	Annual
YYYYSN	S	2000S1	Semestrial
YYYYQN	Q	2000Q1	Quarterly
YYYYMNN	М	2000M01	Monthly
YYYYDNNNN	D	2000D0101	Daily
ΥΥΥΥΑ	А	2000A	Annual
YYYYSN	S	2000S1	Semestrial
YYYY-QN	Q	2000-Q1	Quarterly
YYYY-NN	М	2000-01	Monthly
YYYY-NN-NN	D, M, Q or A	2000-01-01	Daily, Monthly, Quarterly or Annual

2354

2355

2356

2357 Returns

2358 If *ds* is a scalar, the operator returns its date representation, based on the chosen format.

2359 If *ds* is a Dataset having N string Measure Components, the operator returns a Dataset having the same Identifier

2360 Components as *ds* and N Measure Components varying in type (from string-literal to date) assuming values of

the date representations (on the base of the *format*) of the dates in the input Measure Components.

2363	Examples	
2364	On scalar	
2365	1) If A = "2016-02"	
2366	B := date_from_string (A, YYYY-MM)	B = 2016-02-01
2367	2) If A = "2016-02"	
2368	B := date_from_string (A, YYYY-MM-DD)	B = 2016-02-01
2369	A date component has always years, months and days.	
2370		
2371	On Dataset	
2372	3) ds_2:= date_from_string (ds_1, "YYYY-MM")	

ds_1			
K1	К2	M1	
1	A	"2015-12"	
2	В	"2015-06"	
3	С	"2015-12"	
4	E	"2015-06"	

ds_2		
К1	К2	M1
1	А	2015-12-01
2	В	2015-06-01
3	С	2015-12-01
4	E	2015-06-01

replace

2379	Semantics

The **replace** operator replaces a substring with a given string.

Syntax

replace(ds, str_old {, str_new })

Parameters

ds : [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> }+ {attribute <IDENT> as scalar-type }*|string]

str_old, str_new : string

- *ds* – is the input string or the input Dataset,
- *str_old* – is the string to be replaced, •
- *str_new* is the string to replace. If omitted then all occurrences of *str_old* are removed. •

Constraints

- If ds is a scalar then it must be a **string** data type.
- If ds is a Dataset then it must have at least a measure of **string** data type.

Returns

- If ds is a scalar, the operator returns a string having the *ds* value obtained replacing *str_old* with *str_new*. •
- If ds is a Dataset having N string Measure Components, returns a Dataset having the Identifier Component of
- ds and N string Measure Components obtained replacing *str_old* with *str_new*.

2402	
2403	Examples
2404	On scalar
2405	1) If A = "Hello"
2406	B := replace (A,"ello","i")
2407	

B = "Hi"

2408 On Dataset

2409 2) ds_2:= **replace** (ds_1,"ello","i")

2410

ds_1		
К1	K2 M1	
1	А	"hello world"
2	А	"say hello"
3	А	"he"
4	A	"hello!"

2411 2412

ds_2		
К1	К2	M1
1	А	"hi world"
2	А	"say hi"
3	А	"he"
4	A	"hi!"

2414 VTL-ML - Numeric operators and functions

2415	unary plus +
2416	Semantics
2417	The + operator leaves the sign unaltered.
2418	
2419	Syntax
2420	+ ds
2421	
2422	Parameters
2423	ds : [dataset {identifier <ident> as scalar-type}+ {measure <ident> as number}+ {measure <ident> as scalar-type}* {attribute <ident> as scalar-type}* number]</ident></ident></ident></ident>
2424 2425	{measure <iden1> as scalar-type}* {attribute <iden1> as scalar-type}*[number]</iden1></iden1>
2423 2426	<i>ds</i> – is the input scalar number or the input Dataset.
2420	as - is the input scalar number of the input Dataset.
2428	Constraints
2429	If <i>ds</i> is a scalar then it must be a numeric data type.
2430	If <i>ds</i> is a Dataset then it must have at least a measure of numeric data type.
2431	
2432	Returns
2433	If <i>ds</i> is a scalar then operator return the input number without altering its sign.
2434	If <i>ds</i> is a Dataset and has N numeric measures then operator return a Dataset having the Identifier Components of
2435	ds and N numeric measures without alterations.
2436	
2437	Examples
2438	On scalar
2439	1) A := +B
2440 2441	if B = 5, then A = 5
2442	unary minus -
2443	Semantics
2444	The – operator inverts the sign
2445	Constant
2446 2447	Syntax - ds
2447	- as
2448	Parameters
2450	ds : [dataset {identifier <ident> as scalar-type}+ {measure <ident> as number}+</ident></ident>
2451	{measure <ident> as scalar-type}* {attribute <ident> as scalar-type}* [number]</ident></ident>
2452	
2453	<i>ds</i> – is the input scalar number or the input Dataset.
2454	
2455	Constraints
2456	If <i>ds</i> is a scalar then it must be a numeric data type.
2457	If <i>ds</i> is a Dataset then it must have at least a measure of numeric data type.
2458	
2459	Returns
2460	If <i>ds</i> is a scalar then operator return the input number negated.
2461	If <i>ds</i> is a Dataset and has N numeric measures then operator return a Dataset having the Identifier Components of
2462	ds and N numeric measures with the sign of the values in the numeric Measure Components inverted.
2463 2464	Examples
2464 2465	On scalar
2105	

2466 2467 2468 2469 2470 2471 2472	1) A := -B if B = 5, then A = -5 if B = -7, then A = 7 On Dataset 2) ds_2 := - ds_1			
	ds_1			
	К1	K2	M1	
	1	А	11	
	2	В	-14	
	3	С	9	
2473 2474			·	_
	ds_1			
	К1	К2	M1	
	1	А	-11	
	2	В	14	
	3	С	-9	
2475 2476 2477	3) ds_2 := -	ds_1		
	ds_1			
	К1	К2	M1	M
	1	А	11	12
	2	В	-14	13
	3	С	9	14
2478 2479				

ds_1				
К1	К2	M1	M2	M3
1	А	11	12	"A"
2	В	-14	13	"В"
3	С	9	14	"C"

ds_1				
К1	К2	M1	M2	M3
1	А	-11	-12	"A"
2	В	14	-13	"В"
3	С	-9	-14	"C"

addition and subtraction + -

Semantics

The operator + or – compute the sum or subtraction Syntax *ds_1* [+ | -] *ds_2*

Parameters

2491 ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ 2492

- {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*|number]
- 2493 • *ds*_1- is the first input scalar number or the first input Dataset.
- *ds 2* is the second input scalar number or the second input Dataset. 2494 •

2496 *Constraints*

2495

2503

- 2497 If *ds* 1 (*ds* 2) is a scalar then it must be a **numeric** data type. ٠
- 2498 If *ds* 1 (*ds* 2) is a Dataset then it has at least a measure of **numeric** type.
- If both *ds* 1 and *ds*_2 are Datasets then they must have at least one Identifier Component in common (with 2499 the same name and data type). 2500
- If both *ds_1* and *ds_2* are Datasets then either they have one or more measures in common, or at least one of 2501 2502 them has only a measure.

2504 *Returns*

2505 If both *ds_1* and *ds_2* are scalar values then the operators return the algebraic sum or subtraction of *ds_1* and 2506 ds 2.

2507 If either *ds*₁ or *ds*₂ is a Dataset then the operators return a Dataset having the following components:

- 2508 The superset of the Identifier Components of *ds* 1 and *ds* 2
- 2509 If ds 1 and ds 2 have one or more numeric measures in common (i.e., with the same name) then the resulting 2510 Dataset has these common string measures, with the same name, containing the algebraic sum or subtraction of the respective measures of *ds* 1 and *ds* 2. Otherwise, if *ds* 1 and *ds* 2 do not have any measures in 2511 common and have only one measure then the resulting Dataset contains only a measure named CONDITION 2512
- that contains the algebraic sum or subtraction of the single measures of ds 1 and ds 2. 2513
- 2514 The resulting Dataset contains a data point for each pair of data points of ds 1 and ds 2 that have the same values on the common Identifier Components). 2515

2517 Semantic specification

2518 See also the operator **listsum** than returns a data point for those data points that would be ignored.

2519

2516

2520 **Examples** example on Dataset 2521

2522 1)

In this example, we calculate the total population of a set of countries given two Datasets: one of the male 2523 2524 population, and another, of the female population. They contain one measure each. Thus, the result will contain a 2525 single measure with the results of the addition.

2527 ds_3 := ds_1 + ds_2

2528

2526

ds_1				
TIME	GEO	POPULATION		
2013	Belgium	5		
2013	Denmark	2		
2013	France	3		
2013	Spain	4		

ds_2					
TIME	GEO	AGE	POPULATION		
2013	Belgium	Total	10		
2013	Greece	Total	11		
2013	Belgium	Y15-24	NULL		
2013	Greece	Y15-24	2		
2013	Spain	Y15-24	6		

ds_3				
TIME	GEO	AGE	POPULATION	
2013	Belgium	Total	15	
2013	Belgium	Y15-24	NULL	
2013	Spain	Y15-24	10	

Note that the Data Points of ds_1 and ds_2 that has a missing in the other Dataset are not shown in the resulting one.

2) ds_bop1 := ds_bop1 + 1

ds_bop1					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS	
2010	EU25	CA	20	D	
2010	BG	СА	2	Р	
2010	RO	CA	2	Р	

ds_bop1					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS	
2010	EU25	СА	21	D	
2010	BG	CA	3	Р	
2010	RO	CA	3	Р	

3) ds_plus := ds_bop1 + ds_bop2

ds_bop1						
TIME	TIME REF_AREA PARTNER OBS_VALUE OBS_STATU					
2010	EU25	СА	20	D		
2010	BG	CA	2	Р		
2010	RO	CA	2	Р		

ds_bop2					
TIME REF_AREA PARTNER OBS_VALUE OBS_STATU					
2010	EU25	CA	10	D	

ds_plus				
TIME	REF_AREA	PARTNER	OBS_VALUE	
2010	EU25	CA	30	

2012

2012

2012

2012

2012

Greece

Spain

Belgium

Greece

Switzerland

Total

Total

Y15-24

Y15-24

Y15-24

10

20

30

5

2

24.3

25

3.6

18.3

48	multipli	ication and	division	* /		
49	Semantics					
50		r * or / multiply or	divide two nu	mhers		
51	The operator	or y manupiy or	arriae erro na			
2	Syntax					
3	ds_1 [* /] a	ls 2				
<u>.</u>		13_ 2				
5	Parameters					
5		lataset {identifier	<ident> as so</ident>	alar-type}+ {meas	ure <ident> as number}+</ident>	
					NT> as scalar-type}* numbe	erl
	,	he first input scala				1
		the second input se				
	- u <u>5</u> 2 15 t	ine second input se		in the second input	Dutubet	
	Constraints					
		<i>ls_2</i>) is a scalar the	en it must he a	numeric data typ	e	
		<i>ls_2</i>) is a Dataset th				
					ast a dimension in common	(with the same name
	and data			cy must have at lea	ast a unitension in common	(with the same name
			atasets then eit	her they have one	or more measures in comm	on or at least one of
		s only a measure.	alasets then en	lifer they have one	of more measures in comm	ion, of at least one of
	Returns	sonny a measure.				
	The operator	rs return.				
)	•		values then th	e operators return	n the algebraic product or ra	atio of ds 1 and ds 2
					taset having the following co	
		erset of the Identif				mpononioi
	-		-		nmon (i.e., with the same na	me) then the resulting
					ie name, containing the alge	
					herwise, if <i>ds_1</i> and <i>ds_2</i> do :	
					resulting Dataset contains a	
			-		the single measures of <i>ds_1</i>	
					points of <i>ds_1</i> and <i>ds_2</i> that	
		lues of the Identifi				
		c product of the in			on them	
	ine algebrai	e produce er die m	p 40 1141110 010 0			
	Semantic spe	cification				
		ero results in a ru	ntime exceptio	on.		
	on of 2		interprise			
	Examples					
	£					
	On Dataset					
	DSr:=total_p	opulation[rename	POPULATION	as PERCENTAGE].PERCENTAGE *	
		ng_rate_urbanizati			_	
		-				
	total_populat	tion				
	TIME	GEO	AGE	POPULATION	UNEMPLOYMENT_RATE	
	2012	Belgium	Total	100	7.6	

~ ~	0	1
23	9	L

Overcrowding_rate_urbanization						
ТІМЕ	GEO	PERCENTAGE				
2012	Belgium	0.01				
2012	Greece	0.1				
2012	Spain	0.2				
2012	Malta	0.3				
2012	Finland	0.4				
2012	France	0.5				

DSr						
TIME	GEO	AGE	PERCENTAGE			
2012	Belgium	Total	1			
2012	Greece	Total	1			
2012	Spain	Total	4			
2012	Greece	Y15-24	0.5			

2593 2594

2601

2609

2613

2595 round/ceil/floor

- 2596 Semantics
- 2597 The operators **round/ceil/floor** round a number. 2598
- 2599 Syntax

```
2600 [round(ds, decimals) | ceil(ds) | floor(ds)]
```

2602 Parameters

2603	<i>ds</i> : [dataset {identifier <ident> as scalar-type}+ {measure <ident> as number}+</ident></ident>
2604	{attribute <ident> as scalar-type}* number]</ident>
2605	decimals : integer
2606	• <i>ds</i> – is the input scalar number or the input Dataset.

decimals – the decimal position to round to.

Constraints

- 2610 If *ds* is a scalar then it must be a **numeric** data type.
- 2611 If *ds* is a Dataset then it must have at least a measure of **numeric** data type.
- 2612 *decimals* must be an **integer** greater or equal than zero.

2614 *Returns*

- 2615 If *ds* is a scalar then the operators return the input number rounded using round, ceil or floor operator.
- 2616 If *ds* is a Dataset and has N numeric measures then the operators return a Dataset having the Identifier
- 2617 Components of *ds* and N numeric measures rounded using round, ceil or floor operator.
- 2618
- 2619 Semantic specification
- The operator **round** takes as input a number and a number of decimal digits and rounds the former number to the number of decimal digits specified by the latter.
- 2622 The operator **floor** rounds to the largest previous integer, while ceil rounds to the smallest greater integer.
- 2623 2624 *Examples*
- 2625 On scalar

2626	1) If $P = 3.14159$	
2627	A := round(P, 2)	A = 3.14
2628	B := round(P, 4)	B = 3.1416
2629	C := floor (P)	C = 3
2630	D := floor (P)	D = 4
2631		

2632 On Dataset

2633

unemployme

unemployment							
AGE	TIME	GEO	SEX	YOUTH_UNEMPLOYMENT	UNEMPLOYMENT		
From 20 to 29 years	2011	Germany	Total	7.5	5.9		
From 20 to 29 years	2012	Germany	Total	7.1	5.5		
From 20 to 29 years	2011	Greece	Total	33.7	17.7		
From 20 to 29 years	2012	Greece	Total	42.5	24.3		

2634 2635

2636

2637

2) ds_1 := **round**(unemployment,0)

ds_1							
AGE	TIME	GEO	SEX	YOUTH_UNEMPLOYMENT	UNEMPLOYMENT		
From 20 to 29 years	2011	Germany	Total	8	6		
From 20 to 29 years	2012	Germany	Total	7	6		
From 20 to 29 years	2011	Greece	Total	34	18		
From 20 to 29 years	2012	Greece	Total	43	24		

2638 2639 2640

3) ds_1 := round(unemployment.YOUTH_UNEMPLOYMENT, 0)

ds_1							
AGE	TIME	GEO	SEX	YOUTH_UNEMPLOYMENT	UNEMPLOYMENT		
From 20 to 29 years	2011	Germany	Total	8	5.9		
From 20 to 29 years	2012	Germany	Total	7	5.5		
From 20 to 29 years	2011	Greece	Total	34	17.7		
From 20 to 29 years	2012	Greece	Total	43	24.3		

2641 2642

4) ds_1 := **ceil(**unemployment.YOUTH_UNEMPLOYMENT**)**

2643	

ds_1							
AGE	TIME	GEO	SEX	YOUTH_UNEMPLOYMENT	UNEMPLOYMENT		
From 20 to 29 years	2011	Germany	Total	8	6		
From 20 to 29 years	2012	Germany	Total	7	6		
From 20 to 29 years	2011	Greece	Total	34	18		
From 20 to 29 years	2012	Greece	Total	43	25		

- 2645 abs
- 2646 Semantics
- 2647 The operator **abs** calculates the absolute value of a number

2648					
2649	Syntax				
2650	abs(ds)				
2651					
2652	Parameters				
2653					{measure <ident> as number}+</ident>
2654				as scalar-type}*	-
2655	ds – is the i	nput scalar	number o	r the input Datas	et.
2656					
2657	Constraints				
2658				numeric data ty	
2659	If <i>ds</i> is a Da	taset then it	must hav	e at least a meas	are of numeric data type.
2660	_				
2661	Returns				
2662					olute value of the input number.
2663					n the operator returns a Dataset having the Identifier
2664	Component	ts of <i>ds</i> and	the N nun	neric measures c	ontaining the absolute values of the corresponding one
2665	Enguardag				
2666	<i>Examples</i> On scalar				
2667 2668		sume A = -!	. .		
2668		= abs(A)	5:	B = 5	
2670		= abs(A) = abs(B)		Б = 5 С = 5	
2670 2671	C.	- abs(D)		C = J	
2672	On Dataset				
2672		3 := abs(Dat	tasetA)		
2673	2) Dutabeti		aseary		
2071	Dataset A				
	Dataset A		-		
	COUNTRY	SEX	YEAR	VALUE	
	FR	Males	2011	0.484183	
	FR	Females	2011	-0.515817	

FR

Dataset B							
COUNTRY	SEX	YEAR	VALUE				
FR	Males	2011	0.484183				
FR	Females	2011	0.515817				
FR	Total	2011	1.000000				

2011

-1.000000

2677

3) ds_bop1 := **abs** (ds_bop1)

Total

ds_bop1					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS	
2010	EU25	CA	20	D	
2010	BG	CA	2	Р	
2010	RO	CA	-2	Р	

2680 2681

ds_bop	1			
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS

ones in *ds*.

2010	EU25	CA	20	D
2010	BG	CA	2	Р
2010	RO	CA	2	Р

trunc 2683 2684 **Semantics** 2685 The operator **trunc** truncates the decimal digits of a number. 2686 2687 **Svntax** 2688 trunc(ds, decimals) 2689 **Parameters** 2690 ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+ {attribute <IDENT> as scalar-type}* [number] 2691 2692 decimals : integer 2693 2694 *ds* – is the input scalar number or the input Dataset. ٠ 2695 *decimals* – the decimal position beyond which the decimal digits are discarded. 2696 Constraints 2697 If *ds* is a scalar then it must be a **numeric** data type. 2698 If *ds* is a Dataset then it must have at least a measure of **numeric** data type. 2699 2700 decimals must be greater or equal than zero. 2701 2702 Returns 2703 If ds is a scalar then the operator returns the input number with the decimal digits discarded beyond the number 2704 of digits specified by *decimals*. If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier 2705 2706 Components of *ds* and the N numeric measures obtained by discarding the decimal digits after the *decimals* 2707 position. 2708 Examples 2709 2710 On scalar 2711 1) If P = 3.14159 2712 A := trunc(P, 2)A = 3.14B = 3.1415 2713 B := trunc(P, 4)2714 2715 Differ from round: 2716 B := round(P, 4) B = 3.1416 2717 2718 On Dataset 2) ds 1 := trunc(DatasetA, 2) 2719 2720 DatasetA COUNTRY SEX YEAR VALUE FR Males 2011 0.484183 FR Females 2011 0.515817 FR 2011 Total 1.000000 2721

ds_1					
COUNTRY	SEX	YEAR	VALUE		
FR	Males	2011	0.48		

FR	Females	2011	0.51
FR	Total	2011	1.00

exp

2724	Semantics							
2725	The exp op	erator calcu	ulates the	exponential of a	number			
2726								
2727	Syntax							
2728	exp(ds)							
2729								
2730	Parameters							
2731	ds : [datase	et {identifie	r <ident:< td=""><td>> as scalar-type}-</td><td>+ {measure <ident> as number}</ident></td></ident:<>	> as scalar-type}-	+ {measure <ident> as number}</ident>			
2732					ribute <ident> as scalar-type}* [number]</ident>			
2733	, i							
2734	ds – is the in	nput scalar	number o	r the input Datas	et.			
2735								
2736	Constraints							
2737			must be a	numeric data ty	pe.			
2738					ure of numeric data type.			
2739					5 F			
2740	Returns							
2741		lar then the	e operatoi	returns e (Napie	er's – or Euler's – constant) raised to <i>ds</i> .			
2742					n the operator returns a Dataset having the Identifier			
2743					otained by elevating <i>e</i> (Nepero's number) to the value in the			
2744	original Me							
2745								
2746	Examples							
2747	On scalar							
2748	1) If $B = 5$:							
2749	,	= exp(B)		A = 148	413			
2750	2) If B = -1:							
2751	,	= exp(B)		A = 0.36	58			
2752	3) If B = 0:							
2753	-	= exp(B)		A = 1.0				
2754		F (-)		10				
2755	On Dataset							
2756								
2757	4) DatasetE	3 := exp(Da	tasetA)					
	Dataset A		í					
	COUNTRY	SEX	YEAR	VALUE				
			-					
	FR	Males	2011	5				
	FR	Females	2011	8				
	FR	Total	2011	2				
2758								

Dataset B					
COUNTRY	SEX	YEAR	VALUE		
FR	Males	2011	148.41		
FR	Females	2011	2980.95		
FR	Total	2011	7.389		

2762	ln						
2763	Semantics						
2764	The opera	tor ln calc	ulates the	e natural logari	thm of a number		
2765							
2766	Syntax						
2767	ln(ds)						
2768	Deveryon						
2769 2770	<i>Parameters</i> <i>ds</i> : [dataset {identifier <ident> as scalar-type}+ {measure <ident> as number}+</ident></ident>						
2770				s scalar-type}*			
2772		laccipace		social cypej			
2773	<i>ds</i> – is the i	nput numbe	er.				
2774		1					
2775	Constraints						
2776	If <i>ds</i> is a scalar then it must be a numeric data type greater than zero.						
2777	If <i>ds</i> is a Da	taset then it	must hav	e at least a meas	ure of numeric data type.		
2778							
2779	Returns						
2780					ural logarithm (base <i>e</i>) of <i>ds</i> .		
2781					n the operator returns a Dataset having the Identifier		
2782					btained by calculating the natural logarithm (in base <i>e</i> , Nepero's		
2783 2784	number) of	the value in	n the origi	nal Measure Cor	nponent.		
2784	The logarit	hm of a zero	or negat	ive number resu	lts in a runtime exception.		
2785	The logarity		o or negat	ive number resu			
2787	Examples						
2788	On scalar						
2789	1) If B = 1:						
2790		= ln(B)		A = 0			
2791	2) If B = 14						
2792	A :	= ln(B)		A = 4.9	97		
2793	On Detect						
2794 2795	On Dataset						
2795	3) DatasetF	3 := ln(Data	setA)				
2797	5) Dutaseti	. mubuu	seary				
_,,,	Dataset A						
	COUNTRY	SEX	YEAR	VALUE			
	FR	Males	2011	148.41			
	FR	Females	2011	2980.95			
	FR	Total	2011	7.389			
2798	L	1	1		I		

Dataset B					
COUNTRY	SEX	YEAR	VALUE		
FR	Males	2011	5		
FR	Females	2011	8		
FR	Total	2011	2		

2801	log					
2802 2803 2804	<i>Semantics</i> The log operator calculates the logarithm of a number to a base b					
2805 2806 2807	Syntax log(ds, base)					
2808 2809 2810	<i>Parameters</i> <i>ds</i> : [dataset {identifier <ident> as scalar-type}+ {measure <ident> as number}+ {attribute <ident> as scalar-type}* number]</ident></ident></ident>					
2811 2812	base : integ	-				
2813 2814 2815		he input sca he base of t			zero) or the input Dataset.	
2813 2816 2817 2818 2819 2820	• If <i>ds</i> is a		en it must l	have at least a n	ta type greater than zero. neasure of numeric data type having values greater than zero.	
2821 2822 2823 2824 2825	<i>Returns</i> If ds is a scalar then the operator returns the <i>base</i> logarithm of ds. If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier Components of ds and the N numeric Measures are obtained by calculating the logarithm in <i>base</i> of the value in the original Measure Component.					
2826 2827 2828	The logarith	nm of a zero	o or negativ	ve number resu	lts in a runtime exception.	
2829 2830 2831 2832 2833		= log (B, 2)		A = 10 A = 3.0	1	
2835 2834 2835 2836	$A := log(B, 10) \qquad A = 3.01$ On Dataset 2) DatasetB := log(2,DatasetA)					
	Dataset A					
	COUNTRY	SEX	YEAR	VALUE		
	FR	Males	2011	1024		
	FR	Females	2011	64		
2837	FR	Total	2011	32		
2007	Dataset B					
	COUNTRY	SEX	YEAR	VALUE		
	FR	Males	2011	10		
	FR	Females	2011	6		

power

FR

- *Semantics*
- 2841 The operator **power** calculates the power of a number raised to an exponent

Total

2842								
2843	Syntax							
2844	<pre>power(ds, exponent)</pre>							
2845								
2846	Parameters							
2847					+ {measure <ident> as number}+</ident>			
2848 2849			IDEN I > a	s scalar-type}*	numberj			
2849 2850	<i>exponent</i> : i	integer						
2850 2851	• $ds - is t$	the input sc	ələr numb	per or the input I	Dataset			
2852				of the power.				
2852	• expone	m = 15 the c	xponent c	n the power.				
2854	Constraints							
2855			n it must l	be a numeric dat	ta type.			
2856					neasure of numeric data type.			
2857								
2858	Returns							
2859					ed to the <i>exponent</i> power.			
2860					n the operator returns a Dataset having the Identifier.			
2861			the N nun	neric measures a	re obtained by elevating the original Measure Component to the			
2862	exponent-t	h power.						
2863 2864								
2864 2865	Examples							
2866	On scalar							
2867	1) If $A = 2, 1$	B = 5:						
2868	C :=	= power(B,	A)		C = 25			
2869								
2870	On Dataset							
2871	2) DatasetE	3 := power(DatasetA,	2)				
2872	Detect A				1			
	Dataset A							
	COUNTRY	SEX	YEAR	VALUE				
	FR	Males	2011	3				
	FR	Females	2011	4				
	FR	Total	2011	5				
2873								
	Dataset B							
	COUNTRY	SEX	YEAR	VALUE				
	FR	Males	2011	9				
	FR	Females	2011	16				
	FR	Total	2011	25				
2874								

2875 sqrt

2876	Semantics
2877	The operator sqrt calculates the square root of a number

- 2878 2879 *Syntax*
- 2880 sqrt(*ds*)
- 2881
- 2882 *Parameters*
- 2883 ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+

2884	{attribute <ident> as scalar-type}* number]</ident>
2885	
2886	<i>ds</i> – is the input scalar number or the input Dataset.
2887	
2888	Constraints
2889	• If <i>ds</i> is a scalar then it must be a numeric data type greater than zero.
2890	• If <i>ds</i> is a Dataset then it must have at least a measure of numeric data type having values greater than zero.
2891	
2892	Returns
2893	If ds is a scalar then the operator returns the square root of <i>ds</i> .
2894	If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier.
2895	Components of ds and the N numeric measures are obtained by calculating the square root of the original
2896	Measure Component.
2897	
2898	The square root of a negative number results in a runtime exception.
2899	Examples
2900	On scalar
2901	1) If A = 25:
2902	$B := sqrt(A) \qquad B = 5$
2903	
2904	On Dataset
2905	2) DatasetB := sqrt(DatasetA)

```
2906
```

Dataset A					
COUNTRY SEX YEAR VALUE					
FR	Males	2011	16		
FR	Females	2011	81		
FR	Total	2011	64		

Dataset B				
COUNTRY	SEX	YEAR	VALUE	
FR	Males	2011	4	
FR	Females	2011	9	
FR	Total	2011	8	

nroot

Semantics
The nroot operator calculates the n-th root of a number
Syntax
nroot(ds, index)
Parameters
ds : [dataset {identifier <ident> as scalar-type}+ {measure <ident> as number}+</ident></ident>
{attribute <ident> as scalar-type}* [number]</ident>
index : integer
• <i>ds</i> – is the input scalar number or the input Dataset.
• <i>index</i> – the index of the root.

Constraints

²⁹²⁵ • If *ds* is a scalar then it must be a **numeric** data type greater than zero when index even (dynamic).

• If ds is a Dataset then it must have at least a measure of **numeric** data type having values greater than or equa to zero when index even (dynamic).

2929 Returns

- If ds is a scalar then the operator returns the index-th root of ds.
- If ds is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier.
 Components of ds and the N numeric measures are obtained by calculating the index-th root of the original
 Measure Component.

C = 5

2935 Semantic specification

2936 In case of even index and negative argument, it results in a runtime exception.

2937 2938 *Examples*

```
2939 On scalar
```

```
2940 1) If A = 2, B = 25:
```

```
2941 C := nroot(B, A)
```

```
2942
```

2928

2934

2943 On Dataset

2944 2) DatasetB := **nroot**(DatasetA,3)

2945

Dataset A				
COUNTRY	SEX	YEAR	VALUE	
FR	Males	2011	8	
FR	Females	2011	27	
FR	Total	2011	64	

2946 2947

Dataset B					
COUNTRY	SEX	YEAR	VALUE		
FR	Males	2011	2		
FR	Females	2011	3		
FR	Total	2011	4		

2948

2949 mod

```
2950 Semantics
```

2951 The operator **mod** calculates the remainder of the division of a number by a denominator

2952 2953 *Syntax*

```
2954 mod(ds, den)
```

2955 2956 *Parameters*

```
    2957 ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+
    2958 {attribute <IDENT> as scalar-type}* |number]
    2959 den: integer
```

2959 *den*: integ 2960

- *ds* is the input scalar number or the input Dataset.
- *den* is the input denominator.

2963 2964 *Constraints*

- If *ds* is a scalar then it must be a **numeric** data type.
- If ds is a Dataset then it must have at least a measure of **numeric** data type.
- *2967 den* must be greater than zero.

- 2969 *Returns*
- If *ds* is a scalar then the operator returns the remainder of the division of *ds* by *den*.

If *ds* is a Dataset and has N numeric measures then the operator returns a Dataset having the Identifier
 Components of *ds* and the N numeric measures are obtained by calculating the remainder of the division of
 the original Measure Component by *den*.

2974 2975 *Semantics*

The operator takes as input a numerator and a denominator and returns the remainder of the division of the
 numerator by the denominator.

C = 1

2979 *Examples*

2980 On scalar

2981 1) If A = 5, B = 2:

2982

2983

2984 On Dataset

2985 2) DatasetB := **mod**(DatasetA,3)

C := mod(A, B)

Dataset A				
COUNTRY	SEX	YEAR	VALUE	
FR	Males	2011	7	
FR	Females	2011	10	
FR	Total	2011	12	

2987

2986

Dataset B				
COUNTRY	SEX	YEAR	VALUE	
FR	Males	2011	1	
FR	Females	2011	1	
FR	Total	2011	0	

2988

2989 listsum

2990 *Semantics*

2991 **listsum** returns the sum of the specified values and replaces the missing data points with a zero value

2992 2993 *Syntax*

```
2994 listsum (ds { , ds } * )
```

2995 2996 Parameters

```
2997 ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as number}+
2998 {attribute <IDENT> as scalar-type}*
```

3000 ds – is the input Dataset (s).

3002 *Constraints*

3003 The Dataset (s) must have at least a measure of **numeric** data type.

3004 3005 *Returns*

3006 A Dataset denoting the sum of the values. If any expression evaluates to an empty data point then the 0 value is

substituted for that expression. If all operands evaluate to empty data points then no data points are returned
 (i.e., the result is a Dataset containing no data points).

3009

2999

3010 Semantic specification

- 3011 The difference with the + operator is that **listsum** substitutes an empty data point with 0 (therefore returning a
- 3012 result) while the + operator returns an empty data point when one of the operands is an empty data point.
- *Examples*3015
- 3016 1) ds_sum := **listsum (** ds_bop1 , ds_bop2 **)**

ds_bop1					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS	
2010	EU25	CA	20	D	
2010	BG	CA	2	Р	
2010	RO	CA	2	Р	

ds_bop2					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS	
2010	EU25	CA	10	D	

ds_sum					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS	
2010	EU25	CA	30	D	
2010	BG	CA	2	Р	
2010	RO	CA	2	Р	

3021 Compare with the "+" operator:

ds_plus := ds_bop1 + ds_bop2

ds_plus					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS	
2010	EU25	CA	30	D	

3026 2) ds_sum := **listsum (** ds_bop1 , - ds_bop2 **)**

ds_sum						
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS		
2010	EU25	CA	10	D		
2010	BG	CA	2	Р		
2010	RO	CA	2	Р		

3029 VTL-ML - Boolean operators and functions

3030	equa	l to =						
3031 3032 3033	<i>Semantic</i> The open	rator = compares	two value	es to evalua	ate if they are eq	ual.		
3034 3035 3036	$\frac{Syntax}{ds_1} = c$	ls_2						
3037 3038 3039	Paramet ds_1, ds		tifier <ide< td=""><td>ENT> as sca</td><td>alar-type}+ {mea</td><td>sure <ident> as <t>}+ boolean]</t></ident></td></ide<>	ENT> as sca	alar-type}+ {mea	sure <ident> as <t>}+ boolean]</t></ident>		
3039 3040 3041	ds_1,ds_2	? – is a Dataset exp	pression o	r a booleai	n			
3041 3042 3043 3044 3045 3046	 <i>Constraints</i> If both <i>ds_1</i> and <i>ds_2</i> are Datasets then they must have at least a Identifier Component in common (with the same name and data type). If both <i>ds_1</i> and <i>ds_2</i> are Datasets then either they have one or more measures in common, or at least one of 							
3047 3048 3049 3050	<i>Returns</i> If both <i>d</i> of the <i>eq</i>	<i>s_1</i> and <i>ds_2</i> are s <i>ual to</i> validation.	scalar valu		•	urns a scalar boolean value representing the result		
3051 3052 3053 3054 3055 3056 3057 3058	 If either ds_1 or ds_2 is a Dataset then the = operator returns a Dataset having the following components: The superset of the identifier components of ds_1 and ds_2 If ds_1 and ds_2 have one or more measures in common (i.e., with the same name) then the resulting Dataset has these common measures, with the same name concatenated with the suffix "_CONDITION", containing the results of the <i>equal to</i> validation of the respective measures of ds_1 and ds_2. Otherwise, if ds_1 and ds_2 do not have any measures in common and have only one measure then the resulting Dataset contains a 							
3059 3060 3061	The resu	<i>ds_2</i> . Ilting Dataset con le values of the Id				a points of <i>ds_1</i> and <i>ds_2</i> that have the same key		
3062 3063 3064		c specification o values are equa	l, the the	result of th	e validation will	be <i>true false</i> if they differ.		
3065	Example	S						
3066	On scala							
3067	1) If A =			C = 5				
3068		D := A = B			false			
3069		$\mathbf{D} := \mathbf{A} = \mathbf{C}$. "	D = 1	true			
3070		"hello", B = "hi", (<i>]</i> = "Ηι":	D	6-1			
3071		D := A = B		$\mathbf{D} = 1$	false			
3072 3073	On Datas	of						
3073 3074 3075		Overcrowding_ra	te_urbani	zation = 0.	08			
2072	overcrow	/ding_rate_urbani	zation					
	TIME	GEO	AGE	SEX	VALUE			

NULL

0.286

0.064

2012

2012

2012

Belgium

Greece

Spain

Total

Total

Total

Total

Total

Total

2012	Malta	Total	Total	0.043
2012	Finland	Total	Total	0.08
2012	Switzerland	Total	Total	0.08

DSr						
TIME	GEO	AGE	SEX	CONDITION		
2012	Belgium	Total	Total	NULL		
2012	Greece	Total	Total	false		
2012	Spain	Total	Total	false		
2012	Malta	Total	Total	false		
2012	Finland	Total	Total	true		
2012	Switzerland	Total	Total	true		

3077

3086

3087 3088

3089 3090

3091

3095 3096

3109

not equal to <> 3078

3079 Semantic

3080 The operator <> compares two values to evaluate if they are not equal.

3081 3082 Svntax

3083 *ds*_1 <> *ds*_2

3084 3085 **Parameters**

 ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+ | boolean]

*ds*_1,*ds*_2 – is a Dataset expression or a boolean

Constraints

- If both *ds_1* and *ds_2* are Datasets then they must have at least a Identifier Component in common (with the 3092 same name and data type).
- If both ds_1 and ds_2 are Datasets then either they have one or more measures in common, or at least one of 3093 3094 them has only a measure.

Returns

3097 If both *ds_1* and *ds_2* are scalar values then the operator returns a scalar Boolean value representing the result of 3098 the not equal to validation.

- 3099 If either *ds*_1 or *ds*_2 is a Dataset then the operator returns a Dataset having the following components:
- 3100 The superset of the Identifier Components of *ds*_1 and *ds*_2
- 3101 If *ds_1* and *ds_2* have one or more measures in common (i.e., with the same name) then the resulting Dataset has these common measures, with the same name concatenated with the suffix "_CONDITION", containing 3102 3103 the results of the not equal to validation of the respective measures of ds 1 and ds 2. Otherwise, if ds 1 and ds_2 do not have any measures in common and have only one measure then the resulting Dataset contains a 3104 3105 measure named **CONDITION** that contains the result of the *not equal to* validation of the single measures of *ds_1* and *ds_2*. 3106
- The resulting Dataset contains a data point for each pair of data points of *ds_1* and *ds_2* that have the same key 3107 3108 (the same values of the Identifier Components).
- 3110 Semantic specification
- If the values are not equals, the result of the validation will be *true*, *false* if they not differ. 3111
- 3112 *Examples*
- 3113 On scalar
- 1) If A = 5, B = 9, C = 5: 3114

$$\begin{array}{ccc} 3117 & D := A <> B & D = true \end{array}$$

- 3118
- 3119 On Dataset

3120 3) compare_ds := y_unemployment_2012 <> y_unemployment_2011 3121

Y_unemployment_2012					
GEO	SEX	UNIT	C_BIRTH	VALUE	
Germany	Total	Percentage	Total	7.1	
Greece	Total	Percentage	Total	NULL	

3122

y_unemployment_2011					
GEO	VALUE				
Germany	Total	Percentage	Total	7.5	
Greece	Total	Percentage	Total	3	

3123

compare_ds						
GEO	SEX	UNIT	C_BIRTH	VALUE_CONDITION		
Germany	Total	Percentage	Total	true		
Greece	Total	Percentage	Total	NULL		

3124

3125 If VALUE for Greece in the second operand had also been NULL, then the result would still be NULL for Greece.

3126

3136

3145

3127 greater than > >=

3128 Semantic

- 3129 The operator >>= compares two values to evaluate if one is greater (or equal) to the other.
- 3130 3131 *Synta*
- 3131 *Syntax* 3132 *ds* 1 [>]
- 3132 *ds*_1 [>|>=] *ds*_2 3133

3134 *Parameters*

3135 *ds_1, ds_2* : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+ | boolean]

3137 *ds_1,ds_2* – is a Dataset expression or a Boolean

31383139 *Constraints*

- If both *ds_1* and *ds_2* are Datasets then they must have at least one Identifier Componentin common (with the same name and data type).
- If both *ds_1* and *ds_2* are Datasets then either they have one or more measures in common, or at least one of them has only a measure.

Returns

3146 If both *ds_1* and *ds_2* are scalar values then the operator returns a scalar boolean value representing the result of 3147 the comparison *greater* (or *equal*) validation.

- 3148 If either *ds_1* or *ds_2* is a Dataset then the operator returns a Dataset having the following components:
- The superset of the Identifier Components of *ds_1* and *ds_2*
- If *ds_1* and *ds_2* have one or more measures in common (i.e., with the same name) then the resulting Dataset
 has these common measures, with the same name concatenated with the suffix "_CONDITION", containing
 the results of the comparison greater (or equal) validation of the respective measures of *ds_1* and *ds_2*.
- 3153 Otherwise, if ds_1 and ds_2 do not have any measures in common and have only one measure then the

- resulting Dataset contains a measure named **CONDITION** that contains the result of the comparison greater (or equal) validation of the single measures of *ds_1* and *ds_2*.
- The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key (the same values of the Identifier Components).

3159 Semantic specification

- 3160 If the value on the left side is greater (or equal) than the value on the right side, the result of the validation will 3161 be *true* if, *false* if not or either of them is NULL.
- 3162 3163 Exam

3158

Examples

3164	On scalar	
3165	1) If A = 5, B = 9, C = 5:	
3166	D := A > B	D = false
3167	D := A >= C	D = true
3168	2) If A = "hello", B = "hi", C = "Hi":	
3169	D := A > B	D = false
3170		

3171 On Dataset

3172 3) compare_ds := foreign_languages_known > 20

3173

foreign_languages_known						
N_LANG	GEO	TIME	AGE	UNIT	VALUE	
2	Germany	2011	Total	Percentage	NULL	
2	Greece	2011	Total	Percentage	12.2	
2	Finland	2011	Total	Percentage	29.5	

3174

compare_ds						
N_LANG	GEO	TIME	AGE	UNIT	CONDITION	
2	Germany	2011	Total	Percentage	NULL	
2	Greece	2011	Total	Percentage	false	
2	Finland	2011	Total	Percentage	true	

3175 3176

3176 4) compare_ds := y_unemployment_2012 > y_unemployment_2011
3177

y_unemployment_2012					
GEO	VALUE				
Germany	Total	Percentage	Total	7.1	
Greece	Total	Percentage	Total	42.5	

3178

y_unemployment_2011					
GEO SEX UNIT C_BIRTH VALUE					
Germany	Total	Percentage	Total	7.5	
Greece	Total	Percentage	Total	33.7	

3179

compare_ds					
GEO	SEX	UNIT	C_BIRTH	VALUE_CONDITION	
Germany	Total	Percentage	Total	false	
Greece	Total	Percentage	Total	true	

If the VALUE column for Germany in the y_unemployment_2012 Dataset had a NULL value the result would be: 3181

	m		

compare_ds					
GEO	SEX	UNIT	C_BIRTH	VALUE_CONDITION	
Germany	Total	Percentage	Total	NULL	
Greece	Total	Percentage	Total	true	

3188 3189

3191

3192 3193

3194 3195

3196

3197

3198

3199

3200 3201

less than < <= 3183

3184 Semantic

3185 The operator < <= compares two values to evaluate if one is less (or equal) to the other.

3186 3187 *Syntax*

ds_1 [<| <=] ds_2

3190 **Parameters**

 ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+ | boolean]

ds 1,ds 2 – is a Dataset expression or a boolean

Constraints

- If both *ds_1* and *ds_2* are Datasets then they must have at least one Identifier Component in common (with the same name and data type).
- If both ds_1 and ds_2 are Datasets then either they have one or more measures in common, or at least one of • them has only a measure.

Returns

If both *ds_1* and *ds_2* are scalar values then the operator returns a scalar Boolean value representing the results 3202 of the comparison *less* (or *equal*) than validation. 3203

- 3204 If either *ds*_1 or *ds*_2 is a Dataset then the operator returns a Dataset having the following components:
- The superset of the Identifier Components of *ds_1* and *ds_2* 3205 •
- 3206 If ds_1 and ds_2 have one or more measures in common (i.e., with the same name) then the resulting Dataset 3207 has these common measures, with the same name concatenated with the suffix " **CONDITION**", containing 3208 the results of the comparison less (or equal) than validation of the respective measures of ds 1 and ds 2. 3209 Otherwise, if ds 1 and ds 2 do not have any measures in common and have only one measure then the 3210 resulting Dataset contains a measure named CONDITION that contains the results of the comparison less (or equal) than validation of the single measures of *ds*_1 and *ds*_2. 3211

The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key 3212 3213 (the same values of the Identifier Components).

3215 Semantic specification

f the value on the left side is less (or equal) than the value on the right side the result of the validation will be 3216 true, false if not or if either of them is NULL. 3217

3218

5210		
3219	Examples	
3220	On scalar	
3221	1) If A = 5, B = 9, C = 5:	
3222	D := A < B	D = true
3223	D := A <= C	D = true
3224	2) If A = "hello", B = "hi", C = "Hi":	
3225	D := C < B	D = false
3226		
3227	On Dataset	
3228	3) compare_ds := total_population < 15	000000
	total population	

			[[
TIME	GEO	AGE	SEX	VALUE

2012	Belgium	Total	Total	11094850
2012	Greece	Total	Total	11123034
2012	Spain	Total	Total	46818219
2012	Malta	Total	Total	NULL
2012	Finland	Total	Total	5401267
2012	Switzerland	Total	Total	7954662

compare_ds					
TIME	GEO	AGE	SEX	CONDITION	
2012	Belgium	Total	Total	true	
2012	Greece	Total	Total	true	
2012	Spain	Total	Total	false	
2012	Malta	Total	Total	NULL	
2012	Finland	Total	Total	true	
2012	Switzerland	Total	Total	true	

3230

3237

3244

3247

3248

3251

in, not in

3232	Seman	tic

3233 The operator **in**, **not in** verifies if a value belongs to a set of values of a set or a list

3234 3235 *Syntax*

3236 *ds* {**not**} **in** [*list* | *inlineList*]

3238 Parameters

3239 *ds* : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+|constant<T>]

3240 *list* : list-ref

3241 inlineList : list({constant<T>}+)
3242

- 3243 *ds* is a Dataset expression or a scalar
 - *list* is a reference to a valid List.
- *inlineList* is an in-line specification of a List. The elements of the List are constants.

3246 Constraints

- if *ds* is a scalar the elements of the List must be of the same type and If set is specified, then it must be a reference to a mono-dimensional Set.
- if *ds* is a Dataset, all the Measure Components of ds must have the same type T (which is also the type of the Set or List),

3252 Returns

- 3253 If *ds* is a scalar then **in**, **not in** returns a Boolean value representing the presence of the constant in the List.
- If *ds* is a Dataset and has N measures then **in**, **not in** returns a Dataset having the identifier components of *ds* and N Boolean Measure Components having the same name concatenated with the suffix "**_CONDITION**" that states if the values of *ds* are (not) in the *list*.
- 3257
- 3258 Examples
- 3259 On Dataset

3260 ds_1 := total_population in (11094850, 46818219, 222, 111)

total_population

ТІМЕ	GEO	AGE	SEX	POPULATION	
2012	Belgium	Total	Total	11094850	

2012	Greece	Total	Total	11123034
2012	Spain	Total	Total	46818219
2012	Malta	Total	Total	417546
2012	Finland	Total	Total	5401267
2012	NULL	Total	Total	7954662

ds_1					
τιμε	GEO	AGE	SEX	POPULATION_CONDITION	
2012	Belgium	Total	Total	true	
2012	Greece	Total	Total	false	
2012	Spain	Total	Total	true	
2012	Malta	Total	Total	false	
2012	Finland	Total	Total	false	
2012	NULL	Total	Total	false	

3262

3272

3276

3280

3263 between

3265 The operator **between** verifies if a value belongs to an interval of values

3266 3267 *Syntax*

3268 *ds*_1 **between** *ds*_2 **and** *ds*_3

3269 3270 *Parameters*

3271 *ds_1, ds_2, ds_3* : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as <T>}+ |constant<T>]

- 3273 ds_1 is the Dataset or the scalar to validate.
- *ds_2* is the lowerbound of a value's range.
- 3275 *ds_3* is the upperbound of a value's range.

3277 Constraints

- If *ds_1* is a scalar then the defined constants must be all of the same type.
- If *ds_1* is a Dataset then:
 - At least one Dataset must be defined.
- If two (or three) Datasets are defined, for every pair of Datasets, it must hold that either they have 3281 0 3282 the same Identifier Components or the ones of the former is a subset of the ones of the latter (static). If two (or three) Datasets are defined, they must have the same Measure Components, in name and 3283 0 3284 number (as explained in the syntax) (static). If at least one Constant is defined, the Datasets must have a single Measure Component of type <T> 3285 0 (static). 3286 3287 3288 **Returns** 3289 If ds_1 is a scalar then **between** returns a Boolean value representing if c_1 is greater or equal than c_2 and less 3290 or equal than *c_3*. 3291 If ds is a Dataset and has N measures then operator returns a Dataset having the Identifier Components of ds and 3292 N Boolean measures having the same name concatenated with the suffix "_CONDITION" containing the result 3293 of the range comparison. 3294 3295 **Examples**
- 3296 On Dataset
- 3297 1) comparison_ds := unemployment_rate **between** 7.5 **and** 8.0
- 3298

unemployment_rate				
TIME GEO UNEMPLOYMENT_RATE				
2013	Finland	8.2		
2012	Finland	7.7		
2011	Finland	7.8		
2010	Finland	8.4		
2009	Finland	NULL		

comparison_ds				
TIME	GEO	UNEMPLOYMENT_RATE		
2013	Finland	false		
2012	Finland	true		
2011	Finland	true		
2010	Finland	false		
2009	Finland	NULL		

2) comparison_ds := overcrowding_rate_urbanization_2011 **between** Overcrowding_rate_urbanization_2010 **and** Overcrowding_rate_urbanization_2012

overcrowding_rate_urbanization_2011				
GEO	VALUE			
Belgium	NULL			
Greece	0.276			
Finland	0.093			
Switzerland	0.08			
United Kingdom	0.089			
France	0.125			

overcrowding_rate_urbanization_2010					
GEO AGE SEX VALUE					
Belgium	Total	Total	0.06		
Greece	Total	Total	0.281		
Spain	Total	Total	0.06		
Malta	Total	Total	0.041		
Switzerland	Total	Total	NULL		

overcrowding_rate_urbanization_2012						
TIME	GEO AGE SEX VALUE					
2012	Belgium	Total	Total	0.023		
2012	Greece	Total	Total	0.286		
2012	Spain	Total	Total	0.064		
2012	Malta	Total	Total	0.043		
2012	Finland	Total	Total	0.08		

2012 Switzerland	Total	Total	0.08	
------------------	-------	-------	------	--

comparison_ds					
TIME	GEO	AGE	SEX	VALUE_CONDITION	
2012	Belgium	Total	Total	NULL	
2012	Greece	Total	Total	false	
2012	Switzerland	Total	Total	NULL	

3309	isnull

3310	Semantic	S					
3311	The isnu	ll operator, co	mpares the valu	es with the NU	LL.		
3312							
3313	Syntax						
3314	isnull(ds)					
3315							
3316	Paramete						
3317	<i>ds</i> : [data				easure <ident> as sca</ident>	llar-type }*	
3318		{att	ribute <ident></ident>	as scalar-type	}* constant]		
3319							
3320	<i>ds</i> – is a E	ataset or a sca	alar value.				
3321							
3322	Constrain	nts					
3323	None						
3324							
3325	Returns						
3326					presenting if the value i		
3327					ns a Dataset having the		
3328				concatenated	with the suffix "_CONI	DITION" but assumin	g a boolean
3329	value if tl	ne value is (no	t) NULL.				
3330							
3331	Examples						
3332	On scalar						
3333	1) If C is 1						
3334		A := isnull(C)	A = true				
3335	2) If C is 1						
3336	A	A := isnull(C)	A = false				
3337	0.5						
3338	On Datase						
3339	3) ds_1 :=	isnull(popul	ation				
3340							1
	populatio	on					
	TIME	GEO	AGE	SEX			1

population						
TIME	GEO	AGE	SEX	POPULATION		
2012	Belgium	Total	Total	11094850		
2012	Greece	Total	Total	11123034		
2012	Spain	Total	Total	NULL		
2012	Malta	Total	Total	417546		
2012	Finland	Total	Total	5401267		
2012	NULL	Total	Total	NULL		

ds_1					
TIME	GEO	AGE	SEX	CONDITION	
2012	Belgium	Total	Total	false	
2012	Greece	Total	Total	false	
2012	Spain	Total	Total	true	
2012	Malta	Total	Total	false	
2012	Finland	Total	Total	false	
2012	NULL	Total	Total	true	

3353

3358

3343 exists_in, not_exists_in/in_all

3344 Semantics

The exists_in, not_exists_in/in_all operators match the existence or not of data points of a Dataset in another
 Dataset.

3348 Syntax

3349 *ds_1* [exists_in|exists_in_all|not_exists_in|not_exists_in_all] *ds_2*

3350 Parameters

- 3351 ds_1, ds_2 : dataset {identifier <IDENT> as <T>}+ {measure <IDENT> as <T>}*
 3352 {attribute <IDENT> as scalar-type}*
 - {attribute <IDEN 1> as scalar-t
- 3354 *ds_1, ds_2* are the input Datasets.
 3355

3356 *Constraints*

3357 *ds_1* and *ds_2* must have at least one Identifier Component in common (with the same name and data type).

3359 *Returns*

A Dataset with all Identifier Components of the two Datasets and one boolean Measure Component named **CONDITION**. The Measure Component value in each Data Points in the output indicates whether a Data Point with matching key (not) exists in the second argument for the corresponding Data Point of the first argument. 3363

3364 Semantic specification

If all versions are used, both the *true* and the *false* Data Points are kept in the result. Otherwise, only the *true*Data Points are kept.

3368 Examples

- 3369 1) ds_check := population **exists_in_all** urbanization_rate
- 3370

populatio	population			
TIME	GEO	AGE	SEX	POPULATION
2012	Belgium	Total	Total	11094850
2012	Greece	Total	Total	11123034
2012	Spain	Total	Total	46818219
2012	Malta	Total	Total	417546
2012	Finland	Total	Total	5401267
2012	Switzerland	Total	Total	7954662

urbanization_rate				
ΤΙΜΕ	GEO	AGE	SEX	RATE

2012	Belgium	Total	Total	0.023
2012	Greece	Total	Total	0.286
2012	Spain	Total	Total	0.064
2012	Malta	Total	Total	0.043
2012	Finland	Total	Total	NULL
2012	Switzerland	Total	Total	0.08

ds_check	ds_check			
TIME	GEO	AGE	SEX	CONDITION
2012	Belgium	Total	Total	true
2012	Greece	Total	Total	false
2012	Spain	Total	Total	true
2012	Malta	Total	Total	false
2012	Finland	Total	Total	false
2012	Switzerland	Total	Total	true

3374

2) R := C1 exists_in C2

3375

C1		
К1	K2	M1
1	А	100
2	В	200
3	С	700
4	А	550
5	D	120

C2		
К1	К2	M1
1	А	100
2	В	200
5	D	700

3379 3380

R		
К1	К2	CONDITION
1	A	True
2	В	True
5	D	True

3) R := C1 exists_in_all C2

C1		
К1	К2	M1
1	А	100

2	В	200
3	С	700
4	А	550
5	D	120

C2		
К1	К2	M1
1	А	100
2	В	200
5	D	700

R		
K1	К2	CONDITION
1	A	True
2	В	True
3	С	False
4	А	False
5	D	True

4) R := C1 does **not_exist_in** C2

C1			
K1 K2 M1			
1	А	100	
2	В	200	
3	С	700	
4	А	550	
5	D	120	

C2			
K1 K2 M1			
1	А	100	
2	В	200	
5	D	700	

R			
К1	К2	CONDITION	
3	С	True	
4	Α	True	

5) R := C1 not_exists_in_all C2

C1			
K1	К2	M1	
1	А	100	
2	В	200	
3	С	700	
4	А	550	
5	D	120	

C2		
К1	К2	M1
1	А	100
2	В	200
5	D	700

R			
К1	К2	CONDITION	
1	A	False	
2	В	False	
3	С	True	
4	А	True	
5	D	False	

6) R := C1 not_exists_in_all C2

C2			
К1	К2	КЗ	M1
1	А	х	100
2	В	Y	200
5	D	Z	700
5	D	К	1500

C1				
К1 К	2	M1		
1 A	۱.	100		
2 B		200		
3 C		700		
4 A	۱.	550		
5 D)	120		

R		
К1	К2	CONDITION

1	А	False
2	В	False
3	С	True
4	А	True
5	D	False

3409

3411

3417

3422

match characters 3405

3406 **Semantics**

3407 The **match_character** operator checks whether a value respects a given pattern 3408

Syntax

Match_characters (ds, pattern {, all}) 3410

3412 **Parameters**

3413	ds : dataset {identifier <ident> as scalar-type}+ {measure <ident> as string }*</ident></ident>
3414	{attribute <ident> as scalar-type}*</ident>

{attribute <IDENT> as scalar-type}*

3415 pattern : regexp

- 3416 *regexp* : string
- 3418 *ds* – is the input Dataset. •
- 3419 *pattern* – is a regular expression that defines a string pattern. •
- 3420 *regexp* – is a regular expression. 3421

Constraints

- 3423 ds must have only one string Measure Components (static). ٠
- pattern must be a regular expression according to POSIX extended standard 3424 • 3425 (http:pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html) (static). 3426

3427 **Returns**

- 3428 A Dataset having the same Identifier and Attribute Components and a Boolean Measure Component for each 3429 string Measure Component in ds with the same name concatenated with the suffix "_CONDITION", containing 3430 the value resulting from the matching between the values in *ds* and the specified *pattern*.
- 3431
- 3432 Semantic specification
- 3433 The Data Points of *ds* are copied into the output Dataset; the Boolean Measure Component will have *true* if the 3434
- respective in *ds* matches with the *pattern*, *false* otherwise.
- 3435 The **all** flag allows to specify that both *true* and *false* Data Points have to be kept in the output. If it is not present,
- 3436 only true Data Points are kept.

3437

- 3438 **Examples**
- ds_r := match_characters(population.TIME,"[123456789,]",all) 3439

population	population				
TIME	GEO	AGE	SEX	POPULATION	
2012	Belgium	Total	Total	11094850	
2012A	Greece	Total	Total	11123034	
2012	Spain	Total	Total	46818219	
2012	Malta	Total	Total	417546	
2012	Finland	Total	Total	5401267	
2012C	Switzerland	Total	Total	7954662	

population				
TIME	GEO	AGE	SEX	POPULATION_CONDITION
2012	Belgium	Total	Total	true
2012A	Greece	Total	Total	false
2012	Spain	Total	Total	true
2012	Malta	Total	Total	true
2012	Finland	Total	Total	true
2012C	Switzerland	Total	Total	false

all

3444	Semantics
3445	The all operator verifies that all values in the Dataset are true
3446	
3447	Syntax
3448	all (ds)
3449	
3450	Parameters
3451	<i>ds</i> : dataset {identifier <ident> as scalar-type }+ {measure <ident> as boolean }+</ident></ident>
3452	{attribute <ident> as scalar-type }*</ident>
3453	
3454	ds – is a Dataset
3455	
3456	Constraints
3457	<i>ds</i> must have at least a measure of type boolean .
3458	
3459	Returns
3460	A Dataset with only one Boolean measure, called CONDITION , equal to <i>true</i> if, for all data points of the input
3461	Dataset, the Boolean measures are equal to <i>true, false</i> otherwise.
3462	
3463	
3464	Examples
3465	1) ds_2 := all (ds_1.VALUE>100)
3466	

ds_1		
GENDER	TIME	VALUE
М	2000	200
F	2000	50
М	2001	150
F	2001	120

ds_2
CONDITION
FALSE

3471 2) ds_2 := **all**(ds_1[filter time= "2001"].VALUE>100)

ds_1		
GENDER	TIME	VALUE
Μ	2000	200
F	2000	50
М	2001	150
F	2001	120

ds_2
CONDITION
TRUE

3) ds_2 := **all**(ds_1.VALUE_2000>100 AND ds_1.VALUE_2001>100)

ds_1		
GENDER	VALUE_2000	VALUE_2001
М	200	150
F	50	120

ds_2
CONDITION
FALSE

any

3480	Semantics
3481	The any operator verifies that at least one value in the Dataset is true
3482	
3483	Syntax
3484	any (ds)
3485	
3486	Parameters
3487	<i>ds</i> : dataset {identifier <ident> as scalar-type }+ {measure <ident> as boolean}+</ident></ident>
3488	{attribute <ident> as scalar-type }*</ident>
3489	
3490	ds – is a Dataset
3491	
3492	Constraints
3493	<i>ds</i> must have at least one measure of type Boolean .
3494	
3495	Returns
3496	A Dataset with only one Boolean measure, called CONDITION , equal to <i>true</i> if, for at least one data point of the
3497	input Dataset, the Boolean measures are equal to <i>true, false</i> otherwise.
3498	
3499	
3500	

Examples

```
3502
        1) ds_2 := any( ds_1.VALUE>100 )
```

ds_1		
GENDER	TIME	VALUE
Μ	2000	200
F	2000	50
М	2001	90
F	2001	120

ds_2
CONDITION
TRUE

2) ds_2 := **any** (ds_1.VALUE_2000>100 AND ds_1. VALUE_2001>100)

ds_1		
GENDER	VALUE_2000	VALUE_2001
М	200	90
F	50	120

ds_2
CONDITION
FALSE

3) ds_2 := **any** (ds_1.VALUE_2000>100 AND ds_1.VALUE_2001>100)

ds_1		
GENDER	VALUE_2000	VALUE_2001
Μ	200	90
F	50	120

ds_2
CONDITION
TRUE

3516 unique

Semantics

The **unique** operator verifies the presence of one single Data Point having true as the value for the Measure component.

Syntax

unique (*ds***)**

Parameters

- 3525 ds : dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as boolean }+
 3526 {attribute <IDENT> as scalar-type }*
- *ds* is a Dataset

Constraints

ds must have at least a measure of type **boolean**.

Returns

A Dataset with only one boolean measure, called **CONDITION**, equal to *true* if, for only one data point of the input Dataset, the boolean measures are is equal to *true, false* otherwise.

Examples

3538 1) ds_2 := **unique** (ds_1.VALUE>100)

ds_1		
GENDER	TIME	VALUE
Μ	2000	200
F	2000	150
М	2001	90
F	2001	120

ds_2
CONDITION
FALSE

2) ds_2 := unique (ds_1.VALUE_2000>100 AND ds_1.VALUE_2001>100)

ds_1		
GENDER	VALUE_2000	VALUE_2001
М	200	90
F	150	120

ds_2
CONDITION
TRUE

3548 3) d

3) ds_2 := unique (ds_1.VALUE_2000>100 AND ds_1.VALUE_2001>100)

35	49

ds_1		
GENDER	VALUE_2000	VALUE_2001
М	200	90
F	150	120

3550

ds_2
CONDITION
FALSE

3551

3552 func_dep

3553 Semantics

The **func_dep** operator checks the functional dependency between components of a Dataset.

3556 Syntax

3557	func_dep (ds , listCompFrom , listCompTo)
3558	
3559	<i>listCompFrom</i> : (comp { , comp } *)
3560	<i>listCompTo</i> : (comp { , comp } *)
3561	
3562	Parameters
3563	<i>ds</i> : dataset {identifier <ident> as scalar-type }+ {measure <ident> as scalar-type }+</ident></ident>
3564	{attribute <ident> as scalar-type }*</ident>
3565	
3566	<i>listCompFrom</i> –the components that form the left side of the functional dependency
3567	<i>listCompTo</i> – the components that form the right side of the functional dependency
3568	
3569	Constraints
3570	None
3571	
3572	Returns
3573	A Dataset having the only measure CONDITION , assuming value <i>true</i> if the functional dependency between the
3574	left and the right side is respected.
3575	
3576	Semantic specification
3577	The <i>func_dep</i> operator verifies the existence of a functional dependency from the components in <i>listCompFrom</i>

The *func_dep* operator verifies the existence of a functional dependency from the components in *listCompFrom* to the the components in *listCompTo* (*listCompFrom* \rightarrow *listCompTo*), that is, each combination of values of the components *listCompFrom* corresponds to one combination of values of the components *listCompTo*.

3580

Examples

3583	1) ds_2 := func_dep (ds_1, (FISCAL_CODE), (NAME))
3584	

ds_1			
FISCAL_CODE	PLACE_OF_BIRTH		
FC1	John Smith	10/09/1968	London
FC2	Helen Brown	18/10/1976	London

³⁵⁸¹ 3582 E

FC3	Steve McGill	21/08/1966	Dublin
FC4	Helen Brown	26/02/2001	Dublin

ds_2
CONDITION
TRUE

3586

3587 2) ds_3:= func_dep (ds_1, (FISCAL_CODE), (NAME, DATE_OF_BIRTH,PLACE_OF_BIRTH)) 3588

ds_3	
CONDITION	
TRUE	

3589

3590 3) ds_2 := **func_dep (** NAME), (FISCAL_CODE) **)**

3591

ds_2
CONDITION
FALSE

3592

3603

3605 3606

3607

3593 and

3594 Semantics

3595 The **and** operator calculates the logical AND

3596 3597 *Syntax*

3598 *ds*_1 **and** *ds*_2

3599 3600 *Parameters*

- 3601 ds_1, ds_2 : [dataset {identifier <IDENT> as scalar-type }+ {measure <IDENT> as boolean}+ 3602 {attribute <IDENT> as scalar-type}*|boolean]
- ds_1, ds_2 are the input Dataset or boolean scalars.

Constraints

- If *ds_1* (*ds_2*) is a scalar then it must be a **boolean** data type.
- If *ds_1* (*ds_2*) is a Dataset then it has at least a measure of **boolean** type.
- If both *ds_1* and *ds_2* are Datasets then they must have at least one Identifier Component in common (with the same name and data type).
- If both *ds_1* and *ds_2* are Datasets then either they have one or more boolean measures in common, or at least one of them has only a boolean measure.

36133614 *Returns*

- 3615 If both *ds_1* and *ds_2* are scalar values then the **and** operator returns a boolean value that is the result of the **and** 3616 operation.
- 3617 If either *ds_1* or *ds_2* is a Dataset then the **and** operator returns a Dataset having the following components:
- The superset of the Identifier Components of *ds_1* and *ds_2*
- If *ds_1* and *ds_2* have one or more Boolean measures in common (i.e., with the same name) then the resulting
- 3620 Dataset has these common Boolean measures, with the same name, varied on the base of the logical **and**

- between the Measure Components of ds_1 and ds_2. Otherwise, if *ds_1* and *ds_2* do not have any measures in common and have only one measure then the resulting Dataset contains a measure named **CONDITION** that contains a Boolean value that is the result of the **and** operation.
- The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key (the same values of the Identifier Components).

	(· · · · ·
3626	
3627	Examples

3628 On scalar

3629 1) If A = True, B = False

3630 C := A **and** B C = False 3631

3632 On Dataset

3633 2) ds_r:=population.sex="M" and population.age="Y15-64"

population						
SEX	AGE	GEO	TIME	VALUE		
М	Y_LT15	BE	2013	970428		
Μ	Y15-64	BE	2013	3678355		
Μ	Y_GE65	BE	2013	838653		
F	Y_LT15	BE	2013	927644		
F	Y15-64	BE	2013	3625561		
F	Y_GE65	BE	2013	1121001		
М	Y_LT15	UK	2013	5757444		
М	Y15-64	UK	2013	20748657		
М	Y_GE65	UK	2013	4917238		
F	Y_LT15	UK	2013	5488356		
F	Y15-64	UK	2013	20915924		
F	Y_GE65	UK	2013	6068452		

3635 3636

ds_r					
SEX	AGE	GEO	TIME	CONDITION	
М	Y_LT15	BE	2013	false	
М	Y15-64	BE	2013	true	
М	Y_GE65	BE	2013	false	
F	Y_LT15	BE	2013	false	
F	Y15-64	BE	2013	false	
F	Y_GE65	BE	2013	false	
М	Y_LT15	UK	2013	false	
М	Y15-64	UK	2013	true	
М	Y_GE65	UK	2013	false	
F	Y_LT15	UK	2013	false	
F	Y15-64	UK	2013	false	
F	Y_GE65	UK	2013	false	

3638	or							
3639 3640 3641	<i>Semantics</i> The or operator calculates the logical OR							
3642 3643 3644	<i>Syntax</i> ds_1 or ds_2	•						
3645 3646 3647	<i>Parameters</i> <i>ds_1, ds_2</i> : [dataset {identifier <ident> as scalar-type}+ {measure <ident> as boolean}+ {attribute <ident> as scalar-type}* boolean]</ident></ident></ident>							
3648 3649 3650	ds_1, ds_2 -	are the input	Dataset or bo	olean scalars				
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665	 <i>Constraints</i> If <i>ds</i>_1 (<i>ds</i>_2) is a scalar then it must be a boolean data type. If <i>ds</i>_1 (<i>ds</i>_2) is a Dataset then it has at least a measure of boolean type. If both <i>ds</i>_1 and <i>ds</i>_2 are Datasets then they must have at least one Identifier Component in common (with the same name and data type). If both <i>ds</i>_1 and <i>ds</i>_2 are Datasets then either they have one or more boolean Measures in common, or at least one of them has only a boolean measure. <i>Returns</i> If both <i>ds</i>_1 and <i>ds</i>_2 are scalar values then the or operator returns a boolean value that is the result of the or operation. If either <i>ds</i>_1 or <i>ds</i>_2 is a Dataset then the or operator returns a Dataset having the following components: The superset of the Identifier Components of <i>ds</i>_1 and <i>ds</i>_2 If <i>ds</i>_1 and <i>ds</i>_2 have one or more boolean Measures in common (i.e., with the same name) then the resulting 							
3666 3667 3668 3669 3670 2671	 common and have only one Measure then the resulting Dataset contains a Measure named CONDITION that contains a boolean value that is the result of the or operation. The resulting Dataset contains a data point for each pair of data points of <i>ds_1</i> and <i>ds_2</i> that have the same key 							
3671 3672 3673 3674 3675 3676		ie, B = False A or B		C = True				
3677 3678	On Dataset 2) ds_r:=po	pulation.sex=	"M" OR popu	llation.age_gr	oup="Y15-64"			
	population							
	SEX	AGE	GEO	TIME	CONDITION			
	Μ	Y_LT15	BE	2013	970428			
	М	Y15-64	BE	2013	3678355			
	М	Y_GE65	BE	2013	838653			
	F	Y_LT15	BE	2013	927644			
	F	Y15-64	BE	2013	3625561			

5757444

20748657

4917238

5488356

F

Μ

Μ

Μ

F

Y_GE65

Y_LT15

Y15-64

Y_GE65

Y_LT15

BE

UK

UK

UK

UK

2013

2013

2013

2013

F	Y15-64	UK	2013	20915924
F	Y_GE65	UK	2013	6068452

DS_or						
SEX	AGE	GEO	TIME	CONDITION		
М	Y_LT15	BE	2013	true		
Μ	Y15-64	BE	2013	true		
М	Y_GE65	BE	2013	true		
F	Y_LT15	BE	2013	false		
F	Y15-64	BE	2013	true		
F	Y_GE65	BE	2013	false		
М	Y_LT15	UK	2013	true		
М	Y15-64	UK	2013	true		
М	Y_GE65	UK	2013	true		
F	Y_LT15	UK	2013	false		
F	Y15-64	UK	2013	true		
F	Y_GE65	UK	2013	true		

3681

3682

3689

3694 3695 3696

3704

3705

3683 XOľ

3684	Semantics
5001	Demantice

3685 The **xor** operator calculates the logical XOR

3686 3687 *Syntax*

3688 *ds_1* **xor** *ds_2*

3690 Parameters

3691	ds_1, ds_2 : [dataset {identifier <ident> as scalar-type}+ {measure <ident> as boolean}+</ident></ident>
3692	{attribute <ident> as scalar-typer }* boolean]</ident>
3693	

ds_1, ds_2 – are the input Dataset or boolean scalars.

Constraints

- If *ds_1* (*ds_2*) is a scalar then it must be a **boolean** data type.
- If *ds_1* (*ds_2*) is a Dataset then it has at least a Measure of **boolean** type.
- If both *ds_1* and *ds_2* are Datasets then they must have at least one Identifier Componentin common (with the same name and data type).
- If both *ds_1* and *ds_2* are Datasets then either they have one or more boolean Measures in common, or at least one of them has only a Boolean Measure.
 3703

Returns

3706 If both *ds_1* and *ds_2* are scalar values then the **xor** operator returns a boolean value that is the result of the **xor** 3707 operation.

- 3708 If either *ds_1* or *ds_2* is a Dataset then the **xor** operator returns a Dataset having the following components:
- The superset of the identifier components of *ds_1* and *ds_2*
- If *ds_1* and *ds_2* have one or more boolean Measures in common (i.e., with the same name) then the resulting
- 3711 Dataset has these common boolean Measures, with the same name, varied on the base of the logical **xor**

- between the Measure Components of ds_1 and ds_2. Otherwise, if *ds_1* and *ds_2* do not have any Measures in common and have only one Measure then the resulting Dataset contains a Measure named **CONDITION** that
- 3714 contains a boolean value that is the result of the **xor** operation.
- The resulting Dataset contains a data point for each pair of data points of ds_1 and ds_2 that have the same key (the same values of the Identifier Components).

37173718 *Examples*

3719 On scalar

3720 1) If A = True, B = False

3720 C := A or B C = True3722 C := C = True

3723 On Dataset

3724 2) DS_xor:=population.sex="M" **xor** population.age_group="Y15-64"

3725

DS_xor							
SEX	AGE	GEO	TIME	CONDITION			
Μ	Y_LT15	BE	2013	970428			
Μ	Y15-64	BE	2013	3678355			
Μ	Y_GE65	BE	2013	838653			
F	Y_LT15	BE	2013	927644			
F	Y15-64	BE	2013	3625561			
F	Y_GE65	BE	2013	1121001			
Μ	Y_LT15	UK	2013	5757444			
М	Y15-64	UK	2013	20748657			
М	Y_GE65	UK	2013	4917238			
F	Y_LT15	UK	2013	5488356			
F	Y15-64	UK	2013	20915924			
F	Y_GE65	UK	2013	6068452			

3726 3727

DS_xor	DS_xor						
SEX	AGE	GEO	TIME	CONDITION			
М	Y_LT15	BE	2013	true			
М	Y15-64	BE	2013	false			
М	Y_GE65	BE	2013	true			
F	Y_LT15	BE	2013	false			
F	Y15-64	BE	2013	true			
F	Y_GE65	BE	2013	false			
М	Y_LT15	UK	2013	true			
М	Y15-64	UK	2013	false			
М	Y_GE65	UK	2013	true			
F	Y_LT15	UK	2013	false			
F	Y15-64	UK	2013	true			
F	Y_GE65	UK	2013	false			

3729	not							
3730 3731 3732	<i>Semantics</i> The not operator calculates the logical negation of a boolean condition							
3733 3734 3735	Syntax not ds_1							
3736 3737 3738 3739			IDENT> as sca ENT> as scala		neasure <ident> ; ilean]</ident>	as string-literal}+		
3739 3740 3741	ds – is a Dat	aset expressio	on or a string					
3742 3743			ist be a boole					
3744 3745 3746	If <i>ds</i> is a Dat <i>Returns</i>	aset then it m	lust have at le	ast a Measure	e of type boolean .			
3747 3748	If <i>ds</i> is a sca If <i>ds</i> is a Dat	aset and has I		asures then n	ot returns a Datase	et having the Identifier Components of <i>ds</i>		
3749 3750 3751		eric Measures sponding Mea		e name of the	e boolean Measure	s of <i>ds</i> and containing the logical negation		
3752 3753	<i>Examples</i> On scalar							
3754 3755 3756	1) If A = Tru B :=	not A		B = False				
3757 3758 3759	On Dataset 2) ds_r :=no	t population.	sex="M"					
	population							
	SEX	AGE	GEO	TIME	CONDITION			
	М	Y_LT15	BE	2013	970428			
	М	Y15-64	BE	2013	3678355			
	M Y_GE65 BE 2013 838653							
	F Y_LT15 BE 2013 927644							
	F Y15-64 BE 2013 3625561							
	F Y_GE65 BE 2013 1121001							
	М	Y_LT15	UK	2013	5757444			
	М	Y15-64	UK	2013	20748657			
	M Y_GE65 UK 2013 4917238							

F

F

F

Y_LT15

Y15-64

Y_GE65

UK

UK

UK

ds_r						
SEX	AGE	GEO	TIME	CONDITION		
М	Y_LT15	BE	2013	false		

2013

2013

2013

5488356

20915924

М	Y15-64	BE	2013	false
М	Y_GE65	BE	2013	false
F	Y_LT15	BE	2013	true
F	Y15-64	BE	2013	true
F	Y_GE65	BE	2013	true
М	Y_LT15	UK	2013	false
М	Y15-64	UK	2013	false
М	Y_GE65	UK	2013	false
F	Y_LT15	UK	2013	true
F	Y15-64	UK	2013	true
F	Y_GE65	UK	2013	true

3763 VTL-ML - Date operators and functions

3764	extract	
3765	Semantics	
3766	The operator extract returns an integer that is p	art of a given date, based on the value assumed by the <i>part</i>
3767	parameter.	
3768		
3769	Syntax	
3770	extract(ds, part)	
3771		
3772	Parameters	
3773	<i>ds</i> : [dataset {identifier <ident> as scalar-type}-</ident>	· ·
3774	{attribute <ident> as scalar-</ident>	type}* date]
3775	<i>part</i> : string	
3776		
3777	ds – is the input Dataset or date.	
3778	<i>part</i> – is the part of date (year, month or day) to	extract.
3779	Construction	
3780	<i>Constraints</i>	("^" "C" "O" "N" "YAT" "D")
3781	• <i>part</i> can assume a restricted number of valu	
3782 3783	If <i>ds</i> is a Dataset, it must have only date Measure <i>Returns</i>	component.
3783 3784		urns an integer value that is the part of <i>ds</i> specified in the <i>part</i>
3785	parameter.	units an integer value that is the part of as specified in the purt
3785		is a Dataset having all the Identifier, Measure and Attribute
3787	•	nts change the data in type (from date to integer) and assume
3788	the values of part of the dates (on the base of the	
3789	the values of part of the dates (on the base of the	pure in the input Medsure components
3790	Examples	
3791	On date	
3792	1) If $A = 28/02/2016$	
3793	B := extract (A, "Y")	B = 2016
3794	B := extract (A, "M")	B = 2
3795		
3796	On Dataset	
3797	2) ds_2:= extract (ds_1, "Y")	

3798

ds_1					
К1	К2	M1			
1	А	2015/12/10			
2	В	2016/06/11			
3	С	2015/12/10			
4	E	2013/06/11			

ds_2					
К1	К2	M1			
1	А	2015			
2	В	2016			
3	С	2015			
4	E	2013			

3801 string from date

3802 Semantics

3803 The operator **string_from_date** converts a date value into a string. 3804

3805 Syntax

3806 string_from_date(ds, format)
3807

3808 Parameters

3809 *ds* : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as date}+

3810 {attribute <IDENT> as scalar-type}*|date]

- 3811 *format* : string-literal
- 38123813 date is the input Dataset or date.
- 3814 format is the format of the resulting string.3815

3816 Constraints

- If *ds* is a Dataset then it must have only one date Measure Component,
- 3818 *format* must respect one of the following patterns:
- 3819

Format	Frequency	Example	Frequency
YYYY		2000	Annual
YYYYSN	S	2000S1	Semestrial
YYYYQN	Q	2000Q1	Quarterly
YYYYMNN	м	2000M01	Monthly
YYYYDNNNN	D	2000D0101	Daily
ΥΥΥΥΑ	А	2000A	Annual
YYYYSN	S	2000S1	Semestrial
YYYY-QN	Q	2000-Q1	Quarterly
YYYY-NN	м	2000-01	Monthly
YYYY-NN-NN	D, M, Q or A	2000-01-01	Daily, Monthly, Quarterly or Annual

3820

3821 Returns

3822 If *ds* is a date then the operator returns a string representation of the input date, based on the chosen format.

3823 If *ds* is a Dataset then the operatorreturns a Dataset having all the Identifier, Measure and Attribute Components 3824 of the *ds*, where the Measure Components change in the data type (from date to string-literal) and assume the

B = "2016-02"

3825 values of the string representations (on the base of the *format*) of the dates in the input Measure Components.
3826

3827 Semantic specification

3828 If the format does not conform to any of the formats expressed in the constraints section, then a runtime 3829 exception is raised.

3830

3838

- 3831 *Examples*
- 3832 On date
- 3833 1) If A = 28/02/2016
- 3834 B := string_from_date (A, YYYY-MM)
- 38353836 On Dataset

```
3837 2) ds_2:= string_from_date (ds_1, "YYYY-MM")
```

ds 1

К1	К2	M1
1	A	2015/12/10
2	В	2015/06/11
3	С	2015/12/10
4	E	2015/06/11

ds_2					
К1	К2	M1			
1	А	"2015-12"			
2	В	"2015-06"			
3	С	"2015-12"			
4	E	"2015-06"			

3841 3842

3843 current_date

3844 *Semantic*

3845 The operator **current_date** returns the current date.

- 3846

 3847
 Syntax

 3848
 current_date()

 3849

 3850
 Parameters

 3851
 None

 3852

 3853
 Constraints
- 3854 None
- 3855 None
- 3856 *Returns*

A Dataset having only one date Measure Component, with only one single Data Point representing the currentdate.

3860 VTL-ML - Set functions

3861 union

3862 Semantics

The operator **union** takes as input a list of Datasets and returns a single Dataset containing all the Data Points,
 without duplicates, that appear in any of them.

3866 Syntax

3865

3868

3871

3873

3877

3880

3867 **union (** *ds* {, *ds*}* {,**dedup(**consResFunction**)** }?)

3869 Parameters

- 3870 *ds* : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}*
 - {attribute <IDENT> as scalar-type}+
- 3872 *consResFunctions* : list<component-ref * (t*t) -> t > (t is the type of the referred Component)
- *ds* are the input Datasets.
- *consResFunction* is a list of functions used to solve conflicts caused by the presence of Data Points with the same values for the Identifier Components.

3878 Constraints

3879 All the *ds* Datasets must have the same Identifier and Measure Components, in name and type (static).

3881 Returns

The operator allows to eliminate duplicates through *consResFunction*. If the resulting set of data contains duplicates then **union** generates a run-time error.

38843885 Semantic specification

The operator takes as input a list of Datasets and returns a Dataset with the same structure as the input one and containing all the Data Points from every *ds* without duplicates. The consResFunction allows the user to specify a strategy to eliminate duplicates. In particular, for any single n-uple of duplicate Data Points, the function is applied recursively so as to reduce the duplicates to one single Data Point. If only a Dataset is specified, then it is returned unchanged.

3892 Examples

3894

total_population1							
TIME	GEO	GEO AGE SEX					
2012	Belgium	Total	Total	5			
2012	Greece	Total	Total	2			
2012	France	Total	Total	3			
2012	Malta	Total	Total	7			
2012	Finland	Total	Total	9			
2012	Switzerland	Total	Total	12			

Total_population2						
TIME GEO AGE SEX POPULATION						
2012	Netherlands	Total	Total	23		

^{3893 1)} ds_r := **union(**total_population1, total_population2)

2012	Greece	Total	Total	2
2012	Spain	Total	Total	5
2012	Iceland	Total	Total	1

ds_r				
TIME	GEO	AGE	SEX	POPULATION
2012	Belgium	Total	Total	5
2012	Greece	Total	Total	2
2012	France	Total	Total	3
2012	Malta	Total	Total	7
2012	Finland	Total	Total	9
2012	Switzerland	Total	Total	12
2012	Netherlands	Total	Total	23
2012	Spain	Total	Total	5
2012	Iceland	Total	Total	1

lation 1 total nonulation 2) 2) .

3902

2) ds_r := union (total_population1, total_population2)
total_population1

total_population1				
TIME	GEO	AGE	SEX	POPULATION
2012	Belgium	Total	Total	1
2012	Greece	Total	Total	2
2012	France	Total	Total	3
2012	Malta	Total	Total	4
2012	Finland	Total	Total	5
2012	Switzerland	Total	Total	6

3904

total_population2				
TIME	GEO	AGE	SEX	POPULATION
2011	Belgium	Total	Total	10
2012	Greece	Total	Total	20
2012	France	Total	Total	30
2012	Malta	Total	Total	40
2012	Finland	Total	Total	50
2012	Switzerland	Total	Total	60

total_population1				
TIME	GEO	AGE	SEX	POPULATION
2012	Belgium	Total	Total	1
2012	Greece	Total	Total	2

2012	France	Total	Total	3
2012	Malta	Total	Total	4
2012	Finland	Total	Total	5
2012	Switzerland	Total	Total	6
2011	Belgium	Total	Total	10

3) total_population := **union (**total_population1, total_population2**)**

total_population1			
TIME	GEO	POPULATION	
2012	Belgium	5	
2012	Greece	2	
2012	France	3	
2012	Malta	7	
2012	Finland	9	
2012	Switzerland	12	
		-	

	total_population2		
	TIME	GEO	POPULATION
	2012	Netherlands	23
	2012	Greece	2
	2012	Spain	5
	2012	Iceland	1
3912		•	

total_population				
TIME	GEO	POPULATION		
2012	Belgium	5		
2012	Greece	2		
2012	France	3		
2012	Malta	7		
2012	Finland	9		
2012	Switzerland	12		
2012	Netherlands	23		
2012	Spain	5		
2012	Iceland	1		

4) time_geo := **union (**time_geo1, time_geo2)

time_geo1	
TIME	GEO
2012	Belgium
2012	Greece

2012	France
2012	Malta
2012	Finland
2012	Switzerland

time_geo2		
TIME	GEO	
2012	Netherlands	
2012	Greece	
2012	Spain	
2012	Iceland	

3917

time_geo				
ΤΙΜΕ	GEO			
2012	Belgium			
2012	Greece			
2012	France			
2012	Malta			
2012	Finland			
2012	Switzerland			
2012	Netherlands			
2012	Spain			
2012	Iceland			

3918

3926

3935

3938

intersect 3919

3920 **Semantics**

3921 The operator **intersect** takes as input Datasets and returns another Dataset with the intersection of the input 3922 Datasets. 3923

3924 Syntax

3925 intersect (ds {, ds}* {,dedup(consResFunction) }?)

3927 **Parameters**

3928 ds : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}* 3929

{attribute <IDENT> as scalar-type}+

consResFunctions : list<component-ref* (t*t) -> t > (t is the type of the referred Component) 3930 3931

- 3932 *ds* – are the input Datasets. ٠
- 3933 consResFunction is a list of functions used to solve conflicts caused by the presence of Data Points with the • same values for the Identifier Components. 3934

3936 *Constraints*

3937 All the Datasets *ds* must have the same Identifier and Measure Components, in name and type (static).

3939 Returns

A Dataset having the same Identifier, Measure and Attribute Components of the input ones, containing all the 3940

Data Points that are present in every *ds*. 3941

3943 Semantic specification

3944 The operator takes as input Datasets and returns another one Dataset with the same structure of the input ones 3945 containing all the Data Points that are present in every *ds*, which is their intersection. If two Data Points appear 3946 in all the input Datasets, but with different values for the Measure Components, then the values for the Measures 3947 are determined by combining the input ones with a *consResFunction* that solves the conflicts.

3948 3949

Examples

2012

2012

Finland

Switzerland

d_r := intersect(total_population1, total_population2)

3951 3952

3950

total_population1						
TIME	GEO	AGE	SEX	POPULATION		
2012	Belgium	Total	Total	1		
2012	Greece	Total	Total	2		
2012	France	Total	Total	3		
2012	Malta	Total	Total	4		

Total

Total

5

6

Total

Total

3953

total_population2						
TIME	GEO	AGE	SEX	POPULATION		
2011	Belgium	Total	Total	10		
2012	Greece	Total	Total	2		
2011	France	Total	Total	30		
2011	Malta	Total	Total	40		
2011	Finland	Total	Total	50		
2011	Switzerland	Total	Total	60		

3954

d_r						
TIME	GEO	AGE	SEX	POPULATION		
2012	Greece	Total	Total	2		

3955

3960

3961 3962

3963 3964

symdiff 3956

3957 **Semantics**

3958 The operator symdiff takes as input two Datasets and returns another Dataset with the symmetric difference of 3959 the input Datasets.

Syntax

symdiff (ds_1, ds_2)

Parameters

```
3965
        ds_1, ds_2 : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}*
3966
3967
                           {attribute <IDENT> as scalar-type}+
3968
```

3969 *ds*_1 – is the first input Dataset.

3970 *ds_2* – is the second input Dataset. •

- 3971
- 3972 *Constraints*
- 3973 *ds_1* and *ds_2* must have the same Identifier and Measure Components in name and type (static).

39743975 *Returns*

- 3976 A Dataset having the same Identifier, Measure and Attribute Components of the input ones, containing all the
- 3977 Data Points that are present either in ds_1 or in ds_2 but not in both. 3978

3979 Semantic specification

3980 The operator takes as input two Datasets and returns another one Dataset with the same structure of the input 3981 ones containing all the Data Points that are present either in ds_1 or in ds_2 but not in both.

3982

3983 *Examples*

3984	<pre>d_r := symdiff(total_population1, total_population2)</pre>
0,0.	a_i · · · · · · · · · · · · · · · · · · ·

total_population1

total_population1					
TIME	GEO	AGE	SEX	POPULATION	
2012	Belgium	Total	Total	1	
2012	Greece	Total	Total	2	
2012	France	Total	Total	3	
2012	Malta	Total	Total	4	
2012	Finland	Total	Total	5	
2012	Switzerland	Total	Total	6	

3985

total_population2						
TIME	GEO	AGE	SEX	POPULATION		
2011	Belgium	Total	Total	1		
2012	Greece	Total	Total	2		
2012	France	Total	Total	3		
2012	Malta	Total	Total	4		
2012	Finland	Total	Total	5		
2012	Switzerland	Total	Total	6		

3986

d_r						
TIME	GEO	AGE	SEX	POPULATION		
2012	Belgium	Total	Total	1		
2011	Belgium	Total	Total	1		

3987

3988 setdiff

3989 *Semantics*

The operator setdiff takes as input two Datasets and returns another Dataset with the difference of the input
 Datasets.

39923993 Syntax

setdiff (*ds*_1, *ds*_2 **)**

3995

3996 *Parameters*

3997 *ds_1, ds_2* : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}*

{attribute <IDENT> as scalar-type}+

- 4000 ds_1 is the first input Dataset.
 - *ds_2* is the second input Dataset.

Constraints

ds_1 and *ds_2* must have the same Identifier and Measure Components in name and type (static).

Returns

4007 A Dataset having the same Identifier, Measure and Attribute Components of the input ones, containing all the4008 Data Points that are present in ds_1 but not in ds_2.

4010 Semantic specification

4011 The operator takes as input two Datasets and returns another Dataset with the same structure as the input ones

4012 containing all the Data Points that are present in either *ds_1* but not in *ds_2*, which is their difference.

Examples

4015	1) d_r := setdiff (total_population1,total_population2)
4016	

total_population1					
TIME	GEO	AGE	SEX	POPULATION	
2012	Belgium	Total	Total	10	
2012	Greece	Total	Total	20	
2012	France	Total	Total	30	
2012	Malta	Total	Total	40	
2012	Finland	Total	Total	50	
2012	Switzerland	Total	Total	60	

total_population2					
TIME	GEO	AGE	SEX	POPULATION	
2011	Belgium	Total	Total	10	
2012	Greece	Total	Total	20	
2012	France	Total	Total	30	
2012	Malta	Total	Total	40	
2012	Finland	Total	Total	50	
2012	Switzerland	Total	Total	60	

d_r				
TIME	GEO	AGE	SEX	POPULATION
2012	Belgium	Total	Total	10

2) DatasetC := **setdiff** (DatasetA ,DatasetB)

Dataset A			
COUNTRY	SEX	YEAR	VALUE
FR	Males	2011	7
FR	Females	2011	10
FR	Total	2011	12

Dataset B			
COUNTRY	SEX	YEAR	VALUE
FR	Males	2011	7
FR	Females	2011	10

Dataset C			
COUNTRY	SEX	YEAR	VALUE
FR	Total	2011	12

4023

4029

4032 4033

4034

4035

4037 4038

4039

4024 subscript

4025 Semantics

4026 The operator **subscript** takes as input a Dataset and a sequence of Identifier Components with their respective 4027 values, and returns another Dataset having only the data points that contains the values specified in the 4028 subscript for the respective Identifier Component.

4030 *Syntax*

4031 *ds* [*comp* = *comp_value1* { , *comp* = *comp_value2* } *]

Parameters

- *ds* is the input Dataset
- *comp* Dataset component-ref
- 4036 *comp_value1, comp_value2* is a valid value for component

Constraints

- *comp* must be a valid Identifier of *ds* component.
- *comp_value1, comp_value2* must be a valid value for the related component.

4041 4042 *Returns*

A Dataset having the same Measure and Attribute Components as the input one, and all the Identifier Components that are not specified as parameters (*comp*). The Data points of the returned Dataset are all those of *ds* whose values having for the subscripted identifier component(s) concide with the values specified in the subscript.

4048 Semantic specification

This operator removes identifiers components of the Dataset performing before a filter over the components
values specified in the subscript. This avoids inconsistency on the returned Dataset.

4052 Examples

4053 1) ds_2 := ds_1 [time = 2010, ref_area = EU25]

4054

ds_1				
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS
2010	EU25	CA	20	D
2010	BG	СА	1	Р
2010	RO	СА	1	Р
2010	EU27	CA	23	Р

ds_2		
PARTNER	OBS_VALUE	OBS_STATUS
CA	20	D

2) ds_2 := ds_1 [time = 2010, ref_area = EU25, partner = CA]

ds_2	
OBS_VALUE	OBS_STATUS
20	D

3) ds_2 := ds_1 [ref_area = EU25] + ds_1[ref_area = BG] + ds_1 [ref_area = RO]

ds_2		
TIME	PARTNER	OBS_VALUE
2010	CA	22

4) ds_2 := ds_1 [time = 2010, ref_area = EU25]

4065

ds_1				
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS
2010	EU25	CA	20	D
2010	EU25	NF	1	Р
2010	RO	CA	1	Р
2010	EU27	CA	23	Р

ds_2		
PARTNER	OBS_VALUE	OBS_STATUS
CA	20	D
NF	1	Р

4068 transcode

Semantics

- 4070 The **transcode** operator recodes the identifiers values using a map Dataset or a mapping object.4071
- 4072 Syntax
- **transcode**(*ds.comp*, [*ds_map*| *mapping*])

Parameters

- *ds.comp* : Component-ref
- *ds* : dataset {identifier <IDENT> as scalar-type}+
- 4078 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*

ds_map : dataset {identifier MAPS_FROM as scalar-type; } {measure MAPS_TO as scalar-type; }

4080
4081 • *ds.comp* – is a valid Identifier Component of the Dataset.

- *ds_map* is the Dataset that the defines the mapping. It has an Identifier Component, MAPS_FROM, that
 specifies the values to be transformed and a Measure Component, MAPS_TO, specifying the target value for
 each of them.
- 4085 *mapping* a mapping, persistent object created with define mapping

4087 Constraints

4086

4092

4097

4088 The following conditions guarantee that the resulting Dataset does not have duplicates:

- 4089 All the values of the Measure Component **MAPS_TO** must be distinct.
- For each distinct value of the Identifier Component to be recoded, there is a value (and only one) in the Identifier Component MAPS_FROM in *ds_map* or in the *mapping* object

4093 *Returns*

- 4094 A Dataset that has the same Identifier, Measure and Attribute Components as the input one. The values of the 4095 Identifier Component are recoded into the corresponding values in the **MAPS_TO** Measure Component of the 4096 Dataset *ds_map*.
- 4098 Semantic specification
- 4099 This operator allows to transform an input Dataset by mapping the values of one Identifier Component into
- 4100 corresponding values, as specified by a mapping Dataset. Since the mapping Dataset is guaranteed to have one
- distinct target value for each input one, and the input values appear only once, the resulting Dataset will contain
 no duplicates.
- All the Data Points of *ds* are also present in the result and the values of the Identifier Component *ds.comp* are modified as follows. For each data points of the Dataset, the value *v* of *ds.comp* is replaced by the value included in the *ds_map* or in the *mapping* corresponding to *v*.
- 4106

4107 *Examples*

4109

ds_map	
MAPS_FROM	MAPS_TO
LU	LUX
BE	BEL
IT	ITA

4110

ds	
REF_AREA	VALUE
LU	10
BE	11
IT	13

4111

ds_2		
REF_AREA	VALUE	
LUX	10	
BEL	11	
ITA	13	

4112 aggregate

4113 *Semantics*

- 4114 The operator **aggregate** takes as input a Dataset and returns a new Dataset with the data aggregated based on
- 4115 the rules and Boolean conditions specified in the hierarchical ruleset.

⁴¹⁰⁸ ds_2 := transcode(ds, ds_map, REF_AREA)

4123

4136

4138

4140

4144

4117 **Svntax**

4118 aggregate (ds, hr, { [total | partial] }, { [return aggregates | return all data points] });

4119 4120 **Parameters**

- ds: dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as numeric}+ 4121 4122
 - {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*
- 4124 *ds* – is the input Dataset to aggregate.
- 4125 hr – is the hierarchical ruleset (see define hierarchical ruleset) where the rules and the conditions to 4126 perform the aggregate operation are defined.
- *total* a keyword to specify that the aggregation is performed only when all the elements in the right-hand 4127 4128 elements of the aggregation conditions in vr are not NULL (default behaviour).
- 4129 partial – a keyword to specify that the aggregation is performed when at least one element of the right-hand 4130 side of the aggregation conditions in vr is not NULL and, in this case, all the NULLs are treated as zero (that 4131 is, ignored in the summation).
- 4132 *return aggregates* – a keyword to specify that the output Dataset contains only the data points resulting from ٠ aggregations (default behaviour). 4133
- *return all data points* a keyword to specify that the output Dataset contains data points resulting from 4134 • 4135 aggregations as well as the data points of the input Dataset ds.

4137 Constraints

- ds must have at least one numeric Measure. •
- 4139 *hr* must be defined for calculation purposes (hence following the respective constraints). •

4141 Returns

4142 A Dataset with all the Identifier and Measure Components of ds, with the data aggregated on the basis of the 4143 rules and Boolean conditions specified in the hierarchical (vertical) Ruleset hr.

- 4145 Semantic specification
- 4146 The aggregate operator takes as input a Dataset, with at least a numeric Measure Component, and a hierarchical ruleset and returns a new Dataset, with the data aggregated based on the rules and Boolean conditions specified 4147 4148 in the ruleset.
- 4149 The operator computes the numeric Measure Components associated to the aggregates defined in the left side of
- 4150 the rules in hr. The aggregation is prerformed computing all aggregates in a single operation according to a 4151 bottom-up calculation.
- 4152 The rules are executed in an appropriate order. In practice, if a rule in the ruleset depends on another one, the
- latter is evaluated before, and its output exploited by the former. The functional constraints ensure that each 4153 4154 aggregate is calculated once.
- By default, the aggregation is performed only when all element of the right side of an aggregation rule in the 4155 4156 hierarchical (vertical) Ruleset of input hr are not NULL in the input Dataset ds (total clause). By specifying the partial clause the aggregation is performed either if there are NULL values. 4157
- 4158 The Dataset's data points that are not implied in the aggregation are not shown in the resulting Dataset, 4159 essentially the data points containing values that are not involved in the aggregation will be lost (return 4160 aggregates clause). Specifying the return all data points clause, the returned Dataset will contain also the
- 4161 disaggregated data points of the input Dataset ds.

4162

4163 **Examples**

In this example an aggregation is performed using the following hierarchical ruleset. 4164 4165

define hierarchical ruleset hr_ref_area (condition (time) rule (ref_area)) is 4166

- 4167 EU15 = AT + BE + LU + DE + ES + FI + FR + EL + IE + IT + NL + PT + DK + UK + SE;
- 4168 EU25 = EU15 + CY + CZ + ES + HU + LT + LV + MT + PL + SK + SI;
- EU27 = EU25 + BG + RO: 4169
- 4170 EU28 = EU27 + HR;
- when time between 1995 and 2003 then EU = EU15 ; 4171
- 4172 when time between 2004 and 2005 then EU = EU25;
- 4173 when time between 2006 and 2012 then EU = EU27;
- 4174 when time \geq 2013 then EU = EU28
- 4175 EEA15 = EU15 + IS + NO + LI;

- EEA25 = EU25 + IS + NO + LI;
- EEA27 = EU27 + IS + NO + LI;
- EEA30 = EU27 + IS + NO + LI;
- when time between 1995 and 2003 then EEA = EEA15 ;
- when time between 2004 and 2005 then EEA = EEA25;
- when time between 2006 and 2012 then EEA = EEA27 ;
- when time >= 2013 then EEA = EEA30;

end hierarchical ruleset

The Dataset to aggregate:

ds_bop				
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS
2010	EU25	CA	20	D
2010	BG	CA	1	Р
2010	RO	CA	1	Р
2010	EU27	CA	25	Р
2010	HR	CA	2	Р

1) ds_2 := **aggregate**(ds_bop, hr_ref_area);

ds_2			
TIME	REF_AREA	PARTNER	OBS_VALUE
2010	EU27	CA	22
2010	EU28	CA	27

2) ds_2 := **aggregate**(ds_bop, hr_ref_area, return all data points);

ds_2			
TIME	REF_AREA	PARTNER	OBS_VALUE
2010	EU25	CA	20
2010	BG	CA	1
2010	RO	CA	1
2010	EU27	CA	22
2010	HR	CA	2

- 3) In this example an aggregation is performed using the following hierarchical ruleset.
- define hierarchical ruleset hr_ref_area (condition (time) rule (ref_area)) is
- when time = 2010 then EU= IT+BE+LU;
- when time = 2010 the AS=IN+CH;
- end hierarchical ruleset
- ds_2 := aggregate(ds_bop, hr_ref_area);

ds_bop	ds_bop			
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS
2010	ІТ	CA	2	Ρ
2010	BE	CA	1	Р
2010	LU	CA	1	Р
2010	IN	CA	3	D
2010	СН		5	D

ds_2	ds_2			
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS
2010	EU	CA	4	Р
2010	AS	CA	8	D

4204

4205 4) In this example the Italian northern population has been obtained summing the population of nord_east and

- 4206 nord-west (rule 1) and summing the population of all the regions being part of the nord (rule 2).
- 4207 Hierarchical (vertical) Ruleset:

4208 **define hierarchical ruleset** hr_IT_north_pop (rule (ref_area)) is

ITCD = ITC + ITD;

ITCD =ITC1+ITC2+ITC3+ITC4+ITD1+ITD2

4211 end hierarchical ruleset

4212

4209

4210

4213 ds_2 := **aggregate**(IT_nord_bop, hr_IT_nord_pop);

4214

IT_nord_pop		
TIME	REF_AREA	OBS_VALUE
2015	ITCD	27799803
2015	ITC	16138643
2015	ITC1	4424467
2015	ITC2	128298
2015	ITC3	1583263
2015	ITC4	10002615
2015	ITD	11661160
2015	ITD1	518518
2015	ITD2	537416
2015	ITD3	4927596
2015	ITD4	1227122
2015	ITD5	4450508

4215

ds_2		
TIME	REF_AREA	OBS_VALUE
2015	ITCD	27799803

4217 VTL-ML - Statistical functions

4218 Aggregate functions

4219	Semantics
4220	VTL includes a set of statistical functions, that can be used to aggregate data.
4221	
4222	Syntax
4223	aggregateFunction (ds {, other_parameters }) { [group by along] (idComp {, idComp }*) }
4224	
4225	Parameters
4226	ds : dataset {identifier <ident> as scalar-type; }+</ident>
4227	[{measure <ident> as numeric}+ {attribute <ident> as numeric}+]</ident></ident>
4228	{measure <ident> as scalar-type}* {attribute <ident> as scalar-type}*</ident></ident>
4229	<i>idComp</i> : component-ref
4230	
4231	 aggregateFunction – is one of the aggregate functions described in the table below.
4232	• other_parameters – specific parameters additional to ds, related to the function used (see table List of
4233	aggregate functions)
4234	• <i>ds</i> – is the input Dataset to which the aggregate function is applied.
4235	• group by – represents the VTL groups data composed by the Identifier Components specified as idComp.
1236	 along – represents the VTL groups data composed by the Identifier Components of ds that are not specified
4237	as <i>idComp</i> . With the along clause the same VTL program can be reused for all Datasets that contain the
1238	Identifier Components specified in the along clause.
4239	 <i>idComp</i> – a component identifier of <i>ds</i>
4240	
4241	Constraints
4242	• If <i>ds</i> has more than one Measure Component, then a Measure or attribute must be defined using the
4243	membership operator.
1213	 <i>idComp</i> must be a valid reference to an existing Identifier Component owned by <i>ds</i>.
4245	• <i>Ideomp</i> must be a value reference to an existing identifier component owned by us.
4246	Returns
1240 1247	A Dataset having the Identifier Components of <i>ds</i> specified in the group by clause (or not specified in the along
4248	clause) and the Measure Components (or the implicit Measure Component deduced in a mono-Measure Dataset),
1249	with the data aggregated on the basis of the specific aggregate function and the partitions defined by group by or
4250	along.
4251	arong.
4252	Semantic specification
4253	An aggregate function groups together, evaluating a value that is specific for each aggregate function, the values
4255 4254	of multiple data points having the same values of the specified Identifier Components <i>idComp</i> .

- The operator takes as input a Dataset, a Measure Component (specified with the membership operator on *ds*, or implicitly selected if *ds* has only one Measure component) on which the aggregate function will compute the result, and a sequence of Identifier Components *idComp* that will be used for the partitioning (the aggregate function is then applied separately for each partition). It returns another Dataset having the Identifier Components of *ds*, specified in the **group by** or **along**, and the Measure Component used for the aggregation. The other Identifier Components are removed from the resulting Dataset.
- If neither a **group by** or **along** clause is specified, then the aggregate function returns a single Data Point that has zero Identifier Components and only one Measure Component that is the one specified for the aggregation with the membership operator (or deduced from *ds*).
- 4264 Most of the aggregate functions can be also used as analytic functions (with a different syntax): See analytic 4265 functions.
- 4266
- 4267
- 4268

List of aggregate functions			
Aggregate function	Description		
avg (ds_1)	average value of the not null values of <i>ds_1</i>		
corr (<i>ds</i> _1, <i>ds</i> _2)	Coefficient of correlation of (<i>ds_1</i> , <i>ds_2</i>)		
covar_pop (ds_1, ds_2)	population covariance of (<i>ds_1, ds_2</i>)		
covar_samp (ds_1, ds_2)	sample covariance of (<i>ds_1, ds_2</i>)		
count (ds_1)	number of non-empty data points of <i>ds_1</i>		
median (<i>ds_1</i>)	median value of the not null values of <i>ds_1</i>		
min (<i>ds_1</i>)	minimum value of <i>ds_1</i>		
max (<i>ds_1</i>)	maximum value of <i>ds_1</i>		
<pre>percentile_cont (ds_1, constant) order by expression [asc desc]</pre>	inverse distribution function that assumes a continuous distribution model		
<pre>percentile_disc (ds_1 , constant) order by expression [asc desc]</pre>	inverse distribution function that assumes a discrete distribution model		
rank (ds_1)	rank of a value in a group of values		
regr_slope (ds_1, ds_2)	linear regression (slope of the line)		
regr_intercept (ds_1, ds_2)	linear regression (y-intercept)		
regr_count (ds_1, ds_2)	linear regression (count non-null number pairs)		
regr_r2 (ds_1, ds_2)	linear regression (coefficient of determination)		
regr_avgx (ds_1, ds_2)	linear regression (average of independent variable <i>ds_2</i>)		
regr_avgy (ds_1, ds_2)	linear regression (average of dependent variable <i>ds_1</i>)		
regr_sxx (ds_1, ds_2)	linear regression (auxiliary function)		
regr_syy (linear regression (auxiliary function)		
regr_sxy (ds_1, ds_2)	linear regression (auxiliary function)		
stddev_pop (population standard deviation of <i>ds_1</i>		
stddev (ds_1)	standard deviation of <i>ds_1</i>		
sum (<i>ds_1</i>)	sum of values of <i>ds_1</i>		
var_pop (ds_1)	population variance of <i>ds_1</i>		
var_samp (ds_1)	sample variance of <i>ds_1</i>		
variance (ds_1)	variance of <i>ds_1</i>		

Examples

4271 1) ds_agg := **avg (** ds_bop.obs_value **) group by** time

ds_bop				
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS
2010	EU25	СА	20	
2010	BG	CA	1	
2010	RO	CA	1	
2010	EU27	CA	23	
2011	EU25	CA	20	Р
2011	BG	CA	1	Р
2011	RO	CA	-1	Р
2011	EU27	CA	20	Р
2012	LU	CA	40	Р
2012	EU25	CA	30	Р

ds_agg		
TIME	OBS_VALUE	
2010	11.25	
2011	11.25	
2012	30	

4275 Note: the example above can be rewritten equivalently in the following forms:

2) ds_agg := avg (ds_bop.obs_value) group by time, ref_area

4276 ds_agg := **avg (**ds_bop **)** along ref_area, partner

4277 ds_agg := **avg (** bop **) group by** time

ds_agg		
TIME	REF_AREA	OBS_VALUE
2010	EU25	20
2010	BG	1
2010	RO	1
2010	EU27	23
2011	EU25	20
2011	BG	1
2011	RO	-1
2011	EU27	20
2012	LU	40
2012	EU25	30

3) ds_agg := **avg (** ds_bop **)** 4284

4285

ds_agg
OBS_VALUE
15.5

4286 4287

4288

4) ds_agg := max (ds	s_bop.obs_value)	as max_value, min (ds_bop.obs_value]	as min_value group by time
------------------------------	-------------------	---------------------	--------------------	----------------------------

ds_agg REF_AREA MIN_VALUE MAX_VALUE TIME 23 2010 EU25 1 2011 RO 20 -1 2012 EU25 40 30

4289

Time aggregate functions 4290

4291 **Semantics**

4292 The time aggregate functions represent a set of statistical functions used to aggregate data on the time 4293 dimension. 4294

4295	Syntax
4296	aggregateFunction (ds
4297	, freqFrom
4298	, freqTo
4299	{, minPeriods}
4300	{, timePeriodName }
4301	{, timeFormatFrom }
4302	{, timeFormatTo }
4303)
4304	
4305	Parameters
4306	<i>ds</i> : dataset {identifier <ident> as scalar-type}+</ident>
4307	[{measure <ident> as numeric}+ {attribute <ident> as numeric}+]</ident></ident>
4308	{measure <ident> as scalar-type}* {attribute <ident> as scalar-type}*</ident></ident>
4309	
4310	• <i>aggregateFunction</i> - is one of the aggregate functions described in the paragraph "Aggregate functions".
4311	• <i>ds</i> – is the input Dataset to which the aggregate function is applied.
4312	 <i>freqFrom</i> – is the frequency from which the data will be aggregated
4313 4314	 <i>freqTo</i> – is the frequency to which the data will be aggregated. <i>freqTo</i> must be a lower frequency than <i>freqFrom</i>
4315 4316	based aggregation. If <i>minPeriods</i> is omitted then the aggregation is performed only if all the periods needed
4317	for the aggregation are present.
4318	 <i>timePeriodName</i> – is the name of the time period component of the Dataset. Default name is "time".
4319	• <i>timeFormatFrom</i> – is the format of the time period relative to <i>freqFrom</i> . It must be specified only when
4320	freqFrom is C (custom).
4321	• <i>timeFormatTo</i> – is the format of the time period relative to <i>freqTo</i> . It must be specified only when <i>freqTo</i> is C
4322	(custom).
4323	
4324	Constraints
4325 4326	 If <i>ds</i> has more than one Measure Component, then a Measure or attribute must be specified using the membership operator on ds.
4327	• <i>timePeriodName</i> is the name of an Identifier Component owned by <i>ds</i> .
	130

- *freqFrom* must be a higher frequency compared with *freqTo*, e.g. *freqFrom* = "M" and *freqTo* = "Q" is correct,
 while the reverse is not correct.
- 4329 4330

4331 Possible values for *freqFrom* and *freqTo*:

Frequency symbol	Frequency
А	Annual
S	Semestrial
Q	Quarterly
м	Monthly
W	Weekly
D	Daily

4332

4333 Returns

A Dataset with the Identifier Components of ds and a Measure Component containing data of ds aggregated from
 freqFrom to freqTo. All aggregate functions can be used.

4336 4337 Semantic specification

4338 The aggregateFunction first partitions the data set in groups of data having the frequency *freqFrom*, then the 4339 data are aggregated to obtain data aggregated having the frequency *freqTo*.

4340 Convert the data contained in *ds* and having the time format specified in *freqFrom* to the format specified in *freqTo*. If *freqTo* and *freqTo* have different value then an aggregation could occur.

4341 *freqTo.* If *freqFrom* and *freqTo* have different value then an aggregation could 4342

4343 Data in *ds* having the frequency different from *freqFrom* will not be involved by the operator and they will be
4344 discarded from the output Dataset.
4345

4346 By default this operator computes the aggregated value only when the values of all sub-periods exist.

4347 To override this behaviour the user can specify a value for the optional argument *minPeriods*: this is a lower

4348 bound for the number of periods that must exist in order to produce the aggregation. This means that if the

4349 optional parameter *minPeriods* is present, then the aggregation can be performed either if the timeseries Dataset 4350 of input does not contain all the necessary DataPoints needed.

4351 4352

format:				
Format	Frequency	Example	Frequency	Possible values
уууу ууууА	A	2000	Annual	уууу = 1900,, 9999
yyyySs yyyy-Ss	S	200051	Semestrial	s = 1, 2
ууууQq	Q	2000Q1	Quarterly	q = 1, 2, 3, 4
уууу-Qq	Q	2000Q1	Quarterly	q = 1, 2, 3, 4
yyyyMmm yyyy-mm	М	2000M01	Monthly	mm = 01, 02,, 12
yyyyWnn	W	2000D0101	Weekly	nn = 01, 02,, 52
yyyyMmmDdd	D	2000D0101	Daily	mm = 01, 02,, 12 dd = 01, 02,, 31
yyyy-mm-dd	N	2000-01-01	Date (frequency not specified)	mm = 01, 02,, 12 dd = 01, 02,, 31
Combination of yyyy, mm and dd	С	01-01-2000	Custom date format	yyyy = 1900,, 9999 mm = 01, 02,, 12 dd = 01, 02,, 31

4355 *Examples*

4356 1) ds_abop := **sum** (bp_qbop) **time_aggregate** ("Q", "A")

ds_qbop			
TIME	REF_AREA	PARTNER	OBS_VALUE
2010Q1	EU25	CA	20
2010Q2	EU25	CA	20
2010Q3	EU25	СА	20
2010Q4	EU25	СА	20
2010Q1	EU27	CA	30
2010Q2	EU27	CA	30
2010Q3	EU27	CA	30
2010Q4	EU27	CA	30
2010Q1	ІТ	CA	10
2010Q2	ІТ	СА	10
2010Q3	ІТ	СА	10
2010Q4	IT	CA	10

4357

4358 The above operation perform a frequency change from quarterly data, where the date has the pattern "YYYYQN",

to annual data with the pattern "YYYY". Due to the pattern of the Component TIME, the frequency is deduced and
 the *frequency_name* parameter can be omitted.

4361

	С	ls_abop	
TIME	REF_AREA	PARTNER	OBS_VALUE
2010	EU25	CA	80
2011	EU27	CA	120
2010	IT	CA	40

4362

ds	5_1
DATE	VALUE
1939-01-01	4400.0
1939-02-01	4400.0
1939-03-01	10600.0
1939-04-01	6800.0

4363

4364 2) ds_2 := sum (ds_1, "M", "A", 4, date, "yyyy-mm-dd", "yyyy-mm-dd")

4365

4366 Due to the value of *minPeriods* (4), the annual aggregation is performed when at least 4 data points exist 4367 relative to the 1939's months.

d	5_2
DATE	VALUE
1939-01-01	26200.0

4370 Analytic functions

4371 Semantics

The Analytic functions allow to specify operations to be applied on groups of Data Points within a Dataset. The Data Points of the Dataset are first partitioned into groups. Then, in each group, each Data Point is combined with (some of) the others in a customizable way, and for each input Data Point, an output one is produced.

4375 Groups are determined by a list of names of Identifier Components, in such a way that Data Points having the 4376 same values for those Identifiers are assigned to the same group.

A **sliding window** is then declared to define for each input Data Point in the window (**current** Data Point), how to produce the corresponding Data Point in the output, by combining its Measure Components with the ones of the other Data Points in the same window. For each window and for each Data Point, the sliding window spans the Data Points to be combined and while moving from the first to the last Data Point in the group, produces the output Data Points. In other words, for each group, the sliding window determines the moving range of Data Points to be combined for each input one. At one extreme, the sliding window can span one single Data Point at a time, implying that Data Points are not combined with the others, producing independent values of the Measures

4384 for all the input Data Points; at the other extreme, the sliding window spans the entire window, producing the 4385 same value for all the Data Points.

The size of the sliding window is either based on the number Data Points to be included or the specification of a numerical interval.

Finally, there are a number of possible functions that can be applied to combine the Data Points within a sliding window, such as the average value within a sliding window, the cumulative sum, and so on.

4391 *Syntax*

4390

4371	Syntax
4392	analyticFunction (ds {, extraParams }) over ({ partitionBy } { orderBy } { windowingClause })
4393	partitionBy ::= partition by $c_p \{, c_p \}^*$
4394	orderBy ::= order by c_o { , c_o } * { [asc desc] }
4395	windowingClause ::=
4396	[rows range]
4397	between
4398	[num preceding num following current row unbounded preceding unbounded following]
4399	and
4400	[num preceding num following current row unbounded preceding unbounded following]
4401	

4402 Parameters

- 4403 ds is the input Dataset.
- *extraParams* additional parameters (depending on the analytic function).
- *partitionBy* partitions *ds* into groups based on the value of one or more Identifier Components. If omitted,
 the function treats all rows of the Dataset as a single partition.
- *c_p* are valid Identifier Components of *ds* used for the partitioning expressed by *partitionBy*.
- *orderBy* specifies how Data Points are ordered within each windows (asc is the default).
- c_o are references to valid Components on which the sort is performed within the respective pre-calculated windows.

The keywords *rows* and *range* define for each row a "sliding window" (set of rows) used for calculating the result of the analytic function. The analytic function is then applied to all the Data Points in the sliding window. The sliding window "slides" through the windows from top to bottom. In particular:

- *rows* defines a sliding window using a specified number of preceding and following data points relative to the current data point (according to the orderBy clause)
- *range* defines a sliding window as a numerical offset relative to the current data point (according to the orderBy clause)
- *unbounded preceding* indicates that the sliding window starts at the first Data Point of the window.
- *unbounded following* indicates that the sliding window ends at the last Data Point of the window.
- *current row* specifies that the window starts or ends at the current Data Point.
- *preceding* specifies the start point of the sliding window as number of data points preceding the current data point.
- *following* specifies the end point of the sliding window as number of data points following the current data point.

4414

4415

4416

4426 *Constraints*

- *ds* must have at least one Measure Component (as explicated in the syntax).
- 4428 *Analytic functions* cannot be nested.

4429 *Returns*

A Dataset having the same Identifier, Measure and Attribute Components as the input one, where the Measure
Components take values depending on the definition of windows, sliding windows and the specific analytic
function.

4433

4434 Semantic specification

The operator takes a Dataset as input, optionally the specification for the partitioning and the internal order of the windows; optionally, it also takes as input the information to define a sliding window. If omitted, there is one single sliding window, coinciding with each of the windows. The operator returns a Dataset with the same Identifier Components, Measure Components and Attribute Components as *ds*, where the value of all the Measure Components take values that depend on the specific **analytic function**, the partitioning criteria and the Data Points in each sliding window.

The functions that can be used as analytic functions are the aggregate functions described in the previous chapter and some specific functions described below.

4444 first_value

4446 Semantics

For each sliding window and for each Measure Component, the operator calculates the first value according to
the specified order.

Examples

4451 4452

4453

4450

4443

4445

ds := first_value (ds_bop) over (partition by ref_area , partner order by time)

ds_bop			
REF_AREA	PARTNER	TIME	OBS_VALUE
LU	CA	1993	3
LU	CA	1994	4
LU	CA	1996	10
LU	CA	1997	20
LU	US	1993	400
LU	US	1996	500
LU	US	1997	600
LU	WORLD	1994	1000

ds			
REF_AREA	PARTNER	TIME	OBS_VALUE
LU	CA	1993	3
LU	CA	1994	3
LU	CA	1996	3
LU	CA	1997	3
LU	US	1993	400
LU	US	1996	400
LU	US	1997	400
LU	WORLD	1994	1 000

4457 lag lead

4458

4459 Semantics

The operator swaps the values of all Measure Components of the current Data Point with the ones of the corresponding Measure Components of the Data Point that is referred to by the offset. If the offset exceeds the

boundaries of the sliding window, the default value is used for the swap. If omitted, 0 is implied as the default.

4464 Parameters

- 4465 This analytic function takes as input the following extra parameters:
- *offset* it allows to individuate a Data Point by specifying the relative position from the current Data Point as an offset, negative if moving towards from the beginning to the end of the define ordering, positive if moving from the end to the beginning of the defined order.
- *default* the value that a Data Point has to take if the Data Point, whose position is calculated using the offset, is NULL.

Examples

4473

4474

4472

ds := lag (ds_bop , -1, -100) over (partition by ref_area , partner order by time)

4475 ds_bop REF_AREA

us_bop				
REF_AREA	PARTNER	TIME	OBS_VALUE	
LU	CA	1993	3	
LU	CA	1994	4	
LU	CA	1996	10	
LU	CA	1997	20	
LU	US	1993	400	
LU	US	1996	500	
LU	US	1997	600	
LU	WORLD	1994	1000	

4476

ds			
REF_AREA	PARTNER	TIME	OBS_VALUE
LU	CA	1993	-100
LU	СА	1994	3
LU	CA	1996	4
LU	CA	1997	10
LU	US	1993	-100
LU	US	1996	400
LU	US	1997	500
LU	WORLD	1994	-100

4477 4478

last_value

4479 4480 *Semantics*

For each sliding window and for each Measure Component, the operator calculates the first value according to
the specified order.

4484 *Examples*

4485

ds := last_value (ds_bop) over (partition by ref_area , partner order by time)

ds_bop			
REF_AREA	PARTNER	TIME	OBS_VALUE
LU	CA	1993	3
LU	CA	1994	4
LU	CA	1996	10
LU	CA	1997	20
LU	US	1993	400
LU	US	1996	500
LU	US	1997	600
LU	WORLD	1994	1000

ds			
REF_AREA	PARTNER	TIME	OBS_VALUE
LU	CA	1993	20
LU	CA	1994	20
LU	CA	1996	20
LU	CA	1997	20
LU	US	1993	600
LU	US	1996	600
LU	US	1997	600
LU	WORLD	1994	1 000

In spite of the general syntax for analytic functions, the following ones do not allow the definition of any sliding window, that is, it always coincide with the entire window.

ntile

Semantics

For each Data Point of each window, the operator produces a Data Point where the values of the numeric Measures Components are set to a unique window number. The values of the non-numeric Measure Components are just copied. For each windows a unique number (incrementally generated, starting with 1) is assigned. Note that the order by clause of analytic functions operates within each window; therefore, the windows are not mutually ordered.

Examples

ds := ntile (ds_bop) over (partition by REF_AREA, partner order by time)

ds_bop			
REF_AREA	PARTNER	TIME	OBS_VALUE
LU	CA	1993	3
LU	CA	1994	4
LU	CA	1996	10
LU	CA	1997	20
LU	US	1993	400

LU	US	1996	500
LU	US	1997	600
LU	WORLD	1994	1000

ds				
REF_AREA	PARTNER	TIME	OBS_VALUE	
LU	CA	1993	1	
LU	CA	1994	1	
LU	CA	1996	1	
LU	CA	1997	1	
LU	US	1993	2	
LU	US	1996	2	
LU	US	1997	2	
LU	WORLD	1994	3	

4507

4508 percent_rank

4509

4510 *Semantics*

The operator calculates the percent rank of each Data Point with respect to the other Data Points of the same window. For each Data Point and for each numeric Measure Component, the percent rank is calculated as the rank of that Data Point minus one divided by the number of total Data Points in the partition. Data Points with equal values for the ranking criteria receive the same percent rank. The values of each numeric Measure Component are assigned to the respective percent rank. All the values of the non-numeric Measure Components are just copied.

4517 *Examples*

4518 ds := **percent_rank (** ds_bop **) over (partition by** ref_area, partner **order by** time **)**

4519

ds_bop			
REF_AREA	PARTNER	TIME	OBS_VALUE
LU	CA	1993	3
LU	CA	1994	4
LU	CA	1996	10
LU	CA	1997	20
LU	US	1993	400
LU	US	1996	500
LU	US	1997	600
LU	WORLD	1994	1000

ds			
REF_AREA	PARTNER	TIME	OBS_VALUE
LU	CA	1993	0
LU	CA	1994	0.25
LU	CA	1996	0.5
LU	CA	1997	0.75

LU	US	1993	0
LU	US	1996	0.33
LU	US	1997	0.67
LU	WORLD	1994	0

4522 rank 4523

- 4524 *Semantics*
- 4525 The operator calculates the rank of each Data Point with respect to the other Data Points in the same window.
- 4526 For each Data Point and for each numeric Measure Component, the rank is calculated as the relative position of
- 4527 the Data Point in the window. The values of each numeric Measure Component is assigned to the respective rank.
- 4528 All the values of the non-numeric Measure Components are just copied.
- 4529 *Examples*

4530 ds_1 := **rank (** ds_bop **) over (partition by** ref_area, partner **order by** time **)**

4531

ds_bop						
REF_AREA	PARTNER	TIME	OBS_VALUE			
LU	CA	1993	3			
LU	CA	1994	4			
LU	CA	1996	10			
LU	CA	1997	20			
LU	US	1993	400			
LU	US	1996	500			
LU	US	1997	600			
LU	WORLD	1994	1000			

4532

ds_1						
REF_AREA	PARTNER	TIME	OBS_VALUE			
LU	CA	1993	1			
LU	CA	1994	2			
LU	CA	1996	3			
LU	CA	1997	4			
LU	US	1993	1			
LU	US	1996	2			
LU	US	1997	3			
LU	WORLD	1994	1			

4533

4534 ratio_to_report

4535

4536 *Semantics*

The operator calculates the percentage amount of the value of each Data Point in the respective window (ratio to report).

4539 For each Data Point and for each numeric Measure Component, the ratio to report is calculated as the percentage

amount of the value of Measure Component in the sum of the values for the same Measure Component of the other Data Points in the window. The values of each numeric Measure Component is assigned to the respective

4542 ratio to report. All the values of the non-numeric Measure Components are just copied.

4543 **Examples**

4544 ds_1 := ratio_to_report (ds_bop) over (partition by REF_AREA, partner)

4545

ds_bop						
REF_AREA	PARTNER	TIME	OBS_VALUE			
LU	CA	1993	3			
LU	CA	1994	4			
LU	CA	1996	10			
LU	CA	1997	20			
LU	US	1993	400			
LU	US	1996	500			
LU	US	1997	600			
LU	WORLD	1994	1000			

4546

ds_1						
REF_AREA	PARTNER	TIME	OBS_VALUE			
LU	CA	1993	0.08108			
LU	CA	1994	0.10810			
LU	CA	1996	0.27027			
LU	CA	1997	0.54054			
LU	US	1993	0.26667			
LU	US	1996	0.33333			
LU	US	1997	0.40000			
LU	WORLD	1994	0.10000			

4547

hierarchy 4548

4549 **Semantics**

- VTL foresees the existence of set relations among Code Items in Code List. 4550
- 4551 Many Enumerated Value Domains have an intrinsic Boolean algebraic structure, in the sense that a Boolean algebra can be defined on the respective Code Items. 4552
- 4553 In general, a Boolean algebra is an algebraic structure (elements and operators having some properties) that
- summarizes the properties of set operators (union, intersection, complement) and logical operators (or, and, not). 4554 Elements of a Boolean Value Domain can be combined with the elementary set operators³; e.g. the item C is the
- 4555
- union of the items D and E; the item K is the complement of S with respect to I (so the elements in I that are not 4556 in S), the item A is the intersection of B and C and so on. 4557
- Only considering the set union, there are two possible organizations for hierarchical Code Lists: classifications 4558 and free hierarchies. 4559
- In classifications, every element is uniquely classified by a single partition, so that the overall structure is a tree 4560
- 4561 and, consequently, every Code Item can be given a specific level. An example is the usual geographical
- 4562 classification of the world into continents, each partitioned into nations.

³ Here we refer to elementary set operations and not to any operator of the language.

4565

4566 In **free hierarchies** each item can be partitioned according to multiple criteria; in turn, every element can be 4567 used to compose multiple other elements. The overall structure is not a tree and isolated Items can be present. 4568 An example is the hierarchy of European countries, where Belgium, Holland and Luxembourg contribute to the

"European Countries" Code Item and to the "Benelux" Code Item. 4569

4570

4571 4572

4573

Figure 2 - Example of free hierarchy

4574 More sophisticated hierarchical organizations can indeed exist if intersection and complement set operators are 4575 also considered. For example the element "Benelux" could also be defined as the complement of the European

4576 Union with respect to all the countries except Holland, Belgium and Luxembourg.

4577 Therefore we would have:

4578 BENELUX = EU – (ITALY \cup AUSTRIA \cup ...)

In order to support multiple classifications of Code Items in Code Lists and allow for the adoption of all the set 4579

4580 operators, we introduce two concepts *hierarchical aggregations* and *mappings* (that will be used in the 4581 hierarchy operator).

4582 A hierarchical aggregation is a set of mappings, each transforming a Code Item into another Code Item. All the 4583 mappings within a hierarchical aggregation associate Code Items of the same Code List with Code Items of a single Code List.

4584

Hierarchical aggregations and mappings can be easily expressed in tabular form and referred to in the language 4585

4586 (in **hierarchy** operator) by an identifier (*hierarchyName*). However, there is also an inline syntactical form.

4587 Suppose we want to express the hierarchical relationship BENELUX = Belgium \cup Holland \cup Luxembourg. There will be a hierarchical aggregation **Benelux_aggr**, with the following mappings:

HIERARCHY NAME	MAPS FROM	MAPS TO	START DATE	END DATE	SIGN	LEVEL	OUTPUT
Benelux_aggr	Belgium	Benelux			+	1	true
Benelux_aggr	Holland	Benelux			+	1	true
Benelux_aggr	Luxembourg	Benelux			+	1	true

- 4591 It maps each component item into the compound one.
- Each mapping has a *Sign*. It specifies if the contribution of the MAPS FROM Code Item in the composition is positive (UNION) or negative (COMPLEMENT). Notice that there is not a particular convention to represent
- 4594 intersection, as it can be obtained with an appropriate composition of UNION and COMPLEMENT.
- 4595 For instance, if we want to define in the element **EuropeWithoutItaly**, a possible definition could be the one
- 4596 complementing Italy, with respect to the entire Europe (i.e. subtracting Italy from Europe), as shown in the4597 following table:

4597 4598

HIERARCHY NAME	MAPS FROM	MAPS TO	START DATE	END DATE	SIGN	LEVEL	OUTPUT
Eu_no_Italy_aggr	Europe	EuropeWith outItaly			+	1	true
Eu_no_Italy_aggr	Italy	EuropeWith outItaly			-	1	true

4599

4600 Moreover, mappings are divided into levels, in the sense that a complete tree can be embedded into one

hierarchy. The OUTPUT property, for each MAPS TO, indicates if the value must be preserved in the output or isonly to be used for aggregations at a higher level.

For instance, suppose we want to express the hierarchical relationship in Figure2, there will be a hierarchy
 World_aggr, with the following correspondences:

4605

HIERARCHY NAME	MAPS FROM	MAPS TO	START DATE	END DATE	SIGN	LEVEL	OUTPUT
World_aggr	Italy	Europe			+	1	false
World_aggr	France	Europe			+	1	false
World_aggr	Luxembourg	Europe			+	1	false
World_aggr		Europe			+	1	false
World_aggr	Asia	World			+	2	true
World_aggr	Europe	World			+	2	true
World_aggr	America	World			+	2	true
World_aggr	Oceania	World			+	2	true
World_aggr	Africa	World			+	2	true

4606

4607 Output *false* for LEVEL 1, indicates that the aggregations into Europe (and into the other countries) are only

4608 functional to LEVEL 2 and the MAPS TO values with *false* will not be in the output.

4609 Summarizing, the set of mappings within a hierarchy has to be interpreted as follows.

4610 For every level, from the lowest to the highest, each MAPS TO Code Item is the set difference between the UNION

4611 of all the corresponding MAPS FROM Code Items with positive SIGN and the UNION of all the corresponding4612 MAPS FROM Code Items with the negative SIGN.

4613 *Rules* inherently represent hierarchies in Code Lists, but, at the same time, only refer to Code Items. Thus, can be

4614 applied on different *Identifier Components* referring to different Code Lists.

4615

4616 *Syntax*

4617 hierarchy

4618	({dataset=} ds_1, {component=} comp,
4619	[
4620	{ hierarchy_name= } hierarchyname
4621	({ ({from=} maps_from, {level=} level, {sign=} [+ -])
4622	{,({from=} maps_from, {level=} level, {sign=} [+ -])}*)
4623	to { to= } maps_to}+) as hierarchyname
4624],

4625	{ isFilter= } isFilter
4626	{, {aggregation=} [sum prod] }
4627	
4628	•
4629	Parameters
4630	ds_1 : Dataset ,MeasureComponent<Numeric +>
4631	<i>comp</i> : Identifier Component
4632	hierarchyname : string
4633	maps_from, maps_to : Constant
4634	level : integer
4635	hierarchyname : string
4636	<i>isFilter</i> : boolean
4637	
4638	<i>ds_1</i> – the Dataset to be aggregated
4639	<i>comp</i> – the <i>IdentifierComponent</i> to aggregate upon
4640	<i>hierarchyname</i> – the name of the hierarchical aggregation of the information model, which can be optionally
4641	replaced by an inline specification of the rule
4642	maps_from – an input value in an inline aggregation rule
4643	<i>level</i> – the level of hierarchy of a correspondence in an aggregation rule
4644	<i>sign</i> – the sign of the contribution of a <i>maps_from</i> value in an aggregation rule
4645	maps_to – an output value in an inline aggregation rule
4646	<i>isFilter</i> – if the aggregation must be interpreted as a filter (excluding non matching records)
4647	ist liter – If the aggregation must be interpreted as a fitter (excluding non matching records)
4648	Constraints
4649	 hierarchyname denotes an hierarchical aggregation either externally configured in a table or embedded in the encenter with the inline rotation (atatic)
4650	the operator with the inline notation (static).
4651	• level > 0 (static).
4652	• All the <i>MeasureComponents</i> of ds_1 must be Numeric (static).
4653	
4654	Semantic specification
4655	It applies a hierarchical aggregation with name <i>hierarchyname</i> on an Identifier Component <i>comp</i> in a Dataset
4656	<i>ds_1</i> , aggregating all the Measure Components according to an aggregation function (algebraic sum or product).
4657	hierarchyname can be the identifier of an aggregation that is externally configured in a table, with an associated
4658	set of mappings, each with a sign and a level.
4659	Alternatively, a hierarchical aggregation can be expressed in an inline fashion, where maps_from constants are
4660	mapped into maps_to ones in the specific level and sign.
4661	For the given aggregation, for each level, all the mappings are considered and orderly applied with the following
4662	logic.
4663	For each value of the <i>IdentifierComponent</i> of all the records of the considered Dataset, if the value is present in
4664	<i>maps_from</i> for any mapping, it is turned into the respective <i>maps_to</i> value; if the value is not present in
4665	maps_from for any correspondence, the entire record is discarded if isFilter is TRUE, the original value is
4666	preserved if <i>isFilter</i> is false.
4667	Aggregations are typically hierarchical, in the sense that they map many <i>maps_from</i> values into fewer <i>maps_to</i>
4668	values: often, multiple component Code Items collapse into the same compound Code Item.
4669	Therefore, at this stage, there may be multiple records having the same values for all the <i>IdentifierComponents</i> , as
4670	the differentiating ones have been aggregated into the same one.
4671	The records having the same value for all the <i>IdentifierComponents</i> are aggregated by algebraic sum (sum) or
4672	product (prod) of their <i>MeasureComponents</i> . If the aggregation function is omitted, sum is implied.
4673	Sum implies that the <i>MeasureComponents</i> have to be algebraically summed, considered with positive or negative
4674	sign depending on the Sign of the used mapping.
4675	Prod implies that the <i>MeasureComponents</i> have to be multiplied, considered with -1 exponent when the negative
4676	Sign is used in the mapping.
4677	Notice that the use of prod as aggregation function is meaningful only when the <i>IdentifierComponent</i> is a measure
4678	dimension.
4679	Hierarchies and measure dimensions
4680	As it is well known, an <i>IdentifierComponent</i> in a Dataset can play the role of <i>measure dimension</i> , meaning that the
4681	Dataset is indeed multi-measure, but represented as mono-measure with a further, measure-qualifying

- 4682 dimension.
- 4683 *IdentifierComponents* in hierarchy can also be a measure dimension, although in this case the aggregation
- 4684 inherently assumes a different meaning.

- 4685 In facts, Data Points with all coinciding *IdentifierComponents*, except for the measure dimension, are nothing but
- an expression of different measures for the same data point. An aggregation over the *measure dimension* is
- 4687 conceptually an operation involving the measures of the same Data Point (algebraic sum or multiplication).

4688 Hierarchies as transcodings

- 4689 The presented mapping method can be used intuitively to express a transcoding in a synthetic way. In this case, 4690 the involved Component value is mapped into another one, which is not hierarchically related with the first, but
- 4691 simply represents the same value expressed in another coding standard.

4692 Hierarchies as filters

- 4693 *isFilter* parameter in *hierarchy* allows choosing whether an input Data Point is to be kept in the output even if
- there are not mappings having the *maps_from* value corresponding to the Identifier Component of that Data Point.
- Indeed, this mechanism lends itself to the construction of reusable filters, independent of the specific Datasetand Identifier Component they are applied on.
- 4698 Such rules comprise a set of $(X \rightarrow X, Y \rightarrow, ..., Z \rightarrow Z)$ correspondences preserving the values X, Y and Z of the
- *IdentifierComponents* and filtering out the Data Points having a value for the *IdentifierComponent* different from
 X, Y or Z.

4702 *Returns*

4703 The aggregated Dataset

4704 4705 *Examples*

- 4706 **1)** The expression:
- 4707 Income_by_country_and_nace_ISO := hierarchy("Income_by_country_and_nace_UN", GEO, un_to_ISO_aggr, false)
 4708 or its equivalent inline form:
- 4709 Income_by_country_and_nace_ISO := hierarchy("Income_by_country_and_nace_UN", GEO,
- 4710 (("ITA",1,+)) to "IT", (("ALB",1,+)) to AL, (("BEL",1,+)) to "BE") as un_to_ISO_aggr, false)
- 4711
 4712 Converts the values of the GEO Identifier Component from the United Nations 3-letter standard into the ISO 24713 letter one.

47	14	
• •		

HIERARCHY NAME	MAPS FROM	MAPS TO	START DATE	END DATE	SIGN	LEVEL	OUTPUT
un_to_ISO_aggr	ITA	IT			+	1	TRUE
un_to_ISO_aggr	ALB	AL			+	1	TRUE
un_to_ISO_aggr	BEL	BE			+	1	TRUE

4715

- 4716 **2)** The expression:
- 4717 Income_by_continent_and_nace := **hierarchy(**"Income_by_state_and_nace", GEO, Continent_aggr, false)
- 4718 Takes as input the Dataset of the income, broken down by states and NACE and aggregates to continent level.

4719 The expression:

HIERARCHY NAME	MAPS FROM	MAPS TO	START DATE	END DATE	SIGN	LEVEL	OUTPUT
Continent_aggr	Italy	Europe			+	1	TRUE
Continent_aggr	France	Europe			+	1	TRUE
Continent_aggr	Luxembourg	Europe			+	1	TRUE
Continent_aggr		Europe			+	1	TRUE
Continent_aggr	China	Asia			+	1	TRUE
Continent_aggr	India	Asia			+	1	TRUE
Continent_aggr	USA	America			+	1	TRUE
Continent_aggr					+	1	TRUE

Income_by_state_and_nace						
GEO	NACE	VALUE				
Italy	IND	10				
Italy	TECH	20				
France	IND	31				
France	TECH	50				
Spain	IND	30				
Spain	TECH	15				
China	IND	250				
China	TECH	250				
India	IND	30				
India	TECH	100				
Luxembourg	IND	10				
Luxembourg	TECH	12				

INCOME_BY_CONTINENT_AND_NACE						
GEO	NACE	VALUE				
Europe	IND	81				
Europe	TECH	97				
Asia	IND	280				
Asia	TECH	359				

3) The expression:

Income_by_world_and_nace := **hierarchy(**"Income_by_state_and_nace", GEO, World_aggr, false)

Takes as input the Dataset of the income, broken down by states and NACE and aggregates to the world level. World_aggr is a 2 levels Rule. LEVEL 1 is only a temporary output and its MAPS TO

Code Items do not appear in the final result.

HIERARCHY NAME	MAPS FROM	MAPS TO	START DATE	END DATE	SIGN	LEVEL	OUTPUT
World_aggr	Italy	Europe			+	1	false
World_aggr	France	Europe			+	1	false
World_aggr	Luxembourg	Europe			+	1	false
World_aggr		Europe			+	1	false
World_aggr		Europe			+	1	false
World_aggr	China	Asia			+	1	false
World_aggr	India	Asia			+	1	false
World_aggr	USA	America			+	1	false
World_aggr	Asia	World			+	2	true

World_aggr	Europe	World	+	2	true
World_aggr	America	World	+	2	true
World_aggr	Oceania	World	+	2	true
World_aggr	Africa	World	+	2	true

Income_by_state_and_nace					
GEO	NACE	VALUE			
Italy	IND	10			
Italy	TECH	20			
France	IND	31			
France	TECH	50			
Spain	IND	30			
Spain	TECH	15			
China	IND	250			
China	TECH	250			
India	IND	30			
India	TECH	100			
Luxembourg	IND	10			
Luxembourg	TECH	12			

Income_world					
GEO	NACE	VALUE			
WORLD	IND	361			
WORLD	TECH	444			

4) The expression:

4737 Income_world_and_nace_par := **hierarchy(**"Income_by_state_and_nace", World_aggr_par, false)

4738 Or its equivalent inline version:

4739 Income_world_and_nace_par := **hierarchy (** Income_by_state_and_nace, GEO,

	_	_	_	-1	5 C = 5 = = = 7 7
4740					(("Italy",1,+),("France",1,+),("Luxembourg",1,+) to "Europe,
4741					(("China",1,+),("India",1,+)) to "Asia",
4742					(("USA",1,+)) to "America,
4743					(("Asia",2,+),("Europe",2,+),("America",2,+),
4744					("Oceania",2,+),("Africa",2,+)) to "World")
4745					as World_aggr_par,
4746					false)

4747 Takes as input the Dataset of the income, broken down by states and NACE and aggregates to the World level.

4748 Differently from example 2, it preserves the first level in the output.

HIERARCHY NAME	MAPS FROM	MAPS TO	START DATE	END DATE	SIGN	LEVEL	OUTPUT
World_aggr_par	Italy	Europe			+	1	true
World_aggr_par	France	Europe			+	1	true

World_aggr_par	Luxembourg	Europe	 	+	1	true
World_aggr_par		Europe		+	1	true
World_aggr_par		Europe		+	1	true
World_aggr_par	China	Asia		+	1	true
World_aggr_par	India	Asia		+	1	true
World_aggr_par	USA	America		+	1	true
World_aggr_par	Asia	World		+	2	true
World_aggr_par	Europe	World		+	2	true
World_aggr_par	America	World		+	2	true
World_aggr_par	Oceania	World		+	2	true
World_aggr_par	Africa	World		+	2	true

_and_nace	2
NACE	VALUE
IND	10
TECH	20
IND	31
TECH	50
IND	30
TECH	15
IND	250
TECH	250
IND	30
TECH	100
IND	10
TECH	12
	NACE IND TECH IND TECH IND TECH IND TECH IND TECH

4753

Income_world_and_nace_par						
GEO	NACE	VALUE				
World	IND	361				
World	TECH	444				
Europe	IND	81				
Europe	TECH	97				
Asia	IND	280				
Asia	TECH	359				

5) The expression: Italian_income_by_nace:= **hierarchy(**"Income_by_state_and_nace", Italy_filter, true**)**

Takes as input the Dataset of the income, broken down by states and NACE and filters out all the incomes that do not refer to Italy.

HIERARCHY	MAPS FROM	MAPS TO	START DATE	END DATE	SIGN	LEVEL	OUTPUT
Italy_filter	Italy	Italy			+	1	TRUE

Income_by_state	_and_nace	
GEO	NACE	VALUE
Italy	IND	10
Italy	TECH	20
France	IND	31
France	TECH	50
Spain	IND	30
Spain	TECH	15
China	IND	250
China	TECH	250
India	IND	30
India	TECH	100
Luxembourg	IND	10
Luxembourg	TECH	12

Italian_income_by_nace					
GEO	NACE	VALUE			
Italy	IND	10			
Italy	TECH	20			

6) The expression:

income_prod_2:= hierarchy("Income_by_state_and_nace_mm", GEO, mult_rule, false, prod).

Takes as input the Dataset of the income, broken down by states and NACE in a measure dimension form and

aggregates by calculating INC2 / INC1 into INC.

HIERARCHY NAME	MAPS FROM	MAPS TO	START DATE	END DATE	SIGN	LEVEL	OUTPUT
Mult_measure	INC1	INC			-	1	TRUE
Mult_measure	INC2	INC			+	1	TRUE

Income_by_state_and_nace				
GEO	NACE	MEASURE	VALUE	
Italy	IND	INC1	10	
Italy	IND	INC2	20	
Italy	TECH	INC1	20	

Italy	TECH	INC2	40
France	IND	INC1	31
France	IND	INC2	61
France	TECH	INC1	50
France	TECH	INC2	100
China	IND	INC1	250
China	IND	INC2	500
China	TECH	INC1	250
China	TECH	INC1	500
India	IND	INC1	30
India	IND	INC2	60
India	TECH	INC1	100
India	TECH	INC2	200

Income_prod2				
GEO NACE		MEASURE	VALUE	
Italy	IND	INC	2	
Italy	TECH	INC	2	
France	IND	INC	2	
France	TECH	INC	2	
China	IND	INC	2	
China	TECH	INC	2	
India	IND	INC	2	
India	TECH	INC2	2	

4775 VTL-ML - Data validation functions

4776	check

4820 • ERRORLEVEL, containing the error level (severity) specified in the rule

- 4821 If ERRORMESSAGE and ERRORLEVEL are not specified in the datapoint (horizontal) rule the values of the 4822 related attributes will be NULL for all the data points.
- 4823 If **not valid** is specified then **check** returns the data points of *ds* that do not satisfy at least a rule of *dpr*. If a data
- 4824 point in ds does not satisfy several data rules then several data points are returned, one for each rule that is not 4825 satisfied, with the associated rule_id, error message and error level.
- 4826 If **valid** is specified then **check** returns the data points of *ds* that do satisfy all rules of *dpr*.
- 4827 If **all** is specified then **check** returns all data points of *ds*. This option is normally used in combination with **condition**.
- 4828 **Condition**

4829 See also the examples under **define datapoint ruleset**.

4830

```
4831 Examples
```

ds_labour					
TIME	PERSON_ID	AGE	EDU		
2011	1	15	5		
2011	2	20	3		
2011	3	17	6		
2011	4	19	4		
2011	5	32	6		
2011	6	17	14		
2011	7	25	14		
2011	8	18	10		
2011	9	15	3		
2011	10	40	5		

4832 4833

Where the variable edu is coded using the following classification:

edu	descr
1	No title
2	Elementary License / Certificate of final evaluation
3	Middle School (or professional training)/ Diploma in Education secondary level
4	Professional qualifications Diploma of secondary school 2-3 years which does not allow enrollment at the University
5	High School Diploma / Secondary Education degree higher than 4-5 years which allows enrollment at the University
6	Academy Diploma (Fine Arts, Dramatic Arts National, National Dance), Higher Institute o Artistic Industries, State Conservatory of Music
7	University degree of two / three years, direct school for special purposes, school equivalen education
8	bachelor's degree (three years)
9	Specialist / Master's degree (two years)
10	4-6 years Degree: Bachelor's degree from the old system or graduate specialization / teaching single-cycle
13	VET Certificate of professional qualification (operator) / Professional diploma IFP technica

	(Three-year pathways / four-year education and training)	
14	higher technical specialization certificate (HTE)	
15	Higher Technical Diploma (ITS)	
defin	<pre>ne datapoint ruleset dpr_labour (AGE as a) (rule_1 when a between 14 and 17 then edu <> 5; rule_2 when a between 16 and 19 then edu <> 6; rule_3 when a between 17 and 20 then edu <> 7 and edu <> 8;</pre>	

4838	rule_3 when a between 17 and 20 then edu <> 7 and ed
4839	rule_4 when a between 18 and 21 then edu <> 10 ;
4840	rule_5 when a between 14 and 16 then edu <> 13 ;
4841	rule_6 when a between 16 and 18 then edu <> 14 ;

- 4842 rule_7 when a between 17 and 20 then edu <> 17;
- 4843

);

4844

4846

4845 ds_validation_report := check (ds_labour, dpr_labour, **not valid**, c**ondition**)

ds_validation_report							
TIME	PERSON_ID	RULE_ID	AGE	EDU	CONDITION	ERRORMESSAGE	ERRORLEVEL
2011	1	hr_labour_rule_1	15	5	FALSE		
2011	3	hr_labour_rule_2	17	6	FALSE		
2011	6	hr_labour_rule_6	17	14	FALSE		
2011	8	hr_labour_rule_4	18	10	FALSE		

4849	check (with hierarchical rulesets)
4850	
4851	Semantics
4852	This check operator applies one or more hierarchical (vertical) ruleset on a Dataset.
4853	
4854	Syntax
4855	check (
4856	ds,

- 4857 hr+
- 4858 {, **threshold (***threshold*) }
- 4859 {, <u>not valid</u> | valid | all }
- 4860 { , <u>measures</u> | condition } 4861)
- 4861 4862
- 4863 Parameters
- 4864 *ds* : dataset-type
- 4865 *threshold* : numeric-constant 4866
- 4867 *ds* is the Dataset to check
- 4868 *hr* is a code item compatibility ruleset
- *threshold* is the threshold (tolerance value) to be applied as the upper limit of the difference between the left
 and right side of the rules. In the simplest case *threshold* is a numeric constant. A more sophisticated form
 exists where *threshold* is an expression involving the following predefined values:
- 4872 o left_side the value of the left-hand side of the rule

- 4873 o right_side the value of the right-hand side of the rule (the value computed by VTL)
- 4874 o nr_items the number of items in the right-hand side of the rule
- 4875 Examples of possible threshold expressions:
- 4876 threshold (3)
- 4877 threshold (abs (left_side right_side) > 3) equivalent to the above */
- 4878 threshold (abs (left_side / right_side) > abs (50 * left_side)) can differ up to 50 % of left side*/
- 4879 threshold (abs (left_side right_side) > $0.5 * nr_items$) can differ up to 0.5 for each item % */
- 4880 **valid** returns the valid data points of ds according to vr
- **not valid** return the non valid data points of ds according to *hr* (default)
- **all** returns all data points of *ds*, independently of whether a specific rule of a Ruleset is respected or not
- condition returns a Boolean Measure Boolean attribute "condition" named CONDITION with true values for
 the Data Points that satisfy a specific rule of a ruleset and false otherwise
- 4885 measures returns the original Measures and attributes of *ds* (default). The parameter measures cannot be used in combination with all.

4887 Constraints

- 4888 *ds* has the variables specified in the code item compatibility ruleset *hr*.
- The ruleset must be explicitly defined for validation purposes.

4890 Returns

- It returns a Dataset having all Identifier Components of ds plus the Identifier RULE_ID, which allows to 4891 4892 distinguish between validation rules in the various rulesets when ambiguities arise. The values of RULE ID are built as the concatenation of the ruleset identifier and the rule identifier. 4893 4894 The Measures of the Dataset returned depend on the specified option: 4895 With the condition option: it returns a Dataset having the Measure CONDITION (true/false) • 4896 With the **measures** option: it returns a Dataset having all the Measures of ds • 4897 Additional Measures are:
- value_CONDITION: containing the value computed by executing the rule
- 4899 rule: containing the returning text related to the rule

4900 The attributes of the Dataset will be:

- 4901 errorcode, containing the error message specified in the rule
- 4902 errorlevel, containing the error level (severity) specified in the rule
- 4903 If errormessage and errorlevel are not specified in the ruleset, then the values of the related attributes will be
 4904 NULL for all the data points .
 4905

4906 Examples

4907 See to the examples for hierarchical (vertical) rulesets.

4908

4909 check (single rule)4910

- 4911 Semantics
- 4912 The **check** operator takes as input a Boolean VTL expression and uses it as the indication of a validation.
- 4913 Syntax
- 4914 check (
- 4915 *ds*
- 4916 {, **threshold** (*threshold*) }
- 4917 { , <u>not valid</u> | valid | all }

4918	{, <u>measures</u> condition }
4919	{, imbalance (imbalance) }
4920	{, errorcode (errorcode) }
4921	{, errorlevel (errorlevel)}
4922)
4923	
4924	Parameters
4925	ds : dataset {identifier <ident> as scalar-type; }+ {measure <ident> as numeric; }+</ident></ident>
4926	{measure <ident> as boolean-type; }* {attribute <ident> as scalar-type; }*</ident></ident>
4927 4928	<i>threshold</i> : scalar-constant <i>imbalance</i> : numeric-constant
4928	errormessage : string-constant
4930	errorlevel : integer-constant
4931	
4932	• <i>ds</i> is the Boolean VTL expressions, hence yielding a Boolean Dataset, that represents the validation.
4933	• <i>threshold</i> is a tolerance number. It requires the presence of an imbalance. If this latter value is below the
4934 4935	<i>threshold</i> , then the data point is considered valid, thus the Boolean Measure CONDITION is true; false in all the other cases.
4936	valid returns only the valid data points
4937	not valid returns only the non valid data points
4938	all returns all data points, independently of their validity
4939 4940	• condition returns a Boolean Measure " CONDITION " with values true for the data points that satisfy the ruleset and false otherwise
4941 4942	• measures returns a Boolean Measure " CONDITION " with values true for the data points that satisfy the ruleset and false otherwise (default)
4943 4944	• <i>imbalance</i> is the imbalance to be computed. Imbalance has a number datatype. If not specified in the check, it will be not in the output.
4945	• <i>errorcode</i> is the error code to be produced when the validation fails.
4946 4947	• <i>errorlevel</i> is the error level (severity) of the validation rule. Errorlevel has a string datatype. If not specified in the check, it will be not in the output.
4948	Constraints
4949	The input Dataset must have all Boolean Measure Components.
4950	• When a threshold is specified, the imbalance must be specified as well.
4951	Returns
4952	It returns a Dataset with all the Identifier Components of ds.
4953	The measures of the Dataset returned, depend on the option specified:
4954	 With the monotoner option: returns the Measure CONDITION (true/false). With the monotoner option: returns all the Measures of day.
4955	• With the measures option: returns all the Measures of <i>ds</i> .
4956	Additional measures are:
4957 4958	• CONDITION , when the Boolean value computed by executing the rule (true/false) (depending on the optional parameter (condition or Measures):
4959	 imbalance, imbalance to be computed
	-
4960 4961	The attributes of the Dataset will be:errorcode, containing the error code specified in the rule
+701	• errorcode, containing the error code specified in the rule
4962	 errorlevel , containing the error level (severity) specified in the rule

4963 Semantic specification

4964 It takes as input a Boolean VTL expression and uses it as the indication of a validation. It returns an output 4965 Dataset that specifies the outcome of the validation. It can report in the output Dataset what are the violations, 4966 what are the original data, what is the imbalance between the expected values and the actual ones also applying 4967 thresholds. It can also link the failed validations to specific error codes and error levels for further processing.

4968 4969

ds_bop				
TIME	REF_AREA	PARTNER	FLOW	OBS_VALUE
2010	IT	US	NET	10
2011	IT	US	NET	20
2012	IT	US	NET	50
2013	IT	US	NET	40
2014	IT	US	NET	50
2015	IT	US	NET	60
2010	DE	US	NET	25
2011	DE	US	NET	35
2012	DE	US	NET	45
2013	DE	US	NET	55
2014	DE	US	NET	65
2015	DE	US	NET	75

4970

4973

4971 Check that the difference between each value and the average of that value, its preceding value and following4972 value is lower than 10 (in absolute value).

4974	ds_moving_average := avg	(de hon '	over(
7/17	us_moving_average avg	us_bop	

- 4975 partition by ref_area, partner
- 4976 order by time
- 4977 rows between 1 preceding and 1 following);
- 4978 ds_outliers := check (abs (ds_bop.obs_value ds_moving_average.obs_value) <= 10);

4979

ds_outl	iers						
TIME	REF_AREA	PARTNER	FLOW	OBS_VALUE	IMBALANCE	ERRORMESSAGE	ERRORLEVEL
2012	IT	US	NET	50			

4980

4981 check value domain subset

4982 Semantics

The check_value_domain_subset operator checks if the values of the specified Components owned by *the*Dataset are part of the restricted domain of the ValueDomain.

4986 *Syntax*

4987 **check_value_domain_subset (** *ds*, [*components* | { *compList* **(**{*compIndent*}+**)**, *valueDomain* }], *vds***)**; 4988

4989 Parameters

4990 *ds* : dataset {identifier <IDENT> as scalar-type}+

4991 {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*

4992 *vds* : valueDomainSubset-ref

- 4993 *components* : list <component-ref>
- 4994 *compList* : list<list<component-ref>>
- 4995 *compIndentm*: list <component-ref>
- 4996 valueDomainm: list <dimension-ref>
 4997
- 4998 *ds* is the starting Dataset.
- 4999 *components* is the List containing the Components owned by ds to be validated.
- *compList* is the list containing the Components (divided in lists *compIndent*) that must be checked
 according to the restrictions defined in the ValueDomainSubset *vds* passed as input.
- *valueDomain* is the list containing the dimension of the ValueDomainSubset that are used to validate the
 Components referred in *compList* and *compIndent*
- *vds* is the ValueDomainSubset containing the restrictions to be verified in *ds*.

Constraints

- if only components are defined then *vds* must be mono-dimensional.
- if both *compList* and *compIndent* are defined they must be of the same dimension.

5010 Returns

5005 5006

5009

- 5011 A Dataset with all the Identifier, Measure and Attribute Components of the input one enriched by a Boolean
- 5012 Measure Component for each Component specified in *components* or *compList*, that contains the result of the
- 5013 check, against the ValueDomainSubset restrictions, for the respective values. 5014

5015 Semantic specification

- 5016 The operator checks if the values of the specified Components owned by *ds* are part of the restricted domain of
- the ValueDomain in *vds*, returning a Dataset with the same structure of the input one and a Boolean Measure
 Component for each Component specified in the signature (the name of the new Component is
- 5019 "COMPONENT_NAME" + "**_CONDITION**"). For each Datapoint the new Boolean Measure Component assumes the
- 5020 value TRUE if the value of the respective Component is part of the restricted domain of the respective
- 5021 ValueDomain in *vds*, FALSE otherwise.
- 5022 The operator can work in two mode: mono-dimensional and multi-dimensional mode.
- 5023 In the mono-dimensional version (only *components* defined) it takes as input a Dataset, a List of Components and 5024 a mono-dimensional ValueDomainSubset. It evaluates if all the values inside the specified Components of *ds* are 5025 part of the restricted domain defined by the mono-dimensional ValueDomainSubset.
- In the multi-dimensional version (both *compList* and *valueDomains* defined) it takes as input a Dataset, two Lists and a multi-dimensional ValueDomainSubset. The first list is a List of Lists containing names of components owned by *ds*, the second List contains reference to the ValueDomain owned by *vds*. The Components specified in the first element of *compList* will be checked against the ValueDomain specified in the first element of *valueDomains*, and so on (it follows that the two Lists must have the same size and order of the elements matters).

50325033 *Examples*

5034 1)

5035

ds_1					
TIME	REF_AREA	PARTNER	OBS_VALUE	OBS_STATUS	
2010	EU25	СА	20	D	
2010	BG	CA	1	Р	
2010	RO	CA	1	Р	
2010	EU27	CA	23	Р	

5036 5037 5038

l_1 = list<components-ref> (REF_AREA)

ds_1 := check_value_domain_subset (ds_1, l_1, vds_1)

5041 vds_1 is a mono-dimensional enumerated ValueDomainSubset, the CodeList referenced by its ValueDomain

5042 contains the values: ["EU25","EU27","EU28"]

5043

ds_2					
TIME	REF_AREA	REF_AREA_CONDITION	PARTNER	OBS_VALUE	OBS_STATUS
2010	EU25	TRUE	CA	20	D
2010	BG	FALSE	CA	1	Р
2010	RO	FALSE	CA	1	Р
2010	EU27	TRUE	CA	23	Р

5044

2)

5045 5046

5046 compList := list<list<component-ref>(list<component-ref>(REF_AREA), list<component-ref>(OBS_VALUE))
5047 ds_2 := check_dataset_values (ds_1, compList, list<valueDomain-ref>(D1, D2), vds_1)

5048
5049 vds_1 is a multi-dimensional ValueDomainSubset with two dimensions D1 and D2. D1 take its domain from the
5050 values of a CodeList defined as ["EU25","EU27","EU28"], D2 is a numeric restricted domain that allows only
5051 positive integers.

5052

5053 Returned Dataset:

ds_2	ds_2					
TIME	REF_AREA	REF_AREA_CONDITION	PARTNER	OBS_VALUE	OBS_VALUE_CONDITION	OBS_STATUS
2010	EU25	TRUE	CA	20	TRUE	D
2010	BG	FALSE	CA	1	TRUE	Р
2010	RO	TRUE	CA	1	TRUE	Р
2010	EU27	FALSE	CA	23	TRUE	Р

5054 5055

5056 VTL-ML - Time series functions

5057 fill_time_series

5058 Semantics

5059 The operator **fill_time_series** replaces each missing data point in the input Dataset (from the lowest to the 5060 highest time period found in the Dataset) with a data point having the values of Measures and attributes set to 5061 null.

5063 Syntax

5062

5065

5072

5064 **fill_time_series** (*ds, freq,* { , *timePeriodName* { , *timeFormat* })

5066 Parameters

5067ds : dataset {identifier <IDENT> as scalar-type}+ {identifier <IDENT> as date}5068{measure <IDENT> as numeric}+5069{measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*5070

5071 *ds* – is the input Dataset whose missing data points in the series will be filled in.

5073 *Constraints*

5074 The Dataset *ds* must have the specified the Identifier Component *timePeriodName* or the default "time".

5075 5076 *Returns*

A Dataset having the same Identifier, Measure and Attribute Components as the input one. The missing data
 points in each series will be filled in.

5080 Semantic specification

Examples

5081 fill_time_series allows to fill in all series of *ds* (no need to process the series one by one).

5082 The time format can be specified as described in the table under "Time aggregate functions".

5083 5084

ds_bop					
TIME	REF_AREA	PARTNER	FLOW	OBS_VALUE	
2010	IT	US	NET	10	
2012	IT	US	NET	50	
2010	DE	US	NET	25	

5085 5086

ds_fill_ts := fill_time_series	(ds_bop, "A", time)

ds_fill_ts					
TIME	REF_AREA	PARTNER	FLOW	OBS_VALUE	
2010	IT	US	NET	10	
2011	IT	US	NET	null	
2012	IT	US	NET	50	
2010	DE	US	NET	25	
2011	DE	US	NET	null	
2012	DE	US	NET	null	

5087

⁵⁰⁸⁸ Note: the Dataset contains data from 2010 to 2012 therefore 1 data point is inserted for the series (IT, US, NET) 5089 and 2 data points are inserted for the series (DE, US, NET).

5091 flow_to_stock

5092 Semantics

5093 The operator **flow_to_stock** consists in the transformation from a flow interpretation of a Dataset (with one 5094 single date Identifier Component), where the numeric Measures represent relative modifications of the stock 5095 level (flow), to the corresponding stock interpretation of it, where the numeric Measures represent stock levels 5096 Measured at a specific time (stock).

5098 Syntax

5097

5100

5107

5113

5118

```
5099 flow_to_stock (ds)
```

5101 Parameters

```
5102ds : dataset {identifier <IDENT> as scalar-type}+ {identifier <IDENT> as date}5103{measure <IDENT> as numeric}+5104{measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*5105
```

5106 *ds* – the input Dataset containing time series.

5108 Constraints

- *ds* must be a Dataset that contains only one date Identifier Component (as in the syntax).
- *ds* must be regular, that is, once the Data Points have been ordered by the only date Identifier, for each pair
 of consecutive Data Points, the distance in time between the respective date values must be constant (and
 typically one year, one quarter, one day and so on).

5114 Returns

5115 A Dataset having the same Identifier, Measure and Attribute Components as the input one. The values of the 5116 numeric Measure Components are computed as the stock interpretation of the respective input values, which are 5117 considered according to a stock interpretation.

5119 Semantic specification

5120 The operator takes as input a Dataset ds and returns another one with the same Identifier, Measure and 5121 Attribute Components as the input one. We say that two Data Points dp1 and dp2 of ds are consecutive if they 5122 have the same values for all the Identifier Components but the one with date data type and, once all the Data 5123 Points with the same values for all the Identifier Components have been ordered by date Component, they are 5124 adjacent.

5125 The Data Points of the output are calculated as follows. Data Points in ds are partitioned in blocks having the 5126 same values for all the Identifier Components but the date one. For each block, the first Data Point is copied into 5127 the output. Then, for each pair of consecutive Data Points dp1 and dp2 (that is, dp2 follows dp1) of ds, a new data 5128 Point appears in the output. The value of all the Identifier Components, non-numeric Measure Components and 5129 Attribute Components of the output Dataset are copied from dp2. The value of each numeric Measure 5130 Component is calculated as the sum of the value in the output of the previously copied Data Point and the value of the Measure Component of dp2. Note that the operator actually performs the cumulative sum and no Data 5131 Points are neglected. 5132

5133

5134 Examples

ts_1		
DATE	VALUE	
1939-01-01	4400.0	
1939-02-01	0.0	
1939-03-01	6200.0	
1939-04-01	-38000.0	

ts_2 := flow_to_stock (ts_1)

ts_2			
DATE	VALUE		
1939-01-01	4400.0		
1939-02-01	4400.0		
1939-03-01	10600.0		
1939-04-01	6800.0		

5145

5148

5161 5162

stock to flow 5139

5140 **Semantics**

5141 The operator **stock_to_flow** consists in the transformation from a stock interpretation of a Dataset (with one 5142 single date Identifier Component), where the numeric Measures represent stock levels measured at a specific 5143 time (stock), to the corresponding flow interpretation of it, where the numeric Measures represent relative 5144 modifications of the stock level (flow).

5146 **Svntax**

5147 stock to flow (ds)

5149 **Parameters**

```
5150
         ds : dataset {identifier <IDENT> as scalar-type}+ {identifier <IDENT> as date}
5151
                  {measure <IDENT> as numeric}+
                          {measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}*
5152
5153
```

5154 ds – the input Dataset. 5155

5156 **Constraints**

- 5157 ds must be a Dataset that contains only one date Identifier Component (as in the syntax). ٠
- 5158 *ds* must be regular, that is, once the Data Points have been ordered by the only date Identifier, for each pair of consecutive Data Points, the distance in time between the respective date values must be constant (and 5159 5160 typically one year, one quarter, one day and so on).

Returns

5163 A Dataset having the same Identifier, Measure and Attribute Components as the input one. The values of the 5164 numeric Measure Components are computed as the flow interpretation of the respective input values, which are 5165 considered according to a stock interpretation.

5166 Semantic specification 5167

5168 The operator takes as input a Dataset ds and returns another one with the same Identifier, Measure and Attribute Components as the input one. We say that two Data Points dp1 and dp2 of ds are consecutive if they 5169 5170 have the same values for all the Identifier Components but the one with date data type and, once all the Data Points with the same values for all the Identifier Components have been ordered by date Component, they are 5171 5172 adjacent.

5173

The Data Points of the output are calculated as follows. Data Points in ds are partitioned in blocks having the same values for all the Identifier Components but the date one. For each block, the first Data Point is copied into 5174 5175 the output. Then, for each pair of consecutive Data Points dp1 and dp2 (that is, dp2 follows dp1) of ds, a new data 5176 Point appears in the output. The value of all the Identifier Components, non-numeric Measure Components and 5177 Attribute Components of the output Dataset are copied from dp2. The value of each numeric Measure 5178 Component is calculated as the difference of the respective numeric Measure.

- 5179 5180
- 5181
- 5182

ł	Examples					
	ts_1					
	DATE	VALUE				
	1939-01-01	4400.0				
	1939-02-01	4400.0				
	1939-03-01	10600.0				
	1939-04-01	6800.0				

ts_2 := stock_to_flow(ts_1)

5184

5185

5186

ts_2			
DATE	VALUE		
1939-01-01	4400.0		
1939-02-01	0		
1939-03-01	6200.0		
1939-04-01	-3800.0		

5187

5192

timeshift 5188

5189 **Semantics**

5190 The operator **timeshift** returns the input Dataset with its time component shifted by the amount of time specified as parameter. 5191

5193 **Syntax**

```
5194
        timeshift ( ds, timeId, unit = [A|M|Q|D], lag )
5195
```

5196 **Parameters**

5197	ds : dataset {identifier <ide< th=""><th>NT> as sca</th><th>lar-type}+</th></ide<>	NT> as sca	lar-type}+
5198	{[identifier measu	re] <iden1< th=""><th>'> as date}</th></iden1<>	'> as date}
	<i>.</i>		

{measure <IDENT> as scalar-type}* {attribute <IDENT> as scalar-type}* 5199

- *timeId* : component-ref 5200
- 5201 *lag* : integer
- 5202 5203

5204

5205

5206

5207

5208

- *ds* the input Dataset containing time series. •
- *timeId* is the reference to a valid Component representing the time of the time series of ds, that is the • Component on which the shift operation must be performed.
- unit represents the unit of time to be shifted. The possibilities are: Y=year, M=Month, Q=Quarter, • D=Day

5209 *Constraints*

timeId must refer to a Component of ds, whose type is date (as in the syntax). 5210 5211

5212 Returns

5213 A Dataset having the same Identifier, Measure and Attribute Components as the input one, with each value of the 5214 *timeId* Component modified of *lag* units.

- 5215
- 5216 Semantic specification

- 5217 The operator takes as input a Dataset, a valid date Component of *ds* (*timeId*) and the specification of the **unit** and
- amount of time (*lag*) to shift. It returns a Dataset with the same structure as the input one. For each Data Point in
- 5219 *ds*, the result contains the same Data Points (so with the same values for all the Identifier, Measure and Attribute 5220 Components), except for the values of the Identifier Component *timeId*, which are modified by summing the
- relative amount **unit** x *lag* (note that *lag* may also be negative).
- 5221 5222 5223

Examples ts_1 VALUE DATE VALUE 1939-01-01 4400.0 1939-02-01 4400.0 1939-03-01 10600.0 1939-04-01 6800.0

- 5224
- 5225 ts_2 := timeshift(ts_1, A, 1)
- 5226 equivalent forms:
- 5227 ts_2 := timeshift(ts_1, M,12) 5228 ts_2 := timeshift(ts_1, Q, 3)

220	15_2	umesning	<u>us_</u> 1,	Q,

ts_2			
DATE	VALUE		
1940-01-01	4400.0		
1940-02-01	4400.0		
1940-03-01	10600.0		
1940-04-01	6800.0		

5230 VTL-ML - Conditional operators

5231 if-then-else

5232 5233	Semantics The operator if then also returns one of two possible dataset or values depending on the input conditions
5233 5234	The operator if-then-else returns one of two possible dataset or values depending on the input conditions.
5235	Syntax
5236	if ds_cond_1 then ds_1 { elseif ds_cond_2 then ds_2 }* else ds_3
5237	
5238	Parameters
5239	ds_cond_1, ds_cond_2
5240	: [dataset {identifier <ident> as scalar-type}+ {measure <ident> as boolean} boolean]</ident></ident>
5241	ds_1, ds_2, ds_3
5242	: [dataset {identifier <ident> as scalar-type}+ {measure <ident> as scalar-type}+ constant]</ident></ident>
5243 5244	• <i>ds_cond_1 – is the first Boolean condition</i>
5245	 ds_1 - can be:
5246	• us_1 = currec. • a Dataset from which the Data Points are retrieved anytime that ds_cond_1 evaluate true.
5247	 a constant constant returned if ds_cond_1 evaluated true.
5248	 ds_cond_2 - is an optional Boolean condition
5249	• $ds_2 - can be$:
5250	• us_2 = curr be. • a Dataset from which the Data Points are retrieved anytime that ds_cond_2 evaluate true
5251	 a constant constant returned if ds_cond_2 evaluated true.
5252	 ds_3 - can be:
5253	• a Dataset from which the Data Points are retrieved anytime that ds_cond_2 not evaluate true.
5254	 a constant constant returned if ds_cond_2 not evaluated true
5255	
5256	Constraints
5257	• If <i>ds_1</i> , <i>ds_2</i> and <i>ds_3</i> are constant values, they must have the same type.
5258	• If <i>ds_cond_1</i> , <i>ds_cond_2</i> , <i>ds_1</i> , <i>ds_2</i> and <i>ds_3</i> are Datasets, they must have the same Identifier Components, in
5259	name and type.
5260	• If <i>ds_cond_1</i> and <i>ds_cond_2</i> are Datasets, they must have only one boolean Measure Component (as expressed
5261	in the syntax).
5262	• If <i>ds_1,ds_2</i> and <i>ds_3</i> are Datasets, they must have the same Measure Components.
5263	
5264	Returns
5265	If the input parameters are Boolean scalars then the operator returns the constant of the first evaluated true
5266	condition. If no condition evaluates true then <i>c_3</i> is returned.
5267	If the input parameters are Datasets then the operator returns a Dataset having all the Identifier and Measure
5268	Components of the input ones, composed by Data Points retrieved in the input Datasets when the relative
5269	condition on the relative boolean Measure Component evaluate true.
5270	
5271	Semantic specification
5272	If the input parameters are Boolean scalars then the operator takes as input a series of Boolean condition with
5273	the respective values to return in case of positive validation, it returns the constant of the first evaluated true
5274	condition or <i>c</i> _3 if not a condition evaluate true.
5275	If the input parameters are Datasets then the operator takes as input a number of condition Datasets <i>ds_cond_1</i> ,
5276	having exactly one boolean Measure Component and, for each of them a Dataset <i>ds</i> to return in case of positive
5277	evaluation (then) of the condition. Besides it takes in input a default case (else) Dataset to be returned if all the
5278	previous conditions evaluate to False. Starting from <i>ds_cond_1</i> , for each Data Point, if the Measure Component is
5279	True, it looks up in the corresponding Datasets (<i>ds_1</i>) all the Data Point for the corresponding values of the
5280	Identifier Components and returns them in the output Dataset. If the Measure Component is False, it looks up in the following closif Dataset (dc cond 2) for the corresponding values of the Identifier Components. If no Data
5281 5282	the following elseif Dataset (<i>ds_cond_2</i>) for the corresponding values of the Identifier Components. If no Data Point is found, the elaboration skips to the next Data Point of <i>ds_cond_1</i> . If any Data Points are found and
5282 5283	<i>ds_cond_2</i> is True for them, the corresponding then Dataset (<i>ds_2</i>) is returned; otherwise, the evaluation
5283 5284	continues likewise, until the else part is reached (in case every previous conditional Datasets evaluate to False)
/20 T	continues intervise, until the ense part is reached (in case every previous continuonal batasets evaluate to raise)

- 5285 and, if any matching Data Points are found in *ds_3* they are returned. Then the elaboration is repeated for all the 5286 Data Points in *ds_cond_1*.
- 5287
- 5288 **Examples**
- 5289 On scalar
- 5290 1) Expressions evaluating to Component types are typically used to calculate Measure Components or evaluate 5291 filters.
- 5292 Some examples follow:
- . K1 + K2 < K3 5293
- 5294 K1 - K2 > 5.5
- K2 + round(K2, 3) 5295
- 5296 K1 > 3 and k1 < 5
- **if** k1>4 **then** K2 **else** K3 + 3 5297
- 5298 K1 in (1,2,3,4) and K3 not in ('a','b','c')

5300 **On Datasets**

- 5301 2) ds_1 := if (population.SEX="F").CONDITION 5302 then unemp_rates_1 5303
 - else unemp_rates_2
- 5304

5299

population					
TIME	GEO	AGE	SEX	POPULATION	
2012	Belgium	Total	М	5451780	
2012	Belgium	Total	F	5643070	
2012	Greece	Total	М	5449803	
2012	Greece	Total	F	5673231	
2012	Spain	Total	М	23099012	
2012	Spain	Total	F	23719207	
2012	France	Total	М	31616281	
2012	France	Total	F	33671580	
2012	Italy	Total	М	28726599	
2012	Italy	Total	F	30667608	
2012	Austria	Total	М	NULL	
2012	Austria	Total	F	NULL	

5305

unemp_rates_1					
TIME	GEO	AGE	SEX	RATE	
2012	Spain	Total	F	25.8	
2012	France	Total	F	NULL	
2012	Italy	Total	F	20.9	
2012	Austria	Total	М	6.3	

unemp_rates_2					
TIME	GEO	AGE	SEX	RATE	
2012	Belgium	Total	М	0.12	
2012	Greece	Total	М	22.5	
2012	Spain	Total	М	23.7	
2012	Austria	Total	F	NULL	

ds_1					
TIME	GEO	AGE	SEX	RATE	
2012	Belgium	Total	М	0.12	
2012	Greece	Total	М	22.5	
2012	Spain	Total	М	23.7	
2012	Spain	Total	F	25.8	
2012	France	Total	F	NULL	
2012	Italy	Total	F	20.9	

5309

population.SEX allows to consider SEX into the only Measure Component, which is compared with "F" by the 5310

operator "=". Correctly, it acts on the only Measure Component as POPULATION is temporarily not considered. 5311

- The comparison returns CONDITION as the only boolean Measure Component 5312
- Thus, as the if operators requires a Dataset with a single boolean Measure Componen, the membership operator 5313
- "." is applied again in order to isolate SEX_ CONDITION as the only boolean Measure Component 5314

nvl 5315

5316 **Semantics**

5317 The operator **nvl** replaces null values with a value given as a parameter.

5318 5319 **Syntax**

5320 nvl (ds, rep_value)

5321 5322 **Parameters**

5323 ds : [dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}+

```
5324
                            {attribute <IDENT> as scalar-type}*|scalar-type]
```

5325 rep_value : scalar-type 5326

- 5327 • *ds* can be an scalar-type value or an input Dataset 5328
 - *rep_value* is the value that replace the values in ds when them are NULL. •

Constraints

- If *ds* is a scalar value, *ds* and *rep_value* must be equal in type between themselves.
- If *ds* is a Dataset, all its Measure Components must be of the same type and *rep_value* must be of the same type of the ds Measure Components.

5334 5335 Returns

5329 5330

5331

5332

- If *ds* is a scalar value, it returns *ds* if it is not NULL, rep_value otherwise. 5336
- If *ds* is a Dataset, it returns a new Dataset having all the Identifier, Measure and Attribute Components of the 5337 input one, where the NULL values of the input Dataset Measure Components are replaced with the specified 5338
- rep_value. 5339

```
5340
5341
        Examples
```

```
5342
         On scalar
```

5342	On scalar	
5343	1) If C is NULL:	
5344	$A := nvl(C, 5) \qquad A = 5$	
5345	If COMPX is not NULL and equal to 10:	
5346	$A := nvl(C, 5) \qquad A = 1$	0
5347		
5348	On Dataset	
5349	3) ds_1 := nvl(population,0)	
5350		

population					
TIME	GEO	AGE	SEX	POPULATION	
2012	Belgium	Total	Total	11094850	
2012	Greece	Total	Total	11123034	
2012	Spain	Total	Total	NULL	
2012	Malta	Total	Total	417546	
2012	Finland	Total	Total	5401267	
2012	NULL	Total	Total	NULL	

ds_1				
TIME	GEO	AGE	SEX	POPULATION
2012	Belgium	Total	Total	11094850
2012	Greece	Total	Total	11123034
2012	Spain	Total	Total	0
2012	Malta	Total	Total	417546
2012	Finland	Total	Total	5401267
2012	NULL	Total	Total	0

5353 VTL-ML - Clause operators

5354	rename
5355 5356 5357	<i>Semantics</i> The rename operator, allows to change the name and the role of Measures or Attributes component of a dataset
5358 5359 5360	Syntax ds_1 [rename k as compName {role=[MEASURE IDENTIFIER ATTRIBUTE]}
5361 5362	{, k as compName { role=[MEASURE IDENTIFIER ATTRIBUTE]}
5363 5364	}*]
5365 5366 5367	Parameters ds_1 : Dataset k : Measure or Attribute Component
5368 5369	compName : string
5370 5371 5372 5373	ds_1- the input Dataset k - each Component to rename compName - the new name for each Component role - the new role for each Component
5374 5375 5376	<i>Returns</i> The Dataset with renamed Components and changed roles.
5377 5378 5379 5380 5381	 <i>Constraints</i> <i>k</i> is a Component expression that can have only Component literals of ds_1 (static). <i>role</i> can be one of : "MEASURE", "IDENTIFIER", "ATTRIBUTE" (static).
5381 5382 5383 5384 5385	<i>Semantics</i> It renames each Measure or Attribute in ds_1 that is mentioned in the operator with the new name given in compName and the role given in role variable. If role variable is not specified, the role is left unmodified. All the data points in ds_1 are copied into ds_2.
5386 5387 5388 5389	Returns a new Dataset ds_2 with the same Identifier of ds_1. The Dataset ds_2 will have the same Measure and Attributes Components of ds_1 except for those components changed in the role by the rename operator.
5390 5391 5392	Examples ds_2 := ds_1[rename M1 as "I1" role IDENTIFIER] 3154 The expression above renames MeasureComponent M1 into I1 and alters its role to IdentifierComponent.
5393	filter
5394 5395 5396 5397	<i>Semantics</i> The operator filter returns the input Dataset filtered by evaluating the boolean component expression specified as a parameter.
5398 5399 5400	Syntax ds [filter f / dpr]
5401 5402 5403 5404	Parameters ds : dataset {identifier <ident> as scalar-type}+ {measure <ident> as scalar-type}* {attribute <ident> as scalar-type}* f: {role <ident> as boolean}</ident></ident></ident></ident>

5405 *dpr* : a previously defined datapoint ruleset

- 5407 ds is the input Dataset.
 - *f* is a Boolean expression involving Components of *ds*.

5410 Constraints

f is a Component expression over the Components of *ds* (static).

5413 *Returns*

5406

5408

5409

5416

A Dataset with the same Identifier, Measure and Attribute Components of the input one, containing only the Data Points of *ds* that satisfy the Boolean expression *f* or the datapoint (horizontal) ruleset

5417 Semantic specification

5418 The operator takes as input a Dataset and a Boolean expression involving the Components owned by *ds* and 5419 returns another Dataset with the same structure of the input one. For each Data Point the expression *f* is applied; 5420 only the Data Points for which the expression is evaluated true will be part of the output Dataset. 5421

54225423 *Examples*

5424 Dr:=population1 [filter SEX = "F"]

5425 5426

population	population1				
SEX	AGE	GEO	TIME	POPULATION	
М	Y_LT15	BE	2013	970428	
М	Y15-64	BE	2013	3678355	
М	Y_GE65	BE	2013	838653	
F	Y_LT15	BE	2013	927644	
F	Y15-64	BE	2013	3625561	
F	Y_GE65	BE	2013	1121001	
М	Y_LT15	UK	2013	5757444	
М	Y15-64	UK	2013	20748657	
М	Y_GE65	UK	2013	4917238	
F	Y_LT15	UK	2013	5488356	
F	Y15-64	UK	2013	20915924	
F	Y_GE65	UK	2013	6068452	

5427 5428

Dr				
SEX	AGE	GEO	TIME	POPULATION
F	Y_LT15	BE	2013	927644
F	Y15-64	BE	2013	3625561
F	Y_GE65	BE	2013	1121001
F	Y_LT15	UK	2013	5488356
F	Y15-64	UK	2013	20915924
F	Y_GE65	UK	2013	6068452

5430 keep

5431 Semantics

The operator keep returns the input Dataset with only the Identifier and Measures Components specified asparameters.

5434 5435 *Syntax*

5437

5442

5444

5445 5446

5447

5448

5449

5450 5451

5454

5436 *ds* **[keep** *cmp* {*, cmp* } **]**

5438 Parameters

5439 *ds* : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}* 5440 {attribute <IDENT> as scalar-type}*

5441 *cmp* : component-ref

- 5443 *ds* is the input Dataset.
 - *cmp* is an existing Component of *ds*.

Constraints

- *cmp* is a Component expression over the Components of ds containing only Component literals (i.e. names of the Components of ds) (static).
- *cmp* cannot be a reference to an Identifier Component.

Returns

A Dataset having all the Identifier Components of *ds* and the Measure Components and Attribute Components selected in *cmp*.

5455 Semantic specification

The operator takes as input a Dataset *ds* and a subset of the Components owned by *ds*, it returns another Dataset having all the Identifier Components of the input one (Identifier Components are not affected by the **keep**) and all the Measure Components and Attribute Components selected in *cmp*.

5459 5460 *Examples*

5461 ds_1 := population1[keep SEX, GEO, POPULATION]

5462

population1				
SEX	AGE	GEO	TIME	POPULATION
М	Y_LT15	BE	2013	970428
М	Y15-64	BE	2013	3678355
М	Y_GE65	BE	2013	838653
F	Y_LT15	BE	2013	927644
F	Y15-64	BE	2013	3625561
F	Y_GE65	BE	2013	1121001
М	Y_LT15	UK	2013	5757444
М	Y15-64	UK	2013	20748657
М	Y_GE65	UK	2013	4917238
F	Y_LT15	UK	2013	5488356
F	Y15-64	UK	2013	20915924
F	Y_GE65	UK	2013	6068452

population1				
SEX	GEO	POPULATION		
М	BE	970428		

Μ	BE	3678355
Μ	BE	838653
F	BE	927644
F	BE	3625561
F	BE	1121001
Μ	UK	5757444
М	UK	20748657
М	UK	4917238
F	UK	5488356
F	UK	20915924
F	UK	6068452

calc 5464

Semantic 5465

The operator calc returns the input Dataset with new components calculated based on the expressions specified 5466 5467 as parameters. 5468

Syntax

5469

5485

5489

5405	Syntux
5470	ds [calc k as compName {role [Measure Identifier Attribute]} {viral }
5471	{, k as compName {role [Measure Identifier Attribute]} {viral} }*
5472]
5473	
5474	Parameters
5475	<i>ds</i> : dataset {identifier <ident> as scalar-type}+ {measure <ident> as scalar-type}*</ident></ident>
5476	{attribute <ident> as scalar-type}*</ident>
5477	k : expr
5478	<i>compName</i> : ident
5479	role : constant
5480	
5481	• <i>ds</i> –is the input Dataset.
5482	 k – is an expression involving ds Components.
5483	• <i>role</i> – is the role of the calculated Component.
5484	• <i>compName</i> – is the name of the new Component.

5486 *Constraints*

- *role* can be one of: "Measure", "Identifier", "Attribute". 5487
- *k* is an expression on ds Components. 5488

5490 Return

5491 A Dataset having the same Identifier and Measure Components of the input one, enriched by others Components 5492 calculated using the defined *k* expressions. 5493

5494 Semantic specification

5495 The operator takes in as input a Dataset ds and a series of expressions to calculate new Components, and returns 5496 a new Dataset with the same Identifier and Measure Components.

5497 It adds to the output Datset a Component for each Component expression k specified in the clause, calculating it 5498 row-wise according to the Component expression.

- The added Component is named *compName* and is given a role (Identifier, Measure or Attribute Component) 5499 according to *role* Constant. If the role is omitted, "MEASURE" is implied. 5500
- If any k coincides with the name of an existing Component in ds (even with different type), the calculated one 5501 replaces the former, in name, value and type. 5502
- 5503 Special care must be paid to the handling of Attribute Components. If a Component expression has the same
- name as an existing Attribute Component, the previous one is overridden, independently of its virality. In this 5504

- 5505 sense, **calc** clause overrides virality. On the other hand, if no Attribute Component expressions override an
- 5506 existing Component, it will be kept in the result, only if viral, with unaltered virality. In general, when an
- Attribute Component is calculated, its virality can be set by the use of keyword viral. If it is omitted, the Attribute Component is non **viral** by default. As a special case of this, a **calc** can be also used simply to alter the virality of
- 5509 an Attribute Component.
- 5510
- 5511 Examples
- 5512 1)
- 5513 ds_2 := ds_1[calc M1*M2/3 as "M4" role MEASURE]
- 5514 The expression above calculates a Measure Componet by combining the ones of the involved Datasets. 5515 2)
- 5516 ds_2 := ds_1[calc M1-1 as "M1" role MEASURE, M1+M2 as M2, if M2>3 then M2 else M3 as M3]
- 5517 Like the preceding example, but with a conditional logic.
- 5518 3)

5519 ds_2 := ds_1[calc A1 + A2 as "A3" role ATTRIBUTE viral]

- 5520 The expression above calculates Attribute Component A3 as a combination of A1 and A2.
- 5521

5529

5532

5540 5541

- 5522 attrcalc
- 5523 Semantics
- 5524 The operator **attrcalc** returns the input Dataset with new Attribute components calculated based on the 5525 expressions specified as parameters.
- 5526 5527 *Syntax*

```
5528 ds [attrcalc k as compName {viral } {, k as compName {viral} }*]
```

- 5530 Parameters
- 5531 *ds* : dataset {identifier <IDENT> as scalar-type}+ {measure <IDENT> as scalar-type}*
 - {attribute <IDENT> as scalar-type}+
- 5533 k: expr
- 5534 *compName* : ident 5535
- *ds* is the input Dataset, containing Attribute Components.
- 5537 *k* is an expression involving ds Components.
- *role* is the role of the calculated Component.
- *compName* is the name of the new Attribute Component.

Constraints

5542 *k* is an expression on *ds* Components or on Components used to calculate *ds* properly qualified (static).

5543 5544 *Returns*

A Dataset with all the Identifier and Measure Components of the input one, and an Attribute Component, for each
 expression *k* specified, named *compName*.

- 5548 Semantic specification
- The operator takes as input a Dataset *ds* (which, in general, can be a complex expression of type Dataset) and returns a new Dataset *ds* with the same Identifier Components and Measure Components.
- The output Dataset has an Attribute Component named *compName* for each Attribute Component expression *k* specified in the clause. *k* is a component expression, evaluated row-wise.
- 5553 Special care must be paid to the handling of Attribute Components. If a Component expression has the same 5554 name as an existing Attribute Component, the previous one is overridden, independently of its virality. In this 5555 sense, **attrcalc** clause overrides virality. On the other hand, if no Attribute Component expressions override an 5556 existing Component, it will be kept in the result, only if viral, with unaltered virality. In general, when an 5557 Attribute Component is calculated, its virality can be set by the use of keyword **viral**. If it is omitted, the Attribute 5558 Component is non viral by default. As a special case of this, an **attrcalc** can be also used simply to alter the
- 5559 virality of an Attribute Component.
- 5560

Examples

- 1) ds_2 := ds_1[attrcalc QUALITY+1 as QUALITY]
- The expression calculates ds_2, keeping the QUALITY Attribute Component in ds_1, but adding 1 to its value.

ds_1			
К1	К2	M1	QUALITY
1	А	1	1
2	В	3	2
3	С	5	3

ds_2				
К1	К2	M1	QUALITY	
1	А	1	2	
2	В	3	3	
3	С	5	4	

2) ds_r := (ds_1 + ds_2)[attrcalc ds_1.QUALITY + ds_2.QUALITY as QUALITY]

The expression calculates ds_r as the sum of Datasets *ds_1* and *ds_2*. Besides, it calculates the QUALITY attribute as the sum of the two.

ds_1				
К1	К2	M1	QUALITY	
1	А	1	1	
2	В	3	2	
3	С	5	3	

ds_2				
К1	К2	M1	QUALITY	
1	А	6	2	
2	В	7	3	
3	С	8	4	

ds_r				
К1	К2	M1	QUALITY	
1	А	7	3	
2	В	10	5	
3	С	13	7	

3) $ds_r := (ds_1 + ds_2)$

```
[
        attrcalc if ds_1.QUALITY="A" and ds.2QUALITY="B" then "C"
5578
5579
           elseif ds_1.QUALITY="K" and ds.2QUALITY="K" then "M"
            else "Z" AS AGGREGATED_QUALITY
5580
       ]
```

The expression calculates the AGGREGATED_QUALITY attribute as a combination of QUALITY Attribute

Components of the operands according to a decision rule.

In particular, if *ds_1* quality is "A" and *ds_2* quality is "B", then the AGGREGATED_QUALITY will be "C". Else, if *ds_1* quality is "K" and ds_2 quality is "K", then "M" is returned. Otherwise "Z" is the AGGREGATED_QUALITY value.

ds_1				
К1	К2	M1	QUALITY	
1	А	1	А	
2	В	3	В	
3	С	5	К	

ds_2				
К1	К2	M1	QUALITY	
1	А	6	В	
2	В	7	А	
3	С	8	К	

ds_r					
К1	К2	M1	QUALITY		
1	А	7	С		
2	В	10	Z		
3	С	13	М		

4)

ds_r := (ds_1 + ds_2)[attrcalc ds_1.QUALITY_1 + ds_2.QUALITY_1 as QUALITY_1, ds_2.QUALITY_2 as QUALITY_2]

The expression sums two multi-measure Datasets and calculates two Attribute Components with different

formulas: QUALITY_1 is the sum of *ds_1*.QUALITY_1 and *ds_2*.QUALITY_1, while QUALITY_2 is simply copied from ds_2.

ds_1					
К1	K2	M1	M2	QUALITY_1	QUALITY_2
1	А	1	5	1	2
2	В	3	3	2	7
3	С	5	1	3	4

ds_2						
К1	К2	M1	M2	QUALITY_1	QUALITY_2	
1	А	6	1	2	1	
2	В	7	1	3	3	
3	С	8	1	4	1	

ds_r					
К1	K2	M1	M2	QUALITY_1	QUALITY_2
1	А	7	6	3	1
2	В	10	4	5	3
3	С	13	2	7	1