
SDMX Technical Working Group 1

VTL Task Force 2

 3

 4

 5

 6

 7

VTL – version 1.1 8

(Validation & Transformation Language) 9

 10

Part 1 - General Description 11

 12

 13

(DRAFT FOR PUBLIC REVIEW) 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

October 2016 28

 29

Version 1.1 Page: 2

 30

Version 1.1 Page: 3

Foreword 31

 32
The Task force for the Validation and Transformation Language (VTL), created in 2012-2013 33
under the initiative of the SDMX Secretariat, is pleased to present the draft version of VTL 1.1. 34

The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the 35
consideration that SDMX already had a package for transformations and expressions in its 36
information model, while a specific implementation language was missing. To make this 37
framework operational, a standard language for defining validation and transformation rules 38
(operators, their syntax and semantics) had to be adopted, while appropriate SDMX formats 39
for storing and exchanging rules, and web services to retrieve them, had to be designed. The 40
present VTL 1.1 package is only concerned with the first element, i.e. a formal definition of 41
each operator, together with a general description of VTL, its core assumptions and the 42
information model it is based on. 43

The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM 44
communities and the work started in summer 2013. The intention was to provide a language 45
usable by statisticians to express logical validation rules and transformations on data, 46
whether described as dimensional tables or as unit-record data. The assumption is that this 47
logical formalization of validation and transformation rules could be converted into specific 48
programming languages for execution (SAS, R, Java, SQL, etc.) but would provide a “neutral” 49
expression at business level of the processing taking place, against which various 50
implementations can be mapped. Experience with existing examples suggests that this goal 51
would be attainable. 52

An important point that emerged is that several standards are interested in such a language. 53
However, each standard operates on its model artefacts and produces artefacts within the 54
same model (property of closure). To cope with this, VTL has been built upon a very basic 55
information model (VTL IM), taking the common parts of GSIM, SDMX and DDI, mainly using 56
artefacts from GSIM 1.1, somewhat simplified and with some additional detail. This way, 57
existing standards (GSIM, SDMX, DDI, others) may adopt VTL by mapping their information 58
model against the VTL IM. Therefore, although a work-product of SDMX, the VTL language in 59
itself is independent of SDMX and will be usable with other standards as well. Thanks to the 60
possibility of being mapped with the basic part of the IM of other standards, the VTL IM also 61
makes it possible to collect and manage the basic definitions of data represented in different 62
standards. 63

For the reason described above, The VTL specifications are designed at a logical level, 64
independent of any other standard, including SDMX. The VTL specifications, therefore, are 65
self-standing and can be implemented either on their own or by other standards (such as 66
SDMX). In particular, the work for the SDMX implementation of VTL is taking place in parallel 67
to the work for designing the VTL 1.1 version, and will entail a future update of the SDMX 68
documentation. 69

The first public consultation on VTL (version 1.0) was held in 2014. Many comments were 70
incorporated in the VTL 1.0 version, published in March 2015. Other suggestions for 71

Version 1.1 Page: 4

improving the language, received afterwards, fed the discussion for building the present draft 72
version 1.1, which contains many new features. 73

The VTL 1.1 package, containing the general VTL specifications independent of other 74
standards possible implementations, will include, in its final release: 75

a) Part 1 – the user manual, highlighting the main characteristics of VTL, its core 76
assumptions and the information model on which the language is based; 77

b) Part 2 – the reference manual, containing the full library of operators ordered by 78
category, including examples; this version will support more validation and 79
compilation needs compared to VTL 1.0. 80

c) eBNF notation (extended Backus-Naur Form) which is the technical notation to be 81
used as a test bed for all the examples. 82

The present document (part 1) contains the general part, highlighting the main characteristics 83
of VTL, its core assumptions and the information model on which VTL is based. 84

The latest version of VTL is freely available online at https://sdmx.org/?page_id=5096 85

 86

Acknowledgements 87

The VTL specifications has been prepared thanks to the collective input of experts from Bank 88
of Italy, Bank for International Settlements (BIS), European Central Bank (ECB), Eurostat, ILO, 89
INEGI-Mexico, ISTAT-Italy, OECD, Statistics Netherlands, and UNESCO. Other experts from the 90
SDMX Technical Working Group, the SDMX Statistical Working Group and the DDI initiative 91
were consulted and participated in reviewing the documentation. 92

The list of contributors and reviewers includes the following experts: Sami Airo, Foteini 93
Andrikopoulou, David Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio Capaccioli, 94
Vincenzo Del Vecchio, Fabio Di Giovanni, Jens Dossé, Heinrich Ehrmann, Bryan Fitzpatrick, 95
Tjalling Gelsema, Luca Gramaglia, Arofan Gregory, Gyorgy Gyomai, Edgardo Greising, Dragan 96
Ivanovic, Angelo Linardi, Juan Munoz, Chris Nelson, Stratos Nikoloutsos, Marco Pellegrino, 97
Michele Romanelli, Juan Alberto Sanchez, Roberto Sannino, Angel Simon Delgado, Daniel 98
Suranyi, Olav ten Bosch, Laura Vignola, Fernando Wagener and Nikolaos Zisimos. 99

Feedback and suggestions for improvement are encouraged and should be sent to the SDMX 100
Technical Working Group (twg@sdmx.org). 101

https://sdmx.org/?page_id=5096
mailto:twg@sdmx.org

Version 1.1 Page: 5

Table of contents 102

 103

FOREWORD ... 3 104

TABLE OF CONTENTS .. 5 105

INTRODUCTION ... 7 106

STRUCTURE OF THE DOCUMENT .. 8 107

GENERAL CHARACTERISTICS OF THE VTL ... 9 108

USER ORIENTATION ... 9 109

INTEGRATED APPROACH .. 10 110

ACTIVE ROLE FOR PROCESSING ... 11 111

INDEPENDENCE OF IT IMPLEMENTATION .. 12 112

EXTENSIBILITY, CUSTOMIZABILITY .. 13 113

LANGUAGE EFFECTIVENESS ... 14 114

EVOLUTION OF VTL 1.1 IN RESPECT TO VTL 1.0 ... 16 115

THE INFORMATION MODEL .. 16 116

THE ARTEFACTS DEFINITION LANGUAGE ... 16 117

REUSABLE ARTEFACTS AND RULES .. 17 118

THE CORE LANGUAGE AND THE STANDARD LIBRARY ... 17 119

THE FUNCTIONAL PARADIGM .. 17 120

NEW OPERATORS .. 18 121

VTL INFORMATION MODEL ... 19 122

INTRODUCTION.. 19 123

GENERIC MODEL FOR DATA AND THEIR STRUCTURES ... 20 124

GENERIC MODEL FOR VARIABLES AND VALUE DOMAINS .. 28 125

GENERIC MODEL FOR TRANSFORMATIONS .. 38 126

PERSISTENCY AND IDENTIFICATION OF THE ARTEFACTS OF THE MODEL ... 42 127

LANGUAGE FUNDAMENTALS .. 44 128

OBJECTS AND TYPES ... 44 129

IDENTIFIERS AND VALUES ... 46 130

EXPRESSIONS ... 48 131

DATA FLOW OPTIMIZATION ... 49 132

Version 1.1 Page: 6

USER-DEFINED FUNCTIONS .. 50 133

PROCEDURES ... 53 134

LANGUAGE CORE ... 54 135

COMPILATION UNITS AND DIALECT SELECTION ... 56 136

PROGRAM AND MODULE STRUCTURE ... 56 137

MODULE INSTANTIATION AND INCREMENTAL COMPILATION .. 58 138

PRINCIPLE OF INTROSPECTION .. 59 139

CORE OPERATORS AND JOIN EXPRESSIONS .. 63 140

SCALAR CORE OPERATORS .. 63 141

JOIN EXPRESSIONS .. 66 142

LIFTING SCALAR OPERATORS AND FUNCTIONS WITH JOIN EXPRESSIONS ... 77 143

EXPRESSING VALIDATION RULES WITH JOIN EXPRESSIONS ... 82 144

VTL MAIN ASSUMPTIONS ... 85 145

DETAILS OF OPERAND AND RESULT TYPES ... 85 146

THE GENERAL BEHAVIOUR OF OPERATIONS ON DATASETS ... 87 147

STORAGE AND RETRIEVAL OF THE DATA SETS ... 100 148

CONVENTIONS FOR THE GRAMMAR OF THE LANGUAGE .. 104 149

GOVERNANCE, OTHER REQUIREMENTS AND FUTURE WORK ... 109 150

RELATIONS WITH THE GSIM INFORMATION MODEL .. 110 151

ANNEX 1 – EBNF .. 111 152

PROPERTIES OF VTL GRAMMAR.. 111 153

 154

Version 1.1 Page: 7

Introduction 155

This document presents the Validation and Transformation Language (also known as ‘VTL’). 156

The purpose of VTL is to allow a formal and standard definition of algorithms to validate 157
statistical data and calculate derived data. 158

The first development of VTL aims at enabling, as a priority, the formalisation of data 159
validation algorithms rather than tackling more complex algorithms for data compilation. In 160
fact, the assessment of business cases showed that the majority of the institutions ascribes 161
(prescribes) a higher priority to a standard language for supporting the validation processes 162
and in particular to the possibility of sharing validation rules with the respective data 163
providers, in order to specify the quality requirements and allow validation also before 164
provision. 165

This document is the outcome of a second iteration of the first phase, and therefore still 166
presents a version of VTL primarily oriented to support the data validation. However, as the 167
features needed for validation also include simple calculations, this version of VTL can 168
support basic compilation needs as well. In general, validation is considered as a particular 169
case of transformation; therefore, the term “Transformation” is meant to be more general, 170
including validation as well. 171

The main categories of operators and functions included in this version of the VTL-ML syntax 172
are: 173

General purpose (e.g. assignment, data access, data storage …) 174

String (e.g. substring, concatenation, length …) 175

Numeric (e.g. +, -, *, /, round, absolute value …) 176

Boolean (e.g. and, or, not …) 177

Date (e.g. string from date) 178

Set (e.g. union, intersection, …) 179

Statistical (e.g. aggregate, analytic functions …) 180

Data validation (e.g. check ... of value domains, references, figures …) 181

Time series (e.g. time shift …) 182

Conditional (e.g. if-then-else …) 183

Clauses (e.g. keep, calc, attrcalc …) 184

The VTL-ML includes operators for defining: 185

IM artefacts (e.g. Dataset, Datastructure …) 186

Ruleset (e.g. mapping …) 187

 188

Although VTL is developed under the umbrella of the SDMX governance, DDI and GSIM users 189
may also be highly interested in adopting a language for validation and transformation. In 190
particular, organizations involved in the SDMX, DDI and GSIM communities and in the High-191
Level Group for the modernisation of statistical production and services (HLG) expressed 192
their wish of having a unique language, usable in SDMX, DDI and GSIM. 193

Version 1.1 Page: 8

Accordingly, the task-force working for the VTL development agreed on the objective of 194
adopting a common language, in the hope of avoiding the risk of having diverging variants. 195

As a consequence, VTL is designed as a language relatively independent of the details of 196
SDMX, DDI and GSIM. It is based on an independent information model (IM), made of the very 197
basic artefacts common to these standards. Other models can inherit the VTL language by 198
unequivocally mapping their artefacts to those of the VTL IM. 199

Structure of the document 200

The first part of the document is dedicated to the description of the general characteristics of 201
VTL. 202

The following part describes the Information Model on which the language is based. In 203
particular, it describes the model of the data artefacts for which the language is aimed to 204
validate and transform, the model of the variables and value domains used for defining the 205
data artefacts and the model of the transformations. 206

A third part explains the language fundamentals, i.e. the basic characteristics of manipulated 207
objects, operators, expressions, user-defined functions, core and derived parts of the language 208
and so on. 209

The fourth part clarifies some general features of the language (i.e. the core assumptions of 210
the VTL), such as the types of artefacts involved in the transformations, the general behaviour 211
for the operations on the data sets, the methods for referencing the data sets to be operated 212
on, and the general conventions for the grammar of the language. 213

A final part highlights some issues related to the governance of VTL developments and to 214
future work, following a number of comments, suggestions and other requirements which 215
were submitted to the task-force in order to enhance the VTL package. 216

A short annex gives some background information about the BNF (Backus-Naur Form) syntax 217
used for providing a context-free representation of VTL. 218

The Extended BNF (EBNF) representation of the VTL 1.0 package is available at 219
https://sdmx.org/?page_id=5096. The VTL 1.1 representation will be added as soon as it is 220
available. 221

 222

Version 1.1 Page: 9

General characteristics of the VTL 223

This section lists and briefly illustrates some general high-level characteristics of the 224
validation and transformation language. They have been discussed and shared as 225
requirements for the language in the VTL working group since the beginning of the work and 226
have been taken into consideration for the design of the language. 227

User orientation 228

c The language is designed for users without information technology (IT) skills, who 229
should be able to define calculations and validations independently, without the 230
intervention of IT personnel; 231

o The language is based on a “user” perspective and a “user” information model 232
(IM) and not on possible IT perspectives (and IMs) 233

o As much as possible, the language is able to manipulate statistical data at an 234
abstract/conceptual level, independently of the IT representation used to 235
store or exchange the data observations (e.g. files, tables, xml tags), so 236
operating on abstract (from IT) model artefacts to produce other abstract 237
(from IT) model artefacts 238

o It references IM objects and does not use direct references to IT objects 239

c The language is intuitive and friendly (users should be able to define and understand 240
validations and transformations as easily as possible), so the syntax is: 241

o Designed according to mathematics, which is a universal knowledge; 242

o Expressed in English to be shareable in all countries; 243

o As simple, intuitive and self-explanatory as possible; 244

o Based on common mathematical expressions, which involve “operands” 245
operated on by “operators” to obtain a certain result; 246

o Designed with minimal redundancies (e.g. possibly avoiding operators 247
specifying the same operation in different ways without concrete reasons). 248

c The language is oriented to statistics, and therefore it is capable of operating on 249
statistical objects and envisages the operators needed in the statistical processes and 250
in particular in the data validation phases, for example: 251

o Operators for data validations and edit; 252

o Operators for aggregation, even according to hierarchies; 253

o Operators for dimensional processing (e.g. projection, filter); 254

o At a later stage, operators for time series processing (e.g. moving average, 255
seasonal adjustment, correlation) operators for statistics (e.g. aggregation, 256
mean, median, percentiles, variance, indexes, correlation, sampling, inference, 257
estimation); 258

Version 1.1 Page: 10

Integrated approach 259

c The language is independent of the statistical domain of the data to be processed; 260

o VTL has no dependencies on the subject matter (the data content); 261

o VTL is able to manipulate statistical data in relation to their structure. 262

c The language is suitable for the various typologies of data of a statistical environment 263
(for example dimensional data, survey data, registers data, micro and macro, 264
quantitative and qualitative) and is supported by an information model (IM) which 265
covers these typologies; 266

o The IM allows the representation of the various typologies of data of a 267
statistical environment at a conceptual/logical level (in a way abstract from IT 268
and from the physical storage); 269

o The various typologies of data are described as much as possible in an 270
integrated way, by means of common IM artefacts for their common aspects; 271

o The principle of the Occam’s razor is applied as an heuristic principle in 272
designing the conceptual IM, so keeping everything as simple as possible or, in 273
other words, unifying the model of apparently different things as much as 274
possible. 275

c The language (and its IM) is independent of the phases of the statistical process and 276
usable in any one of them; 277

o Operators are designed to be independent of the phases of the process, their 278
syntax does not change in different phases and is not bound to some 279
characteristic restricted to a specific phase (operators’ syntax is not aware of 280
the phase of the process); 281

o In principle, all operators are allowed in any phase of the process (e.g. it is 282
possible to use the operators for data validation not only in the data collection 283
but also, for example, in data compilation for validating the result of a 284
compilation process; similarly it is possible to use the operators for data 285
calculation, like the aggregation, not only in data compilation but also in data 286
validation processes); 287

o Both collected and calculated data are equally permitted as inputs of a 288
calculation, without changes in the syntax of the operators/expression; 289

o Collected and calculated data are represented (in the IM) in a homogeneous 290
way with regards to the metadata needed for calculations. 291

c The language is designed to be applied not only to SDMX but also to other standards; 292

o VTL, like any consistent language, relies on a specific information model, as it 293
operates on the VTL IM artefacts to produce other VTL IM artefacts. In 294
principle, a language cannot be applied as-is to another information model 295
(e.g. SDMX, DDI, GSIM); this possibility exists only if there is a unambiguous 296
correspondence between the artefacts of those information models and the 297
VTL IM (that is if their artefacts correspond to the same mathematical notion); 298

o The goal of applying the language to more models/standards is achieved by 299
using a very simple, generic and conceptual Information Model (the VTL IM), 300

Version 1.1 Page: 11

and mapping this IM to the models of the different standards (SDMX, DDI, 301
GSIM, …); to the extent that the mapping is straightforward and unambiguous, 302
the language can be inherited by other standards (with the proper 303
adjustments); 304

o To achieve an unambiguous mapping, the VTL IM is deeply inspired by the 305
GSIM IM and uses the same artefacts when possible1; in fact, GSIM is designed 306
to provide a formal description of data at business level against which other 307
information models can be mapped; moreover, loose mappings between GSIM 308
and SDMX and between GSIM and DDI are already available2; a very small 309
subset of the GSIM artefacts is used in the VTL IM in order to keep the model 310
and the language as simple as possible (Occam’s razor principle); these are the 311
artefacts strictly needed for describing the data involved in Transformations, 312
their structure and the variables and value domains; 313

o GSIM artefacts are supplemented, when needed, with other artefacts that are 314
necessary for describing calculations; in particular, the SDMX model for 315
Transformations is used; 316

o As mentioned above, the definition of the VTL IM artefacts is based on 317
mathematics and is expressed at an abstract user level. 318

Active role for processing 319

c The language is designed to make it possible to drive in an active way the execution of 320
the calculations (in addition to documenting them) 321

c For the purpose above, it is possible either to implement a calculation engine that 322
interprets the VTL and operates on the data or to rely on already existing IT tools (this 323
second option requires a translation from the VTL to the language of the IT tool to be 324
used for the calculations) 325

c The VTL grammar is being described formally using the universally known Backus 326
Naur Form notation (BNF), because this allows the VTL expressions to be easily 327
defined and processed; the formal description allow the expressions: 328

o To be automatically parsed (against the rules of the formal grammar); on the 329
IT level, this requires the implementation of a parser that compiles the 330
expressions and checks their correctness; 331

o To be automatically translated from the VTL to the language of the IT tool to 332
be used for the calculation; on the IT level, this requires the implementation of 333
a proper translator; 334

o To be automatically translated from one VTL version to another, e.g. following 335
an upgrade of the VTL syntax; on the IT level, this requires the implementation 336
of a proper translator also. 337

1 See the next section (VTL Information Model) and the section “Relations with the GSIM Information model”

2 See at: http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards;

http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards

Version 1.1 Page: 12

c The inputs and the outputs of the calculations and the calculations themselves are 338
artefacts of the IM 339

o This is a basic property of any robust language because it allows calculated 340
data to be operands of further calculations; 341

o If the artefacts are persistently stored, their definition is persistent as well; if 342
the artefacts are non-persistently stored (used only during the calculation 343
process like input from other systems, intermediate results, external outputs) 344
their definition can be non-persistent; 345

o Because the definition of calculations is based on the data structure definition 346
of its input artefacts, the latter must be available when the calculation is 347
defined; 348

o The VTL is designed to make the data structure of the output of a calculation 349
deducible from the calculation algorithm and from the data structure of the 350
operands (this feature ensures that the calculated data can be defined 351
according to the IM and can be used as operands of further calculations); 352

o In the IT implementation, it is advisable to automate (as much as possible) the 353
structural definition of the output of a calculation, in order to enforce the 354
consistency of the definitions and avoid unnecessary overheads for the 355
definers. 356

c The VTL and its information model make it possible to check automatically the overall 357
consistency of the definition of the calculations, including with respect to the artefact 358
of the IM, and in particular to check: 359

o the correctness of the expressions with respect to the syntax of the language 360

o the integrity of the expressions with respect to their input and output artefacts 361
and the corresponding structures and properties (for example, the input 362
artefacts must exist, their structure components referenced in the expression 363
must exist, qualitative data cannot be manipulated through quantitative 364
operators, and so on) 365

o the consistency of the overall graph of the calculations (for example, in order 366
to avoid that the result of a calculation goes as input to the same calculation 367
there should not be cycles in the sequence of calculations, thus eliminating the 368
risk of producing unpredictable and erroneous results); 369

Independence of IT implementation 370

c According to the “user orientation” above, the language is designed so that users are 371
not required to be aware of the IT solution; 372

o To use the language, the users need to know only the abstract view of the data 373
and calculations and do not need to know the aspects of the IT 374
implementation, like the storage structures, the calculation tools and so on. 375

c The language is not oriented to a specific IT implementation and permits many 376
possible different implementations (this property is particularly important in order to 377
allow different institutions to rely on different IT environments and solutions); 378

Version 1.1 Page: 13

o On the technical level, the connection between the user layer and the IT layer 379
is left to the specific IT implementations; 380

o The VTL approach favours effective IT implementations that decouple the user 381
layer and the IT layer. 382

c The language does not require the awareness of the physical data structure; the 383
operations on the data are specified according to the conceptual/logical structure, 384
and so are independent of the physical structure; this ensures that the physical 385
structure may change without necessarily affecting the conceptual structure and the 386
user expressions; 387

o Data having the same conceptual/logical structure may be accessed using the 388
same statements, even if they have different IT structures; 389

o The VTL provides for commands for data storage and retrieval at a 390
conceptual/logical level; the mapping and the conversion between the 391
conceptual and the physical structures of the data is left to the IT 392
implementation (and users need not be aware of it); 393

o By mapping the user and the IT data structures, the IT implementations can 394
make it possible to store/retrieve data in/from different IT data stores (e.g. 395
relational databases, dimensional databases, xml files, spread-sheets, 396
traditional files); 397

c The language does not require the awareness of the IT tools used for the calculations 398
(e.g. routines in a programming language, statistical packages like R, SAS, Matlab, 399
relational databases (SQL), dimensional databases (MDX), XML tools,…); 400

o The syntax of the VTL is independent of existing IT calculation tools; 401

o On the IT level, this may require a translation from the VTL to the language of 402
the IT tool to be used for the calculation; 403

o By implementing the proper translations at the IT level, institutions can use 404
different IT tools to execute the same algorithms; moreover, it is possible for 405
the same institution to use different IT tools within an integrated solution (e.g. 406
to exploit different abilities of different tools); 407

o VTL instructions do not change if the IT solution changes (for example 408
following the adoption of another IT tool), so avoiding impacts on users as 409
much as possible; 410

Extensibility, customizability 411

c It is possible to build and extend the language gradually, enriching the available 412
operators according to the evolution of the business needs, so progressively making 413
the language more powerful; 414

c In addition, it is possible to call external routines of other languages/tools, provided 415
that they are compatible with the IM; this requisite is aimed to fulfil specific 416
calculation needs without modifying the operators of the language, so exploiting the 417
power of the other languages/tools if necessary for specific purposes 418

Version 1.1 Page: 14

o The external routines should be compatible with, and relate back to, the 419
conceptual IM of the calculations as for its inputs and outputs, so that the 420
integrity of the definitions is ensured 421

o The external routines are not part of the language, so their use might be 422
subject to some limitations (e.g. it might be impossible to parse them as if they 423
were operators of the language) 424

o The use of external routines has some drawbacks, because it may obviously 425
compromise the IT implementation independence, the abstraction and the 426
user orientation; therefore external routines should be used only for specific 427
needs and in limited cases, whereas widespread and generic needs should be 428
fulfilled through the operators of the language; 429

c Whilst an Organisation adopting VTL can extend it by defining customized parts, on its 430
own total responsibility, in order to improve the standard language for specific 431
purposes (e.g. for supporting possible algorithms not permitted by the standard part), 432
it is important that the customized parts remain compliant with the VTL IM and the 433
VTL core assumptions. Adopting Organizations are totally in charge of any possible 434
maintenance activity deriving from VTL modifications. Such extensions, however, are 435
not recommended because they can compromise the exchange of validation rules and 436
the use of common tools. 437

Language effectiveness 438

c The language is oriented to give full support to the various typologies of data of a 439
statistical environment (for example dimensional data, survey data, registers data, 440
micro and macro, quantitative and qualitative, …) described as much as possible in a 441
coherent way, by means of common IM artefacts for their common aspects, and 442
relying on mathematical notions, as mentioned above. The various types of statistical 443
data are considered as mathematical functions, having independent variables 444
(Identifiers) and dependent variables (Measures, Attributes3), whose extensions can 445
be thought as logical tables (DataSets) made of rows (Data Points) and columns 446
(Identifiers, Measures, Attributes). 447

c The language supports operations on the Data Sets (i.e. mathematical functions) in 448
order to calculate new Data Sets from the existing ones, on the structure components 449
of the Data Sets (Identifiers, Measures, Attributes), on the Data Points. 450

c The algorithms are specified by means of mathematical expressions which compose 451
the operands (Data Sets, Components …) by means of operators (e.g. +,-,*,/,>,<) to 452
obtain a certain result (Data Sets, Components …); 453

c The validation is considered as a kind of calculation having as an operand the Data Set 454
to be validated and producing a Data Set containing the outcome of the validation 455
(typically having values “true” and “false” in the measure, respectively for successful 456
and unsuccessful validation); being a Data Set, the result of the validation can be 457
further processed (it can be input of further calculations); 458

3 The Measures bear information about the real world and the Attributes about the Data Set or some part of it.

Version 1.1 Page: 15

c Calculations on multiple measures are supported, as well as calculations on the 459
attributes of the Data Sets and calculations involving missing values; 460

c The operations are intended to be consistent with the historical changes of the 461
artefacts (e.g. of the code lists, of the hierarchies …), so allowing a proper behaviour 462
for each reference period; however, because different standards may represent 463
historical changes in different ways, the implementation of this aspect is left to the 464
standards adopting the VTL (e.g. SDMX, DDI …) and therefore at the moment the VTL 465
specification does not prescribe any specific methodology for representing historical 466
changes of the artefacts (e.g. versioning, qualification of time validity); 467

c The language is ready to allow different algorithms for different reference times 468
(feature to be implemented at a later stage); 469

c the VTL operators are generally “modular”, meaning that it is possible to compose 470
multiple operators in a single expression; in other words, an operator can have an 471
expression as operand, so obtaining a new expression, and this can be made 472
recursively; 473

c The final and the intermediate results of a calculation can be permanently stored (or 474
not) according to the needs; 475

c Multiple results may be calculated by means of multiple expressions. 476

 477

Version 1.1 Page: 16

Evolution of VTL 1.1 in respect to VTL 1.0 478

Important contributions gave origin to the work that brought to this VTL 1.1 version. 479

Firstly, it was not possible to acknowledge immediately - in VTL 1.0 - all of the remarks 480
received during the public review. Secondly, the publication of VTL 1.0 triggered the launch of 481
reviews and proofs of concepts, by several institutions and organizations, aimed at assessing 482
the ability of VTL of supporting properly their real use cases. 483

The suggestions coming from these activities had a fundamental role in designing the new 484
version of the language. 485

The main improvements are described below. 486

The Information Model 487

The VTL Information Model describes the artefacts that VTL manipulates (i.e. it provides 488
generic models for defining Data and their structures, Variables, Value Domains and so on) 489
and how the VTL is used to define validations and transformations (i.e. a generic model for 490
Transformations). 491

In VTL 1.1, some mistakes have been corrected and new kinds of artefacts have been added in 492
order to make the representation more complete. 493

The artefacts Definition Language 494

VTL 1.0 was initially intended to work on top of an existing standard, like SDMX, DDI or other, 495
and therefore the definition of the artefacts to be manipulated (Data and their structures, 496
Variables, Value Domains and so on) was assumed to be made using the implementing 497
standards and not VTL itself. In other words, VTL 1.0 was not intended to define its artefacts 498
and therefore only contains a manipulation language. 499

During the work for VTL 1.1, it was acknowledged as being very recommendable and useful to 500
have a complete definition language in VTL, able to define all of the artefacts that VTL can 501
manipulate. This is useful, first, to express structural and reusable definitions directly in VTL 502
(even independently of other standards); second, to facilitate the use of VTL on top of other 503
standards (through a proper mapping, the structural definitions of other standards could be 504
translated into VTL definitions and vice-versa); third, to make it possible to check at parsing 505
time the coherency of the VTL manipulation expressions against the structure of the artefacts 506
to be manipulated (even defined through VTL). 507

Therefore, VTL 1.1 is also equipped with a definition language for VTL artefacts. In conclusion, 508
in respect to VTL 1.0: 509

The VTL definition language (VTL-DL) is completely new (there is no definition language in 510
VTL 1.0). 511

The VTL manipulation language (VTL-ML) has been upgraded (it is the evolution of the VTL 512
1.0 language). 513

 514

Version 1.1 Page: 17

Reusable artefacts and rules 515

The artefacts defined by means of the VTL definition language (e.g. a set of code items) as well 516
as the artefacts defined by means of an existing standard (like SDMX, DDI, or others) are 517
reusable. In fact, the VTL manipulation language can reference these so called “structural” 518
artefacts as many times as needed. 519

In order to empower the capability of reusing definitions, a main requirement for VTL 1.1 has 520
been the introduction of reusable rules (for example, validation rules defined once and 521
applicable to different cases). 522

Often, the same algorithm for manipulating data can be obtained by defining and referencing 523
either structural artefacts or reusable rules. Current practices of various organizations show 524
that both approaches are actually used. In order to empower the ability of the organizations of 525
acknowledging and applying transformation/validation rules defined by others, which is one 526
of the main goals of the VTL standard, the VTL structural artefacts and reusable rules are 527
harmonized as much as possible. If needed, it should be feasible to convert the definitions of 528
rules specified according to one approach (e.g. through reusable rules) into the other one (e.g. 529
structural artefacts) and vice-versa. 530

The reusable artefacts and rules are defined through the VTL definition language and reused 531
through the VTL manipulation language. 532

The core language and the standard library 533

VTL 1.0 contains a flat list of operators, in principle not related to one another. A main 534
suggestion for VTL 1.1 was to identify a core set of primitive operators able to express all of 535
the other operators present in the language. This was done in order to specify more formally 536
the semantics of available operators, avoiding possible ambiguities about their behaviour and 537
fostering coherent implementations. The distinction between ‘core’ and ‘standard’ library is 538
largely of interest of the VTL technical implementers. 539

The suggestion above has been acknowledged, so that the VTL 1.1 manipulation language is 540
made of a core set of primitive operators and a standard library of derived operators, 541
definable in term of the primitive ones. The standard library contains VTL 1.0 operators 542
(possibly enhanced) and new operators introduced with VTL 1.1. 543

The VTL core includes a mechanism called join expressions, described in the following 544
sections, which allows the definition of derived dataset operators and their behaviour, 545
including custom operators (not existing in the standard library) for specific purposes of 546
some institutions. 547

The functional paradigm 548

In the VTL Information Model, the various types of statistical data are considered as 549
mathematical functions, having independent variables (Identifiers) and dependent variables 550
(Measures, Attributes), whose extensions can be thought of as logical tables (DataSets) made 551
of rows (Data Points) and columns (Identifiers, Measures, Attributes). Therefore, the main 552
artefacts to be manipulated using VTL are the logical DataSets, i.e. mathematical functions. 553

Version 1.1 Page: 18

Accordingly, VTL uses a functional programming paradigm, meaning a paradigm that treats 554
computations as the evaluation of mathematical functions, avoiding changing-state and 555
mutable data (see also the Language Fundamentals section). 556

It was observed, however, that the functional paradigm is not completely achieved in VTL 1.0 557
and that in limited cases this might cause some problem. 558

Accordingly, some VTL 1.0 operators have been revised in order to enforce their functional 559
behaviour. 560

New operators 561

VTL 1.1 introduces new operators. As already said, all of the operators of the VTL definition 562
language are completely new. A series of other new operators has been introduced in the VTL 563
manipulation language. 564

The complete list of the VTL 1.1 operators is in the reference manual. 565

Version 1.1 Page: 19

VTL Information Model 566

Introduction 567

The VTL Information Model (IM) describes the artefacts that VTL can manipulate. 568

The knowledge of the artefacts is essential for performing VTL operations correctly. 569
Therefore, it is assumed that the referenced artefacts are defined beforehand. 570

The results of VTL expressions must be defined as well, because it must always be possible to 571
take these results as operands of further expressions to build a chain of transformations as 572
complex as needed. In other words, VTL is meant to be “closed”, meaning that operands and 573
results of the VTL expressions are always artefacts of the VTL IM. 574

VTL can manage persistent or temporary artefacts, the former stored persistently in the 575
information system, the latter only used temporarily. 576

As already mentioned, VTL is designed to be used either on its own or on top of other 577
standards. It provides a formal description of data at business level against which the 578
information models of other standards can be mapped, so that through these possible 579
mappings to the definitions of VTL, artefacts can be obtained from the definitions of the 580
corresponding artefacts of the other standards and vice-versa. 581

This is the same purpose as the Generic Statistical Information Model (GSIM) and, 582
consequently, the VTL Information Model uses GSIM artefacts as much as possible (GSIM 1.1 583
version) 4. Besides, GSIM already provides a first mapping with SDMX and DDI that can be 584
used for the technical implementation5. Note that the description of the GSIM 1.1 classes and 585
relevant definitions can be consulted in the “Clickable GSIM” of the UNECE site6. However, the 586
detailed mapping between the VTL IM and the IMs of the other standards is out of the scope of 587
this document and is left to the competent bodies of the other standards. 588

The VTL IM is illustrated in the following sections. 589

The first section describes the generic model for defining the statistical data and their 590
structures, which are the fundamental artefacts to be transformed. In fact, the ultimate goal of 591
the VTL is to act on statistical data to produce other statistical data. 592

In turn, the data are composed of variables, value domains, code items and similar artefacts. 593
These are the basic bricks that compose the data structures, fundamental for understanding 594
the meaning of the data and ensuring harmonization of various data when needed. The 595
second section presents the generic model for these kinds of artefacts. 596

4 See also the section “Relations with the GSIM Information model”

5 For the GSIM – DDI and GSIM – SDMX mappings, see also the relationships between GSIM and other standards

at the UNECE site http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards. About the

mapping with SDMX, however, note that here it is assumed that the SDMX artefacts Data Set and Data Structure

Definition may represent both dimensional and unit data (not only dimensional data) and may be mapped

respectively to the VTL artefacts Data Set and Data Structure.

6 Hyperlink “http://www1.unece.org/stat/platform/display/GSIMclick/Clickable+GSIM”

http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards
http://www1.unece.org/stat/platform/display/GSIMclick/Clickable+GSIM

Version 1.1 Page: 20

Finally, the VTL transformations, written in the form of mathematical expressions, apply the 597
operators of the language to proper operands in order to obtain the needed results. The third 598
section depicts the generic model of the transformations. 599

Generic Model for Data and their structures 600

This Section provides a formal model for the structure of data as operated on by the 601
Validation and Transformation Language (VTL). 602

As already said, GSIM artefacts are used as much as possible. Some differences between this 603
model and GSIM are due to the fact that, in the VTL IM, both unit and dimensional data are 604
considered as mathematical functions having independent and dependent variables and are 605
treated in the same way. 606

For each Unit (e.g. a person) or Group of Units of a Population (e.g. groups of persons of a 607
certain age and civil status), identified by means of the values of the independent variables 608
(e.g. either the “person id” or the age and the civil status), a mathematical function provides 609
for the values of the dependent variables, which are the properties to be known (e.g. the 610
revenue, the expenses …). 611

A mathematical function can be seen as a logical table made of rows and columns . Each 612
column holds the values of a variable (either independent or dependent); each row holds the 613
association between the values of the independent variables and the values of the dependent 614
variables (in other words, each row is a single “point” of the function). 615

In this way, the manipulation of any kind of data (unit and dimensional) is brought back to the 616
manipulation of very simple and well-known objects, which can be easily understood and 617
managed by users. According to these assumptions, there would be no longer be a need to 618
distinguish between unit and dimensional data; nevertheless, such a distinction is illustrated 619
here in order to make it easier to map the VTL IM to the GSIM IM and, through GSIM, to the 620
DDI and SDMX models. 621

Starting from this assumption, each mathematical function (logical table) may be defined as a 622
GSIM Data Set and its structure as a GSIM Data Structure, having Identifier, Measure and 623
Attribute Components. The Identifier components are the independent variables of the 624
function, the Measures and Attribute Components are the dependent variables. Obviously, the 625
GSIM artefacts “Data Set” and “Data Set Structure” have to be strictly interpreted as logical 626
artefacts on a mathematical level, not necessarily corresponding to physical data sets and 627
physical data structures. 628

Please note that the distinction between Dimensional and Unit Data is not used at all by VTL 629
and is not part of the VTL IM. This distinction is present in this document just for clarifying 630
the basic mapping between the VTL IMs and the GSIM and DDI IMs. 631

In order to avoid any possible misunderstanding with respect to SDMX, also take note that the 632
VTL Data Set in general does not correspond to the SDMX Dataset. In fact, a SDMX dataset is a 633
physical set of data (the data exchanged in a single interaction), while the VTL DataSet is a 634
logical set of data, in principle independent of its possible handling (exchange, calculation and 635
so on). The right mapping is between the VTL Data Set and the SDMX Dataflow. 636

 637

Version 1.1 Page: 21

Data model diagram 638

 639

 640

 641

 642

 643

 644

 645

 646

 647

 648

 649

 650

 651

 652

 653

 654

 655
White box: same artefact as in GSIM 1.1 656
Light grey box: similar to GSIM 1.1 657
 658

Explanation of the Diagram 659

Data Set: a mathematical function (logical table) that describes some properties of some 660
groups of units of a population. In general, the groups of units may be composed of one or 661
more units. For unit data, each group is composed of a single unit. For dimensional data, each 662
group may be composed of any number of units. A VTL Data Set is considered as a logical set 663
of observations (Data Points) having the same structure and the same general meaning, 664
independently of the possible physical representation or storage. Between the VTL Data Sets 665
and the physical datasets, there can be relationships of any cardinality: for example, a VTL 666
Data Set may be stored either in one or in many physical data sets, as well as many VTL Data 667
Sets may be stored in the same physical datasets (or database tables). The VTL Data Set is 668
similar to the GSIM Data Set, the relationship between them is described in the following 669
section. 670

Data Point : a single value of the function, i.e. a single association between the values of the 671
independent variables and the values of the dependent variables. A Data Point corresponds to 672
a row of the logical table that describes the function. A set of Data Points form the extension of 673
the function (Data Set). The single Data Points do not need to be individually defined, because 674
their definition is the definition of the function (i.e. the Data Set definition). This artefact is 675
the same as the GSIM Data Point. 676

Data Point

Data Set

Data Structure

Data Structure
Component

Identifier

Attribute

Measure

has

structured
by

0..N

1..1

0..N
s

0..N

0..N

0..N

1..1

has

Is su
b

-ty
p

e o
f

Version 1.1 Page: 22

Data Structure: the structure of a mathematical function, having independent and dependent 677
variables. The independent variables are called “Identifier components”, the dependent 678
variables are called either “Measure Components” or “Attribute Components”. The distinction 679
between Measure and Attribute components is based on their meaning: the Measure 680
Components give information about the real world, while the Attribute components give 681
information about the function itself. The VTL Data Structure is similar to the GSIM Data 682
Structure, the relationship between them is described in the following section. 683

Data Structure Component : any component of the data structure, which can be either an 684
Identifier, or a Measure, or an Attribute Component. This artefact is the same as in GSIM. 685

Identifier Component (or simply Identifier): a component of the data structure that is 686
an independent variable of the function. This artefact is the same as in GSIM. In respect 687
to SDMX, an Identifier Component may be either a Unit Identifier , which correspond 688
to a SDMX Dimension, or a Measure Identifier , which corresponds to a SDMX Measure 689
Dimension. The former is an identifier which contributes to the identification of the 690
Units or Groups of Units, the latter is an identifier which contributes, when needed, to 691
the identification of the Measure7. 692

Measure Component (or simply Measure): a component of the data structure that is a 693
dependent variable of the function and gives information about the real world. This 694
artefact is the same as in GSIM8. 695

Attribute Component (or simply Attribute): a component of the data structure that is 696
a dependent variable of the function and gives information about the function itself. 697
This artefact is the same as in GSIM. 698

Note that the VTL manages Measure and Attribute Components in different ways, as 699
explained in the section “The general behaviour of operations on datasets” below, 700
therefore the distinction between Measures and Attributes is significant for the VTL. 701

Relationships between VTL and GSIM 702

As mentioned earlier, the VTL Data Set and Data Structure artefacts are similar to the 703
corresponding GSIM artefact. VTL, however, does not make a distinction between Unit and 704
Dimensional Data Sets and Data Structures. 705

In order to explain the relationships between VTL and GSIM, the distinction between Unit and 706
Dimensional Data Sets can be introduced virtually even in the VTL artefacts. In particular, the 707

7 There can be from 0 to N Identifiers in a Data Structure. The particular case of 0 Identifiers and 1 Measure

denotes scalar values, while the particular case of 0 Identifiers and N Measures denote vectors of scalar values.

8 There can be from 0 to N Measures in a Data Structure. The particular case of 0 Measures denotes a “pure”

relationship between the Identifiers (i.e. a relationship that does not have properties). For example, the

relationship between the “students” and the “courses” that they follow (without any other information): the

corresponding Data Set has StudentId and CourseId as Identifiers and do not have any explicit measure.

However, as the existing combination of identifiers are implicitly considered as “TRUE”, it can be thought that

there is an implicit Boolean measure having the constant value “TRUE”.

Version 1.1 Page: 23

GSIM Data Set may be a GSIM Dimensional Data Set or a GSIM Unit Data Set, while a VTL Data 708
Set may (virtually) be: 709

either a (virtual) VTL Dimensional Data Set : a kind of (Logical) Data Set describing 710
groups of units of a population that may be composed of many units. This (virtual) 711
artefact would be the same as the GSIM Dimensional Data Set; 712

or a (virtual) VTL Unit Data Set: a kind of (Logical) Data Set describing single units of 713
a population. This (virtual) artefact would be the same as the Unit Data Record in 714
GSIM, which has its own structure and can be thought of as a mathematical function. 715
The difference is that the VTL Unit Data Set would not correspond to the GSIM Unit 716
Data Set, because the latter cannot be considered as a mathematical function: in fact it 717
can have many GSIM Unit Data Records with different structures. 718

A similar relationship exists between VTL and GSIM Data Structures. In particular, introducing 719
in VTL the virtual distinction between Unit and Dimensional Data Structures, while a GSIM 720
Data Structure may be a GSIM Dimensional Data Structure or a GSIM Unit Data Structure, a 721
VTL Data Structure may (virtually) be: 722

either a (virtual) VTL Dimensional Data Structure : the structure of (0..n) 723
Dimensional Data Sets. This artefact would be the same as in GSIM; 724

or a (virtual) VTL Unit Data Structure : the structure of (0..n) Unit Data Sets. This 725
artefact would be the same as the Logical Record in GSIM, which corresponds to a 726
single structure and can be thought as the structure of a mathematical function. The 727
difference is that the VTL Unit Data Structure would not correspond to the GSIM Unit 728
Data Structure, because the latter cannot be considered as the structure of a 729
mathematical function: in fact, it can have many Logical Records with different 730
structures. 731

GSIM – VTL mapping diagram: 732

 733

 734

 735

 736

 737

 738

 739

 740

 741

 742

 743

 744

The distinction between Dimensional and Unit Data Set and Data Structure is not used by the 745
VTL language and is not part of the VTL IM. This virtual distinction is highlighted here just for 746
clarifying the mapping of the VTL IM with GSIM and DDI. 747

VTL
Data Set

VTL
Data Structure

VTL Unit Data
Set

VTL Unit Data
Structure

VTL Dimens.
Data Set

structured by

1..1

0..N

Dimensional
Data Structure

GSIM
Unit DataRecord

GSIM
Logical Record

GSIM Dimens.
Data Set

GSIM Dimens.
Data Structure

Virtual artefacts

mappings

Version 1.1 Page: 24

Examples 748

As a first simple example of Data Sets seen as mathematical functions, let us consider the 749
following table: 750

 751

Production of the American Countries 752

 753

 754

 755

 756

 757

 758

 759

 760

 761

 762

This table is equivalent to a proper mathematical function: in fact, its rows have the same 763
structure (in term of columns). The Table can be defined as a Data Set, whose name can be 764
“Production of the American Countries”. Each row of the table is a Data Point belonging to the 765
Data Set. The Data Structure of this Data Set has five Data Structure Components: 766

¶ Reference Date (Identifier Component) 767
¶ Country (Identifier Component) 768
¶ Measure Name (Identifier Component - Measure Identifier) 769
¶ Measure Value (Measure Component) 770
¶ Status (Attribute Component) 771

As a second example, let us consider the following physical table, in which the symbol “###” 772
denotes cells that are not allowed to contain a value. 773

 774

Institutional Unit Data 775

Ref.Date Country Meas.Name Meas.Value Status

2013 Canada Population 50 Final

2013 Canada GNP 600 Final

2013 USA Population 250 Temporary

2013 USA GNP 2400 Final

ƛ ƛ ƛ ƛ ƛ

2014 Canada Population 51 Unavailable

2014 Canada GNP 620 Temporary

ƛ ƛ ƛ ƛ ƛ

Row Type I.U. ID Ref.Date
I.U.

Name

I.U.

Sector
Assets Liabilities

I A ### AAAAA Private ### ###

II A 2013 ### ### 1000 800

II A 2014 ### ### 1050 750

I B ### BBBBB Public ### ###

II B 2013 ### ### 1200 900

Version 1.1 Page: 25

 776

 777

 778

 779

 780

 781

 782

This table, as a whole, is not equivalent to a proper mathematical function because its rows 783
(i.e. the Data Points) have different structures (in term of allowed columns). However, it is 784
easy to recognize that there exist two possible functional structures (corresponding to the 785
Row Types I and II), so that the original table can be split in the following ones: 786

 787

Row Type I - Institutional Unit register 788

 789

 790

 791

 792

 793

 794

Row Type II - Institutional Unit Assets and Liabilities 795

 796

 797

 798

 799

 800

 801

 802

 803

 804

Each one of these two tables corresponds to a mathematical function and can be represented 805
like in the first example above. Therefore, these would be 2 distinct Data Sets according to the 806
VTL IM, even if stored in the same physical table. 807

In correspondence to one physical table (the former) there are two logical tables (the latter), 808
so that the definitions will be the following ones: 809

II B 2014 ### ### 1300 950

I C ### CCCCC Private ### ###

II C 2013 ### ### 750 900

II C 2014 ### ### 800 850

ƛ ƛ ƛ ƛ ƛ ƛ ƛ

I.U. ID I.U. Name I.U. Sector

A AAAAA Private

B BBBBB Public

C CCCCC Private

ƛ ƛ ƛ

I.U. ID Ref.Date Assets Liabilities

A 2013 1000 800

A 2014 1050 750

B 2013 1200 900

B 2014 1300 950

C 2013 750 900

C 2014 800 850

ƛ ƛ ƛ ƛ

Version 1.1 Page: 26

Data Set 1: Record type I - Institutional Units register 810

Data Structure 1: 811
¶ I.U. ID (Identifier Component) 812
¶ I.U. Name (Measure Component) 813
¶ I.U. Sector (Measure Component) 814

 815

Data Set 2: Record type II - Institutional Units Assets and Liabilities 816

Data Structure 2: 817
¶ I.U. ID (Identifier Component) 818
¶ Reference Date (Identifier Component) 819
¶ Assets (Measure Component) 820
¶ Liabilities (Measure Component) 821

 822

The data artefacts 823

The list of the VTL artefacts for the definition of the data is given here, together with the 824
information that the definer have to provide. For the sake of simplicity, we may omit the parts 825
of the names shown between parentheses. 826

 827

Data Set 828

DataSetId mandatory 829

DataSetDescr optional 830

DataStructureId mandatory [this is the reference to the data structure of 831
the Data Set] 832

IsCollected mandatory [YES if the Data Set is collected, NO if it is. 833
result of a Transformation (i.e. calculated)] 834

 835

Data Structure 836

DataStructureId mandatory 837

DataStructureDescr optional 838

 839

(Data Structure) Component 840

DataStructureId mandatory [this is part of the identifier of the 841
Component: the data structure which the Component 842
belongs to] 843

VariableId mandatory [this is part of the identifier of the 844
Component: the Represented Variable which defines the 845
Component (see also hereinafter] 846

ComponentRole mandatory [IDENTIFIER | MEASURE | ATTRIBUTE] 847

Version 1.1 Page: 27

(Sub)SetId optional [possible reference to the (sub)Set containing 848
the allowed values for the Component, see the section about 849
the generic model for Variables and Value Domains] 850

 851

The Data Points have the same structure of the Data Sets they belong to; VTL does not require 852
to define them beforehand. 853

The Validation and Transformation Definition Language introduces the operators for defining 854
the artefacts above (see the VTL reference manual). 855

 856

Version 1.1 Page: 28

Generic Model for Variables and Value Domains 857

This Section provides a formal model for the Variables, the Value Domains, their Values and 858
the possible (Sub)Sets of Values. These artefacts can be referenced in the definition of the VTL 859
Data Structures and as parameters of some VTL Operators. 860

Variable and Value Domain model diagram 861
 862

 863

 864

 865

 866

 867

 868

 869

 870

 871

 872

 873

 874

 875

 876

 877

 878

 879
 880
 881
 882
 883
 884
 885
 886
 887
White box: same as in GSIM 1.1 888
Light grey: similar to GSIM 1.1 889
Dark grey additional detail (in respect to GSIM 1.1) 890

 891

Explanation of the Diagram 892

Even in this case, the GSIM artefacts are used as much as possible. The slight differences are 893
mainly due to the fact that GSIM does not distinguish explicitly between Value Domains and 894

1..1

1..1

0..N

1..1

1..1

Enumerated
Value Domain

Described
Value Domain

Data Structure
Component

Code Item

includes
as

defined by

0..N 1..1

1..1

1..N

Value Domain

Represented
Variable

Code List

measures

1..1

0..N

Has

Contains

 Described
Set

Enumerated
Set

Value Domain
Subset (Set)

Set List

Has

1..1 0..N 1..1

0..N

Takes
values from

Contains

1..N

Is sub-type of Is sub-type of

Described
Value Domain

Is sub-type of

Has Has

1..1 1..1

1..N 1..N

Version 1.1 Page: 29

their (Sub)Sets, while in the VTL IM this is made more explicit in order to allow different Data 895
Structure Components relevant to the same aspect of the reality (e.g. the geographic area) to 896
share the same Value Domain and, at the same time, to take values in different Subsets of it. 897
This is essential for VTL for several operations and in particular for validation purposes. For 898
example, it may happen that the same Variable, say the “place of birth”, in a Data Structure 899
takes values in the Set of the European Counties, in another one takes values in the set of the 900
African countries, and so on, even at different levels of details (e.g. the regions, the cities). The 901
definition of the exact Set of Values that a Variable can take may be very important for VTL, in 902
particular for validation purposes. 903

Data Structure Component : a component of the data structure (see the explanation already 904
given above, in the data model section). A Data Structure Component is defined by a 905
Represented Variable (see below) and takes values in a subset of its Value Domain (this 906
subset of allowed values may either coincide with the set of all the values belonging to the 907
Value Domain or be a proper subset of it). 908

Represented Variable : a characteristic of a statistical population (e.g. the country of birth) 909
represented in a specific way (e.g. through the ISO code). This artefact is the same as in GSIM. 910
A represented variable may define any number of Data Structure Components and takes value 911
in one Value Domain. 912

Value Domain : the domain of allowed values for one or more variables. This artefact is very 913
similar to the corresponding artefact in GSIM. Because of the distinction between Value 914
Domain and its Value Domain Subsets, a Value Domain is the wider set of values that can be of 915
interest for representing a certain aspect of the reality (like the time, the geographical area, 916
the economic sector and so on). As for the mathematical meaning, a Value Domain is meant to 917
be the representation of a “space of events” with the meaning of the probability theory9. 918
Therefore, a single Value of a Value Domain is a representation of a single “event” belonging to 919
this space of events10. 920

An important characteristic of the Value Domain is the data type (e.g. String, Number, 921
Boolean, Date), which is the type that any Value of the Value Domain must correspond to. 922

Described Value Domain : a Value Domain defined by a criterion (e.g. the domain of 923
the positive integers). This artefact is the same as in GSIM. 924

Enumerated Value Domain : a Value Domain defined by enumeration of the allowed 925
values (e.g. domain of ISO codes of the countries). This artefact is the same as in GSIM. 926

For completeness, consider that in general a Value Domain can be represented also in a multi-927
dimensional Cartesian space, therefore a 1-dim Value Domain is a Value Domain defined in a 928

9 According to the probability theory, a random experiment is a procedure that returns a result belonging a

predefined set of possible results (for example, the determination of the “geographic location” may be

considered as a random experiment that returns a point of the Earth surface as a result). The “space of results” is

the space of all the possible results.

10 An “event” is a set of results (going back to the example of the geographic location, the event “Europe” is the

set of points of the European territory, more in general an “event” correspond to a “geographical area”). The

“space of events” is the space of all the possible “events” (in the example, the space of the geographical areas).

Version 1.1 Page: 30

1-dimensional Cartesian space, while a N-dim Value Domain is a Value Domain defined in a N-929
dimensional Cartesian space and therefore composed by 1-dim Value Domains. 930

The following artefacts are aimed at representing possible subsets of the Value Domains. This 931
is needed for validation purposes, because very often not all the values of the Value Domain 932
are allowed in a Data Structure Component, but only a subset of them (e.g. not all the 933
countries but only the European countries). This is needed also for transformation purposes, 934
for example to filter the Data Points according to a subset of Values of a certain Data Structure 935
Component (e.g. extract only the European Countries from some data relevant to the World 936
Countries) . Although this detail does not exist in GSIM, these artefacts are compliant with the 937
GSIM artefacts described above, representing Value Domains: 938

Value Domain Subset (or simply Set): a subset of Values of a Value Domain. This 939
artefact does not exist in GSIM, however it is compliant with the GSIM Value Domain. A 940
Value Domain Subset has the same data type as its Value Domain and the same 941
dimensionality. Hereinafter a Value Domain Subset is simply called Set, in fact a Value 942
Domain subset can be any set of Values belonging to the Value Domain (even the set of 943
all the values of the Value Domain). 944

Described Value Domain Subset (or simply Described Set): a described 945
(defined by a criterion) subset of Values of a Value Domain (e.g. the countries 946
having more than 100 million inhabitants, the integers between 1 and 100). 947
This artefact does not exist in GSIM, however it is compliant with the GSIM 948
Described Value Domain. 949

Enumerated Value Domain Subset (or simply Enumerated Set): an 950
enumerated subset of a Value Domain (e.g. the enumeration of the European 951
countries). This artefact does not exist in GSIM, however it is compliant with the 952
GSIM Enumerated Value Domain. 953

Value: an allowed value of a Value Domain. Please note that on a logical / 954
mathematical level, both the Described and the Enumerated Value Domains contain 955
Values, the only difference is that the Values of the Enumerated Value Domains are 956
explicitly represented by enumeration, while the Values of the Described Value 957
Domains are implicitly represented through a criterion. 958

Code Item: an allowed item of an enumerated Value Domain. A Code Item is the 959
association of a Value with the relevant meaning (called “category” in GSIM). An 960
example of Code Item is a single countries’ ISO code (the Value) associated to the name 961
of the country it represents (the category). As for the mathematical meaning, a Code 962
Item is the representation of an “event” of a space of events (i.e. the relevant Value 963
Domain), according to the notions of “event” and “space of events” of the probability 964
theory (see also the note above). 965

Code List: the list of Code Items belonging to an enumerated Value Domain. This 966
artefact is the same as in GSIM except for the multiplicity of the relationship with the 967
Value Domain. Because of the distinction between Value Domain and Value Domain 968
Subsets and because the Value Domain is meant to be the representation of a space of 969
events, a Code List is assumed to contain all the possible Values of interest of the 970
relevant Value Domain (e.g. all the possible GeoAreas of interest), therefore in the VTL 971
IM each enumerated Value Domain has just one Code List. 972

Version 1.1 Page: 31

Set List : the list of the Code Items belonging to an enumerated Set (e.g. the list of the 973
ISO codes of the European countries). This artefact does not exist in GSIM. However, it 974
has the same role than the Code List in GSIM. The Set List refers only to the Values 975
contained in the list (e.g. the country codes), without the associated categories (e.g. the 976
names of the countries), because the latter are already maintained in the Code List of 977
the relevant Value Domain (which contains all the possible Values with the associated 978
categories). 979

Relati ons and operations between Code Items 980

The VTL allows the representation of logical relations between Code Items, considered as 981
events of the probability theory. 982

As already explained, each Code Item is the representation of an event, according to the 983
notions of “event” and “space of events” of the probability theory. The relations between Code 984
Items aim at expressing the logical implications between the events of a space of events (i.e. in 985
a Value Domain). The occurrence of an event, in fact, may imply the occurrence or the non-986
occurrence of other events. For example: 987

¶ The event UnitedKingdom implies the event Europe (e.g. if a person lives in UK he/she 988
also lives in Europe), meaning that the occurrence of the former implies the occurrence 989
of the latter. In other words, the geo-area of UK is included in the geo-area of the 990
Europe. 991

¶ The events Belgium, Luxembourg, Netherlands are mutually exclusive (e.g. if a person 992
lives in one of these countries he/she does not live in the other ones), meaning that the 993
occurrence of one of them implies the non-occurrence of the other ones (Belgium AND 994
Luxembourg = impossible event; Belgium AND Netherlands = impossible event; 995
Luxembourg and Netherlands = impossible event). In other words, these three geo-996
areas do not overlap. 997

¶ The occurrence of one of the events Belgium, Netherlands or Luxembourg (i.e. Belgium 998
OR Netherlands OR Luxembourg) implies the occurrence of the event Benelux (e.g. if a 999
person lives in one of these countries he/she also lives in Benelux) and vice-versa (e.g. 1000
if a person lives in Benelux, he/she lives at least in one of these countries). In other 1001
words, the union of these three geo-areas coincides with the geo-area of the Benelux. 1002

The logical relationships between Code Items are very useful for validation and 1003
transformation purposes. Considering for example some positive and additive data, like for 1004
example the population, from the relationships above it can be deduced that: 1005

¶ The population of United Kingdom should be lower than the population of Europe. 1006
¶ There is no overlapping between the populations of Belgium, Netherlands and 1007

Luxembourg, so that these populations can be added in order to obtain aggregates. 1008
¶ The sum of the populations of Belgium, Netherlands and Luxembourg gives the 1009

population of Benelux. 1010

A Code Item Relation is composed by two members, a 1st (left) and a 2nd (right) member. The 1011
envisaged types of relations are: “is equal to” (=), “implies” (<), “implies or is equal to” (<=), 1012
“is implied by” (>), and “is implied by or is equal to” (>=). “Is equal to” means also “implies 1013
and is implied”. For example: 1014

UnitedKingdom < Europe means (UnitedKingdom implies Europe) 1015

Version 1.1 Page: 32

In other words, this means that if a point of space belongs to United Kingdom it also 1016
belongs to Europe. 1017

The left members of a Relation is a single Code Item. The right member can be either a single 1018
Code Item, like in the example above, or a logical composition of Code Items giving another 1019
Code Item as result: these are the Code Item Relation Operands . The logical composition can 1020
be defined by means of Operators, whose goal is to compose some Code Items (events) in 1021
order to obtain another Code Item (event) as a result. In this simple algebra, two operators 1022
are envisaged: 1023

¶ the logical OR of mutually exclusive Code Items, denoted “+”, for example: 1024

Benelux = Belgium + Luxembourg + Netherlands 1025

This means that if a point of space belongs to Belgium OR Luxembourg OR Netherlands 1026
then it also belongs to Benelux and that if a point of space belongs to Benelux then it 1027
also belongs either to Belgium OR to Luxembourg OR to Netherlands (disjunction). In 1028
other words, the statement above says that territories of Belgium, Netherland and 1029
Luxembourg are non-overlapping and their union is the territory of Benelux. 1030
Consequently, as for the additive measures (and being equal the other possible 1031
Identifiers), the sum of the measure values referred to Belgium, Luxembourg and 1032
Netherlands is equal to the measure value of Benelux. 1033

¶ the logical complement of an implying Code Item in respect to another Code Item 1034
implied by it, denoted “-“, for example: 1035

EUwithoutUK = EuropeanUnion - UnitedKingdom 1036

In simple words, this means that if a point of space belongs to the European Union and 1037
does not belong to the United Kingdom, then it belongs to EUwithoutUK and that if a 1038
point of space belongs to EUwithoutUK then it belongs to the European Union and not 1039
to the United Kingdom. In other words, the statement above says that territory of the 1040
United Kingdom is contained in the territory of the European Union and its 1041
complement is the territory of EUwithoutUK. As a consequence, considering a positive 1042
and additive measure (and being equal the other possible Identifiers), the difference of 1043
the measure values referred to EuropeanUnion and UnitedKingdom is equal to the 1044
measure value of EUwithoutUK. 1045

Please note that the symbols “+” and “-“ do not denote the usual operations of sum and 1046
subtraction, but logical operations between Code Items seen as events of the probability 1047
theory. In other words, two or more Code Items cannot be summed or subtracted to obtain 1048
another Code Item, because they are events (and not numbers), and therefore they can be 1049
manipulated only through logical operations like “OR” and “Complement”. 1050

Note also that the “+” also acts as a declaration that all the Code Items denoted by “+” are 1051
mutually exclusive (i.e. the corresponding events cannot happen at the same time), as well as 1052
the “-“ acts as a declaration that all the Code Items denoted by “-” are mutually exclusive. 1053
Furthermore, the “-“ acts also as a declaration that the relevant Code item implies the result of 1054
the composition of all the Code Items denoted by the “+”. 1055

At intuitive level, the symbol “+” means “with” (Benelux = Belgium with Luxembourg with 1056
Netherland) while the symbol “-“ means “without” (EUwithoutUK = EuropeanUnion without 1057
UnitedKingdom). 1058

Version 1.1 Page: 33

When these relations are applied to additive numeric measures (e.g. the population relevant 1059
to geographical areas), they allow the measure values to be obtained from the compound 1060
Code Items (i.e. the population of Benelux and EUwithoutUK) by summing or subtracting the 1061
measure values relevant to the component Code Items (i.e. the population of Belgium, 1062
Luxembourg and Netherland in the former case, EuropeanUnion and UnitedKingdom in the 1063
latter). This is why these logical operations are denoted in VTL through the same symbols as 1064
the usual sum and subtraction. Please note also that this is valid whichever the Data Set and 1065
the additive measure are (provided that possible other dimensions have the same values). 1066

These relations occur between Code Items (events) belonging to the same Value Domain 1067
(space of events). They are typically aimed at defining aggregation hierarchies, either 1068
structured in levels (classifications), or without levels (chains of free aggregations) or a 1069
combination of these options. 1070

For example, the following relations are aimed at defining the continents and the whole world 1071
in terms of individual countries: 1072

¶ World = Africa + America + Asia + Europe + Oceania 1073
¶ Africa = Algeria + … + Zimbabwe 1074
¶ America = Argentina + … + Venezuela 1075
¶ Asia = Afghanistan + … + Yemen 1076
¶ Europe = Albania + … + Vatican City 1077
¶ Oceania = Australia + … + Vanuatu 1078

A simple model diagram for the Code Item Relations and Code Item Relation Operands is the 1079
following: 1080

 1081

 1082

 1083

 1084

 1085

 1086

 1087

 1088

The historical changes 1089

The changes in the real world may induce changes in the artefacts and in the relationships 1090
between them, so that some definitions may be considered valid only with reference to 1091
certain time values. For example, the birth of a new country as well as the split or the merge 1092
of existing countries in the real world would induce changes in the Code Items belonging to 1093
the Geo Area Value Domain, in the composition of the relevant Sets, in the relationships 1094
between the Code Items and so on. 1095

A correct representation of the historical changes of the artefacts is essential for VTL, because 1096
the VTL operations are meant to be consistent with these historical changes, in order to 1097
ensure a proper behaviour in relation to each time. With regard to this, VTL must face a 1098

Code Item

Code Item
Relation

Code Item Rel.
Operand

1..1 1..N

Contains in
2nd member

Refers

Refers as the
1st member

0..N

1..1 1..1

0..N

Version 1.1 Page: 34

complex environment, because it is intended to work also on top of other standards, whose 1099
assumptions for representing historical changes may be heterogeneous. Moreover, 1100
institutions and even departments of the same Institutions often use different conventions for 1101
representing historical changes. The VTL IM tries to manage this heterogeneity by allowing 1102
multiple options when possible and clarifying the relationships between these options. 1103

Please note that there are two main temporal aspects: the so-called validity time and 1104
operational time. The validity time is the time during which a definition is true in the real 1105
world. The operational time is the time period during which a definition is available and may 1106
produce operational effects. In this context only the former is considered, while the latter is 1107
left to the concrete implementations of processing systems. 1108

Even the identification of the artefacts is related to temporal assumptions. Regard to this 1109
aspect, two main options can be considered: 1110

a) The artefacts are assumed to be variable in time and therefore represent a given 1111
abstraction of the reality even if it changes. As a consequence, a single artefact may 1112
represent the whole history of an abstraction. For example, under this option the same 1113
artefact (e.g. EU) may represent the European Union even if its geographic area 1114
changes (i.e. even if the participant countries change, like happened many times so 1115
far). This option follows the intuitive conceptualization in which abstractions are 1116
identified independently of time and may change with time maintaining the same 1117
identity. 1118

b) The artefacts are assumed to be invariable in time and therefore represent a given 1119
abstraction of the reality only for the period in which this abstraction does not change. 1120
As a consequence, more artefacts have to be used to represent the whole history of an 1121
abstraction, one for each period in which the abstraction does not change. For 1122
example, under this option the European Union can be represented by more artefacts, 1123
one for each period during which its geographic area was stable (e.g. EU1, … , EU9). 1124
This option is based on the conceptualization in which the artefacts are identified in 1125
connection with the time, so that an artefact corresponds to the abstraction of some 1126
aspects of the reality (e.g. Geo Area) in association with certain times. VTL 1127
conventionally assimilates to this case also the common practice of giving a version to 1128
the artefacts for representing time changes (e.g. EUv1, … , EUv9 where v=version), 1129
being each version of the artefact assumed as invariable. 1130

The general assumptions of VTL in relation to the representation of the historical changes are 1131
the following: 1132

¶ VTL artefacts are identified and referenced by means of their univocal identifier, 1133
therefore, for VTL, in the option a) there would exist one artefact for Europe (e.g. EU) 1134
while in the option b) there would exist 9 different artefacts for Europe (e.g. EU1, … , 1135
EU9). 1136

¶ possible versions of the artefacts aimed at managing temporal changes are considered 1137
to be part of the univocal artefact identifier, so that different versions are considered 1138
as different artefacts like in the option b); the Europe in this case would be 1139
represented by many artefacts (e.g. EUv1, … , EUv9). More in general, the univocal 1140
identifiers of the artefacts may be composite in the implementations, so that the 1141
adopting standards and organizations may use their own identification conventions, 1142
provided that the version is considered part of the VTL identifier. 1143

Version 1.1 Page: 35

¶ The characteristics of the invariable artefacts obviously cannot change with time, so 1144
they are assumed to be constant and their time validity is not explicitly considered by 1145
VTL (if required, a time validity for these artefact can be managed by the 1146
implementations). 1147

¶ The variable artefacts can have characteristics variable with time. There can be many 1148
occurrences of these characteristics for the same artefact, but only one of them is valid 1149
in a time instant; the same applies to variable relations between artefacts (for example, 1150
the United Kingdom may belong to Europe only for a certain time). In these cases, each 1151
occurrence is qualified by means of a validity period (start date - end date). As obvious, 1152
the validity periods of these different occurrences cannot overlap. Validity periods are 1153
considered as “optional”, because they would not be needed if the option b) is 1154
assumed. If not specified, the validity period is assumed to be “ever”. 1155

¶ VTL does not consider explicitly possible variations with time of the textual 1156
descriptions of the artefacts (if required, this can be managed in the implementations). 1157

 1158

The Variables and Value Domains artefacts 1159

The list of the VTL artefacts related to Variables and Value Domains is given here, together 1160
with the information that the definer have to provide. 1161

 1162

(Represented) Variable 1163

VariableId mandatory 1164

VariableDescr optional 1165

ValueDomainId mandatory [reference to the Value Domain which 1166
measures the Variable, i.e. in which the Variable takes 1167
values] 1168

 1169

Value Domain 1170

ValueDomainId mandatory 1171

ValueDomainDescr optional 1172

IsEnumerated mandatory [YES if the Domain is Enumerated, NO if it is 1173
Described] 1174

DataType mandatory [this is the data type of the Values of the 1175
Value Domain, i.e. one of the allowed VTL data types (see 1176
hereinafter)] 1177

ValueRestriction optional [this is a regular expression which expresses 1178
a criterion for restricting the allowed Values if needed, for 1179
example by specifying a max length, an upper or/and a 1180
lower value, and so on] 1181

 1182

Code List (composition) [mandatory for Enumerated Value Domains] 1183

Version 1.1 Page: 36

ValueDomainId mandatory [this is part of the identifier of the Value: the 1184
Value Domain which the Value belongs to] 1185

ValueId mandatory [also named Code Item, this is part of the 1186
identifier of the Value: i.e. the univocal name of the Value 1187
within the Value Domain it belongs to] 1188

ValueDescr optional [in GSIM terms, this is the category associated 1189
to the Code Item] 1190

StartDate optional [needed if a Value belongs to a Value Domain 1191
only for a certain period] 1192

EndDate optional [needed if a Value belongs to a Value Domain 1193
only for a certain period] 1194

 1195

N-dimensional Value Domain 1196

A N-dim Value Domain is a combined space of 1-dim Value Domains. It is not required to 1197
define explicitly the N-dim Value Domains, because all the possible combinations of 1-dim 1198
Value Domains are considered as defined by default. The Values of a N-dim value domains 1199
are combination of Values of the component 1-dim Value Domains. 1200

 1201

(Value Domain Sub)Set 1202

ValueDomainId mandatory [this is part of the Identifier of the Set: the 1203
Value Domain which the set belongs to] 1204

Set_Id mandatory [this is part of the identifier of the Set: i.e. the 1205
univocal name of the Set within the Value Domain it belongs 1206
to] 1207

SetDescr optional 1208

IsEnumerated mandatory [YES if the the Set is Enumerated, NO if it is 1209
Described] 1210

SetCriterion mandatory for Described Sets [a regular expression 1211
which expresses a criterion for identifying the Values 1212
belonging to the Set] 1213

StartDate optional [needed if a Set belongs to a Value Domain 1214
only for a certain period] 1215

EndDate optional [needed if a Set belongs to a Value Domain 1216
only for a certain period] 1217

 1218

Set List (composition) [mandatory for Enumerated Sets] 1219

ValueDomainId mandatory [this is part of the identifier of the Set List: 1220
reference to the Value Domain which the Set and the Value 1221
belongs to] 1222

Version 1.1 Page: 37

SetId mandatory [this is part of the identifier of the Set List: 1223
reference to the Set which contains the Value] 1224

ValueId mandatory [this is part of the identifier of the Set List: 1225
reference to the Value which belongs to the Set] 1226

StartDate optional [needed if a Value belongs to a Set only for a 1227
certain period] 1228

EndDate optional [needed if a Value belongs to a Set only for a 1229
certain period] 1230

 1231

 1232

Code Item Relation 1233

1stMemberDomainId mandatory [this is part of the identifier of a Relation: 1234
reference to the Value Domain of the first member of the 1235
Relation; e.g. Geo_Area] 1236

1stMemberValueId mandatory [this is part of the identifier of a Relation: 1237
reference to the Value of the first member of the Relation; 1238
e.g. Benelux] 1239

1stMemberCompositionId mandatory [this is part of the identifier of a Relation: 1240
conventional name of the composition related with the first 1241
member, needed to distinguish possible different 1242
compositions related to the same first member Value. It 1243
must be univocal within the 1stMemberValueId. Not 1244
necessarily it has to be meaningful, it can be simply a 1245
progressive number ; e.g. “1”] 1246

CompositionDescr optional [e.g. “Benelux from its countries”] 1247

Relation Type mandatory [relation between the first and the second 1248
member, having as possible values =, <, <=, >, >=] 1249

StartDate optional [needed if a Relation is valid only for a certain 1250
period] 1251

EndDate optional [needed if a Relation is valid only for a certain 1252
period] 1253

 1254

Code Item Relation Operand 1255

1stMemberDomainId mandatory [this is part of the identifier of a Relation 1256
Operand: see its description above; e.g. Geo Area] 1257

1stMemberValueId mandatory [this is part of the identifier of a Relation 1258
Operand: see its description above; e.g. Benelux] 1259

1stMemberCompositionId mandatory [this is part of the identifier of a Relation 1260
Operand: see its description above; e.g. “1”] 1261

Version 1.1 Page: 38

2ndMemberValueId mandatory [this is part of the identifier of a Relation 1262
Operand: it references the ValueId of an operand; e.g. 1263
Belgium] 1264

Operator optional [it specifies the applied operator, its possible 1265
values are “+” and ”- “; the default is “+”; e.g. “+”] 1266

StartDate optional [needed if an Operand of a Relation is valid 1267
only for a certain period] 1268

EndDate optional [needed if an Operand of a Relation is valid 1269
only for a certain period] 1270

 1271

 1272

Generic Model for Transformations 1273

The purpose of this section is to provide a formal model for describing the validation and 1274
transformation of the data. 1275

A Transformation is assumed to be an algorithm to produce a new model artefact (typically a 1276
Data Set) starting from existing ones. It is also assumed that the data validation is a particular 1277
case of transformation, therefore the term “transformation” is meant to be more general and 1278
to include the validation case as well. 1279

This model is essentially derived from the SDMX IM11, as DDI and GSIM do not have an explicit 1280
transformation model at the moment12. In its turn, the SDMX model for Transformations is 1281
similar in scope and content to the Expression metamodel that is part of the Common 1282
Warehouse Metamodel (CWM) 13 developed by the Object Management Group (OMG). 1283

The model represents the user logical view of the definition of algorithms by means of 1284
expressions. In comparison to the SDMX and CWM models, some more technical details are 1285
omitted for the sake of simplicity, including the way expressions can be decomposed in a tree 1286
of nodes in order to be executed (if needed, this detail can be found in the SDMX and CWM 1287
specifications). 1288

The basic brick of this model is the notion of Transformation. 1289

A Transformation specifies the algorithm to obtain a certain artefact of the VTL information 1290
model, which is the result of the Transformation, starting from other existing artefacts, which 1291
are its operands. 1292

11 The SDMX specification can be found at https://sdmx.org/?page_id=5008 (see Section 2 - Information Model,

package 13 - “Transformations and Expressions”).

12 The Transformation model described here is not a model of the processes, like the ones that both SDMX and

GSIM have, and has a different scope. The mapping between the VTL Transformation and the Process models is

not covered by the present document, and will be addressed in a separate work task with contributions from

several standards experts.

13 This specification can be found at http://www.omg.org/cwm.

http://www.omg.org/cwm

Version 1.1 Page: 39

Normally the artefact produced through a Transformation is a Data Set (as usual considered 1293
at a logical level as a mathematical function). Therefore, a Transformation is mainly an 1294
algorithm for obtaining a derived Data Set starting from already existing ones. 1295

The general form of a Transformation is the following: 1296

variable parameter := expression 1297

“:=” is the assignment operator, meaning that the result of the evaluation of expression in the 1298
right-hand side is assigned to the variable parameter in the left-hand side, which is the a-1299
priori unknown output of expression (typically a Data Set). 1300

In turn, the expression in the right-hand side composes some operands (e.g. some input Data 1301
Sets) by means of some operators (e.g. sum, product …) to produce the desired results (e.g. 1302
the validation outcome, the calculated data). 1303

For example: Dr := D1 + D2 (Dr , D1 , D2 are assumed to be Data Sets) 1304

In this example the measure values of the Data Set Dr is calculated as the sum of the measure 1305
values of the Data Sets D1 and D2. 1306

A validation is intended to be a kind of Transformation. For example, the simple validation 1307
that D1 = D2 can be made through an “If” operator, with an expression of the type: 1308

Dr := If (D1 = D2 , then TRUE, else FALSE) 1309

In this case, the Data Set Dr would have a Boolean measure containing the value TRUE if the 1310
validation is successful and FALSE if it is unsuccessful. 1311

These are only fictitious examples for explanation purposes. The general rules for the 1312
composition of Data Sets (e.g. rules for matching their Data Points, for composing their 1313
measures …) are described in the sections below, while the actual Operators of the VTL are 1314
described in the VTL reference manual. 1315

The expression in the right-hand side of a Transformation must be written according to a 1316
formal language, which specifies the list of allowed operators (e.g. sum, product …), their 1317
syntax and semantics, and the rules for composing the expression (e.g. the default order of 1318
execution of the operators, the use of parenthesis to enforce a certain order …). The Operators 1319
of the language have Parameters14, which are the a-priori unknown inputs and output of the 1320
operation, characterized by a given role (e.g. dividend, divisor or quotient in a division). 1321

Note that this generic model does not specify the formal language to be used. As a matter of 1322
fact, not only the VTL but also other languages might be compliant with this specification, 1323
provided that they manipulate and produce artefacts of the information model described 1324
above. This is a generic and formal model for defining Transformations of data through 1325
mathematical expressions, which in this case is applied to the VTL, agreed as the standard 1326
language to define and exchange validation and transformation rules among different 1327
organizations 1328

Also note that this generic model does not actually specify the operators to be used in the 1329
language. Therefore, the VTL may evolve and may be enriched and extended without impact 1330
on this generic model. 1331

14 The term is used with the same meaning of “argument”, as usual in computer science.

Version 1.1 Page: 40

In the practical use of the language, Transformations can be composed one with another to 1332
obtain the desired outcomes. In particular, the result of a Transformation can be an operand 1333
of other Transformations, in order to define a sequence of calculations as complex as needed. 1334

Moreover, the Transformations can be grouped into Transformations Schemes, which are sets 1335
of transformations meaningful to the users. For example, a Transformation Scheme can be the 1336
set of transformations needed to obtain some specific meaningful results, like the validations 1337
of one or more Data Sets. 1338

A set of Transformations takes the structure of a graph, whose nodes are the model artefacts 1339
(usually Data Sets) and whose arcs are the links between the operands and the results of the 1340
single Transformations. This graph is directed because the links are directed from the 1341
operands to the results and is acyclic because it should not contain cycles (like in the 1342
spreadsheets), otherwise the result of the Transformations might become unpredictable. 1343

The ability of generating this graph is a main goal of the VTL, because the graph documents 1344
the operations performed on the data, just like a spreadsheet documents the operations 1345
among its cells. 1346

Transformations model diagram 1347

 1348

 1349

 1350

 1351

 1352

 1353

 1354

 1355

 1356

 1357

 1358

 1359

 1360

 1361

White box: same as in GSIM 1.1 1362
Dark grey box: additional detail (in respect to GSIM 1.1) 1363

(These artefacts match the SDMX artefact having the same name; however, the identifiable artefacts are intended 1364
to be the ones of the VTL model) 1365

 1366

0..N

Operand

Parameter

uses

1..1

0..N

Operator

Transformation

1..1

0..N

 Identifiable
Artefact

Result

Transformation
Scheme

references

1..1

1..N

produces acts on
poonas

references input output

0..N 0..1

0..1 0..1

1..1 0..N

Version 1.1 Page: 41

Explanation of the diagram 1367

Transformation : the basic element of the calculations, which consists of a statement which 1368
assigns the outcome of the evaluation of an Expression to an Artefact of the Information 1369
model; 1370

Expression : a finite combination of symbols that is well-formed according to the syntactical 1371
rules of the language. The goal of an Expression is to compose some Operands in a certain 1372
order by means of the Operators of the language, in order to obtain the desired result. 1373
Therefore, the symbols of the Expression designate Operators, Operands and the order of 1374
application of the Operators (e.g. the parenthesis); an expression is defined as a string and is a 1375
property of a Transformation, as in the SDMX IM; 1376

Transformation Scheme : a set of Transformations aimed at obtaining some meaningful 1377
results for the user (like the validation of one or more Data Sets); the Transformation Scheme 1378
may also be considered as a VTL program; 1379

Operator : the specification of a type of operation to be performed on some Operands (e.g. +, -, 1380
*, /); 1381

Parameter : a-priori unknown input or output of an Operator, having a definite role in the 1382
operation (e.g. dividend, divisor or quotient for the division) and corresponding to a certain 1383
type of artefact (e.g. a “Data Set”, a “Data Structure Component” …); 1384

Operand : a specific Artefact referenced in the expression as an input (e.g. a specific input 1385
Data Set); the distinction between Operand and Result is not explicit in the SDMX IM; 1386

Result : a specific Artefact to which the result of the expression is assigned (e.g. the calculated 1387
Data Set); the distinction between Operand and Result is not explicit in the SDMX IM; 1388

Identifiable Artefact : a persistent Identifiable Artefact of the VTL information model (e.g. a 1389
persistent Data Set); a persistent artefact can be result of no more than one Transformation; 1390

Note that with regards to the SDMX Transformation and Expression Model, some artefacts are 1391
intentionally not shown here, essentially to avoid more technical details (i.e. the 1392
decomposition of the operations in the Expression, described in SDMX by means of the 1393
ExpressionNode and its sub-types ReferenceNode, ConstantNode, OperatorNode). For this 1394
reason, in the diagram above, the Transformation references directly Operators and Artefacts 1395
(through its Expression), instead in the SDMX IM the Transformation contains 1396
ExpressionNodes which in turn reference Operators and Artefacts. On the technical 1397
implementation perspective, however, the model would be the same as the SDMX one (except 1398
some details that are specific to the SDMX context). 1399

Example 1400

Imagine that D1, D2 and D3 are Data Sets containing information on some goods, specifically: 1401
D1 the stocks of the previous date, D2 the flows in the last period, D3 the current stocks. 1402
Assume that it is desired to check the consistency of the Data Sets using the following 1403
statement: 1404

Dr := If ((D1 + D2) = D3 , then “true”, else “false”) 1405

In this case: 1406

The Transformation may be called “Consistency check between stocks and flows” and is 1407
formally defined through the statement above. 1408

Version 1.1 Page: 42

¶ Dr is the Result 1409
¶ D1, D2 and D3 are the Operands 1410
¶ If ((D1 + D2) = D3 , then TRUE, else FALSE) is the Expression 1411
¶ “:=”, “If”, “+” , “=” are Operators 1412

Each operator has some predefined parameters, for example in this case: 1413

¶ input parameters of “+”: two numeric Data Sets (to be summed) 1414
¶ output parameters of “+”: a numeric Data Sets (resulting from the sum) 1415
¶ input parameters of “=”: two Data Sets (to be compared) 1416
¶ output parameter of “=”: a Boolean Data Set (resulting from the comparison) 1417
¶ input parameters of “If”: an Expression defining a condition, i.e. (D1+D2)=D3 1418
¶ output parameter of “If”: a Data Set (as resulting from the “then”, “else” clauses) 1419

 1420

Persistency and Identification of the artefacts of the model 1421

The artefacts of the model can be either persistent or non-persistent. An artefact is persistent 1422
if it is permanently stored, and vice-versa. 1423

A persistent artefact exists externally and independently of a VTL program, while a non-1424
persistent artefact exists only within a VTL program. 1425

The VTL grammar provides for the identification of the non-persistent artefacts (see the 1426
section about the conventions for the grammar of the language) and leaves the accurate 1427
definition of the identification mechanism of the persistent artefacts to the standards 1428
adopting the VTL (e.g. SDMX, DDI …)15. 1429

However, the VTL aims at promoting international sharing of rules, which should have a clear 1430
identification. Therefore, VTL just gives some minimum requirements about the structure of 1431
this universal identifier, assuming that the standards adopting the VTL will ensure that the 1432
identifier of a persistent artefact is unique. 1433

In practice, the VTL considers that many definers need to operate independently and 1434
simultaneously (e.g. many organizations, units,…), so that they should be made independent 1435
as much as possible in assigning names to the artefacts, making sure that nevertheless the 1436
resulting names are unique. 1437

Therefore, VTL foresees: 1438

¶ the Name of the artefact (a generic string), which is unique in the environment of the 1439
definer; 1440

¶ an optional Namespace (generic string beginning with an alphabetic character) which 1441
is a supplementary qualifier that identifies the environment in which the artefact 1442
Name is assumed to be unique, to avoid name conflicts. 1443

15 Different standards may have different identification mechanisms.

Version 1.1 Page: 43

The Name of the artefact may be composite. For example, in case of versioned artefacts, the 1444
Name is assumed to contain the version as well. It is the responsibility of the definer to ensure 1445
that the artefact Names are unique in the environment. 1446

The Namespace may be composite as well. For example, a composite structure may be useful 1447
to make reference to environments and sub-environments. Notice that VTL does not provide 1448
for a general mechanism to ensure that a Namespace is universally unique, which is left to the 1449
standards implementing the VTL. 1450

When the context is clear, as typically happens in validation, the Namespace can be omitted. 1451
In other words, the Name of the artefact is always mandatory, while the Namespace is 1452
required only for the operands that belong to a different Namespace than the Transformation. 1453

As intuitive, the Namespace may begin with the name of the institution (“maintenance 1454
agency” in SDMX terms). Assuming the dot (“.”) as separator character between environments 1455
and sub-environments, examples of possible Namespaces are: 1456

¶ ESCB.analyis&insight 1457
¶ EuropeanStatisticalSystem.validation 1458
¶ OECD.Stat 1459
¶ Unesco 1460
¶ Bancaditalia.dissemination.public 1461

 1462

The artefact identifier as a whole is also a string, composed of the concatenation of the 1463
Namespace – if needed – and the artefact Name, where the slash ("/") symbol is a typical and 1464
recommended choice (e.g. “NAMESPACE/NAME” for explicit Namespace definition or simply 1465
“NAME” for referencing the default Namespace). 1466

 1467

Version 1.1 Page: 44

Language Fundamentals 1468

VTL 1.1 is a powerful language that allows the user to express complex validation and 1469
transformation operations on one or more datasets in a clear, concise and readable manner, 1470
without the need to program low-level data handling details. The whole language has been 1471
designed to simplify the problem of writing validation and transformation tasks, and to free 1472
the programmer from writing the usual boilerplate code, therefore making the program 1473
maintenance easier and reducing the chance of introducing bugs. 1474

In the Reference Manual chapter on core operators, including the join expressions, we shall 1475
present in detail how VTL allows user to write dataset expressions using the familiar 1476
arithmetic, logic, string, date and other elementary (or scalar) operators, while the language 1477
itself takes care of all low-level details, such as joining and traversing the datasets involved in 1478
such an expression. In order to lay the foundation for such treatment, in this chapter we cover 1479
the preliminaries -- the key language concepts upon which VTL is built. Considering the power 1480
and expressiveness of VTL, there are surprisingly few of them, and the sections that follow 1481
aim at providing a thorough and not too technical overview of each of them. 1482

Objects and Types 1483

In VTL, an object is any entity that can be processed or computed. This includes elementary 1484
objects as small and simple as numerical, Boolean, string or date scalar values, or as large and 1485
complex as the datasets of the Information Model (IM). Whatever their size and complexity, 1486
objects share some common features: 1487

ǒ All objects in VTL are immutable. This means that VTL programs never change the 1488
content of an input object (e.g., a collection or a dataset), but can, when necessary, 1489
generate a new updated version, which is also immutable. VTL internally uses some 1490
clever tricks to make sure that working with immutable objects does not incur 1491
excessive penalties in terms of computing time and resources. 1492

ǒ Each object has a type. At runtime, each object carries with itself so-called runtime 1493
type information, which describes its structure and can be (and is) inspected by 1494
various VTL operations in order to decide how that object should be processed. But 1495
VTL is also a statically typed system, meaning that before the program is executed, the 1496
compiler uses the information about types of literals, variable parameters, and other 1497
program elements to automatically infer, or at least approximate as much as possible, 1498
the type of more and more complex program constructs. In this way, the compiler can 1499
optimize code and prevent an important and large class of potential type errors that 1500
might otherwise occur at runtime. 1501

Type any is the most general type, and includes all possible objects, without telling us 1502
anything about them. On the other extreme, type () is the empty type, containing no objects. 1503
Nested between these two extremes are all other types in VTL, organized in the following 1504
main type families: 1505

ǒ Scalar types refer to basic numeric, string, Boolean, and date values that can be stored 1506
in a single numeric, string, Boolean, or date-time values in a tabular representation of a 1507
dataset. Type scalar is the most generic, denoting any scalar value, and type null 1508

Version 1.1 Page: 45

contains only the value null , denoting a missing, non-applicable, or undefined scalar 1509
value. Nested between scalar and null are all other scalar types, as described in the 1510
text that follows. The scalar types include: 1511

ƺ integer -- any integer, taking implicitly into account the range of supported 1512
values, as described below in the Basic VTL Assumptions. 1513

ƺ integer [a:] -- any integer greater than or equal to some integer constant a. 1514

ƺ integer [:b] -- any integer less than or equal to some integer constant b. 1515

ƺ integer [a:b] -- any integer that falls between two integer constants a and b, 1516
both inclusive (where a<b). 1517

ƺ integer {x1, ..., xn} -- one of integers enumerated in {x1, ..., xn} 1518

ƺ float -- any floating-point number compatible with double-precision IEEE 754. 1519

ƺ number -- the generalization of integer and float 1520

ƺ boolean -- a Boolean value, either true or false. 1521

ƺ date -- a date-time timestamp 1522

ƺ string -- any string of characters from the UNICODE character set 1523

ƺ string [a] -- any strings consisting of exactly a characters 1524

ƺ string [a:b] -- any string consisting of between a and b characters 1525

ƺ string {s1, ..., sn} -- one of strings enumerated in {s1, ..., sn}; in effect this type 1526
describes elements of a code list. 1527

ǒ Collection types are lists and sets of elements of the same type: 1528

ƺ list <t> is a list of elements of type t. For instance, list< integer > is a list of 1529
integers 1530

ƺ set <t> is a set of elements of type t. For instance, set<string> is a set of 1531
character strings 1532

ƺ collection <t> the generalization of list <t> and set <t> 1533

ǒ Dataset types. Dataset types describe VTL datasets by summarizing the information 1534
about their structure (i.e., components) as needed by different functions and 1535
procedures operating on datasets, and as seen or inferred at compile-time: 1536

ƺ dataset -- any dataset 1537

ƺ dataset { role1 name1 as type1, role2 name2 as type2, ..., roleN nameN as typeN} -- 1538
any dataset that has exactly the listed components. Each role is either 1539
identifier , measure or attribute , each name must be distinct, and each 1540
type is a scalar type. 1541

ƺ dataset { role1 name1 as type1, ..., roleN nameN as typeN ...} (with "..." before the 1542
closing "}")-- any dataset that has at least the listed components, and possibly 1543
some more. Each role is either identifier , measure or attribute , each name 1544
must be distinct, and each type is a scalar type. 1545

Version 1.1 Page: 46

ǒ Record types. These types are analogous to the dataset types, except that they use 1546
keyword record instead of dataset , and refer not to a complete dataset, but to an 1547
individual row in it. 1548

ǒ Product types. Type t1 * t2 * ... * tn (where n>1) describes all n-tuples whose 1549
components belong to the corresponding types t1, ..., tn. E.g., integer * string * 1550
boolean is a type of all triples whose first component is an integer, the second 1551
component is a string, and the third component is a Boolean. For instance, 1552
(105,"Luxembourg", false) is a triple that belongs to this type. 1553

ǒ Function types. Type of the form t -> T describes a function that takes an object of type t 1554
and produces a result of type T. For instance, integer - > string is the type a 1555
function that takes an integer and returns a string. Or, (integer * string) - > 1556
boolean is the type of a function that takes a pair consisting of an integer and string, 1557
and returns a Boolean. 1558

One of the objectives of the VTL type system is to encode useful information about the objects 1559
that belong to a type. That includes meta-information from the data model. Using enumerated 1560
string types, one can effectively encode a code list: 1561

type BENELUX = string { "BE", "NL", "LU" } 1562

type EU12 = string { "BE", "DE", "DK", " ES", "FR", "GR", "IE", "IT", 1563
"LU", "NL", "PT", "UK" } 1564

This is an example of two user-defined named types. 1565

Another way the compiler can use the type information are integer computations. If the 1566
variable parameter x is declared as integer [0:10] , then the compiler can infer that the 1567
expression y:= 2*x+3 has type integer [3:23] , and therefore y cannot be negative or zero 1568
in looping, branching, or filtering constructs. 1569

Identifiers and Values 1570

As in many other programming languages, VRL uses identifiers to refer to objects of different 1571
kinds. Syntactically, regular identifiers start with a (lowercase or uppercase) English alphabet 1572
letter, followed by zero or more letters, decimal digits, or underscores. However, such a 1573
regular identifier cannot be the same as a keyword or a reserved word. 1574

Regular identifiers (just like keywords) are not case sensitive. Internally, VTL system may 1575
either convert them to uppercase or lowercase. In that sense, Pos, pos, and POS are treated as 1576
the same identifier. 1577

Also, a regular identifier cannot start with an underscore, which denotes an argument 1578
placeholder in a function, as described below. 1579

However, VTL 1.1 allows us to escape the limitations imposed on regular identifiers by 1580
enclosing them in single quotes (apostrophes). For instance, '1' is a valid VTL identifier, as 1581
well as '_' , 'a - 2' . 'a:b:c' , 'a/b/c' , or '?x%' . Also, 'string' is a valid quoted identifier, 1582
while string is not (because it is a keyword). Quoted identifiers also may contain 1583
apostrophes, but they have to be doubled. For instance 'a''b' is an identifier consisting of 1584
letter a, an apostrophe, and letter b. And, unlike the regular identifiers, the quoted identifiers 1585

Version 1.1 Page: 47

are case-sensitive: 'Pos' is different from 'pos' , and both are different from 'POS' . 1586
Whether unquoted identifier pos is the same as 'Pos' , 'pos' or 'POS' is implementation 1587
dependent, and users are advised not to depend on any capitalization scheme in order to 1588
ensure portability of their VTL code. 1589

VTL 1.1 makes no difference between the regular and the quoted identifiers. That is to say 1590
that wherever an identifier is expected, we can freely use one form or another. 1591

One common use of identifiers in VTL is to store results of computations. For instance: 1592

D := 0.2*D1 + 0.8*D2 1593

is an assignment statement, where the expression 0.2*D1 + 0.8*D2 is computed, and 1594
(supposing that D1 and D2 are dataset variable parameters) the resulting dataset is stored in 1595
the variable parameter D. After the assignment, we can use D to refer to the computed value. 1596

We use the word "variable parameter" for historical reasons, because that is the term 1597
commonly used in mathematics and programming. Hereinafter, we shorten this term, for sake 1598
of simplicity, to simply “variable”. Please note that the same term (“variable”) is used in the 1599
“VTL Information Model” section with a different meaning, i.e. as an abbreviation of 1600
Represented Variable, which is a GSIM artefact also used by the VTL IM, denoting a Statistical 1601
Variable that has a representation and can be used as a Component of a Data Structure. 1602
Hereinafter, instead, the term “variable” is used as an abbreviation of “variable parameter”, so 1603
meaning an argument, a priori unknown, of an Operator of the language. Speaking about VTL 1604
expressions, therefore, variables are synonym of parameters. However, variables in VTL are 1605
less like storage locations in computer memory that can be updated at will, but more like 1606
logical variables in mathematics: they are immutable. This is to say that once the assignment 1607
is executed, we cannot change the value to which D refers. We are allowed to write: 1608

D := 0.2*D1 + 0.8*D2 1609

D := 1.2 * D 1610

/* other code using D */ 1611

but this is internally translated into: 1612

D := 0.2*D1 + 0.8*D2 1613

U := 1.2 * D /* U is a "fresh" variable name not appearing in the 1614
original code */ 1615

/* other cod e using U instead of D */ 1616

In other words, the second assignment of the form "D := ..." hides the "original" value of D 1617
from the rest of the code. 1618

To understand how variables work, we need to understand the concept of scope. A scope is a 1619
mapping from a set of identifiers visible at some point in VTL to values or objects to which 1620
they refer. 1621

Each assignment statement changes or updates the scope for the statements that follow by 1622
associating the assigned variable name to the result of the expression to the right side of ":=". 1623
Therefore, when two statements in sequence assign to the same variable name, the first 1624
computed value of the variable is visible in the second assignment, but gets overwritten by 1625
the second assignment. This creates the illusion of variable update. 1626

Version 1.1 Page: 48

It is sometimes useful to limit the scope of variables. For instance, in formula: 1627

D := (D1+D2 - 1- D3)/(D1+D2+1+D3) 1628

it may be useful to isolate D1+D2 and 1+D3 in an auxiliary variable A and B, which makes the 1629
code more readable: 1630

A := D1 + D2 1631

B := 1 + D3 1632

D := (A - B)/(A+B) 1633

However, we may want to limit the scope of A and B only to the computation of D. This can be 1634
done using a nested assignment block enclosed in curly braces: 1635

D := { 1636

 A := D1 + D2 1637

 B := 1 + D3 1638

 (A - B)/(A+B) 1639
} 1640

This points to a general rule in VTL: wherever an expression is expected (as, for instance, to 1641
the right of ":="), we can insert a block in curly brackets that introduces local assignments, 1642
whose visibility is limited to the block. The final element of the block must be an expression, 1643
whose result is the result of the entire block. 1644

The whole VTL program can also be seen as one global block, implicitly closed in curly braces. 1645
It may contain zero or more assignments, and may end in a dataset expression which is, 1646
effectively, the result of the program. For compatibility with VTL 1.0 and unlike in normal 1647
blocks, we allow the last statement in the program to be an assignment, in which case the 1648
result of the whole program is the value of the last computed variable. 1649

Expressions 1650

Each VTL program is, essentially, an expression that takes some inputs and returns a result, 1651
which on the program level needs to be a dataset. The same holds for user-defined functions 1652
that we shall mention later: each function is defined as an expression. 1653

Expressions are built from the following ingredients: 1654

ǒ Literals, such as 1 or - 105 (integer) 2.0 or 10.5e - 4 (float), "Abcdef" (string), true 1655
or false (Boolean). As a special case, function abstractions (described in the following 1656
subsections) such as _+_ and \ x,y{ x+y} -- both are functions that take two 1657
arguments and add them together -- can also be considered a special form of "function 1658
literals." 1659

ǒ Variable or column names, given as identifiers (regular or quoted). 1660

ǒ References to dataset components, of the form D.X, where D is a dataset variable name, 1661
and X is an identifier naming the component. 1662

Version 1.1 Page: 49

ǒ Qualified names of module or object members, of the form M::X, where M is the name 1663
of the module or object, and X is the identifier naming a member of M (a value, 1664
function, or other object). 1665

ǒ Function calls of the form name(arg1, ..., argN) (where N>0), where name is the name 1666
of a built-in or user-defined function, and arg1, ..., argN are the function call arguments. 1667

ǒ Built-in unary (prefix and postifx), binary (infix) and ternary (infix) operators, given in 1668
the Reference Manual. These can be used to build (sub-)expressions using the prefix, 1669
infix, or postfix operator notation. 1670

ǒ Join expressions, discussed in the chapter on Core Operators. 1671

ǒ Dataset clauses, discussed in the Reference Manual. 1672

As usual, parentheses override binary and unary operator priorities. 1673

Expressions in VTL are interpreted in two possible ways, depending on the context in which 1674
they appear: 1675

ǒ General expressions are those found in the top-level program assignment statements, 1676
and bodies of user-defined functions. In these expressions, identifier X is always 1677
interpreted as a variable name (used as a parameter in an expression), referring to a 1678
program input, function argument, or an assigned variable. General expressions can be 1679
of any type. For instance, in A:=D1+D2 , D1 and D2 are variable names. 1680

ǒ Component expressions appear in record-level statements inside the join expression 1681
body and in dataset clauses. In them, identifier X (not followed by "." or "::") is 1682
interpreted as a dataset component name. To use variable X, we have to write $X. 1683
Component expressions are always scalar. For instance, in D[filter X>0] , X is not a 1684
variable name, but a component name (of dataset D). However, in D[filter 1685
X>$Limit] , element $Limi t stands for variable Limit (which may be, for instance, a 1686
function argument). 1687

Data Flow Optimization 1688

As we could see in the preceding examples, expressions can be complex and may contain 1689
nested blocks that compute temporary variables. For complex block expressions, it is 1690
important to understand that in VTL their actual computation may differ from what is usually 1691
found in imperative programming languages. In the latter, each assignment is computed 1692
sequentially, followed with the computation of the final result. 1693

It is important to understand that from the programmer's perspective, VTL block expressions 1694
produce results as if they are executed sequentially. For instance, in the block expression: 1695

{ 1696
 A := D1 + D2 1697
 B := 1 + D3 1698
 D := (A - B)/(A+B) 1699
 D /* resu lt */ 1700
} 1701

Version 1.1 Page: 50

we can logically think about the result D as being computed gradually: first A is computed, 1702
then B, and finally D. The semantics of VTL complex expressions guarantees that the final 1703
result is going to be the same as if such step-by-step computation has taken place. This makes 1704
it easy for the programmer to think about the programming problem and organize and write 1705
code in as clear and correct manner as possible. 1706

However, the VTL compiler may perform data flow analysis to infer the data flow graph in the 1707
program in order to optimize the handling of datasets. For instance, computing A, B and D 1708
sequentially in the previous example would be inefficient, since A would require one dataset 1709
join and traversal (D1 and D2), B another (D3), and D the third (A and B). Instead, the 1710
compiler can transform this into a more efficient single join and traversal of datasets D1, D2, 1711
and D3, where all calculations are done in a single run. The way this optimization is done must 1712
guarantee that the result of the block is the same as if the computation is performed 1713
sequentially. But the actual execution strategy used by a VTL implementation can range from 1714
a centralized sequential computation, to translating programs into database or data 1715
warehouse queries, to executing different operations on different interconnected nodes in a 1716
distributed computing system, by routing or streaming data between them. Whatever 1717
execution strategy is actually used, it must be transparent to the programmer. 1718

User-Defined Functions 1719

VTL 1.1 adopts many features from the functional programming languages. In particular, each 1720
scalar or dataset operation and operator can be seen as a function that accepts some 1721
arguments and returns a result. This means that most of the processing can be viewed as 1722
application of functions to data. Sometimes, this is explicit in using functional notation, as in 1723
size(D) , but even when using infix or prefix operator notation as in 2*X - 3, this is equivalent 1724
to (and can indeed be written as) a function call of the form ' - '('*'(2 ,X),3) . That makes 1725
functions one of the fundamental concepts in VTL, along with the join expressions. 1726

There are essentially two ways to define functions in VTL 1.1. Suppose, for instance, a sorting 1727
algorithm that operates on collections of objects of some type t, which requires to be supplied 1728
with a function of type (t,t) -> boolean , which takes a pair of objects of type t and returns 1729
true exactly when the first element is considered to precede the second element (making it 1730
"smaller" in some ordering scheme). The sorting algorithm is neutral with the respect to the 1731
type t of collection elements, and it depends on this function to perform comparison. 1732

Now, let us suppose we want to use that algorithm to sort a collection of integers in a 1733
descending order. For that we have to supply a function of type (integer , integer) -1734
>boolean which returns true for arguments (x,y) exactly when x>y. The classical way to do 1735
that is to write a named function definition of the form: 1736

define function compare_ integer _descending(x as integer , y as 1737
integer) 1738
returns boolean 1739
as x > y 1740

We can normally omit the "returns boolean " part, as the return type information can be 1741
inferred by the compiler from the expression "x>y ". 1742

This is an example of a named function definition. As a result of it, identifier 1743
compare_integer_descending refers, in the scope in which it is defined, to a function object of 1744

Version 1.1 Page: 51

type (integer , integer) - >boolean . We can then pass this function to the sorting 1745
algorithm by name, using identifier compare_integer_descending. 1746

However, for this kind of relatively simple cases, VTL 1.1 allows us to specify a function object 1747
directly, without the need to define/create it separately. This we call the anonymous function, 1748
and in our case it can look like this: 1749

\ x as integer , y as integer { x > y } 1750

The anonymous function starts with a backslash, followed by arguments (and optionally their 1751
types), followed by a block expression that produces the result. This is also a simple example 1752
of a function in whose body arguments appear only once, and that in the order in which are 1753
listed. When the type of the arguments is unambiguous from the context (i.e., when the 1754
compiler can decide that both arguments must be integer, because it already knows we are 1755
sorting a collection of integers, we can be even terser and write: 1756

> 1757

Here, we use underscores as placeholders for arguments. When the compiler encounters an 1758
underscore, it converts the expression in which it appears into an anonymous function, and 1759
turns each underscore into a function argument: 1760

\ x,y{x >y} 1761

An anonymous function that computes an average of three numbers can be written as: 1762

(_+_+_)/3 1763

We can even write: 1764

_ between _ and _ 1765

(noting the spaces surrounding underscores, to prevent underscores to be treated as a part of 1766
identifiers) to denote a function of type (number,number,number)->boolean which takes 1767
three numbers and checks whether the first one falls between the second and the third one. 1768

Anonymous functions specified using underscores have a limitation that each argument can 1769
be used only once. And, by definition, the anonymous functions cannot be recursive, because 1770
they have no way of calling themselves. Therefore, to achieve more general computation 1771
tasks, we need to use the most general way for defining functions, which is using the named 1772
functions. 1773

As seen in the example above, the general template for defining a function is: 1774

define function name(arg1, ..., argN) 1775

returns t 1776

as E 1777

where name is the function identifier, and each arg is an identifier, optionally followed with 1778
keyword as and the argument type. The returns part is also optional, and it specifies the type 1779
of the function's result. 1780

The return type, as well as argument types, are optional, because in many case (although not 1781
always) the compiler can infer their type from the context. For instance, function that checks 1782
if a quadratic equation ax2+bx+c=0 has a solution can be defined as: 1783

Version 1.1 Page: 52

define function has_solution(a, b, c) 1784
as b*b - 4*a*c>0 1785

The compiler knows that the comparison (>) produces a Boolean result. Also, since the right-1786
hand side of > is a numeric literal 0, the left-hand side also has to be a number. And, since the 1787
left-hand side produces from variables a, b, and c and arithmetic operators, the compiler is 1788
able to convert the above definition into: 1789

define function has_solution(a as number , b as number , c as number) 1790
returns boolean 1791
as b*b - 4*a*c>0 1792

However, it is advisable to provide argument and return types for the more complex or 1793
externally visible user-defined functions, in order to help their users, and to make the 1794
compiler check that their implementation really produces the result of the desired type. 1795

So far, all function arguments were obligatory. For functions that perform complex 1796
operations, this may lead to a large number of function arguments, most of which have some 1797
sensible default value.Let us take, for instance, a function that computes n-degree distance 1798
between measurements in two datasets. For two real numbers x and y, the distance of n-th 1799
degree is n-th root of xn-yn.So, the first degree distance is simply x-y, the second degree 1800
distance is sqrt(x2-y2), etc. We can write the function as: 1801

define function distance(d1 as dataset , 1802
 d2 as dataset , 1803
 n as integer := 2) 1804
as 1805
 (d1^n - d2^n)^(1/n) 1806

Note how we added ":= 2" in the declaration of argument n. This makes it an optional named 1807
argument, which, if not specified in a function call, takes on the default value 2. A call 1808
distance(x,y) is equivalent to distance(x,y,n:2). The optional named arguments must come 1809
after the non-optional arguments, and in a call their values are preceded with the argument 1810
name followed by a colon, "n: 2". If we have a function with more than one optional named 1811
argument, such as: 1812

define function z_transform(x as number , 1813
 mu as number := 0, 1814
 sigma as number := 1) 1815
as (x - mu)/sigma 1816

then we can write both 1817

z_transform(x, mu: 50, sigma: 4.3) 1818

and 1819

z_transform(x, sigma: 4.3, mu: 50) 1820

That means that the relative ordering of the optional named arguments in a function call is 1821
not important, since the compiler always looks at the definition to pass the arguments in a 1822
correct sequence. However, as mentioned above, all positional (i.e., not named) arguments 1823
must come first. 1824

Version 1.1 Page: 53

Procedures 1825

Besides functions, VTL supports procedures. Procedures differ from functions in several 1826
important respects. 1827

ǒ Procedures are aimed at automating common processing tasks, and can be used as a 1828
means for shortening the code by replacing common processing tasks with a 1829
procedure call. On the other hand, functions are concerned only with computing 1830
results from arguments. 1831

ǒ Procedures may have several input and output arguments, which are passed by 1832
reference, while the procedure call has no return value of its own. In contrast, 1833
functions defined via a single expression (which may be a complex, block expression), 1834
and exhibit so-called referential integrity. That is to say that a function call with same 1835
arguments (always passed by value) should always return the same result. 1836

To understand procedures, let us take a simple example of a procedure that computes a 1837
quotient and a remainder of a division of measures in a dataset and a number (the same can 1838
be easily extended to two datasets): 1839

define procedure quot_rem(in ds as dataset , in divisor as number , 1840
 out quot as dataset , out rem as dataset) 1841
as { 1842
 quot := floor(ds / divisor) 1843
 rem := ds - quot*divisor 1844
} 1845

We first note that each argument of a procedure is qualified as in or out . Input arguments, 1846
such as ds and divisor in our example, are passed by value, just like function arguments, and 1847
we can pass any expression with compatible type when calling the function. However, output 1848
parameters, such as quot and rem in our example, must be specified as names of variables 1849
that will hold results computed in the procedure body. 1850

For instance, we can call the above procedure like: 1851

call quot_rem(PopPerCoun try, AvgPop, Multiple, Remainder) 1852

and this call is equivalent to the following two assignments: 1853

Multiple := floor(PopPerCountry / AvgPop) 1854
Remainder := PopPerCountry - Multiple*AvgPop 1855

Note that in our case the body of the procedure is a sequence of assignments enclosed in curly 1856
braces. In general, it is always a sequence of assignments or procedure calls. Also, any 1857
assignment in the procedure body to a variable that is not marked as output is invisible to the 1858
calling code. 1859

Procedures may look a lot like macros, but they are much more powerful. Firstly, the body of a 1860
procedure is compiled and type checked, which means that any syntax or semantic errors in a 1861
procedure definition are detected at compile time. This extends to the type checking of input 1862
and output arguments. Finally, procedures can be stored in modules and reused. 1863

Version 1.1 Page: 54

Language Core 1864

The ability to define user functions and procedures allows development of libraries of 1865
reusable and standardized VTL validation and transformation building blocks, which, in turn, 1866
adds to the effectiveness and expressiveness of use of VTL 1.1 in normal use case scenarios. 1867
But to be useful, these functional and procedural facilities need to rest on a solid foundation 1868
directly provided by the language. This includes the two main components: 1869

¶ Core constructs, which represent the fundamental building blocks into which any 1870
dataset processing in VTL 1.1 can be decomposed, and 1871

¶ Standard library, which contains a large number of utility functions and operators built 1872
from the core constructs or other standard library constructs. 1873

Both the core constructs and the standard library are explained in detail in the Reference 1874
Manual. 1875

The role of the core constructs is to express the semantics of simple and complex operations 1876
in VTL in an unambiguous manner. For instance, using the scalar operators '+' and '*' that add 1877
and multiply numbers, and a join expression, we can define the function: 1878

define function midway(d1 as dataset { measure x as number , é}, 1879
 d2 as dataset { measure x as number , é}) 1880
re turns dataset { number x as numb er, é} 1881
as 1882
 [d1 outer join d2] { 1883
 filter d1.x is not null or d2.x is not null 1884
 x := 0.5*d1.x + 0.5*d2.x 1885
 } 1886

which takes two dataset arguments d1 and d2, each containing (at least) a numeric measure 1887
component named x, and returns a dataset with a numeric measure component named avg 1888
which is the mean of x from d1 and d2. Without going here into too much detail, well 1889
explained in the Reference Manual, the function body after as is a join expression that: 1890

¶ Performs a join of d1 and d2, by matching records from d1 and d2 that share the same 1891
values of identifier components. The set of identifier components of d1must be equal 1892
to, a subset of, or a superset of, the set of identifier components of d2. 1893

¶ The type of join is outer, which means that if for some record in d1 there is no 1894
matching record in d2 (or vice versa), the join "invents" the latter with all measure and 1895
attribute component values set to null . 1896

¶ The body of the join expression is given inside the curly braces, '{' and '}'. Inside the 1897
body, d1 and d2 refer to the matched records from the corresponding joined datasets. 1898

¶ The filter statement skips the cases where the numeric measure x is undefined In 1899
both d1 and d2. This is important, because datasets d1 and d2 may have more than one 1900
measure component, 1901

¶ For each pair of matched records d1 and d2, the result contains one record that 1902
inherits all identifier component values from d1 and d2, and has a numeric measure 1903
component x which is computed as 0.5*d1.x + 0.5*d2.x . 1904

For instance, let us suppose we have these two data sets: 1905

d1 := 1906

Version 1.1 Page: 55

Year Geo X

2011 LU 104

2011 NL 812

2012 LU 97

and d2 := 1907

Geo X

LU 128

NL 768

Then midway(d1,d2) will produce: 1908

Year Geo X

2011 LU 116

2011 NL 790

2012 LU 112.5

Incidentally, the same operation can be directly and simply written in VTL as a dataset 1909
expression: 1910

 0.5*d1.x + 0.5*d2.x 1911

where d1 and d2 are two dataset variables. This simple dataset expression is internally 1912
automatically translated by the compiler translated into the same expression as given in the 1913
body of the function given above. Note that in the dataset expression '*' is a mixed 1914
scalar/dataset operator (multiplying a scalar value 0.5 with a dataset), and '+' is a dataset 1915
operator (both operands are datasets). However, the meaning of these two scalar/dataset and 1916
dataset operators and of the entire expression does not need to be separately defined: it is 1917
systematically derived from the core operators and constructs, scalar '+' and '*' and the join, 1918
as described in the corresponding chapter below. 1919

It is important to note that the selection of core operators and constructs is entirely driven by 1920
the language design and the need for semantic soundness. Users need not be concerned 1921
whether they are using a "core" or a "library"operator, function, or another construct. Users 1922
should always try to use the construct which is best suited for their intended purpose. 1923

For the language implementers, the existence of the language core represents a contract that 1924
controls the correct behaviour of their VTL implementation. It does not always necessarily 1925
mean that every implementer needs to use the core constructs as the back-end. While every 1926
VTL construct needs to be expressible in terms of the language core, implementations may 1927
use more efficient backend-specific algorithms and techniques (in R, SAS, SQL, etc.). However, 1928

Version 1.1 Page: 56

the implementers must ensure that the user-observable behaviour of their implementations 1929
respect the behaviour required by the contract. 1930

Compilation Units and Dialect Selection 1931

Programs and modules are two types of compilation units in VTL. By a compilation unit we 1932
here mean a unit of code stored in a single file or transmitted as a message. The main 1933
difference between a VTL program and a VTL module is that the former executes some 1934
particular dataset processing task (some form of validation or transformation), while the 1935
latter creates and packages functions, procedures, values, named types, and other objects so 1936
that they can be used by programs and other modules. 1937

Since VTL comes in several versions, which may use different syntax or may interpret the 1938
same syntactic forms differently. To indicate the version or dialect of VTL used in a 1939
compilation unit, its first line (after leading whitespace and comments) should be the 1940
following directive: 1941

use synt ax "X.Y" 1942

(optionally followed by a semicolon) where X.Y is the version number of VTL dialect in which 1943
the compilation unit is written. For instance: 1944

use syntax "1.1" 1945

indicates that what follows in the file uses the VTL 1.1 syntax. 1946

The version number in use syntax directive can be followed by one or more of case 1947
insensitive tags of the form "+tag" where tag consists of one or more Latin letters, decimal 1948
digits and underscores. For instance: 1949

use syntax "1.1+estat+strict" 1950

may indicate VTL 1.1 syntax with custom Eurostat (ESTAT) tags, and strict type checking 1951
option. 1952

If a VTL system does not support the version indicated in use syntax directive, it is obliged to 1953
reject the compilation unit and report an error. However, each VTL implementation can freely 1954
decide which tags to recognize, and should ignore all unecognized tags (possibly issuing a 1955
compile-time warning). 1956

Program and Module Structure 1957

A module is distinguished from a program by starting with a module directive after the 1958
leading whitespace, comments, and the optional use syntax directive. If the first thing after 1959
the leading workspace, comments and the optional use syntax directive is not a module 1960
directive, then the compilation unit is treated as a program, not module. 1961

Module Declaration 1962

The simplest form of the module directive is: 1963

module name 1964

Version 1.1 Page: 57

(optionally terminated with a semicolon). Name is an identifier giving the module name. This 1965
defines a transient module, which is created in memory when the module is loaded by the 1966
compiler because it is used by a program or another module. 1967

Another more complex form of the module directive is: 1968

module name in "AGENCY:ENTITY:VERSION" 1969

(optionally terminated with a semicolon). AGENCY is a code for the owner of ENTITY, which is 1970
a logical name of a persistent entity in the underlying information model used by the VTL 1971
system. For instance, in VTL systems based on SDMX, ENTITY refers to a named versionable 1972
artefact, such as a data structure definition or a dataflow. Finally, VERSION gives the version of 1973
the ENTITY to which the module is associated. 1974

The latter form of the module directive creates a persistent module, which the VTL system 1975
associates with ENTITY. 1976

Module Usage 1977

Both VTL programs and modules can depend on other modules. These dependencies are 1978
expressed with use module directives. The first form: 1979

use module name 1980

(optionally followed by a semicolon) expresses a dependency on a transient module with the 1981
given name which is locally available, i.e., it is supplied together with the program or module 1982
using it, for instance as a file in the same directory tree or a part or attachment of the same 1983
message. 1984

The second form: 1985

use module name in "AGENCY:ENTITY:VERSION" 1986

(optionally followed by a semicolon) expresses a dependency on a persistent module with the 1987
given name which is attached to the persistent ENTITY owned by AGENCY. VERSION is either a 1988
version number, or an asterisk (*) that signifies the latest version. In this case, depending on 1989
the underlying concrete information model (such as, for instance, SDMX), the compiler needs 1990
to retrieve the module from a 1991

Module dependencies cannot be circular. One advantage of expressing the module 1992
dependencies with use module directives is that the compiler (or any other source code 1993
handling tool, such as a registry) can analyse module dependencies, construct dependency 1994
graphs, and detects any problems (such as missing modules or circular dependencies) 1995
statically, i.e., before the VTL program is deployed and run. 1996

Definitions 1997

A VTL program or a module can contain zero or more definitions. These include: 1998

ǒ Type definitions 1999

ǒ Function and procedure definitions 2000

ǒ Validation rule / rule set definitions 2001

All definitions introduce a named object (a type, a function, a procedure, a validation rule / 2002
rule set) in the scope of the program or module. 2003

Version 1.1 Page: 58

To refer to identifier x in module module, we use the double column syntax: 2004

name :: x 2005

which is called a qualified name, in contrast with a simple identifier or simple name. 2006

Module -Level Computations 2007

After definitions, modules can contain computations, which take the form of assignments: 2008

x := E 2009

where x is a variable, and E is an expression. Like a definition, each assignment also associates 2010
an object which is the result of E with identifier x in the module scope, but this time using the 2011
general expression syntax. This is useful, for instance, when the module describes a data 2012
structure, and needs to have a member which is a set of tuples describing constraints on the 2013
dataset component values. 2014

Or, a mathematical module can contain assignment: 2015

PI := 4*atan(1.0) 2016

Another example where computations come handy is re-exporting a named object from a 2017
used module. In the following example: 2018

use syntax "1.1" 2019
module A 2020
use module B 2021
/* defin i tions */ 2022
X := B::X 2023

module A uses module B, and can refer from A to member named X in B as B::X. But, by 2024
assigning it to name X in its own scope, module A re-exports B::X as A::X which is accessible 2025
from any module using A (and not necessarily using B). 2026

Program -Level Computations 2027

While computations are optional in modules, they are mandatory in programs. In fact, 2028
performing a computation and returning a result is the whole purpose of a program. The 2029
computation statements consist of zero or more assignments or procedure call statements, 2030
followed by an expression which is the result of the whole program. This final expression can 2031
be omitted if the last statement in the program is an assignment; in this case, the result of the 2032
program is the result of the last assignment. 2033

Module Instantiation and Incremental Compilation 2034

In the preceding section, we already said that circular dependencies between modules are 2035
forbidden in VTL. In fact, we go one step further by requiring that a module needs to be 2036
instantiated before being used in a program or another module. 2037

A module is instantiated when: 2038

ǒ All modules on which it depends (if any) are (transitively) instantiated 2039

ǒ All type, function, procedure, rule, etc., definitions in the module have created the 2040
corresponding objects and bound them to the names in the module scope. 2041

Version 1.1 Page: 59

ǒ All module computations have been performed, and all values have been bound to the 2042
corresponding variable names in the module scope. 2043

The instantiated module can be seen simply as a map from module member names to the VTL 2044
objects created from definitions or computed from assignments. Of course, on the technical 2045
level the situation is somewhat more complex, since an instantiated module also needs to 2046
carry additional information about types and module dependencies. 2047

One advantage of this approach is that an instantiated module is not only limited to an in-2048
memory representation, but can also be written to a persistent store in some appropriate 2049
external format -- for instance by serializing to a file, or populating database tables. Unless the 2050
module source code or some of its dependencies change, the VTL compiler needs to compile 2051
and instantiate the module only once. This may significantly improve the speed of compilation 2052
and execution of VTL programs. 2053

Besides, by requiring that all modules used by a VTL compilation unit need to be previously 2054
instantiated, it becomes natural for the compiler to perform incremental compilation, starting 2055
from the bottom of the module dependency tree and going upwards towards the top-level 2056
target (a program or a module). A recompilation and re-instantiation of a module would be 2057
triggered only when its instantiated form is outdated or missing, or when one or more of its 2058
dependencies change. 2059

Principle of Introspection 2060

It has already been hinted above that one of the important uses of modules in VTL is to 2061
describe data structures of different datasets that are used in a program. Note that the dataset 2062
structure can be described in several different ways: 2063

ǒ Using compile-time type information -- we have already seen that the structure of a 2064
dataset can be fully or partially described using dataset type. The level of detail and 2065
precision of a dataset type reflects the information put into the code by the 2066
programmer and the characteristics of operations applied to the datasets. 2067

ǒ Using runtime type information -- each dataset at runtime carries with itself a full and 2068
precise description of its structure, as fed on input or computed in the VTL program. 2069
This information is typically more precise than the type information inferred at 2070
compile time. 2071

ǒ By explicitly constructing a description of dataset structure at runtime -- this means 2072
constructing VTL objects that represent dataset components, their types, roles, or 2073
constraints. 2074

Each of these approaches has certain advantages and disadvantages. The compile-time type 2075
analysis prevents using objects that are not datasets in dataset operations, or using datasets 2076
that lack the necessary components with the required data types and roles. For instance, if f is 2077
a function and ds a dataset variable, the type system ensures that in the call: 2078

f(ds) 2079

ds always meets the minimum of requirements imposed on its structure by f. However, the 2080
compile-time type analysis is limited by what is known before a program is run and before it 2081

Version 1.1 Page: 60

receives any inputs. Therefore, its characterization of datasets can be sometimes too general 2082
and coarse. 2083

We can also define type that describes a particular dataset structure. For instance: 2084

type population = dataset { 2085
 identifier geo as string 2086
 identifier year as integer 2087
 measure population as float 2088
 attribute status as string 2089
} 2090

If we define f to accept an argument of type population, the compiler raises a red flag if we try 2091
to use a dataset that may not be compliant. But what if we want to check if ds can be fed to f 2092
not in general, but in a particular case of program execution? 2093

At runtime, each input to the program and each result of computation carries with it the 2094
precise description of its structure. If ds is a dataset variable, we can use is operator to ask: 2095

ds is population 2096

Note that this construct allows us to use the runtime type information of ds against a statically 2097
defined type population. If this test succeeds (returns true), we know that passing this 2098
particular ds to f is safe even if at compile-time we had no information to justify the safety of 2099
passing ds to f in general. 2100

The "trick" on which this is based is that population on the right-hand side of is is reified, 2101
which is to say that it is represented as an object at runtime. Thus, is takes the run-time type 2102
information of ds and the reified type information of population, and compares them. 2103

But let us go one step further, and imagine we have an arbitrary dataset ds and want to 2104
inspect its structure from within a VTL program. 2105

One drawback on relying on runtime type information is that the objects describing it can be 2106
very complex and unstable in the sense that they can change from one version of the language 2107
to another. This means that if a VTL program wants to look into the structure of a dataset at 2108
runtime, it would need to rely on a very complex internal API, which would likely change as 2109
new features are added to the language. 2110

This seems to suggest that it is better to keep the structure of the runtime type information 2111
representation hidden from the programmer. As an alternative, we can construct a simplified 2112
description of the structure, which faithfully reflects the data type. 2113

Imagine that from the population data set type we generate the following module 2114

use syntax "1.1" 2115

module pop_ds 2116

type t = dataset { 2117

 identifier geo as string 2118

 identifier year as integer 2119

 measure population as float 2120

Version 1.1 Page: 61

 attribute status as string 2121

} 2122
structure := list(2123

 module { 2124

 name := "geo" 2125

 role := "identifier" 2126

 type t = string 2127

 }, 2128

 module { 2129

 name := "year" 2130

 role := "identifier" 2131

 type t = integer 2132

 }, 2133

 module { 2134

 type t = float 2135

 name := "population" 2136

 role := "measure" 2137

 }, 2138

 module { 2139

 name := "status" 2140

 role := "attribute" 2141

 type t = string 2142

 } 2143

} 2144

In this module, we have encoded the desired dataset structure in two ways: by defining a type 2145
t and by providing the list of objects describing individual components. Each module { ... } 2146
inside list is a component descriptor object. 2147

If we have a module or a program that uses pop_ds: 2148

use module pop_ds 2149

then we can refer to the database type as: 2150

pop_ds :: t 2151

and if the following test returns true: 2152

ds is pop_ds :: t 2153

Version 1.1 Page: 62

we can inspect the structure of the dataset at runtime by looking at: 2154

pop_ds :: structure 2155

In order to allow introspection of dataset structure for arbitrary datasets, we can use built-in 2156
function get_dataset_structure which takes an arbitrary dataset and returns a list of 2157
component descriptors whose structure is illustrated our example. In that sense, the dynamic 2158
introspection is still possible, but the API is kept at minimum. 2159

Looking at the pop_ds module above, it becomes obvious that this kind of modules can be 2160
automatically generated from the information model. Indeed, in VTL 1.1 each dataset 2161
structure that is identifiable with AGENCY:NAME:VERSION coordinates behaves as if it has 2162
attached a VTL module describing the dataset structure in the described manner. Of course, 2163
these modules are not written by hand, but are automatically generated from the information 2164
model itself. 2165

For instance, one can write: 2166

use module pop_ds in "acme:population:*" 2167

to import the dataset structure description module pop_ds for the latest version of population 2168
table owned by acme, and then use pop_ds::t and pop_ds::structure in the described manner. 2169

This is the principle of automated introspection of dataset structures from the information 2170
model in VTL code. 2171

Version 1.1 Page: 63

Core Operators and Join Expressions 2172

Scalar Core Operators 2173

VTL 1.1 scalar operators are unary and binary operators that accept a scalar argument and 2174
return a scalar value. In this section, we present only the operators that are "natively" scalar, 2175
but can be automatically lifted to the dataset/scalar and dataset levels. There are a number of 2176
other operators that can take scalar values, but are not amenable to the automatic lifting. 2177
They are all presented systematically in the Reference Manual, and below we give only a brief 2178
overview. 2179

Binary scalar operators are always infix, and can be left-associative, right-associative and non-2180
associative. If operator @ is left-associative, then X@Y@Z is the same as (X@Y)@Z, and if it is 2181

right-associative, then X@Y@Z is the same as X@(Y@Z). If @ is non-associative, the form 2182
X@Y@Z is syntactically invalid. Unary scalar operators can be prefix and postfix. 2183

Scalar arithmetic operators 2184

The next table presents the arithmetic operators, which take number operands and produce a 2185
number result: 2186

Operator Usage Associativity Description

Additive operators

+ E + E' Left Addition

- E ï E' Left Subtraction

Multiplicative operators

* E * E' Left Multiplication

/ E / E' Left Division

div E div E' None Integer division

mod E mod E' None Remainder

Power operators

^ E ^ E' Right Exponentiation

Unary operators

- - E Prefix Sign inversion

+ +E Prefix Sign preservation

 2187

Version 1.1 Page: 64

The unary operators have the highest priority, then the power operators, then the 2188
multiplicative operators, and finally the additive operators. 2189

The operands to the scalar arithmetic operators can be any number . If at least one operand is 2190
null , the result is also null . 2191

Scalar string operators 2192

There is a string concatenation operator: 2193

Operator Usage Associativity Description

|| E || E' Left String concatenation

 2194

VTL does not distinguish between null and the empty string "" . 2195

Scalar Boolean operators 2196

Scalar Boolean operators correspond to the logical connectives or , xor , and , and not . They 2197
take Boolean operands and return a Boolean value. Unary not has the highest priority, then 2198

the multiplicative operator and , and finally the two additive operators or and xor . 2199

Operator Usage Associativity Description

Additive operators

or E or E' Right Logical disjunction

xor E xor E' Right Logical exclusive disjunction

Multiplicative operators

and E and E' Left Logical conjunction

Unary operators

not not E Prefix Logical negation

 2200

 2201

The treatment of nulls is the following: 2202

X not X Y X and Y X or Y X xor Y

true false true true true false

false false true true

null null true null

false true true false true true

Version 1.1 Page: 65

false false false false

null false null null

null null true null true null

false false null null

null null null null

 2203

Scalar relational and test operators 2204

Operator Usage Associativity Description

Binary operators

= E = E' None Value equality. E and E' are the same

<> E <> E' None E and E' are not the same

< E < E' None E is smaller than E'

<= E <= E' None E is smaller than or equal to E'

> E > E' None E is greater than E'

>= E >= E' None E is greater than or equal to E'

not = E not = E' None Equivalent to E <> E'

not <> E not <> E' None Equivalent to E = E'

not < E not < E' None Equivalent to E >= E'

not <= E not <= E' None Equivalent to E > E'

not > E not > E' None Equivalent to E <= E'

not >= E not >= E' None Equivalent to E < E'

Ternary operators

between E between E' and E'' None Equivalent to (E'<=E and E<=E'')

not
between

E not between E'

and E''

None Equivalent to (E'>E or E>E'')

Unary operators

is null E is null Postfix Returns true iff E is null . Does not
distinguish between empty strings and

Version 1.1 Page: 66

nulls.

is not

null
E is not null Postfix Equivalent to not(E is null)

 2205

 2206

The equality and inequality operators (=, <>, and their negated variants) can take any scalar 2207
values as operands. Scalar relational operators (<, <=, >, >=, between and their negated 2208
variants) only take numeric operands. If at least one operand to a relational operator is null , 2209
the result is also nul l . 2210

Unary test operators is null and is not null test whether the operand is (or is not 2211
null) and return the corresponding Boolean value as a result. 2212

Scalar Functions 2213

In VTL 1.1, scalar functions (i.e., functions whose arguments are only scalar and that return 2214
scalar as a result) can also be automatically lifted to dataset/scalar and dataset levels, 2215
similarly to the unary and binary operators. For instance, pow(X,N) computes N-th power of 2216

number X, and log(X) computes the natural logarithm of X. When one or more arguments 2217
to such a function are datasets, they get automatically lifted. For instance, 2218
pow(D1.X,D2.N) joins D1 and D2, and then for each matched row computes the scalar 2219
power, taking the measure X from D1 as the base and measure N from D2 as the exponent, and 2220
the result is a joint dataset with an additional column holding the result. 2221

Join Expressions 2222

VTL 1.1 introduces the join expressions as the base mechanism for combining and 2223
manipulating datasets, including the lifting of the scalar operators and functions to the 2224
dataset/scalar and dataset levels.. The general join expression syntax has the form: 2225

[JOIN] { BODY} 2226

where JOIN is one of several join specifications described below, and BODY is a list of zero or 2227
more join expression statements that perform data filtering, computation, manipulation, 2228
grouping and ordering, also described in more detail in the text that follows. The start of the 2229
join expression is distinguished by the open square bracket ("["). 2230

Join Specifications 2231

The join specification is one of the following: 2232

¶ d – a single dataset variable. In this case we have dataset traversal (no join is 2233

performed). BODY is executed for each record in d. Inside BODY, d refers to the current 2234

record in dataset d. 2235

¶ d1, d2, ..., dn – where n>1, performs an outer join of datasets held in dataset variables 2236

d1,d2,...,dn. These datasets must be joinable: for some index j, the set of identifier 2237

components in dj must include identifiers from all other datasets; dj is called the pivot 2238

dataset. Then, dj is joined using a full outer join with each of datasets di (i<>j) on shared 2239

Version 1.1 Page: 67

identifier components. Inside BODY, each of d1,d2,...,dn refers to the matched record 2240

from the respective dataset. 2241

¶ d1 outer d2, ..., dn – where n>1, is synonymous to the previous case d1, d2, ..., dn. 2242

¶ d1 inner d2, ..., dn – where n>1, performs an inner join of datasets held in dataset 2243

variables d1,d2,...,dn. As in the outer join case, the datasets must be joinable: for some 2244

index j, the set of identifier components in dj must include identifiers from all other 2245

datasets; dj is called the pivot dataset.. Then, dj is joined using an inner join with each of 2246

datasets di (i<>j) on shared identifier components. Inside BODY, each of d1,d2,...,dn 2247

refers to the matched record from the respective dataset. 2248

¶ d1 cross d2, ..., dn – where n>1, performs a cross join (or a Cartesian product) of 2249

datasets held in dataset variables d1,d2,...,dn. All combinations of records are processed 2250

in BODY, and each of d1,d2,...,dn refers to the matched record from the respective 2251

dataset. 2252

The meaning of the inner and the outer join is the same as the meaning of INNER JOIN 2253
and FULL OUTER JOIN constructs, respectively, in the SQL-92 standard. In the cross join 2254
case, BODY of the join expression typically filters out record combinations that do not fit 2255
some logical condition. 2256

It is possible for two or more dataset variables involved in a join to refer to (i.e., act as 2257
aliases for) the same dataset. Inner and outer joins recognize dataset aliases, and 2258
automatically simplify the join structure to ensure that each dataset variable refers to a 2259
distinct dataset, while the aliases can still be used in the join body and refer to the same 2260
matched record from the original dataset. This is an automatic process that is transparent 2261
to the user. Indeed, aliases can be safely removed in an inner or outer join because joining 2262
a dataset with itself on the same set of identifier components always matches each record 2263
with itself. 2264

However, in a cross join, each dataset variable is used, whether or not two or more of them 2265
refer to a same dataset. This allows matching of two or more records from the same 2266
dataset using custom filter criteria, and is instrumental in implementing multiple-record 2267
(combinatorial, first-order, or "diagonal") validation rules. 2268

Functional In tegrity 2269

The VTL information model requires of each dataset a functional dependency between the 2270
identifier components and all other components. If we look at a dataset as a tabular structure 2271
with a finite number of columns (which correspond to components) and rows (which 2272
correspond to individual records), this translates into the following functional integrity 2273
requirements: 2274

¶ A dataset can have an arbitrary number of identifier, measure and attribute columns. 2275

Each column has a distinct name in the dataset, and a scalar data type. 2276

¶ All null values in string columns are implicitly converted into the empty string, and 2277

are not seen as null s in the points below. 2278

¶ If a dataset has no identifier columns, but it has at least one measure or attribute 2279

column, it must have exactly one row. A dataset that has no columns whatsoever 2280

Version 1.1 Page: 68

cannot have any rows. The points below apply only to datasets with one or more 2281

identifier components. 2282

¶ No identifier column can have a null value in any dataset row. 2283

¶ The combination of identifier column values in a dataset row is called the key. Two or 2284

more rows in the same dataset cannot have the same key. 2285

¶ When a measure or attribute column has value null in a dataset row, it is considered 2286

undefined for that row's key. 2287

The join expressions not only expect the input datasets to be functionally integral, but are 2288
engineered in a way that ensures functional integrity of the result. The key to this is the 2289
behaviour of join clauses and elements of BODY, explained below. Therefore, any construct 2290
built with the join expressions, including the lifting of the scalar operators and functions to 2291
the dataset/scalar and dataset levels, respects functional integrity by construction. 2292

Successive Dataset Transformations 2293

To explain the meaning of the join expressions, we can logically view it as a series of 2294
successive dataset transformations: 2295

First, the join specification that starts a join expression (traversal, inner, outer, or cross join) 2296
creates by itself the initial "joined" dataset: 2297

o For a dataset traversal , the initial dataset is identical to the traversed dataset. 2298
¶ For For inner and outer joins , the initial working record consists of the identifier 2299

components from the pivot dataset matching record. 2300

¶ For cross join, the initial working record consists of identifier components from all 2301

input datasets: identifier component X from input di appears under name di_X 2302

(name of the dataset variable di plus an underscore, plus the name of the 2303

component X). To avoid possible ambiguities, in the cross join case the names of 2304

input dataset variables cannot contain an underscore. 2305

Second, the first join expression statement in BODY (if any) operates on this initial dataset and 2306

produces a resulting dataset. which is fed as input to the next statement in BODY, etc. The 2307

dataset which is the result of the last statement in BODY is the result of the entire join 2308

expression. 2309

It should be noted that this is a logical view on the semantics of the join specification and the 2310

statements in BODY, which makes it easy to explain and understand. In reality, having each 2311

statement making a separate pass through its input dataset would not be efficient. Indeed, it is 2312

often the case that all BODY statements can be executed in a single pass (e.g., a single SQL 2313

query) through the joined datasets. 2314

Kinds of Body Statements 2315

The element BODY in a join expression consists of zero or more join expression statements 2316
that define the processing steps applied to the (joined) input datasets inside the join 2317
expression. These statements can be divided in two main groups: 2318

Version 1.1 Page: 69

ǒ Record-level statements process each individual record of the statement's input 2319

dataset, by adding or updating columns, computing temporary values (i.e., local 2320

variables), or deciding whether to keep or discard a record based on a filter condition. 2321

ǒ Transposition statements , which unfold an identifier component (a measure 2322

dimension) from several records from its input dataset into a single output record, or 2323

perform a symmetric folding operation. The measure dimension breakdown for folding 2324

and unfolding is either given explicitly as a part of the transposition statement, or by 2325

reference to an externally defined hierarchy. 2326

Record-Level Statements 2327

Several record-level statements use scalar expressions in the column mode. These are 2328
expressions that evaluate to a scalar value, but differ from normal scalar expressions (in the 2329
general mode) in the interpretation of identifiers. In the column mode expressions, the 2330
identifiers (that are not followed by an open parenthesis or a .) refer to components in the 2331
working record which is the input to the statement, and not to variables. To refer to a 2332
variable, one has to prefix its name with a dollar sign. 2333

Explicit component computations 2334

These statements compute the value of a component in the working record. 2335

Form Description

X := E Computing new/updated measure

measure X := E Same as the previous

attribute X := E Computing new/updated attribute

identifier X := E Computing new/updated identifier

 2336

In the above table, X is a component name (an identifier) for the newly computed component, 2337
and E is a scalar expression in the column mode. By default, if an explicit role keyword 2338
(measure , attribute , or identifier) is omitted, role measure is assumed. 2339

An explicit component computation adds to the working record a component named X with a 2340
given role and value specified by E. The working record may already contain a measure or 2341
attribute component named X, which can be used in E, but is replaced with the newly 2342
computed X (which may have a different role and/or type). An error is raised if the working 2343
record has an identifier component named X. 2344

The type of component X in the resulting working record is the type of expression E. 2345

E is not a string expression and it evaluates to null .Example 1: 2346

[D] { 2347
 Total := Men + Women 2348
 WomenRatio := Women / Total 2349
 MenRatio := 1.0 ï WomenRatio 2350
 attribute ObsStatus := ObsStatus || "A" 2351
} 2352

Version 1.1 Page: 70

Example 2: 2353

[D] { 2354
 Population := Population * 1.01 2355
 attribute ObsStatus := ObsStatus || "I" 2356
} 2357

Example 3: 2358

[D1, D2] { 2359
 Population := D1.Population + D2.Population 2360
 attribute ObsStatus := D1.ObsStatus || D2.ObsStatus 2361
} 2362

 2363

Implicit component computations 2364

The implicit component computation statements compute the value of a component if it is not 2365
already present in the working record. 2366

Form Description

implicit X := E Computing implicit measure

implicit measure X := E Same as the previous

implicit attribute X := E Computing implicit attribute

implicit identifier X := E Computing implicit identifier

In the above table, X is a component name (an identifier), and E is a scalar expression in the 2367
column mode. By default, if an explicit role keyword (measure , attribute , or 2368
identifier) is omitted, role measure is assumed. 2369

The implicit component computation statements behave similarly like their explicit 2370
counterparts (without keyword implicit), but they are executed only if the working record 2371
does not already have a component named X. An error is raised if there is already a 2372
component named X, but with a different role. 2373

The type of component X in the resulting working record is the type of expression E. 2374

E is a non-string expression that evaluates to null . Example 1: 2375

[D] { 2376
 implicit attribute ObsStatus := "" 2377
} 2378

Example 2: 2379

[D1, D2] { 2380
 Population := D1.Population + D2.Population 2381
 attribute ObsStatus := D1.ObsStatus || D2.Obs Status 2382
 implicit identifier RefArea := "EU" 2383
} 2384

Computing local variables 2385

Local variables store a value for the remainder of the record-level statements in BODY. 2386

Version 1.1 Page: 71

Form Description

$X := E Computing a local variable

In the table above, X is an identifier, used as a variable name, and E is a scalar expression in 2387
the column mode. 2388

This statement is useful for computing a value and storing the result temporarily for easier 2389
reference, without making it appear in the result. 2390

Example: 2391

[D] { 2392
 $Total := Men + Wome n + Children 2393
 WomenRatio := Women / $Total 2394
 MenRatio := Men / $Total 2395
 ChildrenRatio := 1.0 ï WomenRatio - MenRatio 2396
} 2397

Filtering records 2398

The filtering statement decides whether to keep the working record in the result or to omit it. 2399

Form Description

filt er E Permit only records satisfying condition E

In this statement, E is a Boolean expression in the column mode. 2400

If at runtime E does not evaluate to true , no further record-level statements are executed, 2401
and the working record is discarded. 2402

Example 1: 2403

[D] { 2404
 $Total := Men + Women + Children 2405
 WomenRatio := Women / $Total 2406
 MenRatio := Men / $Total 2407
 filter MenRatio + WomenRatio >= 0.6 /* Treat only these cases. */ 2408
 ChildrenRatio := 1.0 ï WomenRatio - MenRatio 2409
} 2410

Example 2: 2411

[D1, D2] { 2412
 filter D1.Pop is not null or D2.Pop is not null 2413
 /* At least one of D1.Pop and D2.Pop must be defined. */ 2414
 Pop := D1.Pop + D2.Pop 2415
} 2416

Example 3: 2417

[D1 cross D2] { 2418
 filter D1.Pop < D2.Pop /* Custom join condition. */ 2419
 Ratio := D1.Pop / D2.Pop 2420
} 2421

Function application to components of the working record 2422

These statements transform components of the working record by applying a function to 2423
them. 2424

Version 1.1 Page: 72

Form Description

apply F Apply function to measures of the
matching type

apply F to attributes Apply function to attributes of the
matching type

apply F to measures and

attributes
Apply function to measures and attributes
of the matching type

Here, F is a function that takes one argument of some scalar type t and returns a result of 2425
some scalar type T. The first form transforms value of each measure X from the working 2426
record whose type is compatible with t to value F(X) of type T in the resulting working record. 2427

The statement forms that include `to attributes ' and `to measures and 2428
attributes ' apply function F to components with the respective roles, not just to measures 2429
as in the first form. 2430

Example: 2431

[D] { 2432
 apply _*1000 /* Multiplies all numeric measures by 1000. */ 2433
 apply _&"x" to attributes /* Adds "x" to all string attributes. */ 2434
} 2435

Function application to components of the matched input records 2436

These statements combine components from the matched records of the input datasets by 2437
applying a function to their values and adding the result to the working record. 2438

Form Description

apply F to dk1, …, dkm Apply function to measures from dk1, …, dkm
with same names and matching types

apply F to attributes in dk1, …, dkm Apply function to attributes from dk1, …, dkm
with same names and matching types

apply F to measures and

attributes in dk1, …, dkm

Apply function to measures and attributes
from dk1, …, dkm with same names and
matching types

Here, F is a function that takes m>0 arguments of the corresponding scalar types t1,…,tm, and 2439
returns a scalar result of type T. dk1,…,dkm is a subset of the input dataset variables from JOIN 2440
that represent the matched records in BODY. 2441

The first form of the statement looks for the same-name measure components that appear in 2442
each of dk1,…,dkm and whose respective types are compatible with t1,…,tm. For each such shared 2443
component named X, a measure component X of type T is added (or replaced) in the resulting 2444
working record, with value F(dk1.X,…,dkm.X). 2445

The forms with `to attributes in' and `to measures and attributes in ' apply 2446
F to the components of the respective role, not just to measures in dk1,…,dkm. 2447

Version 1.1 Page: 73

Example: 2448

[D1,D2] { 2449
 apply 0.3*_+0.7*_ to D1, D2 /* Weighted sum of numeric measures */ 2450
 apply _&_ to attributes in D1, D2 /* Concatenating string attributes */ 2451
 apply _or_ to attributes in D1, D2 /* Disjunction of Boolean attribs */ 2452
} 2453

Component renaming statements 2454

These statements change names of one or more components in the working record 2455
simultaneously. 2456

Form Description

rename X1 to Y1, X2 to Y2, …, Xn to Yn Simultaneously rename Xs to Ys

rename X1 - > Y1, X2 - > Y2, …, Xn - > Yn Same as the above

Each Xi and Yi (i=1,…,n, n>0) in the table above an identifier specifying a column name, 2457
optionally preceded with a role (identifier , measure , or attribute). Identifiers in X1, 2458
…, Xn must be mutually distinct, as well as those in Y1, …, Yn. 2459

Each Xi must exist in the working record. If Xi does not specify the source role, the actual role 2460
of the component with that name is in the working record is used. If Yi does not specify the 2461
target role, the source role is used. 2462

The renaming statement (between { }) is performed simultaneously as a whole, which makes 2463
column name and role swapping and cycling possible with a single statement. If the working 2464
record has a measure or attribute whose name is in Y1, …, Yn, but not in X1, …, Xn, that 2465
component is replaced by the renamed component. However, an error is raised if such 2466
component is an identifier. 2467

It is also an error to change the role of an identifier component using rename . 2468

Example 1: 2469

[D] { 2470
 rename A to B, B to A /* Swap component name s */ 2471
} 2472

Example 2: 2473

[D] { 2474
 rename identifier Geo to RefArea, /* Rename identifier Geo */ 2475
 Age to identifier Age, /* Make Age an identifier */ 2476
 attribute ObsStatus to measure Status, 2477
 /* Convert attribut e to a measure */ 2478
 Z to attribute Z /* Error if Z is an identifier */ 2479
} 2480

Component filtering statements 2481

These statements keep or drop the specified components in the working record. 2482

Form Description

keep X1, …, Xn Keep measures or attributes in the
working record

Version 1.1 Page: 74

drop X1, …, Xn Drop measures or attributes from the
working record

Each Xi (i=1,…,n, n>0) is an identifier giving the column name, optionally preceded with a role 2483
measure or attribute . 2484

Statement keep keeps in the working record only the measures and attributes given by X1, …, 2485
Xn, which must all exist in the working record. Identifiers are not affected. 2486

Statement drop drops from the working record those measures and attributes given by X1, …, 2487
Xn that exist in the working record. An error is raised if any of X1, …, Xn is an identifier. 2488

Example 1: 2489

[D] { 2490
 $Total := Men + Women + Children 2491
 WomenRatio := Women / $Total 2492
 MenRatio := Men / $Total 2493
 ChildrenRatio := 1.0 ï WomenRatio ï MenRatio 2494
 keep WomenRatio, MenRatio, ChildrenRatio 2495
 /* Keep only these measures (no attributes kept) */ 2496
 2497
} 2498

Example 2: 2499

[D] { 2500
 $Total := Men + Women + Children 2501
 WomenRatio := Women / $Total 2502
 MenRatio := Men / $Total 2503
 ChildrenRatio := 1.0 ï WomenRatio ï MenRatio 2504
 drop Women, Men, Chi ldren 2505
 /* Keep all measures and attributes except these three */ 2506
} 2507

Transposition Statements 2508

The transposition statements can be used instead of the aggregation statements. These 2509
statements also operate on all records resulting from the join and the record-level statements, 2510
but instead of aggregating, they transpose columns from several input records into a single 2511
output record and back. 2512

Form Description

unfold X, Y to B1, …, Bn Unfold identifier X and measure Y into columns B1,
…, Bn (n>0).

unf old X, Y using H Unfold identifier X and measure Y using hierarchy
definition H.

fold B1, …, Bn to X, Y Fold columns B1, …, Bn (n>0) into a new identifier X
and measure Y.

fold using H to X, Y Fold a new identifier X using hierarchy definition H
and measure Y.

In the above table, X is the name of an identifier column 2513

Version 1.1 Page: 75

Each Bi in breakdown B1, …, Bn is either a base element (an identifier), or a computed element 2514
of the form Z=C1+ ... + Cm, where Z is an identifier, and C1, ..., Cm (m>0) are other breakdown 2515
elements (base or computed) that go into Z. Circular dependencies between computed 2516
breakdown elements are not allowed. Each breakdown element Bi has the base set Ui of base 2517
elements that it "covers". If Bi is a base breakdown element, its Ui={Bi}. If Bi is a computed 2518
breakdown element of the form Z=C1+ ... + Cm, its elementary set is the union of the base sets 2519
of C1, ..., Cm. 2520

The breakdown structure B1, …, Bn can be specified explicitly in the statement, or it can be 2521
defined in a hierarchy object H defined elsewhere (i.e., in metadata). In the text that follows 2522
we shall assume that in the latter case the actual structure B1, …, Bn has been retrieved from H. 2523

The unfold statement divides the input dataset with a string identifier component X (the 2524
measure dimension) and a numeric measure component Y into groups of records sharing the 2525
value of all identifiers other than X. 2526

Each input group is then transformed into a single output record that has: 2527

¶ A copy of all identifier components from the input group except X. 2528

¶ Numeric measure columns B1, …, Bn instead of the single measure column Y. For each Bi 2529

(i=1..n), the value of the measure column named Bi in the output record is the sum of Y 2530

in the group records where the value of X belongs to the base set of Bi (as a set of string 2531

literals). 2532

¶ All other measure and attribute components, whose value is taken as the maximum in 2533

the group. 2534

The fold statement works in the opposite direction: for each input record it generates a 2535
group of output records, with one output record for each breakdown element Bi (i=1..n) 2536
where the value of component Bi is not null , consisting of: 2537

ǒ A copy of all identifier components from the input record. 2538

ǒ A new string identifier component named X with value equal to Bi (as a string literal). 2539

ǒ A new numeric measure component Y with value equal to the value of Bi in the input 2540

record. 2541

ǒ A copy of all attribute and measure components (other than B1, …, Bn) taken from the 2542

input record. 2543

Example 1: 2544

Suppose BeNeLuxPop is the following dataset: 2545

Year Geo Pop Status

2015 BE 11,324 A

2015 NE 16,948

2015 LU 563 AP

Version 1.1 Page: 76

 2546

Then the result of the join expression: 2547

[BeNeLuxPop] { 2548
 unfold Geo, Pop to BE, NE, LU, Total = BE + NE + LU 2549
} 2550

is: 2551

Year BE NE LU Total Status

2015 11,324 16,948 563 28,835 AP

Example 2: 2552

If D is the result of the previous example, then the following join expression: 2553

[D] { 2554
 fold BE, NE, LU, Total = BE + NE + LU to Geo, Pop 2555
} 2556

gives the result: 2557

Year Geo Pop Status

2015 BE 11,324 AP

2015 NE 16,948 AP

2015 LU 563 AP

2015 Total 28,835 AP

 2558

Note that this result is very similar to the original input, except for a couple of differences that 2559
illustrate some important aspect of the fold and unfold statements: 2560

ǒ The computed breakdown element Total appears in the result, while it was not present 2561

in the original input dataset BeNeLuxPop. If this is undesirable, the fold statement 2562

should use only the base (not computed) breakdown components BE, NE, and LU. 2563

ǒ In the fold statement, the computed breakdown elements, such as Total, are not 2564

computed, but are treated in the same way as the base breakdown elements (BE, NE, 2565

and LU). 2566

ǒ While the Status attribute varies in the original input dataset BeNeLuxPop, it is 2567

uniformly equal to "AP" in all result rows. The reason for this is that unfolding entails a 2568

loss of information for attributes like Status, where it takes the maximum for the whole 2569

group of records where Year=2015. Folding, on the other hand, does not entail any loss 2570

of information (it can, in fact, create additional information, as seen in the previous 2571

point). 2572

Version 1.1 Page: 77

Lifting Scalar Operators and Functions With Join Expressions 2573

We now turn to the issue of lifting the scalar operators and functions to the dataset/scalar and 2574
dataset level using the join expressions. This lifting is not something a VTL programmer needs 2575
to do manually -- it is done automatically under the hood by the compiler. However, it is 2576
important for both the programmers and language implementers to understand clearly how 2577
the lifting works in order to ensure the correct behaviour. 2578

Liftable Expressions 2579

As a preliminary, we need to define what is a "liftable" expression. For an expression to be 2580
liftable, it has to satisfy certain structural and typing constraints. The typing constraints are 2581
important because the syntactic form of an expression does not provide sufficient information 2582
for deciding whether an expression needs to be lifted and how. For instance, A+B may be a 2583
scalar or a dataset expression, depending on the types of A and B. For what we need here, we 2584
shall take a simplified look at the type analysis: 2585

ǒ The typing of an expression is decided inductively, or bottom-up: from the operation 2586

or function argument types to the type of the operator application or function call. 2587

ǒ After determining that the type of an expression E is t, we shall be making simple 2588

assertions, such as: "t is a scalar type (i.e., E is a scalar expression)", or "t is a dataset 2589

type (i.e., E is a dataset expression)". 2590

Intuitively, we can define a scalar-based expression as an expression that uses only scalar 2591
operators and functions on arguments that are scalar variables or literals, datasets and their 2592
components, or scalar-based subexpressions. A liftable expression is then a scalar-based 2593
expression that returns a dataset, because one or more of the arguments to a scalar operator 2594
or function is given as a dataset. Or, in other words, only a scalar-based expression can be 2595
liftable, but the property of being liftable is stronger. 2596

More formally, we say that an expression of the form f(E1, ..., En), n>0, is a scalar-based 2597
expression if: 2598

ǒ f accepts n scalar arguments and returns a scalar result 2599

ǒ Each argument Ei (i=1..n) is one of the following: 2600

ƺ a scalar variable or a numeric, string or Boolean literal [weak argument] 2601

ƺ a dataset variable [strong argument] 2602

ƺ an expression of the form D.X where D is a dataset variable, and X is a 2603

component identifier [strong argument] 2604

ƺ a scalar-based expression [strong argument exactly when E is liftable] 2605

ǒ If at least one argument is strong, then the scalar-based expression f(E1, ..., En) is 2606

liftable. 2607

We wrote f(E1, ..., En) to denote both a call to function f and an application of an n-ary operator 2608
(prefix, infix, or postfix) to its arguments. 2609

Example 1: 2610

Version 1.1 Page: 78

Expressions - X, log(X) , and X*Y , where X and Y are scalar variables, are all scalar-based, 2611
but they are not liftable, because they do not use any dataset. However, expression 2612
D.X*log(D.X) , where D is a dataset variable, is both scalar-based and liftable. 2613

Example 2 2614

Expression: 2615

D1^2+2*D1*D2+D2^2 2616

where D1 and D2 are dataset variables, is liftable, because it uses these two dataset variables 2617
as arguments to basically scalar operators +, * , and ^ . 2618

Component Selection And Lifting Scheme 2619

A liftable expression E must contain one or more dataset references of the form D or dataset 2620
component references of the form D.X, where D is a dataset variable. The shape of these 2621
references significantly affects the computation that is performed. 2622

In the sub-sections that follow we cover all dataset and dataset component reference cases 2623
that may occur, and give representative examples of the lifting scheme. 2624

Operating on All Shared Components 2625

The first case is when E contains only dataset references (D), but no dataset component 2626
references (D.X). In this case, the computation is performed on all shared measure 2627
components, i.e., the measure components with the same name and type that appear in all 2628
referenced datasets. The resulting dataset uses these shared measure components to hold the 2629
result. 2630

Example 1: 2631

As a simple example, D1+D2, where D1 and D2 are dataset variables with numeric measure 2632
components A and B, will create a result with measure components A and B whose value is the 2633
sum of As and Bs from D1 and D2. The lifting is then done using a join expression and apply : 2634

[D1,D2] { 2635
 apply _+_ to D1, D2 2636
} 2637

Example 2: 2638

Expression: 2639

D1^2+2*D1*D2+D2^2 2640

is lifted with: 2641

[D1,D2] { 2642
 apply \ x,y{x^2+2*x*y+y^2} to D1, D2 2643
} 2644

In this example, we had to explicitly name the arguments x and y in the function, because D1 2645
and D2 appear more than once in the original expression. 2646

Operating on Single Named Component 2647

The second case is when E contains one or more dataset component references of the form 2648
D.X where D may vary, but X is a single component name. In this case, we only operate on that 2649

Version 1.1 Page: 79

single component X in all referenced datasets, and the result contains a single measure 2650
component X holding the result. All dataset references of the form D in E are implicitly 2651
rewritten into D.X. The fixed component X must not be null in at least one referenced dataset. 2652

Example 1: 2653

Expression: 2654

D1.Pop + D2 2655

where D1 and D2 are dataset variables, operates on a single component Pop. It is therefore 2656
equivalent to: 2657

D1.Pop + D2.Pop 2658

And is lifted as: 2659

[D1,D2] { 2660
 filter D1.Pop is not null or D2.Pop is not null 2661
 Pop := D1.Pop + D2.Pop 2662
} 2663

The result contains a single measure component named Pop. 2664

Example 2: 2665

Expression: 2666

D1.Pop * 1.02 2667

also uses the single named component Pop. It is lifted as follows: 2668

[D1] { 2669
 filter D1.Pop is not null 2670
 Pop := D1.Pop * 1.02 2671
} 2672

Note that in this example the join expression traverses a single dataset D1, and therefore all 2673
other measures and attributes are kept unchanged in the result. 2674

Operating on Multiple Named Components 2675

Finally, we may have a case where E contains two or more dataset component references of 2676
the form D.X where X is not always the same. This case was illegal in VTL 1.0 because of the 2677
rule that differently named components from different datasets cannot mix in a computation. 2678
The experience indicates that his requirement can sometimes be too strict, and may force the 2679
programmer to frequently explicitly rename components in order to be able to compute on 2680
them. 2681

That is why VTL 1.1 allows mixing two or more differently named dataset components in a 2682
single liftable expression E, provided that E contains no dataset references of the form D (i.e., 2683
only contains dataset component references of the form D.X). The resulting dataset contains a 2684
single measure component named Value holding the result of the computation. 2685

Example 1: 2686

Expression: 2687

D1.Pop + D2.Population + D3.Residents + D4.Inhabitants 2688

is lifted as follows: 2689

Version 1.1 Page: 80

[D1, D2, D3, D4] { 2690
 filter D1.Pop is not null or D2.Population is not null 2691
 or D3.Residents is not null or D4.Inhabitants is not null 2692
 Value := D1.Pop * D2.Population + D3.Residents + D4.Inhabitants 2693
} 2694

Example 2: 2695

Expression: 2696

D1.Pop between D2 .Min and D2.Max 2697

is lifted as follows: 2698

[D1, D2] { 2699
 filter D1.Pop is not null or D2.Min is not null 2700
 or D2.Max is not null 2701
 Value := D1.Pop between D2.Min and D2.Max 2702
} 2703

The resulting measure Value is Boolean. 2704

Example 2: 2705

Expression: 2706

(D1.Pop between D 2.Min and D2.Max)[Value - >InRange] 2707

is lifted as follows: 2708

[D1, D2] { 2709
 filter D1.Pop is not null or D2.Min is not null 2710
 or D2.Max is not null 2711
 Value := D1.Pop between D2.Min and D2.Max 2712
 rename Value - > InRange 2713
} 2714

The resulting Boolean measure generically named Value has been renamed to more domain-2715
specific InRange. 2716

Allowing Non -Scalar-Based Subexpressions 2717

The approach for lifting expressions built with scalar operators and functions to the 2718
database/scalar and database levels explained above restricts the structure of such 2719
expressions to scalar-based expressions defined above. This limitation can sometimes be too 2720
strict. For instance, expression: 2721

D1.Total + size(D2) 2722

where D1 and D2 are dataset operations, and size is a function that returns the number of 2723
records in a dataset, is not scalar-based (and therefore misses the precondition to be lifted) 2724
because size does not take a scalar, but a dataset argument. Therefore, in this expression D2 2725
should be treated differently than D1: we do not need to join these two datasets, we just first 2726
need to count rows in D2, remember the result and then use it in the main expression. 2727

Another example is: 2728

union(D1, D2) * 1.02 2729

Version 1.1 Page: 81

This is also a valid expression, where we increase all numeric measures in the union of two 2730
datasets D1 and D2 by 2%. But it is not a scalar-based expression (and therefore not a liftable 2731
one), because union is not a scalar function. Still it is clear that first we have to make a union 2732
of D1 and D2 , and then multiply the result with 1.02. 2733

These two examples hint at a general solution: we can often transform a non-scalar-based 2734
expression into a scalar-based one by proceeding step-by-step. 2735

Let us first take E to be an expression that contains some sub-expression A. It is clear that E is 2736
equivalent to a VTL block: 2737

{ 2738

 V := A 2739
 E[V/A] 2740
} 2741

where V is a variable name that does not appear in E, and E[V/A] is a copy of E where V 2742
replaces A. 2743

This scheme can be automatically applied to all scalar or dataset subexpressions A1, ..., An of E 2744
that are not scalar-based. As a result, we transform E into the form: 2745

{ 2746

 V1 := A1 /* V1 does not appear in E */ 2747
 V2 := A2 /* V2 does not appear in E */ 2748

 ... 2749
 Vn := An /* Vn does not appear in E */ 2750
 E[V/A] /* Becomes liftable expression! */ 2751
} 2752

This transformation can be automatically done by the compiler. 2753

Example 1: 2754

Expression: 2755

D1.Total + size(D2) 2756

becomes: 2757

{ 2758
 V := size(D2) 2759
 D1.Total + V /* liftable */ 2760
} 2761

which after lifting becomes: 2762

{ 2763
 V := size(D2) 2764
 [D1] { 2765
 filter D1.Total is not null 2766
 Total := D1. Total + V 2767
 } 2768
} 2769

Example 2: 2770

Expression: 2771

Version 1.1 Page: 82

union(D1, D2) * 1.02 2772

becomes: 2773

{ 2774
 V := union(D1, D2) 2775
 V * 1.02 /* liftable */ 2776
} 2777

which after lifting becomes: 2778

{ 2779
 V := union(D1, D2) 2780
 [V] { 2781
 apply _*1.02 2782
 } 2783
} 2784

Expressing Validation Rules With Join Expressions 2785

In the previous sections we have shown how the VTL 1.1 join expressions can be used for 2786
lifting of basically scalar expressions and functions to the dataset/scalar and dataset levels. 2787
This lifting is performed automatically and transparently by the compiler, and provides a 2788
well-defined semantics for the lifted constructs. We can therefore think about the join 2789
expressions as a "core" mechanism for expressing the behaviour of higher-level dataset 2790
operations. 2791

The same approach can be used for expressing the behaviour of some important classes of 2792
validation rules: 2793

ǒ Horizontal rules -- these rules check validity of individual records (or rows) in a 2794

dataset. For the sake of simplicity, let us say that each horizontal rule has a condition 2795

SCOPE_COND that selects records to which the validation rule needs to be applied, a 2796

condition VALID_COND that defines when a row is valid, and a string RULE_CODE that 2797

is inserted in the result column ERR_CODE if the validation fails on a record. The 2798

validation of a dataset D using a horizontal rule is then equivalent to: 2799

ǒ [D] { 2800

 implicit attribute ERR_CODE := "" 2801

 filter SCOPE_COND 2802

 attribute RULE := VALID_COND 2803

 attribute ERR_CODE := 2804

 if RULE then ERR_CODE else RULE_CODE 2805

} 2806

ǒ Vertical rules -- these rules apply to values of some measure component Y that are 2807

stacked "vertically" one under another in each group of records, so that each value of Y 2808

corresponds to a particular code of some measurement dimension X. The breakdown 2809

of X to individual codes is typically given explicitly in a vertical rule as B1, ..., Bn. Again, 2810

for the sake of simplicity, let us say that each vertical rule has a condition SCOPE_COND 2811

Version 1.1 Page: 83

that selects groups of records to which it applies, a condition VALID_COND that defines 2812

when a row is valid, and a string RULE_CODE inserted in the result column ERR_CODE if 2813

the validation fails on a record. The validation of a dataset D using a vertical rule is 2814

then equivalent to: 2815

ǒ { 2816

 U := [D] { unfold X, Y to B1, ..., Bn } 2817

 [U] { 2818

 implicit attribute ERR_CODE := "" 2819

 filter SCOPE_COND 2820

 attibute RULE := VALID_COND 2821

 attribute ERR_CODE := 2822

 if RULE then ERR_CODE else RULE_CODE 2823

 } 2824

} 2825

ǒ First -order or combination rules -- these rules apply to combination of records from 2826

two or more datasets D1, ..., Dn (the same dataset variable can be repeated several 2827

times). The criteria for matching these records is specified as MATCH_COND , and we 2828

here take the other (simplified) assumptions about VALID_COND, RULE, and 2829

RULE_CODE as in the examples of the horizontal and vertical rules above. Then, the 2830

validation of a dataset D using this kind of rules is then equivalent to: 2831

ǒ [D1 cross D2, ..., Dn] { 2832

 implicit attribute ERR_CODE := "" 2833

 filter MATCH_COND 2834

 attribute RULE := VALID_COND 2835

 attribute ERR_CODE := 2836

 if RULE then ERR_C ODE else RULE_CODE 2837

} 2838

The above examples were simplified (among other things) because they refer to a single rule, 2839
while VTL 1.1 allows more powerful rule sets to be defined. However, at this point it should 2840
be evident that there are ways for expressing rule sets using the same kind of constructs. 2841
Suppose, for instance, we have a horizontal rule set consisting of three rules, RULE1, RULE2 2842
and RULE3. The translation would look like this: 2843

[D] { 2844
 implicit attribute ERR_CODE := "" 2845

 filter SCOPE_COND1 or SCOPE_COND2 or SCOPE_COND3 2846
 $ERR_CODE := ERR_CODE 2847

 $RULE1 := not (SCOPE_COND1) or VALID_COND1 2848
 $ERR_CODE := 2849

 if $ RULE1 then $ERR_CODE else paste($ERR_CODE, RULE_CODE1, ",") 2850
 $RULE2 := not (SCOPE_COND2) or VALID_COND2 2851
 $ERR_CODE := 2852
 if $ RULE2 then $ ERR_CODE else paste($ERR_CODE, RULE_CODE2, ",") 2853

Version 1.1 Page: 84

 $RULE3 := not (SCOPE_COND3) or VALID_COND3 2854
 $ERR_CODE := 2855

 if $ RULE3 then $ERR_CODE else paste($ERR_CODE, RULE_CODE3, ",") 2856
 attribute RULESET := $ RULE1 and $ RULE2 and $ RULE3 2857
 attribute ERR_CODE := $ERR_CODE 2858
} 2859

This construct would check all three horizontal rules in the rule set in a single traversal of D, 2860
and would look only on records where at least one rule is applicable. It would create the 2861
attribute ERR_CODE if it did not exist, and would add to it (as a comma-separated list) error 2862
codes of all failed rules. The result would also have an attribute column RULESET (named 2863
after the rule set) which holds Boolean true if the record has passed all three rules, or 2864
false if at least one rule has failed on the record. 2865

 2866

Version 1.1 Page: 85

VTL main assumptions 2867

In this chapter we present some of the main assumption on which the Validation and 2868
Transformation Language bases the semantics of its Operators. These core assumptions 2869
complement the core language elements presented in the previous chapter, and they specify 2870
the general behaviour of the language, and is by default stable. The standard library of 2871
operators is presented in detail in the Reference Manual, and presents the built-in 2872
functionality that can be gradually enriched following the evolution of the user needs. 2873
Possible new functions and operators must obviously comply with the core assumptions 2874
presented here. 2875

The main assumptions include: 2876

¶ Details of operand and result types 2877
¶ The general behaviour of operations on datasets 2878
¶ Storage and retrieval of datasets 2879
¶ The conventions for the grammar of the language 2880

The main assumptions are explained in the following sections. 2881

Details of operand and result types 2882

The Data types of the VTL 2883

As explained in the previous chapter, the type system of VTL 1.1 presents an outline of a type 2884
system, which is able to characterize all kind of objects that are used as an input, an 2885
intermediate result or auxiliary parameter, or produced as the result of any expression in a 2886
VTL program. 2887

In this section, we are concentrating on a subset of VTL types which we call the data types. 2888
Data types differ from other types in that they have a well-defined external representation, 2889
covered by the VTL Information Model (IM). Obviously, different parts of VTL programs can 2890
use or produce other objects, such as anonymous functions or tuples and collections of 2891
arbitrary objects, which are transient in nature. Such transient objects exist only in memory 2892
during the execution of a VTL program, but cannot be "materialized," i.e., they have no well-2893
defined representation in the IM. 2894

The VTL data types, on the other hand, correspond to various artefacts represented in the IM. 2895
They include: 2896

¶ Datasets, composed of identifier, measure, and attribute components; each component 2897
contains a data of the same scalar type. 2898

¶ Collections of scalar types, or of Cartesian products of scalar types, which are used to 2899
express constraints, i.e., the permissible values for one or more scalar variables. 2900

¶ Modules representing dataset structure, as well as user-defined functions, types, and 2901
special objects such as validation rules. 2902

Basic scalar data types 2903

The basic (unconstrained) scalar data types of the language are: string, number (including 2904
integer and float), boolean and date. Their instances written directly in VTL code (i.e. the real 2905

Version 1.1 Page: 86

objects of those types) are called literals. Thecharacteristics of the base scalar types are 2906
described in the following table. 2907

Basic scalar data types

string A sequence of zero or more UNICODE characters enclosed in double
quotes (“). Examples of allowed literals for this data type are: “hello”,
“test”, “x”, “this is a string” and "" (the empty string). Note that in the VTL
syntax the double quotes are intended to be the standard ones ("), i.e. the
same character to open and close the string, even if in this document and
in the Part 2 the styled double quotes may be shown. If a string literal
needs to include a double quote in its contents, the quote needs to be
doubled: literal "a""b" consists of three charaters: letter a, the double
quote, and letter b.

number Includes both integer and a float.

float Floating point numbers, whose precision is compatible with or greater
than the IEEE 754 quadruple precision (128 bits encoding).
At least the range of floating point numbers (absolute values) between 2-

16949 (approx. 10-4965) and 216384-216271 (approx. 1.1897*104932) with 34
significant decimal digits should be representable.
Alternatively, implementations may use arbitrary-precision floating point
numbers.
The point (.) is used as the decimal separator and must be present in the
literal.
Examples of allowed literals for this type are: 1.0, 234.56, 456.45; also the
scientific notation is allowed: 12.23E+12, 35.2E-150, -2E10+3, 0.0. The
uppercase letter "E" can be written also as the lowercase "e".

integer
The basic signed integer type. At least 64 bit in size. Alternatively,
implementations may use arbitrary-precision integers.
Examples of allowed literals for this type are: 2, 5, 7, 24, -14, 0.

boolean The Boolean data type. The allowed literals are true and false.

date A point-in-time value. The type stores the year, the month, the day, the
hours the minutes and the seconds (after midnight). Date are in 24-hours
format: YYYY-MM-DD HH24:MI:SS
While the YYYY-MM-DD is mandatory, HH24:MI:SS is optional and, if
omitted, 00:00:00 is implied.
Examples of allowed literal values are: 2012-09-30, 2013-10-02, 2014-
01-01 12:23:35.
The format for Date literals is customizable, in the sense that specific
supplementary formats may be used in implementations in addition to
this one, if properly configured in the system. Alternate literals may also
include the ones adopted by commercial systems for compatibility
reasons, for example: date’2012-09-30’.

 2908

Version 1.1 Page: 87

With reference to the VTL information model, the data type is a characteristic of the Value 2909
Domain. In turn, the data type of the Value Domain is inherited by its Values and its Subsets. 2910

A Represented Variable has the same data type of its Value Domain. 2911

A Structure Component has the same data type of the corresponding Represented Variable 2912
(i.e. the data type of its Value Domain). 2913

Also the Data Set has a data type, which is a “composite” one and corresponds to the set of the 2914
data types of its Structure Components. 2915

A Transformation (Expression) has the data type of its result. 2916

Type management and checking 2917

The language does not have explicit operators for converting the type (typecasting). 2918

It is envisaged that there will be “implicit upcasting” between the integer and the number data 2919
types. This means that wherever in the language it is possible to use a number, an integer or 2920
float is allowed. Obviously, the opposite is not allowed. 2921

The VTL is strongly typed, in the sense that any operand or parameter in an operation belongs 2922
to one of the possible types. 2923

The various VTL functions and operators have specific constraints in terms of number and 2924
types of parameters (see the corresponding sections in the Part 2). 2925

The type of an expression is computer at compile time. 2926

The function and operator constraints in terms of number and types of their arguments are 2927
statically checked (at compile time) so that type errors are not possible at runtime. Moreover, 2928
only type-safe upcast conversion for integers into num is performed. 2929

Type errors result in compile time errors preventing the Transformations from being used 2930
(exchanged, executed …). 2931

 2932

The general behaviour of operations on datasets 2933

General rules 2934

As already mentioned, normally the model artefact produced through a Transformation is a 2935
Data Set (considered at a logical level as a mathematical function). Therefore, a 2936
Transformation is mainly an algorithm for obtaining a derived Data Set starting from already 2937
existing ones. As a matter of fact, the Data Set at the moment is the only type of Parameter 2938
that is possible to store permanently through a command of the language (see the Put section 2939
in the Part 2). 2940

If we assume that F is a Data Set Operator (i.e., an operation that takes some inputs and 2941
produces a dataset), that Dr is its result Data Set and that Di (i=1,… n) are its input Data Sets, the 2942
general form of a Transformation based on F can be written as follows: 2943

 Dr := F (D1, D2, … , Dn) 2944

Operator F composes the Data Points of Di (i=1,… n) to obtain the Data Points of Dr. 2945

Version 1.1 Page: 88

For computing the result of this operation, F follows a number of default behaviours 2946
described here. 2947

In general the Data Sets Di (i=1,… n) and consequently their Data Points may have any number of 2948
Identifier, Measure and Attribute Components, nevertheless the VTL Data Set Operators may 2949
require specific constraints on the Data Structure Components of their input Data Sets16. 2950

The Data Structure Components of the result Data Set Dr will be determined as a function of 2951
the Data Structure Components of the input Data Sets and the semantics of the Operator F. 2952

There can exist different cases of application of the Data Set Operators, having specific default 2953
behaviours and constraints. 2954

In particular, as for the number of operands, a Data Set Operator is called “unary ” if it uses 2955
only one Data Set as input operand (e.g. minimum, maximum, absolute value …) and “n-ary ” if 2956
it requires more than one Data Set as input operand (e.g. sum, product, merge …). The n-ary 2957
Operators require a preliminary matching between the Data Points of the various input Data 2958
Sets. 2959

Data Sets may be also usefully categorized with reference to the number of their Measure 2960
Components. A Data Set is called “mono-measure ” if it has just one Measure Component and 2961
“multi -measure ” if it has two or more Measure Components. For the multi-measure Data 2962
Sets it may be necessary to specify which measures should be considered in the operation. 2963

Other cases originate from the possible existence of missing data and Attribute Components. 2964
If there are missing values in the input Data Sets, the operation may generate meaningless 2965
outcomes, so inducing missing values in the result according to certain rules. On the other 2966
hand, there can be the need of producing the values for the Attribute Components of the result 2967
starting from the values of the Attributes of the operands. 2968

The Identifi er Components and the Data Points default matching 2969

By default, the unary Data Set Operators leave the Identifier Components unchanged, so that 2970
the result has the same identifier components as the operand. The operation applies only on 2971
the Measures and no matching between Data Points is needed. 2972

The “n-ary” VTL Data Set Operators compose more than one input Data Sets. A simple 2973
example is: Dr := D1 + D2 2974

These Operators (i.e. the +) require a preliminary match between the Data Points of the input 2975
Data Sets (i.e. D1 and D2) in order to compose their measures (e.g. summing them) and obtain 2976
the Data Points of the result (i.e. Dr). 2977

For example, let us assume that D1 and D2 contain the population and the gross product of the 2978
United States and the European Union respectively and that they have the same Structure 2979
Components, namely the Reference Date and the Measure Name as Identifier Components, 2980
and the Measure Value as Measure Component: 2981

D1 = United States Data 2982

16 To adhere to the needed constraints, the identification structure of the Data Sets can be manipulated by means

of appropriate VTL Operators, also described in this document.

Ref.Date Meas.Name Meas.Value

Version 1.1 Page: 89

 2983

 2984

 2985

D2 = European Union Data

 2987

 2988

 2989

 2990

 2991

 2992

The desired result of the sum is the following: 2993

Dr = United States + European Union 2994

 2995

 2996

 2997

 2998

 2999

 3000

In this operation, the Data Points having the same values for the Identifier Components are 3001
matched, then their Measure Components are combined according to the semantics of the 3002
specific Operator (in the example the values are summed). 3003

The example above shows what happens under a strict constraint : when the input Data Sets 3004
have exactly the same Identifier Components. The result will also have the same Identifier 3005
Components as the operands. 3006

However, most of Data Set operations (including the sum) are also be possible also under a 3007
more relaxed constraint , that is when the Identifier Components of one Data Set are a 3008
superset of those of the other Data Set.17 3009

For example, let us assume that D1 contains the population of the European countries (by 3010
reference date and country) and D2 contains the population of the whole Europe (by reference 3011
date): 3012

D1 = European Countries 3013

17 This corresponds to the "outer join" form of the join expressions, explained in details in the
Reference Manual.

2013 Population 200

2013 Gross Prod. 800

2014 Population 250

2014 Gross Prod. 1000

Ref.Date Meas.Name Meas.Value

2013 Population 300

2013 Gross Prod. 900

2014 Population 350

2014 Gross Prod. 1000

Ref.Date Meas.Name Meas.Value

2013 Population 500

2013 Gross Prod. 1700

2014 Population 600

2014 Gross Prod. 2000

Ref.Date Country Population

Version 1.1 Page: 90

 3014

 3015

 3016

 3017

 3018

D2 = Europe 3019

 3020

 3021

 3022

 3023

In order to calculate the percentage of the population of each single country on the total of 3024
Europe, the Transformation will be: 3025

Dr := D1 / D2 * 100 3026

The Data Points will be matched according to the Identifier Components common to D1 and D2 3027
(in this case only the Ref.Date), then the operation will take place. 3028

The result Data Set will have the Identifier Components of both the operands: 3029

Dr = European Countries / Europe * 100 3030

 3031

 3032

 3033

More formally, 3034 let F be a generic n-ary VTL Data
Set Operator, 3035 Dr the result Data Set and Di
(i=1,… n) the 3036 input Data Sets, so that:
 Dr := F(D1, D2, … , Dn) 3037

The “strict” constraint requires that the Identifier Components of the Di (i=1,… n) are the same. 3038
The result Dr will also have the same Identifier components. 3039

The “relaxed” constraint requires that at least one input Data Set Dk exists such that for each 3040
Di (i=1,… n) the Identifier Components of Di are a (possibly improper) subset of those of Dk. The 3041
output Data Set Dr will have the same Identifier Components of Dk. 3042

The n-ary Operator F will produce the Data Points of the result by matching the Data Points of 3043
the operands that share the same values for the common Identifier Components and by 3044
operating on the values of their Measure Components according to its semantics. 3045

Behaviour for Measure Components 3046

As already mentioned, given Dr := F(D1, D2, … , Dn), the input Data Sets Di (i=1,… n) may have any 3047
number of Measure Components. Therefore, to enforce the desired behaviour it is necessary 3048
to understand which Measures the Operator is applied to. This Section shows the general VTL 3049

2012 U.K. 60

2012 Germany 80

2013 U.K. 62

2013 Germany 81

Ref.Date Population

2012 480

2013 500

Ref.Date Country Population

2013 U.K. 12. 5

2013 Germany 16. 7

2014 U.K. 12. 4

2014 Germany 16. 2

Version 1.1 Page: 91

assumptions about how Measure Components are handled, while the behaviour of the single 3050
operators is described in the Part 2. 3051

The simplest case is the application of unary Operators to mono -measure Data Sets, 3052
which does not generate ambiguity; in fact, the Operator is intended to be applied to the only 3053
Measure of the input Data Set. The result Data Set will have the same Measure, whose values 3054
are the result of the operation. 3055

For example, let us assume that D1 contains the salary of the employees (the only Identifier is 3056
the Employee ID and the only Measure is the Salary): 3057

D1 = Salary of Employees 3058

 3059

 3060

 3061

 3062

 3063

 3064

The Transformation Dr := D1 * 1.10 applies to the only Measure (the salary) 3065
and calculates a new value increased by 10%, so the result will be: 3066

Dr = Increased Salary of Employees 3067

 3068

 3069

 3070

 3071

 3072

 3073

In case of unary Operator s applied to a multi -measure Data Set, the Operator F is by 3074
default intended to be applied separately to all its Measures, unless differently specified. The 3075
result Data Set will have the same Measures as the operand. 3076

For example, given the import and export by reference date: 3077

D1 = Import & Export 3078

 3079

 3080

 3081

 3082

The Transformation Dr := D1 * 0.80 applies to all the Measures (e.g. to 3083
both the Import and the Export) and calculates their 80%: 3084

Dr = 80% of Import & Export 3085

Employee ID Salary

A 1000

B 1200

C 800

D 900

Employee ID Salary

A 1100

B 1320

C 880

D 990

Ref.Date Import Export

2011 1000 1200

2012 1300 1100

2013 1200 1300

Version 1.1 Page: 92

 3086

 3087

 3088

 3089

 3090

If there is the need to apply an Operato r only to specific Measures , the dot (.) operator can 3091
be used, which allows referencing specific Components within a Data Set. The syntax is: 3092
dataset_name.component_name (for a better description see the corresponding section in the 3093
Part 2). 3094

For example, in the Transformation Dr := D1.Import * 0.80 3095

the operation applies only to the Import (and calculates its 80%): 3096

Dr = 80% of the Import, 100% of the Export 3097

 3098

 3099

 3100

 3101

Note that in the example above, the Import is kept and left unchanged. In fact, by default all 3102
the Measures are kept in the result, even the ones that are not operated on. If there is the need 3103
to keep only some Measures, the “keep” clause can be used (see the Part 2). 3104

 3105

In case of n-ary Operators , by default the operat ion is applied on the Measures of the 3106
input Data Sets having the same names , unless differently specified. To avoid ambiguities 3107
and possible errors, the input Data Sets are constrained to have the same Measures and the 3108
result will have the same Measures too. 3109

For example, let us assume that D1 and D2 contain the births and the deaths of the United 3110
States and the European Union respectively. 3111

D1 = Births & Deaths of the United States 3112

 3113

 3114

 3115

 3116

D2 = Birth & Deaths of the European Union 3117

 3118

 3119

 3120

 3121

Ref.Date Import Export

2011 800 960

2012 1040 880

2013 960 1040

Ref.Date Import Export

2011 800 1200

2012 1040 1100

2013 960 1300

Ref.Date Births Deaths

2011 1000 1200

2012 1300 1100

2013 1200 1300

Ref.Date Births Deaths

2011 1100 1000

2012 1200 900

2013 1050 1100

Version 1.1 Page: 93

 3122

The Transformation Dr := D1 + D2 will produce: 3123

Dr = Births & Deaths of United States + European Union 3124

 3125

 3126

 3127

 3128

 3129

The Births of the first Data Set have been summed with the Births of the second to calculate 3130
the Births of the result (and the same for the Deaths). 3131

If there is the need to appl y an Operator on Measures having different names , the 3132
“rename” clause can be used to make their names equal (for a complete description of the 3133
clause see the corresponding section in the Part 2). 3134

 3135

For example, given these two Data Sets: 3136

D1 (Residents in the United States) 3137

 3138

 3139

 3140

 3141

 3142

D2 (Inhabitants of the European Union) 3143

 3144

 3145

 3146

 3147

 3148

A Transformation for calculating the population of United States + European Union is: 3149

Dr := D1[Residents -> Population] + D2[Inhabitants -> Population] 3150

The result will be: 3151

Dr (Population of United States + European Union) 3152

Ref.Date Births Deaths

2011 2100 2200

2012 2500 2000

2013 2250 2400

Ref.D ate Residents

2011 1000

2012 1300

2013 1200

Ref.Date Inhabitants

2011 1100

2012 1200

2013 1050

Ref.Date Population

2011 2100

2012 2500

Version 1.1 Page: 94

 3153

 3154

Note that the number and the names of the Measure Components of the input Data Sets are 3155
assumed to match (following their renaming if needed), otherwise the Expression is 3156
considered in error. 3157

To avoid a potentially excessive renaming, VTL 1.1 additionally allows operations where each 3158
participating dataset has an explicitly specified component using the dot notation. For 3159
instance, 3160

Dr := D1.Residents + D2.Inhabitants 3161

creates a result with a single measure component named Result, which can then be renamed, 3162
if necessary, at will: 3163

Dr := (D1.Residents + D2.Inhabitants)[Result->Population] 3164

If there is the need to apply an Operator only to specific Measures , the dot (.) operator can 3165
be used as in the case of unary Operators. Even in this case, by default all the Measures are 3166
kept in the result, even the ones that are not operated on; if there is the need to keep only 3167
some Measures, the “keep” clause can be used (see the Part 2). 3168

Finally, note that each Operator may be applied on Measure s of certain data type s, 3169
corresponding to its semantics. For example, abs and round will require the Measures to be 3170
numeric, while substr will require them to be a string. Expressions which violate this 3171
constraint are obviously considered in error. 3172

For example consider the Transformation: Dr := abs (D1) 3173

As already described, this expression is assumed to apply the abs Operator (i.e. absolute 3174
value) to all the Measures Components of D1. If all these Measures are quantitative the 3175
expression is considered correct, on the contrary, if at least one Measure is of an incompatible 3176
data type, the expression is considered in error. The general description of the VTL data types 3177
is given above while the description of the data types on which each operator can be applied 3178
is given in the Part 2. 3179

Order of execution 3180

VTL allows the application of many Operators in a single expression. For example: 3181

Dr := D1 + D2 / (D3 – D4 / D5) 3182

When the order of execution of the Operators is not explicitly defined (through the use of 3183
parenthesis), a default order of execution applies. 3184

In the case above, according to the VTL precedence rules, the order will be: 3185

I. D4 / D5 (default precedence order) 3186
II. D3 ɀ I (explicitly defined order) 3187

III. D2 / II (default precedence order) 3188
IV. D1 + III (default precedence order) 3189

The default order of execution depends on the precedence and associativity order of the VTL 3190
Operators and is described in detail in the Part 2. 3191

2013 1250

Version 1.1 Page: 95

Missing Data 3192

The awareness of missing data is very important for correct VTL operations, because the 3193
knowledge of the Data Points of the result depends on the knowledge of the Data Points of the 3194
operands. For example, assume Dr := D1 + D2 and suppose that some Data Points of D2 3195
are unknown, it follows that the corresponding Data Points of Dr cannot be calculated and 3196
are unknown too. 3197

Missing data can take up two basic forms. 3198

In the first form, the lack of information is explicitly represented . This is the case of Data 3199
Points that show a “missing” value for some Measure or Attribute Components, which denotes 3200
the absence of a true value for a Component. The “missing” value is not allowed for the 3201
Identifier Components, in order to ensure that the Data Points are always identifiable. 3202

In the second form, the lack of information remain s implicit . This is the case of Data Points 3203
that are not present at all in the Data Set. For example, given a Data Set containing the reports 3204
to an international organization relevant to different countries and different dates, and having 3205
as Identifier Components the Country and the Reference Date, this Data Set may lack the Data 3206
Points relevant to some dates (for example the future dates) or some countries (for example 3207
the countries that didn’t send their data) or some combination of dates and countries. 3208

The handling of missing data in VTL dataset operation can be handled in several ways. One 3209
way is to require all participating dataset components used in a computation to be known 3210
(corresponding to the notion of "inner join" of dataset components). Another way is to allow 3211
some, but not all, components from the participating dataset components to be unknown 3212
(corresponding to the notion of "outer join" of components). The mechanics of these 3213
approaches is explained in details in the section on the joinexpressions and treatment of 3214
NULLs in the Reference Manual. 3215

On the basic level, most of the scalar operations (arithmetic, logical, and others) return null 3216
when any of their arguments is null . 3217

The general properties of the null are the following ones: 3218

¶ Data type: null value belongs to its own type named null. Type null is subsumed by 3219
all scalar types, which is to say that null value can (in principle) appear wherever a 3220
scalar data is expected; this means that it is an allowed value for any scalar type 3221
(string, number, boolean, date). However, complex data types (collections, datasets, 3222
records, modules, etc.) do not allow null values. 3223

¶ Testing . A built-in Boolean operator is null can be used to test if a scalar value is null . 3224

¶ Comparisons . Whenever a null value is involved in a comparison (>, <, >=, <=, in, not 3225
in, between) the result of the comparison is null . 3226

¶ Arithmet ic operations . Whenever a null value is involved in a mathematical 3227
operation (+, -, *, /, …), the result is null . 3228

¶ String operations . In operations on Strings, null is considered an empty String (“”). 3229

¶ Boolean operations . VTL adopts 3VL (three-value logic). Therefore the following 3230
deduction rules are applied: 3231

TRUE or null Ÿ TRUE 3232

FALSE or null Ÿ null 3233

TRUE and null Ÿ null 3234

Version 1.1 Page: 96

FALSE and null Ÿ FALSE 3235

¶ Conditional oper ations . The null is considered equivalent to FALSE; for example in 3236
the control structures of the type (if (p) -then -else), the action specified in –then is 3237
executed if the predicate p is TRUE, while the action -else is executed if the p is FALSE 3238
or null ; 3239

¶ Filter clauses . The null is considered equivalent to FALSE; for example in the filter 3240
clause [filter p], the Data Points for which the predicate p is TRUE are selected and 3241
returned in the output, while the Data Points for which p is FALSE or null are 3242
discarded. 3243

¶ Aggregations . The aggregations (like sum, avg and so on) return one Data Point in 3244
correspondence to a set of Data Points of the input. In these operations the input Data 3245
Points having a null value are in general not considered. In the average, for example, 3246
they are not considered both in the numerator (the sum) and in the denominator (the 3247
count). Specific cases for specific operators are described in the respective sections. 3248

¶ Implicit zero . Arithmetic operators assuming implicit zeros (+,-,*,/) may generate 3249
null values for the Identifier Components in particular cases (superset-subset relation 3250
between the set of the involved Identifier Components). Because null values are in 3251
general forbidden in the Identifiers, the final outcome of an expression must not 3252
contain Identifiers having null values. As a momentary exception needed to allow 3253
some kinds of calculations, Identifiers having null values are accepted in the partial 3254
results. To avoid runtime error, possible null values of the Identifiers have to be fully 3255
eliminated in the final outcome of the expression (through a selection, or other 3256
operators), so that the operation of “assignment” (:=) does not encounter them. 3257

If a different behaviour is desired for null values, it is possible to override them. This can be 3258
achieved with the combination of the calc clauses and is null operators. 3259

For example, suppose that in a specific case the null values of the Measure Component M1 of 3260
the Data Set D1 have to be considered equivalent to the number 1, the following 3261
Transformation can be used to multiply the Data Sets D1 and D2, preliminarily converting 3262
null values of D1.M1 into the number 1. For detailed explanations of calc and is null refer to 3263
the specific sections in the Part 2. 3264

Dr := D1 [M1 := if M1 is null then 1 else M 1] * D2 3265

The Attribute Components 3266

Given as usual Dr := F(D1, D2, … , Dn) and considering that the input Data Sets Di (i=1,… n) may 3267
have any number of Attribute Components, there can be the need of calculating the desired 3268
Attribute Components of Dr. This Section describes the general VTL assumptions about how 3269
Attributes are handled (specific cases are dealt with in description of the single operators in 3270
the Part 2). 3271

It should be noted that the Attribute Components of a Data Set are dependent variables of the 3272
corresponding mathematical function, just like the Measures. In fact, the difference between 3273
Attribute and Measure Components lies only in their meaning: it is intended that the 3274
Measures give information about the real world and the Attributes about the Data Set itself 3275
(or some part of it, for example about one of its measures). 3276

The VTL has different optional behaviours for Attributes and for Measures. 3277

Version 1.1 Page: 97

As specified above, Measures are kept in the result by default, whereas Attributes may be 3278
assigned a characteristic called “virality ”, which determines if the Attribute is kept in the 3279
result by default or not: a “viral ” Attribute is kept while a “non-viral ” Attribute is not kept 3280
(the virality is applied when no explicit indication about the keeping of the Attribute is 3281
provided in the expression, if the virality is not defined, the Attribute is considered as non-3282
viral). 3283

A second aspect is the “virality” of the Attribute in the result. By default, a viral Attribute is 3284
considered viral also in the result. 3285

A third aspect is the operation performed on an Attribute. By default, the operat ions which 3286
appl y to the Measures are not applied to the Attributes , so that the operations on the 3287
Attributes need a dedicated specification. If no operations are explicitly defined on a viral 3288
Attribute, a default calculation algorithm is applied in order to determine the Attribute’s 3289
values in the result. If needed, the VTL default behaviour described here may be overridden 3290
by customized default behaviours. 3291

As already mentioned, when the default behaviour is not desired, a different behaviour can be 3292
specified by means of the proper use of the keep, calc and attrcalc clauses. In particular, 3293
through these clauses, it is possible to override the virality (to keep a non-viral Attribute or 3294
not to keep a viral one), to alter the virality of the Attributes in the result (from viral to non-3295
viral or vice-versa) and to define a specific calculation algorithm for an Attribute (see the 3296
detailed description of these clauses in the Part 2).18 3297

Hence, the default Attribute propagation rule behaves as follows: 3298

¶ the non-viral Attributes are not kept in the result and their values are not considered; 3299
¶ the viral Attributes of the operand are kept and are considered viral also in the result; 3300

in other words, if an operand has a viral Attribute V, the result will have V as viral 3301
Attribute too; 3302

¶ The Attributes, like the Measures, are combined according to their names, e.g. the 3303
Attributes having the same names in multiple Operands are combined, while the 3304
Attributes having different names are considered as different Attributes; 3305

¶ the values of the Attributes which exist and are viral in only one operand are simply 3306
copied (obviously, in the case of unary Operators this applies always); 3307

¶ the Attributes which exist and are viral in multiple operands (i.e. Attributes having the 3308
same names) are combined in one Attribute of the result (having the same name also), 3309
whose values are calculated according to the default calculation algorithm explained 3310
below; 3311

Extending an example already given for unary Operators, let us assume that D1 contains the 3312
salary of the employees of a multinational enterprise (the only Identifier is the Employee ID, 3313
the only Measure is the Salary, and there are two other Components defined as viral 3314
Attributes, namely the Currency and the Scale of the Salary): 3315

18 In particular the keep clause allows the specification of whether or not an attribute is kept in the result while

the calc and the attrcalc clauses make it possible to define calculation formulas for specific attributes. The calc

can be used both for Measures and for Attributes and is a unary Operator, e.g. it may operate on Components of

just one Data Set to obtain new Measures / Attributes, while the attrcalc is dedicated to the calculation of the

Attributes in the N-ary case

Version 1.1 Page: 98

D1 = Salary of Employees 3316

 3317

 3318

 3319

 3320

 3321

 3322

The Transformation Dr := D1 * 1.10 applies only to the Measure (the salary) 3323
and calculates a new value increased by 10%, the viral Attributes are kept and left unchanged, 3324
so the result will be: 3325

Dr = Increased Salary of Employees 3326

 3327

 3328

 3329

 3330

 3331

 3332

The Currency and the Scale of Dr will be considered viral too and therefore would be kept also 3333
in case Dr becomes operand of other Transformations. 3334

For n-ary operations, the VTL default Attribute calculation algorithm produces the values 3335
of the Attributes of the result Data Set from those of its operands and is applied by default if 3336
no operations on the Attributes are explicitly defined. This algorithm is independent of the 3337
Operator applied on the Measures and works as follows: 3338

¶ Whenever in the evaluation of a VTL expression, two data points Pi and Pj are 3339
combined as for their Measures, the Attributes having the same name, if viral, are 3340
combined as well (non-viral Attributes are ignored) 3341

¶ It is assumed that each possible value of an Attribute is associated to a default w eight 3342
(in the IM, this is a type of property of the Value Domain which contains the possible 3343
values of the Attribute); 3344

¶ the result of the combination is the value having the highest weight ; 3345
¶ if multiple values have the same weight, the result of the combination is the first in 3346

lexicographical order. 3347

Note that the default weight for each possible value of an Attribute can be overridden, if 3348
desired. However, this is out of the scope of the language: the specific implementations will 3349
provide configuration mechanisms (e.g. a user modifiable text file) to alter such values. 3350

For example, let us assume that D1 and D2 contain the births and the deaths of the United 3351
States and the Europe respectively, plus a viral Attribute that qualifies if the Value is 3352
estimated (having values True or False). 3353

 3354

Employee ID Salary Currency Scale

A 1000 U.S. $ Unit

B 1200 ʘ Unit

C 800 yen Thousands

D 900 U.K. Pound Unit

Employee ID Salary Currency Scale

A 1100 U.S. $ Unit

B 1320 ʘ Unit

C 880 yen Thousands

D 990 U.K. Pound Unit

Version 1.1 Page: 99

D1 = Births & Deaths of the United States 3355

 3356

 3357

 3358

 3359

D2 = Birth & Deaths of the European Union 3360

 3361

 3362

 3363

 3364

 3365

Assuming the weights 1 for “false” and 2 for “true”, the Transformation Dr := D1 + D2 3366
will produce: 3367

Dr = Births & Deaths of United States + European Union 3368

 3369

 3370

 3371

 3372

Note also that: 3373

¶ if the attribute Estimate was non-viral in both the input Data Sets, it would not be kept 3374
in the result 3375

¶ if the attribute Estimate was viral only in one Data Set, it would be kept in the result 3376
with the same values as in the viral Data Set 3377

The VTL default Attribute propagation rule (here called A) ensures the following properties 3378
(in respect to the application of a generic VTL operator “§” on the measures): 3379

Commutative law (1) 3380

A(D1 § D2) = A(D2 § D1) 3381

The application of A produces the same result (in term of Attributes) independently of 3382
the ordering of the operands. For example, A(D1 + D2) = A(D2 + D1). This may seem 3383
quite intuitive for “sum”, but it is important to point out that it holds for every 3384
operator, also for non-commutative operations like difference, division, logarithm and 3385
so on; for example A(D1 / D2) = A(D2 / D1) 3386

Associative law (2) 3387

A(D1 § A(D2 § D3) = A(A(D1 § D2) § D3) 3388

Within one operator, the result of A (in term of Attributes) is independent of the 3389
sequence of processing. 3390

Ref.Date Births Deaths Estimate

2011 1000 1200 False

2012 1300 1100 False

2013 1200 1300 True

Ref.Date Births Deaths Estimate

2011 1100 1000 False

2012 1200 900 True

2013 1050 1100 False

Ref.Date Births Deaths Estimat e

2011 2100 2200 False

2012 2500 2000 True

2013 2250 2400 True

Version 1.1 Page: 100

Reflexive law (3) 3391

A(§(D1)) = A(D1) 3392

The application of A to an Operator having a single operand gives the same result (in 3393
term of Attributes) that its direct application to the operand (in fact the propagation 3394
rule keeps the viral attributes unchanged). 3395

Having these properties in place, it is always possible to avoid ambiguities and circular 3396
dependencies in the determination of the Attributes’ values of the result. Moreover, it is 3397
sufficient without loss of generality to consider only the case of binary operators (i.e. having 3398
two Data Sets as operands), as more complex cases can be easily inferred by applying the VTL 3399
Attribute propagation rule recursively (following the order of execution of the operations in 3400
the VTL expression). 3401

With regard to this last aspect, the VTL assumes that the order of execution of the operations 3402
in an expression is determined by the precedence and associativity rules of the Operators 3403
applied on the Measures, as already explained in the relevant section. The operations on the 3404
Attributes are performed in the same order, independently of the application of the default 3405
Attribute propagation rule or user defined operations. 3406

For example, recalling the example already given: 3407

Dr := D1 + D2 / (D3 – D4 / D5) 3408

The evaluation of the Attributes will follow the order of composition of the Measures: 3409

I. A(D4 / D5) (default precedence order) 3410
II. A(D3 - I) (explicitly defined order) 3411

III. A(D2 / II) (default precedence order) 3412
IV. A(D1 + III) (default precedence order) 3413

Storage and retrieval of the Data Sets 3414

The Storage 3415

As mentioned, the general form of Transformation can be written as follows: 3416

 Dr := F (D1, D2, … , Dn) 3417

In practice, the right-hand side is a mathematical expression like the one described above: 3418

Dr := D1 + D2 / (D3 – D4 / D5) 3419

As already shown, this expression implies the calculation of many Data Sets in different steps: 3420

I. (D4 / D5) 3421
II. (D3 - I) 3422

III. (D2 / II) 3423
IV. (D1 + III) 3424

Calculated Data Sets are assumed to be non-persistent (temporary), as well as Dr , to which is 3425
assigned the final result of the expression (step IV). 3426

A temporary result within the expression can only be input of other operators in the same 3427
expression. 3428

Version 1.1 Page: 101

Parameter Dr , which the result of the whole expression is assigned to, can be directly 3429
referenced as operand by other Transformations of the same VTL program (a VTL program is 3430
a set of Transformations, that is a Transformation Scheme, aimed to obtain some meaningful 3431
results for the users, supposed to be executed in the same run). 3432

The Put command is used to specify that a result must be persistent. Any step of the 3433
calculation can be made persistent (including all the steps). 3434

The Put has two parameters, the first is the (partial) result of the calculation that has to be 3435
made persistent (a non-persistent parameter of Dataset type), the second is the reference to 3436
the persistent Data Set, for example: 3437

Dr := Put(D1 + D2 / (D3 – D4 / D5), “PDS1”) 3438

means that the overall result of the expression is stored in the persistent Data Set having 3439
name PDS1. The expression: 3440

Dr := Put(D1 + D2 / Put((D3 – D4 / D5), “PDS1”), “PDS2”) 3441

Specifies that (D3 – D4 / D5) is stored in PDS1 and the overall result in PDS2. 3442

The Retrieval 3443

Considering again the general form of Transformation: 3444

 Dr := F (D1, D2, … , Dn) 3445

the “n” Data Sets Di (i=1,… n) are the operands of the Expression and their values have to be 3446
retrieved. 3447

The generic Di may be retrieved either as the temporary result of another Transformation (of 3448
the same VTL program) or from a persistent data source. In the former case Di is the name of 3449
the left-hand parameter (Dr) of the other Transformation. In the latter, Di is the reference to a 3450
persistent Data Set (see the following sections). 3451

A specific Operator (Get) ensures powerful features for accessing persistent data (see the 3452
detail in the Part 2). A direct reference to a persistent Data Set is equivalent to the application 3453
of the Get command. 3454

The Operators Get and Put are also called “commands” because they allow the interaction 3455
with the persistent storage. 3456

The reference s to persistent Data Sets 3457

In defining the Transformations, persistent Data Sets can be retrieved or stored by means of 3458
the Get and Put commands respectively. 3459

As described in the VTL IM, the Data Set is considered as an artefact at a logical level, 3460
equivalent to a mathematical function having independent variables (Identifiers) and 3461
dependent variables (Measures and Attributes). A Data Set is a set of Data Points, which are 3462
the occurrences of the function. Each Data Point is an association between a combination of 3463
values of the independent variables and the corresponding values of the dependent variables. 3464

Therefore, the VTL references the conceptual/logical Data Sets and does not reference the 3465
physical objects where the Data Points are stored. The link between the Data Set at a logical 3466
level and the corresponding physical objects is out of the scope of the VTL and left to the 3467
implementations. 3468

Version 1.1 Page: 102

Also the versioning of the artefacts of the information model, including the Data Sets, is out of 3469
the scope of the VTL and left to the implementations. 3470

The VTL allows reference through commands (Get and Put) to any persistent Data Set defined 3471
and identified according the VTL IM. For correct operation, knowledge of the Data Structure of 3472
the input Data Sets is essential, in order to check the correctness of the expression and 3473
determine the Data Structure of the result. For this reason, the VTL requires that at 3474
compilation time the Data Structures of the referenced Data Sets are available. 3475

In addition, to simplify some kind of operations, the VTL makes it possible to reference also 3476
Cartesian subsets of the already defined Data Sets (i.e. sub Data Sets specified as Cartesian 3477
products of Value Domain Subsets of some Identifier Components). 3478

This is consistent with the IM, because any subset of the Data Points of a Data Set may be 3479
considered in its turn a Data Set, and with correct VTL operations, because the Data Structure 3480
of a sub Data Set is deducible from the Data Structure of the original Data Set, once that the 3481
specification of the subset is given. 3482

Note however that it is not possible to reference directly a non-Cartesian sub Data Set (i.e. a 3483
sub Data Set that cannot be obtained as a Cartesian product of Value Domain Subsets). As any 3484
other kind of Data Set, however, non-Cartesian subsets can be obtained through an 3485
Expression, as partial or final results. 3486

For example, in case of unit data, given the Data Set “Legal Entity” having as Identifiers of the 3487
Country, the IssuerOrganization, and the LegalEntityNumber, the VTL allows direct reference 3488
to either the whole Data Set or a sub-Data Set obtained specifying some countries, and/or 3489
issuers, and/or numbers. By specifying a single value for each identifier it is possible to 3490
reference even a single Legal Entity (i.e. a single Data Point). 3491

In case of Dimensional Data Sets, assuming that the Country and the Date are the Identifiers, it 3492
is possible to reference the sub Data Sets corresponding to one or some countries, to one or 3493
some dates, and to a combination of them. If the dates are periodical, the sub Data Set 3494
corresponding to one country is a time-series. The sub Data Set corresponding to a certain 3495
date is a cross-section. The sub Data Set corresponding to one country and one date is a single 3496
Data Point. Therefore, VTL allows direct reference to dimensional data, time-series, cross-3497
sections, and single observations. 3498

In conclusion, a VTL reference to a persistent (sub)Data Set is composed of two parts: 3499

¶ The identification of the Data Set (mandatory) 3500
¶ The specification of a subset of it (optional) 3501

The Identification of a persistent Data Set 3502

The identification of the persistent Data Sets to read from (Get) or to store into (Put) follows 3503
the general rules of identification of the persistent artefact (see the corresponding section 3504
above). 3505

Therefore, the Data Set identifier is the Data Set Name, which is unique in the environment. 3506
As different environments can use the same Data Set Names for their artefacts, the Data Set 3507
Name can optionally be qualified by a Namespace, to avoid name conflicts. 3508

In case the Data Set identifier has a Namespace, a separator character can be chosen (and 3509
configured in the system) among the non-alphanumeric ones. A typical, and recommended, 3510

Version 1.1 Page: 103

choice is the slash (“/”) symbol. If the Data Set identifier does not have a Namespace, the same 3511
namespace as the respective Transformation is assumed. 3512

Examples of good references to Data Sets are: 3513

“NAMESPACE/DS_NAME” (explicit Namespace definition) 3514

“DS_NAME” (the Namespace of the Transformation is assumed) 3515

The specification of a subset of a persistent Data Set 3516

The VTL allows the retrieval or storage of a subset of a predefined Data Set by filtering the 3517
values of its Identifier Components. 3518

Two basic options are allowed in the grammar of this specification: 3519

¶ A full notation (query string) , specifying both the Identifiers and the values to be 3520
filtered (e.g. Date= 2014, Country=USA, Sector=Public …); in this case the filtering 3521
condition is preceded by the “?” symbol. 3522

¶ A short n otation (ordered concatenation) , specifying only the values to be filtered 3523
(e.g. 2014.USA.Public); in this case the filtering condition is preceded by the “/” 3524
symbol; the values have to be specified following a predefined order of the Identifiers. 3525

The quer y string is a postfix syntax specifying the filter in case the order of the identifiers is 3526
not defined beforehand or not known. 3527

The filter is specified by concatenating the filtering conditions on the Identifiers, expressed in 3528
any order and separated by “&”. If a filtering condition is not specified for an Identifier, the 3529
latter is not constrained and all the available values are taken. For example: 3530

I. DS_NAME?DATE=2014&COUNTRY=USA&SECTOR=PUBLIC 3531

In the example above, single values are specified for each filtering condition. 3532

In the same way, it is also possible to specify multiple values for some filtering conditions, 3533
separating the values by the “+” keyword (list). For example, to take the years 2013 and 2014 3534
and the countries USA and Canada: 3535

II. DS_NAME?DATE=2013+2014&COUNTRY=USA+CANADA&SECTOR=PUBLIC 3536

Finally, where the Values have an order like the one for the “Date” data type, it is possible to 3537
specify ranges of values for some filtering conditions, separating the first and last values of 3538
the range by the “-” keyword (range). For example, to take all the years from 2008 to 2014: 3539

III. DS_NAME?DATE=2008- 2014&COUNTRY=USA+CANADA&SECTOR=PUBLIC 3540

The ordered concatenation is a simplified syntax to specify the filter in case the order of the 3541
identifiers is defined beforehand and known. 3542

The filter is specified by concatenating the filtering conditions in the predefined order of the 3543
Identifiers; the filtering conditions do not require the specification of the name of the 3544
Identifier, which can be deduced by their predefined order, therefore only the values are 3545
specified, separated by “.”, i.e. a dot. If a value is omitted, the corresponding Identifier is not 3546
constrained and all the available values are taken. For example, (assuming that the order on 3547
the identifiers is 1-Date, 2-Country, 3-Sector): 3548

I. DS_NAME/2014.USA.PUBLIC 3549

This definition in the query string syntax corresponds to: 3550

Version 1.1 Page: 104

DS_NAME?DATE=2014&COUNTRY=USA&SECTOR=PUBLIC 3551

II. DS_NAME/.USA.PUBLIC 3552

This definition filters all the available years for the USA and the public sector, and 3553
in the query string syntax corresponds to: 3554

DS_NAME?COUNTRY=USA&SECTOR=PUBLIC 3555

III. DS_NAME/..PUBLIC 3556

This definition filters all the available years and countries for the public sector and 3557
in the query string syntax corresponds to: 3558

DS_NAME?SECTOR=PUBLIC 3559

If needed, the list (“+”) and/or range (“-“) keywords can be used to specify lists or range of 3560
values respectively. For example: 3561

IV. DS_NAME/2008- 2014.USA+CANADA.PUBLIC 3562

This definition in the query string syntax corresponds to: 3563

DS_NAME?DATE=2008- 2014&COUNTRY=USA+CANADA&SECTOR=PUBLIC 3564

 3565

Conventions for the grammar of the language 3566

General conventions 3567

A VTL program is a set of Transformations executed in the same run, which is defined as a 3568
Transformation Scheme. 3569

Each Transformation consists in a statement that is an assignment of the form: 3570

variable parameter := expression 3571

“:=” is the assignment operator, meaning that the result of the evaluation of the expression in 3572
the right-hand side is assigned to the variable parameter in the left-hand side (which is the 3573
output parameter of the assignment). 3574

Examples of assignments are (assuming that ds_i (i=1…n) are Data Sets): 3575

¶ ds_1 := ds_2 3576
¶ ds_3 := ds_4 + ds_6 3577

Variable Parameter names 3578

The variable parameters are non-persistent (temporary). 3579

The names of the variable parameters are alphanumeric (starting with an alphabetic 3580
character). Also non alphabetic characters (“_”,”-“) are allowed, but not in the first position. 3581
Parameter names are case-sensitive. 3582

Examples of allowed names for the parameters are: par1, p_1, VarPar_ABCD, paraMeterXY. 3583

Reserved words 3584

Certain words are reserved keywords in the language and cannot be used as parameter 3585
names, they include: 3586

Version 1.1 Page: 105

- all the names of the operators / clauses 3587
- all the symbols used by the language (assignment “:=”, parenthesis “(“,“)”,“[“ ,“]”, 3588

ampersand “&”, hash “#” …) 3589
- true 3590
- false 3591
- all 3592
- imbalance 3593
- errorlevel 3594
- condition 3595
- msg_code 3596
- dataset 3597
- script 3598

Comments 3599

VTL allows comments within the statements in order to provide textual explanations of the 3600
operations. Whatever is enclosed between /* and */ shall not be processed by VTL parsers, as 3601
it shall be considered as comment. 3602

For example: 3603

/* Set constant for óˊô*/ 3604
numpi := 3.14 3605
popA := populationDS + 1 /* Assign temp Dataset popA */ 3606

Constraints and errors 3607

VTL supports a number of error types, which can occur in different situations; errors are 3608
divided into three main categories compile time , runtime, validation. Each category is 3609
divided in turn in subcategories, containing the specific errors. 3610

An error is identified by the string “VTL-“ followed by a four digit code CSEE, where: 3611

- C identifies the category (0: compile time, 1: runtime, 2: validation) 3612
- S identifies the subcategory 3613
- EE identifies the specific error in the subcategory 3614

While the three categories (and subcategories for compile errors) are standardized with 3615
codes reported in the remainder of this section, an encoding for specific errors (identified by 3616
the last two digits, EE) is not enforced here and can be independently defined by the adopting 3617
organization.19 3618

A compile time error prevents an expression from being used (exchanged, executed …) and 3619
results in an exception reporting the error code (VTL-0XXX) and the wrong expression to the 3620
definer. 3621

In contrast, when a runtime error is raised, it can cause: 3622

a) an abnormal termination of the running VTL program, with an exception reporting the 3623
error code (VTL-1XXX) and the wrong expression to the user 3624

b) the current expression to be discarded, without generating any exception 3625

19 However, notice that in a following version of the language, a standardization is foreseen also for

subcategories and specific error codes.

Version 1.1 Page: 106

c) only the violating Data Point to be discarded, without generating any exception. 3626

The choice between these three behaviours should be dependent on the runtime system and 3627
is not part of the language, nor linked to the error codes. 3628

Validation errors are errors resulting from data validation (e.g. check operator), which can be 3629
stored in Datasets and used for further elaboration. Indeed, validation errors are not VTL 3630
errors and do not influence the use of the expression or the normal execution of a VTL 3631
program. 3632

Compile Time errors (VTL -0xxx) 3633

The VTL grammar specifies the rules to be followed in writing expressions. The VTL language 3634
allows the detection at compile time of the possible violation of the correct syntax , the use of 3635
wrong types as parameters for the operators or the violation of any of the static 3636
constraints of the operators (with respect to the rules described in the Part 2). 3637

A VTL compiler has to be able to detect all the syntax errors, help the user understand the 3638
reason and recover. Three subcategories are predetermined (see below). The specific error 3639
can be represented by the adopting organization with any code ranging from 00 to 99 3640
(examples are: unclosed literal string; unexpected symbol, etc.) 3641

Syntax errors (VTL-01xx) 3642

A violation of the VTL syntax with respect to the syntax templates of operators in names of 3643
operators or number of operands. 3644

Examples of syntactically invalid expressions are: 3645

R := C1 + - the second operand is missing 3646

R := C1 exist_in_all C2 - the correct syntax is “exists_in_all”. 3647

R := if k1>4 then else K3 + 3 - the “then” operand is missing 3648

Type errors (VTL-02xx) 3649

A violation of the types of the operands allowed for the operators. 3650

Examples of expressions that are type-invalid are: 3651

R := C1 + ó2ô – if C1 has a measure component that is not <String> 3652

R := C1 + C2 – if C1 has a MeasureComponent<String> and C2 has a 3653
MeasureComponent<Numeric> 3654

R := C1 / 5 - if C1 has a MeasureComponent<String>. 3655

R:= if (K1 > 3 and k1 < 5) then 0 else ñhelloò - the “then” and the “else” 3656
operands must be of the same type 3657

Since the language is strongly typed, all type violations can be reported at compile time. 3658

Static constraint violation errors (VTL-03xx) 3659

Every operator may have additional constraints. They are reported in the respective 3660
“Constraints” sections in the Part 2. Some of them are static, in the sense that they can be 3661
checked at compile type. 3662

A constraint violation error is the violation of a static VTL constraint . 3663

Version 1.1 Page: 107

Examples of expressions that violate static constraints are: 3664

R := C1 + C2 – if the IdentifierComponents of C1 and C2 are not the same or 3665
are not contained in the ones of the other operator. 3666

R := 3 + 5 – in the plus (+) operator, at least one operand must be a Dataset. 3667

 3668

Runtime errors (VTL -1xxx) 3669

These errors can be detected only at runtime, typically because they are generated by the 3670
data. 3671

Examples are the classical mathematical constraints on operators arguments (negative or 3672
zero logarithm argument, division by zero, etc.). 3673

Particular types of runtime errors are: 3674

¶ presence of duplicate Data Points to be assigned to a Data Set (it is not allowed that 3675
two Data Points in a Data Set have the same values for all the Identifier Components 3676
because the Data Point identification would be impossible) 3677

¶ presence of a null value in an Identifier Component of a Data Point. 3678

These two errors result in a runtime exception only if the inconsistent Data Points are 3679
assigned (:=) to a Data Set in the left-hand side of a Transformation or are stored in a 3680
persistent Data Set. In other words, if such Data Points are only partial and temporary results 3681
inside the expression on the right-hand side, no runtime exceptions will be raised provided 3682
that the anomalies (duplications or NULLS) are removed before the execution of the 3683
assignment or the Put command. 3684

Examples of expressions generating runtime errors are: 3685

R := C1 / C2 – where C2 is 0 for any observation 3686

R := substr(A, 2, 5) – if A is 1 character long, causing an “out of range” 3687

R := C1 – if C1 contains null values for some IdentifierComponents. 3688
Notice that the assignment causes the runtime error; the fact that C1 contains a null value for 3689
an IdentifierComponent is accepted as partial and temporary result in the right-hand side of 3690
the expression. 3691

R := C1 – if C1 contains duplicates on an IdentifierComponent. Also in this 3692
case, notice that the assignment causes the runtime error; the fact that C1 contains a duplicate 3693
is accepted as partial and temporary result in the right-hand side of the expression. 3694

A VTL runtime environment will be able to detect a wide number of runtime errors. The 3695
specific errors can be divided into subcategories by the adopting organization; moreover, the 3696
specific error can be represented with any code ranging from 00 to 99. 3697

 3698

Validation errors (VTL -2xxx) 3699

They represent the outcome of a failed user-defined validation. The code can be used for 3700
further elaboration or to report discrepancies. 3701

Version 1.1 Page: 108

Error codes can be associated with the single validations with the check operator, whose last 3702
parameter is errorCode. This is the code to be used for each Data Point having FALSE for its 3703
MeasureComponent. 3704

For example: 3705

R := check(C1 >= C2, all, 2 601) 3706

Checks if C1 is greater or equal than C2 and, if not the case, stores the code 2601 in the 3707
errorCode attribute. 3708

 3709

 3710

 3711

 3712

 3713

 3714

 3715

 3716

 3717

 3718

 3719

and produces: 3720

 3721

 3722

 3723

 3724

 3725

 3726

 3727

A set of VTL validation rules, will be able to detect a wide number of validation errors. The 3728
specific errors can be divided into subcategories by the adopting organization; moreover, the 3729
specific error can be represented with any code ranging from 00 to 99. 3730

C1

K1 K2 M1

1 A 1000

2 B 200

C2

K1 K2 K3 M1

1 A X 1000

2 B Y 350

2 B Z 150

R

K1 K2 K3 CONDITION ERRORCODE

1 A X TRUE

2 B Y FALSE 2601

2 B Z TRUE

Version 1.1 Page: 109

Governance, other requirements and future work 3731

The SDMX Technical Working Group, as mandated by the SDMX Secretariat, is responsible for 3732
ensuring the technical maintenance of the Validation and Transformation Language through a 3733
dedicated VTL task-force. The VTL task-force is open to the participation of experts from 3734
other standardisation communities, such as DDI and GSIM, as the language is designed to be 3735
usable within different standards. 3736

The governance of the extensions 3737

According to the requirements, it is envisaged that the language can be enriched and made 3738
more powerful in future versions according to the evolution of the business needs. For 3739
example, new operators and clauses can be added, and the language syntax can be upgraded. 3740

The VTL governance body will take care of the evolution process, collecting and prioritising 3741
the requirements, planning and designing the improvements, releasing future VTL versions. 3742

The release of new VTL versions is considered as the preferred method of fulfilling the 3743
requirements of the user communities. In this way the possibility of exchanging standard 3744
validation and transformation rules would be preserved to the maximum extent possible. 3745

In order to fulfil specific calculation features not yet supported, the VTL provides for a specific 3746
operator (Evaluate) whose purpose is to invoke an external calculation function (routine), 3747
provided that this is compatible with the VTL IM and data types. 3748

The operator “Evaluate” (also “Eval”) allows defining and making customized calculations 3749
(also reusing existing routines) without upgrading or extending the language, because the 3750
external calculation function is not considered as an additional operator. The expressions 3751
containing Eval are standard VTL expressions and can be parsed through a standard parser. 3752
For this reason, when it is not possible or convenient to use other VTL operators, Eval is the 3753
recommended method of customizing the language operations. 3754

However, as explained in the section “Extensibility and Customizability” of the “General 3755
Characteristics of VTL” above, calling external functions has some drawbacks in respect to the 3756
use of the proper VTL operators. The transformation rules would be not understandable 3757
unless such external functions are properly documented and shared and could become 3758
dependent on the IT implementation, less abstract and less user oriented. Moreover, the 3759
external functions cannot be parsed (as if they were built through VTL operators) and this 3760
could make the expressions more error-prone. External routines should be used only for 3761
specific needs and in limited cases, whereas widespread and generic needs should be fulfilled 3762
through the operators of the language. 3763

While the “Eval” operator is part of VTL, the invoked external calculation functions are not. 3764
Therefore, they are considered as customized parts under the governance, and are 3765
responsibility and charge of the organizations which use it. 3766

Another possible form of customization is the extension of VTL by means of non-standard 3767
operators/clauses. This kind of extension is deprecated, because it would compromise the 3768
possibility of sharing validation rules and using common tools (for example, a standard parser 3769
would consider an expression containing non-standard operators as in error). 3770

Version 1.1 Page: 110

Organizations possibly extending VTL through non-standard operators/clauses would 3771
operate on their own total risk and responsibility, also for any possible maintenance activity 3772
deriving from VTL modifications. 3773

Relations with the GSIM Information Model 3774

As explained in the section “VTL Information Model”, VTL 1.0 is inspired by GSIM 1.1 as much 3775
as possible, in order to provide a formal model at business level against which other 3776
information models can be mapped, and to facilitate the implementation of VTL with 3777
standards like SDMX, DDI and possibly others. 3778

GSIM faces many aspects that are out of the VTL scope; the latter uses only those GSIM 3779
artefacts which are strictly related to the representation of validations and transformations. 3780
The referenced GSIM artefacts have been assessed against the requirements for VTL and, in 3781
some cases, adapted or improved as necessary, as explained earlier. No assessment was made 3782
about those GSIM artefacts which are out of the VTL scope. 3783

In respect to GSIM, VTL considers both unit and dimensional data as mathematical functions 3784
having a certain structure in term of independent and dependent variables. This leads to a 3785
simplification, as unit and dimensional data can be managed in the same way, but it also 3786
introduces some slight differences in data representation. The aim of the VTL Task Force is to 3787
propose the adoption of this adjustment for the next GSIM versions. 3788

The VTL IM allows defining the Value Domains (as in GSIM) and their subsets (not explicitly 3789
envisaged in GSIM), needed for validation purposes. In order to be compliant, the GSIM 3790
artefacts are used for modelling the Value Domains and a similar structure is used for 3791
modelling their subsets. Even in this case, the VTL task force will propose the explicit 3792
introduction of the Value Domain Subsets in future GSIM versions. 3793

VTL is based on a model for defining mathematical expressions which is called 3794
"Transformation model". GSIM does not have a Transformation model, which is however 3795
available in the SDMX IM. The VTL IM has been built on the SDMX Transformation model, 3796
with the intention of suggesting its introduction in future GSIM versions. 3797

Some misunderstanding may arise from the fact that GSIM, DDI, SDMX and other standards 3798
also have a Business Process model. The connection between the Transformation model and 3799
the Business Process model has been neither analysed nor modelled in VTL 1.0. One reason is 3800
that the business process models available in GSIM, DDI and SDMX are not yet fully 3801
compatible and univocally mapped. 3802

It is worth nothing that the Transformation and the Business Process models address 3803
different matters. In fact, the former allows defining validation and calculation rules in the 3804
form of mathematical expressions (like in a spreadsheet) while the latter allows defining a 3805
business process, made of tasks to be executed in a certain order. The two models may 3806
coexist and be used together as complementary. For example, a certain task of a business 3807
process (say the validation of a data set) may require the execution of a certain set of 3808
validation rules, expressed through the Transformation model used in VTL. Further progress 3809
in this reconciliation is a task which needs some parallel work in GSIM, SDMX and DDI, and 3810
could be reflected in a future VTL version. 3811

Version 1.1 Page: 111

Annex 1 – EBNF 3812

The VTL language is also expressed in EBNF (Extended Backus-Naur Form). 3813

EBNF is a standard20 meta-syntax notation, typically used to describe a Context-Free grammar 3814
and represents an extension to BNF (Backus-Naur Form) syntax. Indeed, any language 3815
described with BNF notation can also be expressed in EBNF (although expressions are 3816
typically lengthier). 3817

Intuitively, the EBNF consists of terminal symbols and non-terminal production rules. 3818
Terminal symbols are the alphanumeric characters (but also punctuation marks, whitespace, 3819
etc.) that are allowed singularly or in a combined fashion. Production rules are the rules 3820
governing how terminal symbols can be combined in order to produce words of the language 3821
(i.e. legal sequences). 3822

More details can be found at http://en.wikipedia.org/wiki/Extended_Backus–Naur_Form 3823

Properties of VTL grammar 3824

VTL can be described in terms of a Context-Free grammar21, with productions of the form VĄ 3825
w, where V is a single non-terminal symbol and w is a string of terminal and non-terminal 3826
symbols. 3827

VTL grammar aims at being unambiguous. An ambiguous Context-Free grammar is such that 3828
there exists a string that can be derived with two different paths of production rules, 3829
technically with two different leftmost derivations. 3830

In theoretical computer science, the problem of understanding if a grammar is ambiguous is 3831
undecidable. In practice, many languages adopt a number of strategies to cope with 3832
ambiguities. This is the approach followed in VTL as well. Examples are the presence of 3833
associativity and precedence rules for infix operators (such as addition and subtraction), and 3834
the existence of compulsory else branch in if-then-else operator. 3835

These devices are reasonably good to guarantee the absence of ambiguity in VTL grammar. 3836
Indeed, real parser generators (for instance YACC22), can effectively exploit them, in particular 3837
using the mentioned associativity and precedence constrains as well as the relative ordering 3838
of the productions in the grammar itself, which solves ambiguity by default. 3839

20 ISO/IEC 14977

21 http://en.wikipedia.org/wiki/Context-free_grammar

22 http://en.wikipedia.org/wiki/Yacc

http://en.wikipedia.org/wiki/Terminal_symbol
http://en.wikipedia.org/wiki/Extended_Backus–Naur_Form
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Yacc

