
1

 1

SDMX Technical Working Group 2

VTL Task Force 3

 4

 5

 6

 7

 8

VTL – version 2.0 9

(Validation & Transformation Language) 10

 11

Part 2 – Reference Manual 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

April 2018 24

 25

 26

2

Foreword 27

The Task force for the Validation and Transformation Language (VTL), created in 2012-2013 under the initiative 28

of the SDMX Secretariat, is pleased to present the draft version of VTL 2.0. 29

The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the consideration that SDMX 30

already had a package for transformations and expressions in its information model, while a specific 31

implementation language was missing. To make this framework operational, a standard language for defining 32

validation and transformation rules (operators, their syntax and semantics) had to be adopted, while 33

appropriate SDMX formats for storing and exchanging rules, and web services to retrieve them, had to be 34

designed. The present VTL 2.0 package is only concerned with the first element, i.e., a formal definition of each 35

operator, together with a general description of VTL, its core assumptions and the information model it is based 36

on. 37

The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM communities and the 38

work started in summer 2013. The intention was to provide a language usable by statisticians to express logical 39

validation rules and transformations on data, described as either dimensional tables or unit-record data. The 40

assumption is that this logical formalization of validation and transformation rules could be converted into 41

specific programming languages for execution (SAS, R, Java, SQL, etc.), and would provide at the same time, a 42

“neutral” business-level expression of the processing taking place, against which various implementations can be 43

mapped. Experience with existing examples suggests that this goal would be attainable. 44

An important point that emerged is that several standards are interested in such a kind of language. However, 45

each standard operates on its model artefacts and produces artefacts within the same model (property of 46

closure). To cope with this, VTL has been built upon a very basic information model (VTL IM), taking the 47

common parts of GSIM, SDMX and DDI, mainly using artefacts from GSIM 1.1, somewhat simplified and with 48

some additional detail. In this way, existing standards (GSIM, SDMX, DDI, others) would be allowed to adopt VTL 49

by mapping their information model against the VTL IM. Therefore, although a work-product of SDMX, the VTL 50

language in itself is independent of SDMX and will be usable with other standards as well. Thanks to the 51

possibility of being mapped with the basic part of the IM of other standards, the VTL IM also makes it possible to 52

collect and manage the basic definitions of data represented in different standards. 53

For the reason described above, the VTL specifications are designed at logical level, independently of any other 54

standard, including SDMX. The VTL specifications, therefore, are self-standing and can be implemented either on 55

their own or by other standards (including SDMX). In particular, the work for the SDMX implementation of VTL 56

is going in parallel with the work for designing this VTL version, and will entail a future update of the SDMX 57

documentation. 58

The first public consultation on VTL (version 1.0) was held in 2014. Many comments were incorporated in the 59

VTL 1.0 version, published in March 2015. Other suggestions for improving the language, received afterwards, 60

fed the discussion for building the draft version 1.1, which contained many new features, was completed in the 61

second half of 2016 and provided for public consultation until the beginning of 2017. 62

The high number and wide impact of comments and suggestions induced a high workload on the VTL TF, which 63

agreed to proceed in two steps for the publication of the final documentation, taking also into consideration that 64

some first VTL implementation initiatives had already been launched. The first step, the current one, is 65

dedicated to fixing some high-priority features and making them as much stable as possible. A second step, 66

scheduled for the next period, is aimed at acknowledging and fixing other features considered of minor impact 67

and priority, which will be added hopefully without affecting neither the features already published in this 68

documentation, nor the possible relevant implementations. Moreover, taking into account the number of very 69

important new features that have been introduced in this version in respect to the VTL 1.0, it was agreed that the 70

current VTL version should be considered as a major one and thus named VTL 2.0. 71

The VTL 2.0 package contains the general VTL specifications, independently of the possible implementations of 72

other standards; in its final release, it will include: 73

a) Part 1 – the user manual, highlighting the main characteristics of VTL, its core assumptions and the 74

information model the language is based on; 75

b) Part 2 – the reference manual, containing the full library of operators ordered by category, including 76

examples; this version will support more validation and compilation needs compared to VTL 1.0. 77

c) eBNF notation (extended Backus-Naur Form) which is the technical notation to be used as a test bed for 78

all the examples. 79

The present document is the part 2. 80

3

The latest version of VTL is freely available online at https://sdmx.org/?page_id=5096 81

 82

Acknowledgements 83

The VTL specifications have been prepared thanks to the collective input of experts from Bank of Italy, Bank for 84

International Settlements (BIS), European Central Bank (ECB), Eurostat, ILO, INEGI-Mexico, ISTAT-Italy, OECD, 85

Statistics Netherlands, and UNESCO. Other experts from the SDMX Technical Working Group, the SDMX 86

Statistical Working Group and the DDI initiative were consulted and participated in reviewing the 87

documentation. 88

The list of contributors and reviewers includes the following experts: Sami Airo, Foteini Andrikopoulou, David 89

Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio Capaccioli, Vincenzo Del Vecchio, Fabio Di Giovanni, Jens 90

Dossé, Heinrich Ehrmann, Bryan Fitzpatrick, Tjalling Gelsema, Luca Gramaglia, Arofan Gregory, Gyorgy Gyomai, 91

Edgardo Greising, Dragan Ivanovic, Angelo Linardi, Juan Munoz, Chris Nelson, Stratos Nikoloutsos, Stefano 92

Pambianco, Marco Pellegrino, Michele Romanelli, Juan Alberto Sanchez, Roberto Sannino, Angel Simon Delgado, 93

Daniel Suranyi, Olav ten Bosch, Laura Vignola, Fernando Wagener and Nikolaos Zisimos. 94

Feedback and suggestions for improvement are encouraged and should be sent to the SDMX Technical Working 95

Group (twg@sdmx.org). 96

 97

https://sdmx.org/?page_id=5096
mailto:twg@sdmx.org

4

Table of contents 98

Foreword ..2 99

Table of contents ...4 100

Introduction ..8 101

Overwiew of the language and conventions ..9 102

Introduction ...9 103

Conventions for writing VTL Transformations .. 10 104

Typographical conventions ... 11 105

Abbreviations for the names of the artefacts ... 12 106

Conventions for describing the operators’ syntax .. 12 107

Description of the data types of operands and result .. 14 108

VTL-ML Operators ... 15 109

VTL-ML - Evaluation order of the Operators ... 27 110

Description of VTL Operators .. 27 111

VTL-DL - Rulesets.. 29 112

define datapoint ruleset ... 29 113

define hierarchical ruleset .. 31 114

VTL-DL – User Defined Operators .. 39 115

define operator ... 39 116

Data type syntax ... 40 117

VTL-ML - Typical behaviours of the ML Operators ... 42 118

Typical behaviour of most ML Operators ... 42 119

Operators applicable on one Scalar Value or Data Set or Data Set Component .. 42 120

Operators applicable on two Scalar Values or Data Sets or Data Set Components 43 121

Operators applicable on more than two Scalar Values or Data Set Components 45 122

Behaviour of Boolean operators ... 45 123

Behaviour of Set operators ... 46 124

Behaviour of Time operators .. 46 125

Operators changing the data type .. 47 126

Type Conversion and Formatting Mask .. 48 127

The Numbers Formatting Mask .. 48 128

The Time Formatting Mask ... 48 129

Attribute propagation ... 51 130

VTL-ML - General purpose operators .. 53 131

5

Parentheses : () .. 53 132

Persistent assignment : <- .. 53 133

Non-persistent assignment : := .. 55 134

Membership : # ... 56 135

User-defined operator call .. 57 136

Evaluation of an external routine : eval ... 58 137

Type conversion : cast ... 59 138

VTL-ML - Join operators ... 64 139

Join : inner_join, left_join, full_join, cross_join .. 64 140

VTL-ML - String operators ... 73 141

String concatenation : || ... 73 142

Whitespace removal : trim, rtrim, ltrim... 74 143

Character case conversion : upper/lower .. 75 144

Sub-string extraction : substr ... 76 145

String pattern replacement: replace ... 78 146

String pattern location : instr ... 79 147

String length : length .. 81 148

VTL-ML - Numeric operators .. 84 149

Unary plus : + .. 84 150

Unary minus: - ... 85 151

Addition : + .. 86 152

Subtraction : - ... 88 153

Multiplication : * ... 89 154

Division : / ... 91 155

Modulo : mod .. 92 156

Rounding : round .. 94 157

Truncation : trunc ... 96 158

Ceiling : ceil ... 98 159

Floor: floor .. 99 160

Absolute value : abs ... 100 161

Exponential : exp .. 101 162

Natural logarithm : ln .. 102 163

Power : power .. 104 164

Logarithm : log... 105 165

Square root : sqrt ... 106 166

6

VTL-ML - Comparison operators .. 108 167

Equal to : = .. 108 168

Not equal to : <> ... 109 169

Greater than : > >= .. 110 170

Less than : < <= ... 112 171

Between : between ... 114 172

Element of: in / not_in ... 115 173

match_characters match_characters .. 117 174

Isnull: isnull... 118 175

Exists in : exists_in ... 120 176

VTL-ML - Boolean operators .. 122 177

Logical conjunction: and ... 122 178

Logical disjunction : or .. 123 179

Exclusive disjunction : xor .. 125 180

Logical negation : not ... 127 181

VTL-ML - Time operators .. 129 182

Period indicator : period_indicator .. 129 183

Fill time series : fill_time_series ... 130 184

Flow to stock : flow_to_stock .. 136 185

Stock to flow : stock_to_flow ... 139 186

Time shift : timeshift ... 142 187

Time aggregation : time_agg .. 145 188

Actual time : current_date .. 147 189

VTL-ML - Set operators .. 149 190

Union: union .. 149 191

Intersection : intersect .. 150 192

Set difference : setdiff .. 152 193

Simmetric difference : symdiff... 153 194

VTL-ML - Hierarchical aggregation ... 155 195

Hierarchical roll-up : hierarchy ... 155 196

VTL-ML - Aggregate and Analytic operators .. 159 197

Aggregate invocation .. 160 198

Analytic invocation .. 163 199

Counting the number of data points: count ... 166 200

Minimum value : min .. 167 201

7

Maximum value : max ... 168 202

Median value : median ... 169 203

Sum : sum ... 170 204

Average value : avg ... 172 205

Population standard deviation : stddev_pop ... 173 206

Sample standard deviation : stddev_samp .. 174 207

Population variance : var_pop .. 175 208

Sample variance : var_samp ... 176 209

First value : first_value ... 177 210

Last value : last_value .. 178 211

Lag : lag .. 180 212

lead : lead ... 181 213

Rank : rank ... 183 214

Ratio to report : ratio_to_report ... 184 215

VTL-ML - Data validation operators.. 186 216

check_datapoint ... 186 217

check_hierarchy .. 188 218

check ... 192 219

VTL-ML - Conditional operators ... 195 220

if-then-else : if .. 195 221

Nvl : nvl .. 197 222

VTL-ML - Clause operators ... 199 223

Filtering Data Points : filter ... 199 224

Calculation of a Component : calc .. 200 225

Aggregation : aggr .. 201 226

Maintaining Components: keep ... 204 227

Removal of Components: drop .. 205 228

Change of Component name : rename .. 206 229

Pivoting : pivot ... 207 230

Unpivoting : unpivot .. 208 231

Subspace : sub ... 210 232

 233

8

Introduction 234

This document is the Reference Manual of the Validation and Transformation Language (also known as ‘VTL’) 235

version 2.0. 236

The VTL 2.0 library of the Operators is described hereinafter. 237

VTL 2.0 consists of two parts: the VTL Definition Language (VTL-DL) and the VTL Manipulation Language (VTL-238

ML). 239

This manual describes the operators of VTL 2.0 in detail (both VTL-DL and VTL-ML) and is organized as follows. 240

First, in the following Chapter “Overview of the language and conventions”, the general principles of VTL are 241

summarized, the main conventions used in this manual are presented and the operators of the VTL-DL and VTL-242

ML are listed. For the operators of the VTL-ML, a table that summarizes the “Evaluation Order” (i.e., the 243

precedence rules for the evaluation of the VTL-ML operators) is also given. 244

The following two Chapters illustrate the operators of VTL-DL, specifically for: 245

 the definition of rulesets and their rules, which can be invoked with appropriate VTL-ML operators (e.g. 246

to check the compatibility of Data Point values …); 247

 the definition of custom operators/functions of the VTL-ML, meant to enrich the capabilities of the VTL-248

ML standard library of operators. 249

The illustration of VTL-ML begins with the explanation of the common behaviour of some classes of relevant 250

VTL-ML operators, towards a good understanding of general language characteristics, which we factor out and 251

do not repeat for each operator, for the sake of compactness. 252

The remainder of the document illustrates each single operator of the VTL-ML and is structured in chapters, one 253

for each category of Operators (e.g., general purpose, string, numeric …). For each Operator, there is a specific 254

section illustrating the syntax, the semantics and giving some examples. 255

 256

9

Overwiew of the language and conventions 257

Introduction 258

The Validation and Transformation Language is aimed at defining Transformations of the artefacts of the VTL 259

Information Model, as more extensively explained in the User Manual. 260

A Transformation consists of a statement which assigns the outcome of the evaluation of an expression to an 261

Artefact of the IM. The operands of the expression are IM Artefacts as well. A Transformation is made of the 262

following components: 263

● A left-hand side, which specifies the Artefact which the outcome of the expression is assigned to (this is 264

the result of the Transformation); 265

● An assignment operator, which specifies also the persistency of the left hand side. The assignment 266

operators are two, the first one for the persistent assignment (<-) and the other one for the non-267

persistent assignment (:=). 268

● A right-hand side, which is the expression to be evaluated, whose inputs are the operands of the 269

Transformation. An expression consists in the invocation of VTL Operators in a certain order. When an 270

Operator is invoked, for each input Parameter, an actual argument (operand) is passed to the Operator, 271

which returns an actual argument for the output Parameter. In the right hand side (the expression), the 272

Operators can be nested (the output of an Operator invocation can be input of the invocation of another 273

Operator). All the intermediate results in an expression are non-persistent. 274

Examples of Transformations are: 275

 276

DS_np := (DS_1 - DS_2) * 2 ; 277

DS_p <- if DS_np >= 0 then DS_np else DS_1 ; 278

 279

(DS_1 and DS_2 are input Data Sets, DS_np is a non persistent result, DS_p is a persistent result, the invoked 280

operators (apart the mentioned assignments) are the subtraction (-) the multiplication (*) the choice 281

(if…then…else), the greater or equal comparison (>=) and the parentheses that control the order of the 282

operators’ invocations. 283

Like in the example above, Transformations can interact one another through their operands and results; in fact 284

the result of a Transformation can be operand of one or more other Transformations. The interacting 285

Transformations form a graph that is oriented and must be acyclic to ensure the overall consistency, moreover a 286

given Artefact cannot be result of more than one Transformation (the consistency rules are better explained in 287

the User Manual, see VTL Information Model / Generic Model for Transformations / Transformations 288

consistency). In this regard, VTL Transformations have a strict analogy with the formulas defined in the cells of 289

the spreadsheets. 290

A set of more interacting Transformations is usually needed to perform a meaningful and self-consistent task 291

like for example the validation of one or more Data Sets. The smaller set of Transformations to be executed in the 292

same run is called Transformation Scheme and can be considered as a VTL program. 293

Not necessarily Transformations need to be written in sequence like a classical software program, in fact they 294

are associated to the Artefacts they calculate, like it happens in the spreadsheets (each spreadsheet’s formula is 295

associated to the cell it calculates). 296

Nothing prevents, however, from writing the Transformations in sequence, taking into account that not 297

necessarily the Transformations are performed in the same order as they are written, because the order of 298

execution depends on their input-output relationships (a Transformation which calculates a result that is 299

operand of other Transformations must be executed first). For example, if the two Transformations of the 300

example above were written in the reverse order: 301

 302

(i) DS_p <- if DS_np >= 0 then DS_np else DS_1 ; 303

(ii) DS_np := (DS_1 - DS_2) * 2 ; 304

 305

10

All the same the Transformation (ii) would be executed first, because it calculates the Data Set DS_np which is 306

an operand of the Transformation (i). 307

When Transformations are written in sequence, a semicolon (;) is used to denote the end of a Transformation 308

and the beginning of the following one. 309

 310

 Conventions for writing VTL Transformations 311

When more Transformations are written in a text, the following conventions apply. 312

Transformations: 313

 A Transformation can be written in one or more lines, therefore the end of a line does not denote the end of 314

a Transformation. 315

 The end of a Tranformation is denoted by a semicolon (;). 316

Comments: 317

Comments can be inserted within VTL Transformations using the following syntaxes. 318

 A multi-line comment is embedded between /* and */ and, obviously, can span over several lines: 319

/* multi-line 320

 comment text */ 321

 A single-line comment follows the symbol // up to the next end of line: 322

// text of a comment on a single line 323

 A sequence of spaces, tabs, end-of-line characters or comments is considered as a single space. 324

 The characters /* , */ , // and the whitespaces can be part of a string literal (within double quotes) but in 325

such a case they are part of the string characters and do not have any special meaning. 326

 327

Examples of valid comments: 328

Example 1: 329

/* this is a multi-line 330

 Comment */ 331

Example 2: 332

// this is single-line comment 333

Example 3: 334

DS_r <- /* A is a dataset */ A + /* B is a dataset */ B ; 335

(for the VTL this statement is the Transformation DS_r <- A + B ;) 336

Example 4: 337

DS_r := DS_1 // my comment 338

 * DS_2 ; 339

(for the VTL this statement is the Transformation DS_r := DS_1 * DS_2 ;) 340

 341

11

Typographical conventions 342

 343

The Reference Manual (this manual) uses the normal font Cambria for the text and the other following 344

typographical conventions: 345

 346

Convention Description

Italics Cambria
 Basic scalar data types (in the text)

e.g. “…must have one Identifier of type time_period. If the Data Set….”

Bold Arial

 Keywords (in the description of the syntax and in the text)

 e.g. Rule ::={ ruleName : } { when antecedentCondition then }
 consequentCondition
 { errorcode errorCode }

 { errorlevel errorLevel }

 e.g. “…..The rename operator allows to rename one or more Components…”

Italics Arial
Optional Parameter (in the description of the syntax)

e.g. substr (op, start, length)

Underlined Arial Sub-expressions

Normal font Arial

 The operator’s syntax (excluded the keywords, the optional Parameters and the
sub-expressions)

e.g. length ("Hello, World!")

 The examples of invocation of the operators

e.g. length ("Hello, World!")

 Optional and Mandatory Parameters (in the text)

 e.g. “……If comp is a Measure in op, then in the result …..”

 347

 348

12

Abbreviations for the names of the artefacts 349

The names of the artefacts operated by the VTL-ML come from the VTL IM. In their turn, the names of the VTL IM 350

artefacts are derived as much as possible from the names of the GSIM IM artefacts, as explained in the User 351

Manual. 352

If the complete names are long, the VTL IM suggests also a compact name, which can be used in place of the 353

complete name in case there is no ambiguity (for example, “Set” instead than “Value Domain Subset”, 354

“Component” instead than “Data Set Component” and so on); moreover, to make the descriptions more compact, 355

a number of abbreviations, usually composed of the initials (in capital case) or the first letters of the words of 356

artefact names, are adopted in this manual: 357

Complete name Compact name Abbreviation 358

Data Set Data Set DS 359

Data Point Data Point DP 360

Identifier Component Identifier Id 361

Measure Component Measure Me 362

Attribute Component Attribute At 363

Data Set Component Component Comp 364

Value Domain Subset Subset or Set Set 365

Value Domain Domain VD 366

A positive integer suffix (with or without an underscore) can be added in the end to distinguish more than one 367

instance of the same artefact (e.g., DS_1, DS_2, …, DS_N, Me1, Me2, …MeN). The suffix “r” stands for the result of 368

a Transformation (e.g., DS_r). 369

Conventions for describing the operators’ syntax 370

Each VTL operator has an explanatory name, which recalls the operator function (e.g., “Greater than”) and a 371

syntactical symbol, which is used to invoke the operator (e.g., “>”). The operator symbol may also be alphabetic, 372

always lowercase (e.g., round). 373

In the VTL-DL, the operator symbol is the keyword define followed by the name of the object to be defined. The 374

complete operator symbol is therefore a compound lowercase sentence (e.g. define operator). 375

In the VTL-ML, the operator symbol does not contain spaces and may be either a sequence of special characters 376

(like +, -, >=, <= and so on) or a text keyword (e.g., and, or, not). The keyword may be compound with 377

underscores as separators (e.g., exists_in). 378

Each operator has a syntax, which is a set of formal rules to invoke the operator correctly. In this document, the 379

syntax of the operators is formally described by means of a meta-syntax which is not part of the VTL language, 380

but has only presentation purposes. 381

The meta-syntax describes the syntax of the operators by means of meta-expressions, which define how the 382

invocations of the operators must be written. The meta-expressions contain the symbol of the operator (e.g., 383

“join”), the possible other keywords to denote special parameters (e.g., using), other symbols to be used (e.g., 384

parentheses, commas), the named formal parameters (e.g., multiplicand and multiplier for the multiplication). 385

As for the typographic stile, in order to distinguish between the syntax symbols (which are used in the operator 386

invocations) and meta-syntax symbols (used just for explanatory purposes, and not actually used in invocations), 387

the syntax symbols are in boldface (i.e., the operator symbol, the special keywords, the possible parenthesis, 388

commas an so on). The names of the generic operands (e.g., multiplicand, multiplier) are in Roman type, even if 389

they are part of the syntax. 390

The meta-expression can be very simple, for example the meta-expression for the addition is: 391

op1 + op2 392

This means that the addition has two operands (op1, op2) and is invoked by specifying the name of the first 393

addendum (op1), then the addition symbol (+) followed by the name of the second addendum (op2). 394

In this example, all the three parts of the meta-expression are fixed. In other cases, the meta-expression can be 395

more complex and made of optional, alternative or repeated parts. 396

In the simple cases, the optional parts are denoted by using the italic face, for example: 397

13

substr (op, start, length) 398

The expression above implies that in the substr operator the start and length operands are optional. In the 399

invocation, a non-specified optional operand is substituted by an underscore or, if it is in the end of the 400

invocation, can be omitted. Hence the following syntaxes are all formally correct: 401

substr (op, start, length) 402

substr (op, start) 403

substr (op, _ , length) 404

substr (op) 405

In more complex cases, a regular expression style is used to denote the parts (sub-expressions) of the meta-406

expression that are optional, alternative or repeated. In particular, braces denote a sub-expression; a vertical bar 407

(or sometimes named “pipe”) within braces denotes possible alternatives; an optional trailing number, following 408

the braces, specifies the number of possible repetitions. 409

 non-optional : non-optional sub-expression (text without braces) 410

 {optional} : optional sub-expression (zero or 1 occurrence) 411

 {non-optional}1 : non-optional sub-expression (just 1 occurrence) 412

 {one-or-more}+ : sub-expression repeatable from 1 to many occurrences 413

 {zero-or-more}* : sub-expression repeatable from 0 to many occurrences 414

 { part1 | part2 | part3 } : optional alternative sub-expressions (zero or 1 occurrence) 415

 { part1 | part2 | part3 }1 : alternative sub-expressions (just 1 occurrence) 416

 { part1 | part2 | part3 }+ : alternative sub-expressions, from 1 to many occurrences 417

 { part1 | part2 | part3 }* : alternative sub-expressions, from 0 to many occurrences 418

Moreover, to improve the readability, some sub-expressions (the underlined ones) can be referenced by their 419

names and separately defined, for example a meta-expression can take the following form: 420

sub-expr1-text sub-expr2-name … sub-exprN-1-name sub-exprN-text 421

sub-expr2-name ::= sub-expr2-text 422

... possible others ... 423

sub-exprN-1-name ::= sub-exprN-1-text 424

In this representation of a meta-expression: 425

 The first line is the text of the meta-expression 426

 sub-expr1-text, sub-exprN-text are sub-expressions directly written in the meta-expression 427

 sub-expr2-name, … sub-exprN-1-name are identifiers of sub-expressions. 428

 sub-expr2-text, … sub-exprN-1-text are subexpression written separately from the meta-expression. 429

 The symbol ::= means “is defined as” and denotes the assignment of a sub-expression-text to a sub-430

expression-name. 431

The following example shows the definition of the syntax of the operators for removing the leading and/or the 432

trailing whitespaces from a string: 433

Meta-expression ::= { trim | ltrim | rtrim }
1
 (op) 434

The meta-expression above synthesizes that: 435

 trim, ltrim, rtrim are the operators’ symbols (reserved keywords); 436

 (,) are symbols of the operators syntax (reserved keywords); 437

 op is the only operand of the three operators; 438

 “{ }1” and “|” are symbols of the meta-syntax; in particular “|” indicates that the three operators are 439

alternative (a single invocation can contain only one of them) and “{ }1” indicates that a single invocation 440

contains just one of the shown alternatives; 441

From this template, it is possible to infer some valid possible invocations of the operators: 442

ltrim (DS_2) 443

rtrim (DS_3) 444

In these invocations, ltrim and rtrim are the symbols of the invoked operator and DS_2 and DS_3 are the names 445

of the specific Data Sets which are operands respectively of the former and the latter invocation. 446

 447

14

Description of the data types of operands and result 448

This section cointains a brief legenda of the meaning of the symbols used for describing the possible types of 449

operands and results of the VTL operators. For a complete description of the VTL data types, see the chapter 450

“VLT Data Types” in the User Manual. 451

Symbol Meaning Example Example meaning

parameter :: type2 parameter is of the type2 param1 :: string param1 is of type string

type1 | type2 alternative types
dataset | component

| scalar
either datset or component

or scalar

type1<type2> scalar type2 restricts type1 measure<string> Measure of string type

type1 _ (underscore) type1 can appear just once measure<string> _ just one string Measure

type1 elementName
predetermined element of

type1
measure<string> my_text

just one string Measure
named “my_text”

type1 _ +
type1 can appear one or

more times
measure<string>_+

one or more string
Measures

type1 _ *
type1 can appear zero, one

or more times
measure<string>_*

zero, one or more string
Measures

dataset { type_constraint
}

Type_constraint restricts
the dataset type

dataset { measure < string
> _+ }

Dataset having one or
more string Measures

t1 * t2 * … * tn
Product of the types

t1 , t2 , … , tn
string * integer * boolean

triple of scalar values
made of a string, an

integer and a boolean
value

t1 -> t2
Operator from

 t1 to t2
string -> number

Operator having input
string and output number

ruleset { type_constraint
}

Type_constraint restricts
the ruleset type

hierarchical { geo_area }
hierarchical ruleset
defined on geo_area

set < t > Set of elements of type “t” set < dataset > set of datasets

 452

Moreover, the word “name” in the data type description denotes the fact that the argument of the invocation can 453

contain only the name of an artefact of such a type but not a sub-expression. For example: 454

comp :: name < component < string > > 455

Means that the argument passed for the input parameter comp can be only the name of a Component of the 456

basic scalar type string. The argument passed for comp cannot be a component expression. 457

The word “name” added as a suffix to the parameter name means the same (for example if the parameter above 458

is called comp_name). 459

15

VTL-ML Operators 460

 461

Name Symbol Syntax Description
Notati

on
Input parameters type Result type Behaviour

Parentheses () (op)

Override the

default
evaluation

order of the
operators

Func. op :: dataset | component | scalar
dataset
|component
| scalar

Specific

Persistent
assignment <- re <- op

Assigns an
Expression to
a persistent

model
artefact

Infix op :: dataset dataset Specific

Non persistent
assignment := re := op

Assigns an
Expression to

a non
persistent

model
artefact

Infix
op :: dataset

| scalar

dataset Specific

Membership # ds#comp

Identifies a
Component

within a Data
Set

Infix

ds :: dataset

comp :: name<component>

dataset Specific

User defined
operator call

 operator_name ({ argument { , argument }* })

Invokes a
user defined

operator
passing the
arguments

Func.

operatorName :: name

argument :: user-defined operator

parameters data type

user-defined result data type Specific

Evaluation of
an external

routine
eval

eval (externalRoutineName ({argument} {, argument }*) ,

language, returns outputType)

Evaluates an
external
routine

Func.

externalRoutineName :: string
argument :: any dataType
language :: string
outputType :: string

dataset Specific

16

Type
conversion

cast cast (op ,scalarType { , mask })
converts to

the specified
data type

Func.

op :: dataset{ measure<scalar> _ }
| component<scalar>
| scalar

scalarType :: scalar type

mask :: string

dataset{ measure<scalar> _ }
| component<scalar>
| scalar

Changing
data type

Join

inner_joi
n,
left_join,
full_join,
cross_joi
n,

joinOperator (ds1 { as alias1 }, … ,dsN { as aliasN }

{ using usingComp }

{ filter filterCondition }

{ apply applyExpr

| calc calcClause

| aggr aggrClause { groupingClause }

}

{ keep comp {, comp }*

| drop comp {, comp }* }

{ rename compFrom to compTo

{ , compFrom to compTo }* }

)

joinOperator::= { inner_join | left_join| full_join | cross_join }1

calcClause ::= { calcRole } calcComp := calcExpr

{ , { calcRole } calcComp := calcExpr }*

calcRole :: { identifier | measure | attribute | viral attribute} 1

aggrClause ::= { aggrRole } aggrComp := aggrExpr

{ , { aggrRole } aggrComp := aggrExpr }*

aggrRole ::= { measure | attribute | viral attribute }1

groupingClause ::= { group by idList

| group except idList

| group all conversionExpr }1

{ having havingCondition }

Inner join,
left outer join,
full outer join,
cross join,

Func.

ds1, …, dsN :: dataset

alias1, …, aliasN :: name

usingId :: name < component >

filterCondition ::
component<boolean>

applyExpr :: dataset

calcComp:: name<component>

calcExpr :: component<scalar>

aggrComp :: name<component >

aggrExpr :: component<scalar>

groupingId :: name < identifier >

conversionExpr ::

component<scalar>

havingCondition ::

component<boolean>

comp :: name < component >

compFrom :: component<scalar>

compTo :: component<scalar>

dataset Specific

String
concatenation || op1 || op2

Concatenates
two strings

Infix

op1, op2 ::
dataset { measure<string> _+}
| component<string>
| string

dataset { measure<string> _+ }
| component<string>
| string

On two
scalars, DSs

or DSCs

17

Whitespace
removal

trim
rtrim
ltrim

{trim|ltrim|rtrim}1 (op)

Removes
trailing
or/and
leading

whitespace
from a string

Func.

op ::
dataset { measure<string> _+ }
| component<string>
| string

dataset { measure<string> _+ }
| component<string>
| string

On one
scalar, DS

or DSC

Character case
conversion

upper
lower

{upper | lower}1 (op)

Converts the
character
case of a
string in
upper or

lower case

Func.

op ::
dataset { measure<string> _+ }
| component<string>
| string

dataset { measure<string> _+ }
| component<string>
| string

On one
scalar, DS

or DSC

Sub-string
extraction

substr substr (op, start, length)

Extracts the
substring that

starts in a
specified

position and
has a

specified
lengtt

Func.

op ::
dataset { measure<string> _+ }
| component<string>
| string

start ::
component < integer[>=1]>
| integer[>= 1]

length ::
component < integer[>= 0] >
| integer[>=0]

dataset { measure<string> _+ }
| component<string>
| string

On one DS

or

on more
than two
scalars or

DSC

String pattern
replacement

replace replace (op ,pattern1, pattern2)

Replaces a
specified

string-pattern
with another

one

Func.

op ::
dataset { measure<string> _+ }
| component<string>
| string

pattern1, pattern2 ::
component<string>
| string

dataset { measure<string> _+ }
| component<string>
| string

On one DS

or

on more
than two
scalars or

DSC

18

String pattern
location

instr instr(op, pattern, start, occurrence)

Returns the
location of a

specified
string-pattern

Func.

op ::
dataset { measure<string> _+ }
| component<string>
| string

pattern :: component<string>

| string

start:: component< integer[>= 1]>
| integer[>= 1]

occurrence ::
component < integer[>= 1] >
| integer[>= 1]

dataset
{measure<integer[>=0]>
int_var }

| component <integer[>= 0]>
| integer[>= 0]

Changing
data type

String length length length (op)
Returns the
length of a

string
Func.

op ::
dataset { measure<string> _ }
| component<string>
| string

dataset
{measure<integer[>=0]>
int_var }

| component <integer[>= 0]>
| integer[>= 0]

Changing
data type

Unary plus + + op

Replicates the
operand with

the sign
unaltered

Infix

op ::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On one
scalar, DS

or DSC

Unary minus - - op

Replicates the
operand with

the sign
changed

Infix

op ::
dataset { measure<number> _+ }
| component<number>
| number

 dataset
{ measure<number> _+ }

| component<number>
| number

On one
scalar, DS

or DSC

Addition + op1 + op2
Sums two
numbers

Infix

op1, op2::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On two
scalars, DSs

or DSCs

Subtraction - op1 - op2
Subtracts two

numbers
Infix

op1, op2::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On two
scalars, DSs

or DSCs

Multiplication * op1 * op2
Multiplies

two numbers
Infix

op1, op2::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On two
scalars, DSs

or DSCs

Division / op1 / op2
Divides two

numbers
Infix

op1, op2::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On two
scalars, DSs

or DSCs

19

Modulo mod mod (op1, op2)

Calculates the
remainder of

a number
divided by a

certain
divisor

Func.

op1, op2::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On two
scalar, DS

or DSC

Rounding round round (op, numDigit)
Rounds a

number to a
certain digit

Func.

op ::
dataset { measure<number> _+ }
| component<number>
| number

numDigit::
component < integer > | integer

dataset
{ measure<number> _+ }

| component<number>
| number

On one DS

or

on two
scalars or

DSC

Truncation trunc trunc (op, numDigit)
Truncates a
number to a
certain digit

Func.

op ::
dataset { measure<number> _+ }
| component<number>
| number

numDigit ::
component < integer > | integer

dataset
{ measure<number> _+ }

| component<number>
| number

On one DS

or

on two
scalars or

DSC

Ceiling ceil ceil (op)

Returns the
smallest

integer which
is greater or
equal than a

number

Func.

op ::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<integer> _+ }

| component< integer >
| integer

On one
scalar, DS

or DSC

Floor floor floor (op)

Returns the
greater

integer which
is smaller or
equal than a

number

Func.

op ::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<integer> _+ }

| component< integer >
| integer

On one
scalar, DS

or DSC

Absolute value abs abs (op)

Calculates the
absolute
value of a
number

Func.

op ::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number[>=0]> _+ }
| component<number[>=0]>
| number[>= 0]

On one
scalar, DS

or DSC

Exponential exp exp (op)

Raises e (base
of the natural
logarithm) to

a number

Func.

op::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number[>0]> _+ }

| component<number[>0]>
| number[> 0]

On one
scalar, DS

or DSC

20

Natural
logarithm

ln ln (op)

Calculates the
natural

logarithm of a
number

Func.

op ::
dataset
{measure<number[>0]> _+ }
| component<number[>0]>
| number[>0]

dataset
{ measure<number> _+ }

| component<number>
| number

On one
scalar, DS

or DSC

Power power power (base, exponent)

Raises a
number to a

certain
exponent

Func.

base ::
dataset { measure<number> _+ }
| component<number>
| number

exponent ::
component<number> | number

dataset
{ measure<number> _+ }

| component<number>
| number

On one DS

or

on two
scalars or

DSC

Logarithm log log (op, num)

Calculates the
logarithm of a
number to a
certain base

Func.

op :: dataset
 { measure<number[>1]> _+ }
| component<number[>1]>
| number[>1]

num:: component<integer[>0]>
| integer[>0]

dataset
 { measure<number> _+ }
| component<number>
| number

On one DS

or

on two
scalars or

DSC

Square root sqrt sqrt (op)
Calculates the
square root of

a number
Func.

op :: dataset
 { measure<number[>=0> _+ }

| component<number[>= 0]>
| number[>= 0]

dataset
{ measure<number[>=0]> _+ }
| component<number[>= 0]>
| number[>= 0]

On one
scalar, DS

or DSC

Equal to = left = rigth
Verifies if two

values are
equal

Infix

left,right ::
dataset {measure<scalar> _ }
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

Not equal to <> left <> rigth
Verifies if two
values are not

equal
Infix

left, right ::
dataset {measure<scalar> _ }
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

Greater than

>

left { > | >= }1 right

Verifies if a
first value is
greater (or

equal) than a
second value

Infix

left, right ::
dataset {measure<scalar> _ }
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

>=

Less than

<

left { < | <= }1 right

Verifies if a
first value is

less (or
equal) than a
second value

Infix

left, right ::
 dataset {measure<scalar> _ }
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

<=

21

Between between between(op, from, to)

Verify if a
value belongs
to a range of

values

Func.

op ::
dataset {measure<scalar> _}
| component<scalar>
| scalar

from ::scalar | component<scalar>

to :: scalar | component<scalar>

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

Element of

in

op in collection

collection ::= set | valueDomainName

Verifies if a
value belongs

to a set of
values

Infix
op ::
dataset {measure<scalar> _ }
| component<scalar>
| scalar

collection :: set<scalar>
| name<value_domain>

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

not_in
op not_in collection

collection ::= set | valueDomainName

Verifies if a
value does

not belong to
a set of values

Infix

Match_charact
ers

match_c
haracter

s

match_characters (op, pattern)

Verifies if a
value

respects or
not a pattern

Func.

op::
dataset {measure<string> _}
| component<string>
| string

pattern ::
string | component<string>

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

Isnull isnull isnull (op)
Verifies if a

values is
NULL

Func.

op ::
dataset {measure<scalar> _}
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

Exists in exists_in

exists_in (op1, op2, retain)

retain := { true | false | all }

As for the
common

identifiers of
op1 and op2,
verifies if the
combinations

of values of
op1 exist in

op2.

Func. op1, op2 :: dataset
dataset
{measure<boolean> bool_var}

Changing
data type

Logical
conjunction

and op1 and op2
Calculates the

logical AND

op1,op2 ::
dataset {measure<boolean> _ }
| component<boolean>
| boolean

dataset
 { measure<boolean> _}
| component<boolean>
| boolean

Boolean

Logical
disjunction

or op1 or op2
Calculates the

logical OR

op1,op2 ::
dataset {measure<boolean> _ }
| component<boolean>
| boolean

dataset
{ measure<boolean> _}

| component<boolean>
| boolean

Boolean

22

Exclusive
disjunction

xor op1 xor op2
Calculates the

logical XOR

op1,op2 ::
dataset {measure<boolean> _ }
| component<boolean>
| boolean

dataset
{ measure<boolean> _}

| component<boolean>
| boolean

Boolean

Logical
negation

not not op
Calculates the

logical NOT

op ::
dataset {measure<boolean> _ }
| component<boolean>
| boolean

dataset
{ measure<boolean> _ }

| component<boolean>
 | boolean

Boolean

Period
indicator

period_i
ndicator

period_indicator ({op})

extracts the
period

indicator
from a

time_period
value

Func.

op ::
dataset
{ identifier <time_period> _ ,

identifier _* }
| component<time_period>
| time_period

dataset { measure<duration>
duration_var }

| component <duration>
| duration

Specific

Fill time series
fill_time_

series

fill_time_series (op { , limitsMethod })

limitsMethod ::= single | all

Replaces each
missing data
point in the

input Data Set

Func.
op ::
dataset
{ identifier <time> _ , identifier _* }

dataset
{ identifier <time> _ ,
identifier _* }

Specific

Flow to stock
flow_to_s

tock
flow_to_stock (op)

Transforms
from a flow

interpretatio
n of a Data
Set to stock

Func.

op ::
dataset { identifier <time> _ ,
identifier _* ,
measure<number> _+ }

dataset
{ identifier < time > _ ,
identifier _* ,
measure<number> _+ }

Specific

Stock to flow
stock_to_

flow
stock_to_flow (op)

Transforms
from stock to

flow
interpretatio

n of a Data
Set

Func.

op ::
dataset
{ identifier <time> _ , identifier _* ,
measure<number> _+ }

dataset
{ identifier < time > _ ,
identifier _* ,
measure<number> _+ }

Specific

Time shift timeshift timeshift (op , shiftNumber)

Shifts the
time

component of
a specified

range of time

Func.

op ::
dataset
{ identifier <time> _ , identifier _* }

shiftNumber :: integer

dataset
{ identifier < time > _ ,
identifier _* }

Specific

Time
aggregation

time_agg time_agg (periodIndTo { , periodIndFrom } { ,op }{ , first | last })

converts the
time values
from higher

to lower
frequency

values

Func.

op ::
dataset
{ identifier <time> _ , identifier _* }
| component<time>
| time

periodIndFrom :: duration

periodIndTo :: duration

dataset
{ identifier < time > _ ,
identifier _* }
| component<time>
| time

Specific

23

Actual time
current_

date
current_date ()

returns the
current date

Func. date Specific

Union union
union (dsList)

 dsList ::= ds { , ds }*

Computes the
union of N
datasets

Func. ds :: dataset dataset Set

Intersection intersect
intersect (dsList)

 dsList ::= ds { , ds }*

Computes the
intersection
of N datasets

Func. ds :: dataset dataset Set

Set difference setdiff setdiff (ds1, ds2)
Computes the
differences of
two datasets

Func. ds1, ds2 :: dataset dataset Set

Simmetric
difference

symdiff symdiff (ds1, ds2)

Computes the
symmetric

difference of
two datasets

Func. ds1, ds2 :: dataset dataset Set

Hierarchical
roll-up

hierarch
y

hierarchy (op , hr { condition condComp { , condComp }* }
{ rule ruleComp } { mode } { input } { output })

condComp ::= component { , component }*

mode ::= non_null | non_zero | partial_null | partial_zero |
always_null | always_zero

input ::= dataset | rule | rule_priority

output ::= computed | all

Aggregates
data using a
hierarchical

ruleset

Func.

op ::dataset{measure<number> _ }

hr ::name < hierarchical >

condComp :: name < component >

ruleComp :: name < identifier >

dataset{measure<number> _ } Specific

Aggregate
invocation

in a Data Set expression:

aggregateOperator
(firstOperand { , additionalOperand }* { groupingClause })

in a Component expression within an aggr clause

aggregateOperator
(firstOperand { , additionalOperand }*) { groupingClause }

aggregateOperator ::= avg | count | max | median | min |
stddev_pop| stddev_samp | sum |
var_pop | var_samp

groupingClause ::=

 { group by groupingId {, groupingId}*
| group except groupingId {, groupingId}*
| group all conversionExpr }1
 { having havingCondition }

Set of
statistical
functions

used to
aggregate

data

Func.

firstOperand ::
dataset | component

additionalOperand :: type of the
(possible) additional parameter of
the aggregate Operator

groupingId ::name < identifier >

conversionExpr :: identifier

havingCondition ::
 component<boolean>

dataset | component Specific

24

Analytic
invocation

analyticOperator
 (firstOperand { , additionalOperand }* over (analyticClause))

analyticOperator ::= avg | count | max | median | min |

stddev_pop| stddev_samp | sum | var_pop
| var_samp | first_value | lag | last_value |
lead | rank | ratio_to_report

analyticClause ::=
{ partitionClause } { orderClause } { windowClause }

partitionClause ::= partition by identifier { , identifier }*

orderClause ::= order by component { asc | desc }

{ , component { asc | desc } }*

windowClause ::=
{ data points | range }1 between limitClause and limitClause

limitClause ::=
{ num preceding | num following | current data point
| unbounded preceding | unbounded following }1

Set of
statistical
functions

used to
aggregate

data

Func.

firstOperand ::
dataset | component

additionalOperand :: type of the
(possible) additional parameter of
the invoked operator

identifier :: name<identifier>

component :: name<component>

num :: integer

dataset | component Specific

Check
datapoint

check_da
tapoint

check_datapoint
 (op , dpr { components listComp } { output output })

listComp ::= comp { , comp }*

output ::= invalid | all | all_measures

Applies one
datapoint

ruleset on a
Data Set

Func.

op ::dataset

dpr ::name < datapoint >

comp :: name < component >

dataset Specific

Check
hierarchy

check_hi
erarchy

check_hierarchy (
op , hr { condition condComp { , condComp }* }
{ rule ruleComp }
{ mode } { input } { output })

mode ::= non_null | non_zero | partial_null | partial_zero |
always_null | always_zero

input ::= dataset | dataset_priority

output ::= invalid | all | all_measures

Applies a
hierarchical
ruleset to a

Data Set

Func.

op ::dataset

hr ::name < hierarchical >

condComp :: name< component >

ruleComp :: name< identifier >

dataset Specific

Check check

check (op { errorcode errorcode } { errorlevel errorlevel }

{ imbalance imbalance } { output })

output ::= invalid | all

Checks if an
expression
verifies a
condition

Func.

op :: dataset

errorcode :: errorcode_vd

errorlevel :: errorlevel_vd

imbalance :: number

dataset

Specific

25

If then else
if ….then

else….
if condition then thenOperand else elseOperand

Makes
alternative
calculations

according to a
condition

Func.

condition ::
dataset { measure <boolean> _ }
| component<boolean>
| boolean

thenOperand ::
dataset | component | scalar

elseOperand ::
dataset | component | scalar

dataset
| component
| scalar

Specific

Nvl nvl nvl (op1, op2)
Replaces the

null value
with a value.

Func.

op1, op2::
dataset
| component
| scalar

dataset
| component
| scalar

Specific

Filtering Data
Points

filter op [filter condition]

Filter data
using a

Boolean
condition

Clause

op :: dataset

filterCondition ::

component<boolean>

dataset Specific

Calculation of
a Component

calc
op [calc { calcRole } calcComp := calcExpr { , { calcRole }

calcComp := calcExpr }*]

Calculates the
values of a
Structure

Component

Clause

op :: dataset

calcComp ::name < component >

calcExpr :: component<scalar>

dataset Specific

Aggregation aggr

op [aggr aggrClause { groupingClause }]

aggrClause ::= { aggrRole } aggrComp := aggrExpr
 { , { aggrRrole } aggrComp:= aggrExpr }*

groupingClause ::= { group by groupingId {, gropuingId }*
| group except groupingId {, groupingId }*
| group all conversionExpr }1
 { having havingCondition }

aggrRole::= measure | attribute | viral attribute

Aggregates
using an

aggregate
operator

Clause

op :: dataset

aggrComp :: name < component >

aggrExpr :: component<scalar>

groupingId ::name <identifier >

 conversionExpr ::
identifier<scalar>

havingCondition ::

component<boolean>

dataset Specific

Maintaining
Components

keep op [keep comp {, comp }*]
Keep list of

components
Clause

op ::dataset

comp :: name < component >

dataset Specific

Removal of
Components

drop op [drop comp { , comp }*]
Drop list of

components
Clause

op :: dataset

comp :: name < component >

dataset Specific

26

 462

 463

Change of
Component

name
rename op [rename comp_from to comp_to { ,comp_from to comp_to }*]

Rename
components

Clause

op :: dataset

comp_from :: name<component>

comp_to :: name<component>

dataset Specific

Pivoting pivot op [pivot identifier , measure]

Transform
identifier
values to
measures

Clause

op :: dataset

identifier ::name <identifier>

measure ::name <measure>

dataset Specific

Unpivoting unpivot op [unpivot identifier , measure]

Transform
measures to

identifier
values

Clause

op :: dataset

identifier :: name<identifier>

measure :: name<measure>

dataset

Specific

Subspace sub op [sub identifier = value { , identifier = value }*]

Remove the
specified

identifiers by
fixing a value

for them

Clause

op :: dataset

identifier :: name<identifier>

value :: scalar

dataset Specific

27

VTL-ML - Evaluation order of the Operators 464

Within a single expression of the manipulation language, the operators are applied in sequence, according to the 465

precedence order. Operators with the same precedence level are applied according to the default associativity 466

rule. Precedence and associativity orders are reported in the following table. 467

 468

Evaluation
order

Operator Description
Default

associativity rule

I ()
Parentheses. To alter the default

order.
None

II
VTL operators with

functional syntax
VTL operators with functional

syntax
Left-to-right

III
Clause

Membership
Clause

Membership
Left-to-right

IV
unary plus

unary minus
not

Unary minus
Unary plus

Logical negation
None

V
*
/

Multiplication
Division

Left-to-right

VI
+
-
||

Addition
Subtraction

String concatenation
Left-to-right

VII

> >=
< <=

=
<>
in

not_in

Greater than
Less than
Equal-to

Not-equal-to
In a value list

Not in a value list

Left-to-right

VIII and Logical AND Left-to-right

IX
or

xor
Logical OR

Logical XOR
Left-to-right

X if-then-else Conditional (if-then-else) None

 469

Description of VTL Operators 470

 471

The structure used for the description of the VTL-DL Operators is made of the following parts: 472

 Operator name, which is also used to invoke the operator 473

 Semantics: a brief description of the purpose of the operator 474

 Syntax: the syntax of the Operator (this part follows the conventions described in the previous section 475

“Conventions for describing the operators’ syntax”) 476

 Syntax description: detailed explanation of the meaning of the various parts of the syntax 477

 Parameters: list of the input parameters and their types 478

28

 Constraints: additional constraints that are not specified with the meta-syntax and need a textual 479

explanation 480

 Semantic specifications: detailed description of the semantics of the opoerator 481

 Examples: examples of invocation of the operator 482

 483

The structure used for the description of the VTL-ML Operators is made of the following parts: 484

 Operator name, followed by the operator symbol (keyword) which is used to invoke the operator 485

 Syntax: the syntax of the Operator (this part follows the conventions described in the previous section 486

“Conventions for describing the operators’ syntax”) 487

 Input parameters: list of all input parameters and the subexpressions with their meaning and the 488

indication if they are mandatory or optional 489

 Examples of valid syntaxes: examples of syntactically valid invocations of the Operator 490

 Semantics for scalar operations: the behaviour of the Operator on scalar operands, which is the basic 491

behaviour of the Operator 492

 Input parameters type: the formal description of the type of the input parameters (this part follows the 493

conventions described in the previous section “Description of the data types of operands and results”) 494

 Result type: the formal description of the type of the result (this part follows the conventions described in 495

the previous section “Description of the data types of operands and results”) 496

 Additional constraints: additional constraints that are not specified with the meta-syntax and need a 497

textual explanation, including both possible semantic constraints under which the operation is possible or 498

impossible, and syntactical constraint for the invocation of the Operator 499

 Behaviour: description of the behaviour of the Operator for non-scalar operations (for example operations 500

at Data Set or at Component level). When the Operator belongs to a class of Operators having a common 501

behaviour, the common behavior is described once for all in a section of the chapter “Typical behaviours of 502

the ML Operators” and therefore this part describes only the specific aspect of the behaviour and contains a 503

reference to the section where the common part of the behaviour is described. 504

 Examples: a series of examples of invocation and application of the operator in case of operations at Data 505

Sets or at Component level. 506

 507

29

VTL-DL - Rulesets 508

define datapoint ruleset 509

Semantics 510

The Data Point Ruleset contains Rules to be applied to each individual Data Point of a Data Set for validation 511

purposes. These rulesets are also called “horizontal” taking into account the tabular representation of a Data Set 512

(considered as a mathematical function), in which each (vertical) column represents a variable and each 513

(horizontal) row represents a Data Point: these rulesets are applied on individual Data Points (rows), i.e., 514

horizontally on the tabular representation. 515

 516

Syntax 517

 518

define datapoint ruleset rulesetName (dpRulesetSignature) is 519

dpRule 520

{ ; dpRule }* 521

end datapoint ruleset 522

 523

dpRulesetSignature ::= valuedomain listValueDomains | variable listVariables 524

listValueDomains ::= valueDomain { as vdAlias } { , valueDomain { as vdAlias } }* 525

listVariables ::= variable { as varAlias } { , variable { as varAlias } }*

526

dpRule ::= { ruleName : } { when antecedentCondition then } consequentCondition 527

{ errorcode errorCode } 528

{ errorlevel errorLevel } 529

 530

Syntax description 531

rulesetName the name of the Data Point Ruleset to be defined. 532

dpRulesetSignature the Cartesian space of the Ruleset (signature of the Ruleset), which specifies either the 533

Value Domains or the Represented Variables (see the information model) on which the 534

Ruleset is defined. If valuedomain is specified then the Ruleset is applicable to the Data 535

Sets having Components that take values on the specified Value Domains. If variable is 536

specified then the Ruleset is applicable to Data Sets having the specified Variables as 537

Components. 538

valueDomain a Value Domain on which the Ruleset is defined. 539

vdAlias an (optional) alias assigned to a Value Domain and valid only within the Ruleset, this can 540

be used for the sake of compactness in writing the Rules. If an alias is not specified then 541

the name of the Value Domain (parameter valueDomain) is used in the body of the rules. 542

variable a Represented Variable on which the Ruleset is defined. 543

varAlias an (optional) alias assigned to a Variable and valid only within the Ruleset, this can be 544

used for the sake of compactness in writing the Rules. If an alias is not specified then the 545

name of the Variable (parameter valueDomain) is used in the body of the Rules. 546

dpRule a Data Point Rule, as defined in the following parameters. 547

ruleName the name assigned to the specific Rule within the Ruleset. If the Ruleset is used for 548

validation then the ruleName identifies the validation results of the various Rules of the 549

Ruleset. The ruleName is optional and, if not specified, is assumed to be the progressive 550

order number of the Rule in the Ruleset. However please note that, if ruleName is 551

omitted, then the Rule names can change in case the Ruleset is modified, e.g., if new Rules 552

are added or existing Rules are deleted, and therefore the users that interpret the 553

validation results must be aware of these changes. 554

antecedentCondition a boolean expression to be evaluated for each single Data Point of the input Data Set. It 555

can contain Values of the Value Domains or Variables specified in the Ruleset signature 556

and constants; all the VTL-ML component level operators are allowed. If omitted then 557

antecedentCondition is assumed to be TRUE. 558

consequentCondition a boolean expression to be evaluated for each single Data Point of the input Data Set when 559

the antecedentCondition evaluates to TRUE (as mentioned, missing antecedent 560

30

conditions are assumed to be TRUE). It contains Values of the Value Domains or Variables 561

specified in the Ruleset signature and constants; all the VTL-ML component level 562

operators are allowed. A consequent condition equal to FALSE is considered as a non-563

valid result. 564

errorCode a literal denoting the error code associated to the rule, to be assigned to the possible non-565

valid results in case the Rule is used for validation. If omitted then no error code is 566

assigned (NULL value). VTL assumes that a Value Domain errorcode_vd of error codes 567

exists in the Information Model and contains all possible error codes: the errorCode 568

literal must be one of the possible Values of such a Value Domain. VTL assumes also that a 569

Variable errorcode for describing the error codes exists in the IM and is a dependent 570

variable of the Data Sets which contain the results of the validation. 571

errorLevel a literal denoting the error level (severity) associated to the rule, to be assigned to the 572

possible non-valid results in case the Rule is used for validation. If omitted then no error 573

level is assigned (NULL value). VTL assumes that a Value Domain errorlevel_vd of error 574

levels exists in the Information Model and contains all possible error levels: the 575

errorLevel literal must be one of the possible Values of such a Value Domain. VTL 576

assumes also that a Variable errorlevel for describing the error levels exists in the IM and 577

is a dependent variable of the Data Sets which contain the results of the validation. 578

 579

Parameters 580

rulesetName :: name <ruleset > 581

valueDomain :: name < valuedomain > 582

vdAlias :: name 583

variable :: name 584

varAlias :: name 585

ruleName :: name 586

antecedentCondition :: boolean 587

consequentCondition :: boolean 588

errorCode :: errorcode_vd 589

errorLevel :: errorlevel_vd 590

 591

 592

Constraints 593

 antecedentCondition and consequentCondition can refer only to the Value Domains or Variables specified 594

in the dpRulesetSignature. 595

 Either ruleName is specified for all the Rules of the Ruleset or for none. 596

 If specified, then ruleName must be unique within the Ruleset. 597

 598

Semantic specification 599

This operator defines a persistent Data Point Ruleset named rulesetName that can be used for validation 600

purposes. 601

A Data Point Ruleset is a persistent object that contains Rules to be applied to the Data Points of a Data Set1. The 602

Data Point Rulesets can be invoked by the check_datapoint operator. The Rules are aimed at checking the 603

combinations of values of the Data Set Components, assessing if these values fulfil the logical conditions 604

expressed by the Rules themselves. The Rules are evaluated independently for each Data Point, returning a 605

Boolean scalar value (i.e., TRUE for valid results and FALSE for non-valid results). 606

Each Rule contains an (optional) antecedentCondition boolean expression followed by a consequentCondition 607

boolean expression and expresses a logical implication. Each Rule states that when the antecedentCondition 608

evaluates to TRUE for a given Data Point, then the consequentCondition is expected to be TRUE as well. If this 609

implication is fulfilled, the result is considered as valid (TRUE), otherwise as non-valid (FALSE). On the other 610

side, if the antecedentCondition evaluates to FALSE, the consequentCondition does not applies and is not 611

evaluated at all, and the result is considered as valid (TRUE). In case the antecedentCondition is absent then it is 612

assumed to be always TRUE, therefore the consequentCondition is expected to evaluate to TRUE for all the Data 613

Points. See an example below: 614

 615

1
 In order to apply the Ruleset to more Data Sets, these Data Sets must be composed together using the appropriate VTL

operators in order to obtain a single Data Set.

31

Rule Meaning

On Value Domains:

when flow_type = "CREDIT" or flow_type =

"DEBIT" then numeric_value >= 0

When the Component of the Data Set which is

defined on the Value Domain named flow_type

takes the value “CREDIT” or the value “DEBIT”,

then the other Component defined on the Value

Domain named numeric_value is expected to

have a zero or positive value.

On Variables:

when flow = "CREDIT" or flow = "DEBIT" then

obs_value >= 0

When the Component of the Data Set named

flow has the value “CREDIT” or “DEBIT” then the

Component named obs_value is expected to

have a value greater than zero.

 616

The definition of a Ruleset comprises a signature (dpRulesetSignature), which specifies the Value Domains or 617

Variables on which the Ruleset is defined and a set of Rules, that are the Boolean expressions to be applied to 618

each Data Point. The antecedentCondition and consequentCondition of the Rules can refer only to the Value 619

Domains or Variables of the Ruleset signature. 620

The Value Domains or the Variables of the Ruleset signature identify the space in which the rules are defined 621

while each Rule provides for a criterion that demarcates the Set of valid combinations of Values inside this space. 622

The Data Point Rulesets can be defined in terms of Value Domains in order to maximize their reusability, in fact 623

this way a Ruleset can be applied on any Data Set which has Components which take values on the Value 624

Domains of the Ruleset signature. The association between the Components of the Data Set and the Value 625

Domains of the Ruleset signature is provided by the check_datapoint operator at the invocation of the Ruleset. 626

When the Ruleset is defined on Variables, their reusability is intentionally limited to the Data Sets which contains 627

such Variables (and not to other possible Variables which take values from the same Value Domain). If at a later 628

stage the Ruleset would need to be applied also to other Variables defined on the same Value Domain, a similar 629

Ruleset should be defined also for the other Variable. 630

Rules are uniquely identified by ruleName. If omitted then ruleName is implicitly assumed to be the progressive 631

order number of the Rule in the Ruleset. Please note however that, using this default mechanism, the Rule Name 632

can change if the Ruleset is modified, e.g., if new Rules are added or existing Rules are deleted, and therefore the 633

users that interpret the validation results must be aware of these changes. In addition, if the results of more than 634

one Ruleset have to be combined in one Data Set, then the user should make the relevant rulesetNames different. 635

As said, each Rule is applied in a row-wise fashion to each individual Data Point of a Data Set. The references to 636

the Value Domains defined in the antecedentCondition and consequentCondition are replaced with the values 637

of the respective Components of the Data Point under evaluation. 638

. 639
 640

Examples 641

 642

define datapoint ruleset DPR_1 (valuedomain flow_type A, numeric_value B) is 643

 when A = “CREDIT” or A = “DEBIT” then B >= 0 errorcode “Bad value” errorlevel 10 644

end datapoint ruleset 645

 646

define datapoint ruleset DPR_2 (variable flow F, obs_value O) is 647

 when F = “CREDIT” or F = “DEBIT” then O >= 0 errorcode “Bad value” 648

end datapoint ruleset 649

define hierarchical ruleset 650

 651

Semantics 652

32

This operator defines a persistent Hierarchical Ruleset that contains Rules to be applied to individual 653

Components of a given Data Set in order to make validations or calculations according to hierarchical 654

relationships between the relevant Code Items. These Rulesets are also called “vertical” taking into account the 655

tabular representation of a Data Set (considered as a mathematical function), in which each (vertical) column 656

represents a variable and each (horizontal) row represents a Data Point: these Rulesets are applied on variables 657

(columns), i.e., vertically on the tabular representation of a Data Set. 658

A main purpose of the hierarchical Rules is to express some more aggregated Code Items (e.g. the continents) in 659

terms of less aggregated ones (e.g., their countries) by using Code Item Relationships. This kind of relations can 660

be applied to aggregate data, for example to calculate an additive measure (e.g., the population) for the 661

aggregated Code Items (e.g., the continents) as the sum of the corresponding measures of the less aggregated 662

ones (e.g., their countries). These rules can be used also for validation, for example to check if the additive 663

measures relevant to the aggregated Code Items (e.g., the continents) match the sum of the corresponding 664

measures of their component Code Items (e.g., their countries), provided that the input Data Set contains all of 665

them, i.e. the more and the less aggregated Code Items. 666

Another purpose of these Rules is to express the relationships in which a Code Item represents some part of 667

another one, (e.g., “Africa” and “Five largest countries of Africa”, being the latter a detail of the former). This kind 668

of relationships can be used only for validation, for example to check if a positive and additive measure (e.g., the 669

population) relevant to the more aggregated Code Item (e.g., Africa) is greater than the corresponding measure 670

of the other more detailed one (e.g., “5 largest countries of Africa”). 671

The name “hierarchical” comes from the fact that this kind of Ruleset is able to express the hierarchical 672

relationships between Code Items at different levels of detail, in which each (aggregated) Code Item is expressed 673

as a partition of (disaggregated) ones. These relationships can be recursive, i.e., the aggregated Code Items can 674

be in their turn component of even more aggregated ones, without limitations about the number of recursions. 675

As a first simple example, the following Hierarchical Ruleset named “BeneluxCountriesHierarchy” contains a 676

single rule that asserts that, in the Value Domain “Geo_Area”, the Code Item BENELUX is the aggregation of the 677

Code Items BELGIUM, LUXEMBOURG and NETHERLANDS: 678

define hierarchical ruleset BeneluxCountriesHierarchy (valuedomain rule Geo_Area) is 679

BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS 680

end hierarchical ruleset 681

 682

Syntax 683

 684

define hierarchical ruleset rulesetName (hrRulesetSignature) is 685

hrRule 686

{ ; hrRule }* 687

end hierarchical ruleset 688

 689

hrRulesetSignature ::= vdRulesetSignature | varRulesetSignature 690

vdRulesetSignature ::= valuedomain { condition vdConditioningSignature } rule ruleValueDomain 691

vdConditioningSignature ::= condValueDomain { as vdAlias } { , condValueDomain { as vdAlias } }* 692

varRulesetSignature ::= variable { condition varConditioningSignature } rule ruleVariable 693

varConditioningSignature ::= condVariable { as vdAlias } { , condVariable { as vdAlias } }* 694

hrRule ::= { ruleName : } codeItemRelation { errorcode errorCode } { errorlevel errorLevel } 695

codeItemRelation ::= 696

{ when leftCondition then } 697

leftCodeItem { = | > | < | >= | <= }
1
 698

{ + | - } rightCodeItem { [rightCondition] } 699

{ { + | - }
1
 rightCodeItem { [rightCondition] } }* 700

 701

Syntax description 702

 703

rulesetName the name of the Hierarchical Ruleset to be defined. 704

hrRulesetSignature the signature of the Ruleset. It specifies the Value Domain or Variable on which the 705

Ruleset is defined, and the Conditioning Signature. 706

vdRulesetSignature the signature of a Ruleset defined on Value Domains 707

varRulesetSignature the signature of a Ruleset defined on Variables 708

hrRule a single hierarchical rule, as described below. 709

33

vdConditioningSignature specifies the Value Domains on which the conditions are defined. The Ruleset is meant 710

to be applicable to the Data Sets having Components that take values on the Value 711

Domain on which the ruleset is defined (i.e., ruleValueDomain) and on the 712

conditioning Value Domains (i.e., condValueDomain). 713

ruleValueDomain the Value Domain on which the Ruleset is defined 714

condValueDomain a conditioning Value Domain of the Ruleset 715

vdAlias an (optional) alias assigned to a Value Domain and valid only within the Ruleset, this 716

can be used for the sake of compactness in writing leftCondition and rightCondition. If 717

an alias is not specified then the name of the Value Domain (i.e., condValueDomain) 718

must be used. 719

varConditioningSignature the signature of the (possible) conditions of the Ruleset defined on Variables. It 720

specifies the Represented Variables (see the information model) on which these 721

conditions are defined. The Ruleset is meant to be applicable to any Data Set having 722

Components which are defined by the Variable on which the Ruleset is expressed (i.e., 723

variable) and on the Conditioning Variables. 724

ruleVariable the variable on which the Ruleset is defined 725

condVariable a conditioning Variable of the Ruleset 726

varAlias an (optional) alias assigned to a Variable and valid only within the Ruleset, this can be 727

used for the sake of compactness in writing leftCondition and rightCondition. If an 728

alias is not specified then the name of the Variableomain (parameter condVariable) 729

must be used. 730

ruleName the name assigned to the specific Rule within the Ruleset. If the Ruleset is used for 731

validation then the ruleName identifies the validation results of the various Rules of 732

the Ruleset. The ruleName is optional and, if not specified, is assumed to be the 733

progressive order number of the Rule in the Ruleset. However please note that, if 734

ruleName is omitted, then the Rule names can change in case the Ruleset is modified, 735

e.g., if new Rules are added or existing Rules are deleted, and therefore the users that 736

interpret the validation results must be aware of these changes. In addition, if the 737

results of more than one Ruleset have to be combined in one Data Set, then the user 738

should make the relevant rulesetNames different. 739

codeItemRelation specifies a (possibly conditioned) Code Item Relation. It expresses a logical relation 740

between Code Items belonging to the Value Domain of the hrRulesetSignature, 741

possibly conditioned by the Values of the Value Domains or Variables of the 742

Conditioning Signature. The relation is expressed by one of the symbols =, >, >=, <, <=, 743

that in this context denote special logical relationships typical of Code Items. The first 744

member of the relation is a single Code Item. The second member of the relationship 745

is the composition of one or more Code Items combined using the symbols + or -, 746

which in turn also denote special logical operators typical of Code Items. The meaning 747

of these symbols is better explained below and in the User Manual. 748

errorCode a literal denoting the error code associated to the rule, to be assigned to the possible 749

non-valid results in case the Rule is used for validation. If omitted then no error code 750

is assigned (NULL value). VTL assumes that a Value Domain errorcode_vd of the error 751

codes exists in the Information Model and contains all the possible error codes: the 752

errorCode literal must be one of the possible Values of such a Value Domain. VTL 753

assumes also that a Variable errorcode for describing the error codes exists in the IM 754

and is a dependent variable of the Data Sets which contain the results of the 755

validation. 756

errorLevel a literal denoting the error level (severity) associated to the rule, to be assigned to the 757

possible non-valid results in case the Rule is used for validation. If omitted then no 758

error level is assigned (NULL value). VTL assumes that a Value Domain errorlevel_vd 759

of the error levels exists in the Information Model and contains all the possible error 760

levels: the errorLevel literal must be one of the possible Values of such a Value 761

Domain. VTL assumes also that a Variable errorlevel for describing the error levels 762

exists in the IM and is a dependent variable of the Data Sets which contain the results 763

of the validation. 764

leftCondition a boolean expression which defines the pre-condition for evaluating the left member 765

Code Item (i.e., it is evaluated only when the leftCondition is TRUE); It can contain 766

references to the Value domains or the Variables of the conditioningSignature of the 767

Ruleset and Constants; all the VTL-ML component level operators are allowed. The 768

34

leftCondition is optional, if missing it is assumed to be TRUE and the Rule is always 769

evaluated. 770

leftCodeItem a Code Item of the Value Domain specified in the hrRulesetSignature. 771

rightCodeItem a Code Item of the Value Domain specified in the hrRulesetSignature. 772

rightCondition a boolean scalar expression which defines the condition for a right member Code Item 773

to contribute to the evaluation of the Rule (i.e., the right member Code Item is taken 774

into account only when the relevant rightCondition is TRUE). It can contain references 775

to the Value Domains or Variables of the vdConditioningSignature or 776

varConditioningSignature of the Ruleset and Constants; all the VTL-ML component 777

level operators are allowed. The rightCondition is optional, if omitted then it is 778

assumed to be TRUE and the right member Code Item is always taken into account. 779

 780

Input parameters type 781

 782

rulesetName :: name < ruleset > 783

ruleValueDomain :: name <valuedomain > 784

condValueDomain :: name <valuedomain > 785

vdAlias :: name 786

ruleVariable :: name 787

condVariable :: name 788

varAlias :: name 789

ruleName :: name 790

errorCode :: errorcode_vd 791

errorLevel :: errorlevel_vd 792

leftCondition :: boolean 793

leftCodeItem :: name 794

rightCodeItem :: name 795

rightCondition :: boolean 796

 797

Constraints 798

 leftCondition and rightCondition can refer only to Value Domains or Variables specified in 799

vdConditioningSignature or varConditioningSignature. 800

 Either the ruleName is specified for all the Rules of the Ruleset or for none. 801

 If specified, the ruleName must be unique within the Ruleset. 802

 803

Semantic specification 804

This operator defines a Hierarchical Ruleset named rulesetName that can be used both for validation and 805

calculation purposes (see check_hierarchy and hierarchy). A Hierarchical Ruleset is a set of Rules expressing 806

logical relationships between the Values (Code Items) of a Value Domain or a Represented Variable. 807

Each rule contains a Code Item Relation, possibly conditioned, which expresses the relation between Code 808

Items to be enforced. In the relation, the left member Code Item is put in relation to a combination of one or 809

more right member Code Items. The kinds of relations are described below. 810

The left member Code Item can be optionally conditioned through a leftCondition, a boolean expression which 811

defines the cases in which the Rule has to be applied (if not declared the Rule is applied ever). The participation 812

of each right member Code Item in the Relation can be optionally conditioned through a rightCondition, a 813

boolean expression which defines the cases in which the Code Item participates in the relation (if not declared 814

the Code Item participates to the relation ever). 815

As for the mathematical meaning of the relation, please note that each Value (Code Item) is the representation of 816

an event belonging to a space of events (i.e., the relevant Value Domain), according to the notions of “event” and 817

“space of events” of the probability theory (see also the section on the Generic Models for Variables and Value 818

Domains in the VTL IM). Therefore the relations between Values (Code Items) express logical implications 819

between events. 820

The envisaged types of relations are: “coincides” (=), “implies” (<), “implies or coincides” (<=), “is implied by” 821

(>), “is implied by or coincides” (>=)2. For example: 822

UnitedKingdom < Europe 823

means that UnitedKingdom implies Europe (if a point belongs to United Kingdom it also belongs to Europe). 824

January2000 < year2000 825

2
 “Coincides” means “implies and is implied”

35

means that January of the year 2000 implies the year 2000 (if a time instant belongs to “January 2000” it also 826

belongs to the “year 2000”) 827

The first member of a Relation is a single Code Item. The second member can be either a single Code Item, like in 828

the example above, or a logical composition of Code Items giving another Code Item as result. The logical 829

composition can be defined by means of Code Item Operators, whose goal is to compose some Code Items in 830

order to obtain another Code Item. 831

Please note that the symbols + and - do not denote the usual operations of sum and subtraction, but logical 832

operations between Code Items which are seen as events of the probability theory. In other words, two or more 833

Code Items cannot be summed or subtracted to obtain another Code Item, because they are events and not 834

numbers, however they can be manipulated through logical operations like “OR” and “Complement”. 835

Note also that the + also acts as a declaration that all the Code Items denoted by + in the formula are mutually 836

exclusive one another (i.e., the corresponding events cannot happen at the same time), as well as the - acts as a 837

declaration that all the Code Items denoted by - in the formula are mutually exclusive one another and 838

furthermore that each one of them is a part of (implies) the result of the composition of all the Code Items having 839

the + sign. 840

At intuitive level, the symbol + means “with” (Benelux = Belgium with Luxembourg with Netherland) while the 841

symbol - means “without” (EUwithoutUK = EuropeanUnion without UnitedKingdom). 842

When these relationships are applied to additive numeric measures (e.g., the population relevant to geographical 843

areas), they allow to obtain the measure values of the compound Code Items (i.e., the population of Benelux and 844

EUwithoutUK) by summing or subtracting the measure values relevant to the component Code Items (i.e., the 845

population of Belgium, Luxembourg and Netherland). This is why these logical operations are denoted in VTL 846

through the same symbols as the usual sum and subtraction. Please note also that this property is valid 847

whichever is the Data Set and whichever is the additive measure (provided that the possible other Identifier 848

Components of the Data Set Structure have the same values), therefore the Rulesets of this kind are potentially 849

largely reusable. 850

The Ruleset Signature specifies the space on which the Ruleset is defined, i.e., the ValueDomain or Variable on 851

which the Code Item Relations are defined (the Ruleset is meant to be applicable to Data Sets having a 852

Component which takes values on such a Value Domain or are defined by such a Variable). The optional 853

vdConditioningSignature specifies the conditioning Value Domains (the conditions can refer only to those Value 854

Domains), as well as the optional varConditioningSignature specifies the conditioning Variables (the conditions 855

can refer only to those Variables). 856

The Hierarchical Ruleset may act on one or more Measures of the input Data Set provided that these measures 857

are additive (for example it cannot be applied on a measure containing a “mean” because it is not additive). 858

Within the Hierarchical Rulesets there can be dependencies between Rules, because the inputs of some Rules can 859

be the output of other Rules, so the former can be evaluated only after the latter. For example, the data relevant 860

to the Continents can be calculated only after the calculation of the data relevant to the Countries. As a 861

consequence, the order of calculation of the Rules is determined by their mutual dependencies and can be 862

different from the order in which the Rules are written in the Ruleset. The dependencies between the Rules form 863

a directed acyclic graph. 864

The Hierarchical ruleset can be used for calculations to calculate the upper levels of the hierarchy if the data 865

relevant to the leaves (or some other intermediate level) are available in the operand Data Set of the hierarchy 866

operator (for more information see also the “Hierarchy” operator). For example, having additive Measures 867

broken by region, it would be possible to calculate these Measures broken by countries, continents and the 868

world. Besides, having additive Measures broken by country, it would be possible to calculate the same Measures 869

broken by continents and the world. 870

When a Hierarchical Ruleset is used for calculation, only the Relations expressing coincidence (=) are evaluated 871

(provided that the leftCondition is TRUE, and taking into account only right-side Code Items whose 872

rightCondition is TRUE). The result Data Set will contain the compound Code Items (the left members of those 873

relations) calculated from the component Code Items (the right member of those Relations), which are taken 874

from the input Data Set (for more details about the evaluation options see the hierarchy operator). Moreover, 875

the clauses typical of the validation are ignored (e.g., ErrorCode, ErrorLevel). 876

The Hierarchical Ruleset can be also used to filter the input Data Points. In fact if some Code Items are defined 877

equal to themselves, the relevant Data Points are brought in the result unchanged. For example, the following 878

Ruleset will maintain in the result the Data Points of the input Data Set relevant to Belgium, Luxembourg and 879

Netherland and will add new Data Points containing the calculated value for Benelux: 880

 881

define hierarchical ruleset BeneluxRuleset (valuedomain rule GeoArea) is 882

 Belgium = Belgium 883

; Luxembourg = Luxembourg 884

; Netherlands = Netherlands 885

36

; Benelux = Belgium + Luxembourg + Netherlands 886

end hierarchical ruleset 887

 888

The Hierarchical Rulesets can be used for validation in case various levels of detail are contained in the Data 889

Set to be validated (see also the check_hierarchy operator for more details). The Hierarchical Rulesets express 890

the coherency Rules between the different levels of detail. Because in the validation the various Rules can be 891

evaluated independently, their order is not significant. 892

If a Hierarchical Ruleset is used for validation, all the possible Relations (=, >, >=, <, <=) are evaluated (provided 893

that the leftCondition is TRUE and taking into account only right-side Code Items whose rightCondition is TRUE). 894

The Rules are evaluated independently. Both the Code Items of the left and right members of the Relations are 895

expected to belong to and taken from the input Data Set (for more details about the evaluation options see the 896

check_hierarchy operator). The Antecedent Condition is evaluated and, if TRUE, the operations specified in the 897

right member of the Relation are performed and the result is compared to the first member, according to the 898

specified type of Relation. The possible relations in which Code Items are defined as equal to themselves are 899

ignored. Further details are described in the check_hierarchy operator. 900

If the data to be validated are in different Data Sets, either they can be joined in advance using the proper VTL 901

operators or the validation can be done by comparing those Data Sets directly, without using a Hierarchical 902

Ruleset (see also the check operator). 903

 904

Through the right and left Conditions, the Hierarchical Rulesets allow to declare the time validity of 905

Rules and Relations. In fact leftCondition and RightCondition can be defined in term of the time Value Domain, 906

expressing respectively when the left member Code Item has to be evaluated (i.e., when it is considered valid) 907

and when a right member Code Item participates in the relation. 908

The following two simplified examples show possible ways of defining the European Union in term of 909

participating Countries. 910

Example 1 (for simplicity the time literals are written without the needed “cast” operation) 911

define hierarchical ruleset EuropeanUnionAreaCountries1 912

(valuedomain condition ReferenceTime as Time rule GeoArea) is 913

 when between (Time, “1.1.1958”, “31.12.1972”) 914

then EU = BE + FR + DE + IT + LU + NL 915

; when between (Time, “1.1.1973”, “31.12.1980”) 916

then EU = … same as above … + DK + IE + GB 917

; when between (Time, “1.1.1981”, “02.10.1985”) 918
then EU = … same as above … + GR 919

; when between (Time, “1.1.1986”, “31.12.1994”) 920

then EU = … same as above … + ES + PT 921

; when between (Time, “1.1.1995”, “30.04.2004”) 922

then EU = … same as above … + AT + FI + SE 923

; when between (Time, “1.5.2004”, “31.12.2006”) 924
then EU = … same as above … +CY+CZ+EE+HU+LT+LV+MT+PL+SI+SK 925

; when between (Time, “1.1.2007”, “30.06.2013”) 926

then EU = … same as above … + BG + RO 927

; when >= “1.7.2013” 928

then EU = … same as above … + HR 929

end hierarchical ruleset 930

Example 2 (for simplicity the time literals are written without the needed “cast” operation) 931

define hierarchical ruleset EuropeanUnionAreaCountries2 932

(valuedomain condition ReferenceTime as Time rule GeoArea) is 933

EU = AT [Time >= “0101.1995”] 934

+ BE [Time >= “01.01.1958”] 935

+ BG [Time >= “01.01.2007”] 936

 937

+ … 938

 + SE [Time >= “01.01.1995”] 939

+ SI [Time >= “01.05.2004”] 940

+ SK [Time >= “01.05.2004”] 941

end hierarchical ruleset 942

37

The Hierarchical Rulesets allow defining hierarchies either having or not having levels (free hierarchies). 943

For example, leaving aside the time validity for sake of simplicity: 944

define hierarchical ruleset GeoHierarchy (valuedomain rule Geo_Area) is 945

 World = Africa + America + Asia + Europe + Oceania 946

; Africa = Algeria + … + Zimbabwe 947

; America = Argentina + … + Venezuela 948

; Asia = Afghanistan + … + Yemen 949

; Europe = Albania + … + VaticanCity 950

; Oceania = Australia + … + Vanuatu 951

; Afghanistan = AF_reg_01 + … + AF_reg_N 952

 … … … … … … 953

; Zimbabwe = ZW_reg_01 + … + ZW_reg_M 954

; EuropeanUnion = … + … + … + … 955

; CentralAmericaCommonMarket = … + … + … + … 956

; OECD_Area = … + … + … + … 957

end hierarchical ruleset 958

The Hierarchical Rulesets allow defining multiple relations for the same Code Item. 959

Multiple relations are often useful for validation. For example, the Balance of Payments item "Transport" can be 960

broken down both by type of carrier (Air transport, Sea transport, Land transport) and by type of objects 961

transported (Passengers and Freights) and both breakdowns must sum up to the whole "Transport" figure. In 962

the following example a RuleName is assigned to the different methods of breaking down the Transport. 963

 964

define hierarchical ruleset TransportBreakdown (variable rule BoPItem) is 965

 transport_method1 : Transport = AirTransport + SeaTransport + LandTransport 966

; transport_method2 : Transport = PassengersTransport + FreightsTransport 967

end hierarchical ruleset 968

 969

Multiple relations can be useful even for calculation. For example, imagine that the input Data Set contains data 970

about resident units broken down by region and data about non-residents units broken down by country. In 971

order to calculate a homogeneous level of aggregation (e.g., by country), a possible Ruleset is the following: 972

 973

define hierarchical ruleset CalcCountryLevel (valuedomain condition Residence rule GeoArea) is 974

 when Residence = “resident” then Country1 = Country1 975

; when Residence = “non-resident” then Country1 = Region11 + … + Region1M 976

 … 977

; when Residence = “resident” then CountryN = CountryN 978

; when Residence = “non-resident” then CountryN = Region N1 + … + RegionNM 979

end hierarchical ruleset 980

 981

In the calculation, basically, for each Rule, for all the input Data Points and provided that the conditions are 982

TRUE, the right Code Items are changed into the corresponding left Code Item, obtaining Data Points referred 983

only to the left Code Items. Then the outcomes of all the Rules of the Ruleset are aggregated together to obtain 984

the Data Points of the result Data Set. 985

As far as each left Code Item is calculated by means of a single Rule (i.e., a single calculation method), this 986

process cannot generate inconsistencies. 987

Instead if a left Code Item is calculated by means of more Rules (e.g., through more than one calculation method), 988

there is the risk of producing erroneous results (e.g., duplicated data), because the outcome of the multiple Rules 989

producing the same Code Item are aggregated together. Proper definition of the left or right conditions can avoid 990

this risk, ensuring that for each input Data Point just one Rule is applied. 991

If the Ruleset is aimed only at validation, there is no risk of producing erroneous results because in the validation 992

the rules are applied independently. 993

 994

Examples 995

1) The Hierarchical Ruleset is defined on the Value Domain “sex”: Total is defined as Male + Female. 996

 No conditions are defined. 997
 998

define hierarchical ruleset sex_hr (valuedomain rule sex) is 999

 TOTAL = MALE + FEMALE 1000

end hierarchical ruleset 1001
 1002

38

2) BENELUX is the aggregation of the Code Items BELGIUM, LUXEMBOURG and NETHERLANDS. No conditions 1003

are defined. 1004
 1005

define hierarchical ruleset BeneluxCountriesHierarchy (valuedomain rule GeoArea) is 1006

BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS errorcode “Bad value for Benelux” 1007

end hierarchical ruleset 1008

 1009

3) American economic partners. The first rule states that the value for North America should be greater than the 1010

value reported for US. This type of validation is useful when the data communicated by the data provider do not 1011

cover the whole composition of the aggregate but only some elements. No conditions are defined. 1012
 1013

define hierarchical ruleset american_partners_hr (variable rule PartnerArea) is 1014

 NORTH_AMERICA > US 1015

; SOUTH_AMERICA = BR + UY + AR + CL 1016

end hierarchical ruleset 1017
 1018

4) Example of an aggregate Code Item having multiple definitions to be used for validation only. The Balance of 1019

Payments item "Transport" can be broken down by type of carrier (Air transport, Sea transport, Land transport) 1020

and by type of objects transported (Passengers and Freights) and both breakdowns must sum up to the total 1021

"Transport" figure. 1022
 1023

define hierarchical ruleset validationruleset_bop (variable rule BoPItem) is 1024

 transport_method1 : Transport = AirTransport + SeaTransport + LandTransport 1025

; transport_method2 : Transport = PassengersTransport + FreightsTransport 1026

end hierarchical ruleset 1027

 1028

 1029

39

VTL-DL – User Defined Operators 1030

define operator 1031

Syntax 1032
define operator operator_name ({ parameter { , parameter }* }) 1033

{ returns outputType } 1034

is operatorBody 1035

end define operator 1036

 1037
parameter::= parameterName parameterType { default parameterDefaultValue } 1038

 1039

Syntax description 1040

operator_name the name of the operator 1041

parameter the names of parameters, their data types and defaultvalues 1042

outputType the data type of the artefact returned by the operator 1043

operatorBody the expression which defines the operation 1044

parameterName the name of the parameter 1045

parameterType the data type of the parameter 1046

parameterDefaultValue the default value for the parameter (optional) 1047

 1048

Parameters 1049

operator_name name 1050

outputType a VTL data type (see the Data Type Syntax below) 1051

operatorBody a VTL expression having the parameters (i.e., parameterName) as the operands 1052

parameterName name 1053

parameterType a VTL data type (see the Data Type Syntax below) 1054

parameterDefaultValue a Value of the same type as the parameter 1055

 1056

Constraints 1057

 Each parameterName must be unique within the list of parameters 1058

 parameterDefaultValue must be of the same data type as the corresponding parameter 1059

 outputType must be compatible with the type of operatorBody (it can also be a sub-type of the type returned 1060

by the operatorBody expression) 1061

 If outputType is omitted then the type returned by the operatorBody expression is assumed 1062

 If parameterDefaultValue is specified then the parameter is optional 1063

 1064

Semantic specification 1065

This operator defines a user-defined Operator by means of a VTL expression, specifying also the parameters, 1066

their data types, whether they are mandatory or optional and their (possible) default values. 1067

 1068

Examples 1069

Example1: 1070

define operator max1 (x integer, y integer) 1071

returns boolean is 1072

if x > y then x else y 1073

end define operator 1074

 1075

Example2: 1076

define operator add (x integer default 0, y integer default 0) 1077

returns number is 1078

x+y 1079

end define operator 1080

40

Data type syntax 1081

The VTL data types are described in the VTL User Manual. Types are used throughout this Reference Manual as 1082

both meta-syntax and syntax. 1083

They are used as meta-syntax in order to define the types of input and output parameters in the descriptions of 1084

VTL operators; they are used in the syntax, and thus are proper part of the VTL, in order to allow other operators 1085

to refer to specific data types. For example, when defining a custom operator (see the define operator above), 1086

one will need to declare the type of the input/output parameters. 1087

The syntax of the data types is described below (as for the meaning of these definitions, see the section VTL Data 1088

Types in the User Manual). See also the section “Conventions for describing the operators’ syntax” in the chapter 1089

“Overview of the language and conventions” above. 1090

dataType ::= scalarType | compoundType 1091

 1092

scalarType ::= { basicScalarType | valueDomainName | setName }
1
 { scalarTypeConstraint } { null | 1093

not null } 1094

basicScalarType ::= { scalar | number | integer | string | boolean | time | date | time_period | 1095

duration }
1
 1096

 valueDomainName :: name 1097

 setName :: name 1098

scalarTypeConstraint ::= [valueBooleanCondition] | { scalarLiteral { , scalarLiteral }* } 1099

compoundType ::= componentType | datasetType | operatorType | rulesetType | productType | 1100

universalSetType 1101

componentType ::= componentRole { < scalar type > } 1102

componentRole ::= { component | identifier | measure | attribute | viral attribute }
1
 1103

datasetType ::= dataset { componentConstraint { , componentConstraint }
*
 } 1104

componentConstraint ::= componentType { componentName | multiplicityModifier }
1
 1105

componentName :: name 1106

multiplicityModifier ::= _ { + | * } 1107

productType ::= { dataType { * dataType }
+

 }
1
 1108

operatorType ::= { dataType -> dataType }
1
 1109

rulesetType ::= { ruleset | dpRuleset | hrRuleset }
1
 1110

dpRuleset ::= datapoint

1111

 | datapoint_on_valuedomains { (name { * name }
*
) } 1112

 | datapoint_on_variables { (name { * name }
*
) } 1113

hrRuleset ::= hierarchical 1114

| hierarchical_on_valuedomains { valueDomainName { * 1115

 (prodValueDomains) } } 1116

 | hierarchical_on_variables { variableName { * (prodVariables) } } 1117

universalSetType ::= set { < dataType > } 1118

 1119

Note that the valueBooleanCondition in scalarTypeConstraint is expressed with reference to the fictitious 1120

variable “value” (see also the User Manual, section “Conventions for describing the Scalar Types”), which 1121

represents the generic value of the scalar type, for example: 1122

integer { 0, 1 } means an integer number whose value is 0 or 1 1123

number [value >= 0] means a number greater or equal than 0 1124

string { "A", "B", "C" } means a string whose value is A, B or C: 1125

41

string [length (value) <= 10] means a string whose length is lower or equal than 10: 1126

 1127

General examples of the syntax for defining types can be found in the User Manual, section VTL Data Types and 1128

in the declaration of the data types of the VTL operators (sub-sections “input parameters type” and “result 1129

type”). 1130

42

VTL-ML - Typical behaviours of the ML Operators 1131

In this section, the common behaviours of some class of VTL-ML operators are described, both for a better 1132

understanding of the characteristics of such classes and to factor out and not repeat the explanation for each 1133

operator of the class. 1134

Typical behaviour of most ML Operators 1135

Unless differently specified in the Operator description, the Operators can be applied to Scalar Values, to Data 1136

Sets and to Data Set Components. 1137

The operations on Scalar Values are primitive and are part of the core of the language. The other kind of 1138

operations can be typically be obtained by means of the scalar operations in conjunction with the Join operator, 1139

which is part of the core too. 1140

In the operations on Data Set, the Operators are meant to be applied by default only to the values of the 1141

Measures of the input Data Sets, leaving the Identifiers unchanged. The Attributes follow by default their specific 1142

propagation rules, which are described in the User Manual. 1143

In the operations on Components, the Operators are meant to be applied on the specified components of one 1144

input Data Set, in order to calculate a new component which becomes part of the resulting Data Set. In this case, 1145

the Attributes can be operated like the Measures. 1146

Operators applicable on one Scalar Value or Data Set or Data Set 1147

Component 1148

 1149

Operations on Scalar values 1150

The operator is applied on a scalar value and returns a scalar value. 1151

 1152

Operations on Data Sets 1153

The operator is applied on a Data Set and returns a Data Set. 1154

For example, using a functional style and denoting the operator with f (…), this can written as: 1155

DS_r := f (DS_1) 1156

The same operation, using an infix style and denoting the operator as op, can be also written as 1157

DS_r := op DS_1 1158

This means that the operator is applied to the values of all the Measures of DS_1 in order to produce 1159

homonymous Measures in DS_r. 1160

The application of the operator is allowed only if all the Measures of the operand Data Set are of a data type 1161

compatible with the operator (for example, a numeric operator is applicable only if all the Measures of the 1162

operand Data Sets are numeric). If the Measures of the operand Data Set are of different types, not all compatible 1163

with the operator to be applied, the membership or the keep clauses can be used to select only the proper 1164

Measures. No applicability constraints exist on Identifiers and Attributes, which can be any. 1165

As for the data content, for each Data Point (DP_1) of the operand Data Set, a result Data Point (DP_r) is returned, 1166

having for the Identifiers the same values as DP_1. 1167

For each Data Point DP_1 and for each Measure, the operator is applied on the Measure value of DP_1 and 1168

returns the corresponding Measure value of DP_r. 1169

For each Data Point DP_1 and for each viral Attribute, the value of the Attribute propagates unchanged in DP_r. 1170

As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the operand Data Set 1171

(DS_1), and has the Attributes resulting from the application of the attribute propagation rules on the Attributes 1172

of the operand Data Set (DS_r maintains the Attributes declared as “viral” in DS_1; these Attributes are 1173

considered as “viral” also in DS_r, the “non-viral” Attributes of DS_1 are not kept in DS_r). 1174

 1175

43

Operations on Data Set Components 1176

The operator is applied on a Component (COMP_1) of a Data Set (DS_1) and returns another Component 1177

(COMP_r) which alters the structure of DS_1 in order to produce the result Data Set (DS_r). 1178

For example, using a functional style and denoting the operator with f (…), this can be written as: 1179

DS_r := DS_1 [calc COMP_r := f (COMP_1)] 1180

The same operation, using an infix style and denoting the operator as op, can be written as: 1181

DS_r := DS_1 [calc COMP_r := op COMP_1] 1182

This means that the operator is applied on COMP_1 in order to calculate COMP_r. 1183

 If COMP_r is a new Component which originally did not exist in DS_1, it is added to the original Components 1184

of DS_1, by default as a Measure (unless otherwise specified), in order to produce DS_r. 1185

 If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from the application of 1186

the operator f (…) replace the DS_1 original values for such a Measure or Attribute in order to produce 1187

DS_r. 1188

 If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the result can 1189

become inconsistent. 1190

In any case, an operation on the Components of a Data Set produces a new Data Set, as in the example above. 1191

The application of the operator is allowed only if the input Component belongs to a data type compatible with 1192

the operator (for example, a numeric operator is applicable only on numeric Components). As already said, 1193

COMP_r cannot have the same name of an Identifier of DS_1. 1194

As for the data content, for each Data Point DP_1 of DS_1, the operator is applied on the values of COMP_1 so 1195

returning the value of COMP_r. 1196

As for the data structure, like for the operations on Data Sets above, the result Data Set (DS_r) has the Identifiers 1197

and the Measures of the operand Data Set (DS_1), and has the Attributes resulting from the application of the 1198

attribute propagation rules on the Attributes of the operand Data Set (DS_r maintains the Attributes declared as 1199

“viral” in DS_1; these Attributes are considered as “viral” also in DS_r, the “non-viral” Attributes of DS_1 are not 1200

kept in DS_r). If an Attribute is explicitly calculated, the attribute propagation rule is overridden. 1201

Moreover, in the case of the operations on Data Set Components, the (possible) new Component DS_r can be 1202

added to the original structure, the role of a (possible) existing DS_1 Component can be altered, the virality of a 1203

(possibly) existing DS_r Attribute can be altered, a (possible) COMP_r non-viral Attribute can be kept in the 1204

result. For the alteration of role and virality see also the calc clause. 1205

Operators applicable on two Scalar Values or Data Sets or Data Set 1206

Components 1207

 1208

Operation on Scalar values 1209

The operator is applied on two Scalar values and returns a Scalar value. 1210

 1211

Operation on Data Sets 1212

The operator is applied either on two Data Sets or on one Data Set and one Scalar value and returns a Data Set. 1213

The composition of a Data Set and a Component is not allowed (it makes no sense). 1214

For example, using a functional style and denoting the operator with f (…), this can be written as: 1215

DS_r := f (DS_1, DS_2) 1216

The same kind of operation, using an infix stile and denoting the operator as op, can be also written as 1217

DS_r := DS_1 op DS_2 1218

This means that the operator is applied to the values of all the couples of Measures of DS_1 and DS_2 having the 1219

same names in order to produce homonymous Measures in DS_r. DS_1 or DS_2 may be replaced by a Scalar 1220

value. 1221

The composition of two Data Sets (DS_1, DS_2) is allowed if the two operand Data Sets have exactly the same 1222

Measures and if all these Measures belong to a data type compatible with the operator (for example, a numeric 1223

operator is applicable only if all the Measures of the operand Data Sets are numeric). If the Measures of the 1224

operand Data Sets are different or of different types not all compatible with the operator to be applied, the 1225

membership or the keep clauses can be used to select only the proper Measures. The composition is allowed if 1226

44

these operand Data Sets have the same Identifiers or if one of them has at least all the Identifiers of the other one 1227

(in other words, the Identifiers of one of the Data Sets must be a superset of the Identifiers of the other one). No 1228

applicability constraints exist on the Attributes, which can be any. 1229

As for the data content, the operand Data Sets (DS_1, DS_2) are joined to find the couples of Data Points (DP_1, 1230

DP_2), where DP_1 is from the first operand (DS_1) and DP_2 from the second operand (DS_2), which have the 1231

same values as for the common Identifiers. Data Points that are not coupled are left out (the inner join is used). 1232

An operand Scalar value is treated as a Data Point that couples with all the Data Points of the other operand. For 1233

each couple (DP_1, DP_2) a result Data Point (DP_r) is returned, having for the Identifiers the same values as 1234

DP_1 and DP_2. 1235

For each Measure and for each couple (DP_1, DP_2), the Measure values of DP_1 and DP_2 are composed through 1236

the operator so returning the Measure value of DP_r. An operand Scalar value is composed with all the Measures 1237

of the other operand. 1238

For each couple (DP_1, DP_2) and for each Attribute that propagates in DP_r, the Attribute value is calculated by 1239

applying the proper Attribute propagation algorithm on the values of the Attributes of DP_1 and DP_2 . 1240

As for the data structure, the result Data Set (DS_r) has all the Identifiers (with no repetition of common 1241

Identifiers) and the Measures of both the operand Data Sets, and has the Attributes resulting from the 1242

application of the attribute propagation rules on the Attributes of the operands (DS_r maintains the Attributes 1243

declared as “viral” for the operand Data Sets; these Attributes are considered as “viral” also in DS_r, the “non-1244

viral” Attributes of the operand Data Sets are not kept in DS_r). 1245

 1246

Operation on Data Set Components 1247

The operator is applied either on two Data Set Components (COMP_1, COMP_2) belonging to the same Data Set 1248

(DS_1) or on a Component and a Scalar value, and returns another Component (COMP_r) which alters the 1249

structure of DS_1 in order to produce the result Data Set (DS_r). The composition of a Data Set and a Component 1250

is not allowed (it makes no sense). 1251

For example, using a functional style and denoting the operator with f (…), this can be written as: 1252

DS_r := DS_1 [calc COMP_r := f (COMP_1, COMP_2)] 1253

The same operation, using an infix style and denoting the operator as op, can be written as: 1254

DS_r := DS_1 [calc COMP_r := COMP_1 op COMP_2] 1255

This means that the operator is applied on COMP_1 and COMP_2 in order to calculate COMP_r. 1256

 If COMP_r is a new Component which originally did not exist in DS_1, it is added to the original Components 1257

of DS_1, by default as a Measure (unless otherwise specified), in order to produce DS_r. 1258

 If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from the application of 1259

the operator f (…) replace the DS_1 original values for such a Measure or Attribute in order to produce 1260

DS_r. 1261

 If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the result can 1262

become inconsistent. 1263

In any case, an operation on the Components of a Data Set produces a new Data Set, like in the example above. 1264

The composition of two Data Set Components is allowed provided that they belong to the same Data Set3. 1265

Moreover, the input Components must belong to data types compatible with the operator (for example, a 1266

numeric operator is applicable only on numeric Components). As already said, COMP_r cannot have the same 1267

name of an Identifier of DS_1. 1268

As for the data content, for each Data Point of DS_1, the values of COMP_1 and COMP_2 are composed through 1269

the operator so returning the value of COMP_r. 1270

As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the operand Data Set 1271

(DS_1), and has the Attributes resulting from the application of the attribute propagation rules on the Attributes 1272

of the operand Data Set (DS_r maintains the Attributes declared as “viral” in DS_1; these Attributes are 1273

considered as “viral” also in DS_r, the “non-viral” Attributes of DS_1 are not kept in DS_r). If an Attribute is 1274

explicitly calculated, the attribute propagation rule is overridden. 1275

Moreover, in the case of the operations on Data Set Components, a (possible) new Component DS_r can be added 1276

to the original structure of DS_1, the role of a (possibly) existing DS_1 Component can be altered, the virality of a 1277

3
 As obvious, the input Data Set can be the result of a previous composition of more other Data Sets, even within the

same expression

45

(possibly) existing DS_r Attributes can be altered, a (possible) COMP_r non-viral Attribute can be kept in the 1278

result. For the alteration of role and virality see also the calc clause. 1279

Operators applicable on more than two Scalar Values or Data Set 1280

Components 1281

The cases in which an operator can be applied on more than two Data Sets (like the Join operators) are described 1282

in the relevant sections. 1283
 1284

Operation on Scalar values 1285

The operator is applied on more Scalar values and returns a Scalar value according to its semantics. 1286

 1287

Operation on Data Set Components 1288

The operator is applied either on a combination of more than two Data Set Components (COMP_1, COMP_2) 1289

belonging to the same Data Set (DS_1) or Scalar values, and returns another Component (COMP_r) which alters 1290

the structure of DS_1 in order to produce the result Data Set (DS_r). The composition of a Data Set and a 1291

Component is not allowed (it makes no sense). 1292

For example, using a functional style and denoting the operator with f (…), this can be written as: 1293

DS_r := DS_1 [substr COMP_r := f (COMP_1, COMP_2, COMP_3)] 1294

This means that the operator is applied on COMP_1, COMP_2 and COMP_3 in order to calculate COMP_r. 1295

 If COMP_r is a new Component which originally did not exist in DS_1, it is added to the original Components 1296

of DS_1, by default as a Measure (unless otherwise specified), in order to produce DS_r. 1297

 If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from the application of 1298

the operator f (…) replace the DS_1 original values for such a Measure or Attribute in order to produce 1299

DS_r. 1300

 If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the result can 1301

become inconsistent. 1302

In any case, an operation on the Components of a Data Set produces a new Data Set, like in the example above. 1303

The composition of more Data Set Components is allowed provided that they belong to the same Data Set4. 1304

Moreover, the input Components must belong to data types compatible with the operator (for example, a 1305

numeric operator is applicable only on numeric Components). As already said, COMP_r cannot have the same 1306

name of an Identifier of DS_1. 1307

As for the data content, for each Data Point of DS_1, the values of COMP_1, COMP_2 and COMP_3 are composed 1308

through the operator so returning the value of COMP_r. 1309

As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the operand Data Set 1310

(DS_1), and has the Attributes resulting from the application of the attribute propagation rules on the Attributes 1311

of the operand Data Set (DS_r maintains the Attributes declared as “viral” in DS_1; these Attributes are 1312

considered as “viral” also in DS_r, the “non-viral” Attributes of DS_1 are not kept in DS_r). If an Attribute is 1313

explicitly calculated, the attribute propagation rule is overridden. 1314

Moreover, in the case of the operations on Data Set Components, a (possible) new Component DS_r can be added 1315

to the original structure of DS_1, the role of a (possibly) existing DS_1 Component can be altered, the virality of a 1316

(possibly) existing DS_r Attributes can be altered, a (possible) COMP_r non-viral Attribute can be kept in the 1317

result. For the alteration of role and virality see also the calc clause. 1318

 1319

Behaviour of Boolean operators 1320

The Boolean operators are allowed only on operand Data Sets that have a single measure of type boolean. As for 1321

the other aspects, the behaviour is the same as the operators applicable on one or two Data Sets described above. 1322

4
 As obvious, the input Data Set can be the result of a previous composition of more other Data Sets, even within the

same expression

46

Behaviour of Set operators 1323

These operators apply the classical set operations (union, intersection, difference, symmetric differences) to the 1324

Data Sets, considering them as sets of Data Points. These operations are possible only if the Data Sets to be 1325

operated have the same data structure, and therefore the same Identifiers, Measures and Attributes5. 1326

Behaviour of Time operators 1327

The time operators are the operators dealing with time, date and time_period basic scalar types. These types are 1328

described in the User Manual in the sections “Basic Scalar Types” and “External representations and literals used 1329

in the VTL Manuals”. 1330

The time-related formats used for explaining the time operators are the following (they are described also in the 1331

User Manual). 1332

For the time values: 1333

YYYY-MM-DD/YYYY-MM-DD 1334

Where YYYY are 4 digits for the year, MM two digits for the month, DD two digits for the day. For 1335

example: 1336

2000-01-01/2000-12-31 the whole year 2000 1337

2000-01-01/2009-12-31 the first decade of the XXI century 1338

For the date values: 1339

YYYY-MM-DD 1340

The meaning of the symbols is the same as above. For example: 1341

2000-12-31 the 31st December of the year 2000 1342

2010-01-01 the first of January of the year 2010 1343

For the time_period values: 1344

 YYYY{P}{NNN} 1345

Where YYYY are 4 digits for the year, P is one character for the period indicator of the regular period (it 1346

refers to the duration data type and can assume one of the possible values listed below), NNN are from 1347

zero to three digits which contain the progressive number of the period in the year. For annual data the 1348

A and the three digits NNN can be omitted. For example: 1349

2000M12 the month of December of the year 2000 (duration: M) 1350

2010Q1 the first quarter of the year 2010 (duration: Q) 1351

2010A the whole year 2010 (duration: A) 1352

2010 the whole year 2010 (duration: A) 1353

For the duration values, which are the possible values of the period indicator of the regular periods above, it is 1354

used for simplicity just one character whose possible values are the following: 1355

Code Duration 1356

 D Day 1357

 W Week 1358

 M Month 1359

 Q Quarter 1360

 S Semester 1361

 A Year 1362

As mentioned in the User Manual, these are only examples of possible time-related representations, each VTL 1363

system is free of adopting different ones. In fact no predefined representations are prescribed, VTL systems are 1364

free to using they preferred or already existing ones. 1365

Several time operators deal with the specific case of Data Sets of time series, having an Identifier component that 1366

acts as the reference time and can be of one of the scalar types time, date or time_period; moreover this Identifier 1367

must be periodical, i.e. its possible values are regularly spaced and therefore have constant duration (frequency). 1368

5
 According to the VTL IM, the Variables that have the same name have also the same data type

47

It is worthwhile to recall here that, in the case of Data Sets of time series, VTL assumes that the information 1369

about which is the Identifier Components that acts as the reference time and which is the period (frequency) of 1370

the time series exists and is available in some way in the VTL system. The VTL Operators are aware of which is 1371

the reference time and the period (frequency) of the time series and use these information to perform correct 1372

operations. VTL also assumes that a Value Domain representing the possible periods (e.g. the period indicator 1373

Value Domain shown above) exists and refers to the duration scalar type. For the assumptions above, the users 1374

do not need to specify which is the Identifier Component having the role of reference time. 1375

The operators for time series can be applied only on Data Sets of time series and returns a Data Set of time 1376

series. The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set 1377

and contains the same time series as the operand. The Attribute propagation rule is not applied. 1378

Operators changing the data type 1379

These Operators change the Scalar data type of the operands they are applied to (i.e. the type of the result is 1380

different from the type of the operand). For example, the length operator is applied to a value of string type and 1381

returns a value of integer type. Another example is the cast operator. 1382

 1383

Operation on Scalar values 1384

The operator is applied on (one or more) Scalar values and returns one Scalar value of a different data type. 1385

 1386

Operation on Data Sets 1387

If an Operator change the data type of the Variable it is applied to (e.g., from string to number), the result Data Set 1388

cannot maintain this Variable as it happens in the previous cases, because a Variable cannot have different data 1389

types in different Data Sets6. 1390

As a consequence, the converted variable cannot follow the same rules described in the sections above and must 1391

be replaced, in the result Data Set, by another Variable of the proper data type. 1392

For sake of simplicity, the operators changing the data type are allowed only on mono-measure operand Data 1393

Sets, so that the conversion happens on just one Measure. A default generic Measure is assigned by default to the 1394

result Data Set, depending on the data type of the result (the default Measure Variables are reported in the table 1395

below). 1396

Therefore, if the operands are originally multi-measure, just one Measure must be pre-emptively selected (for 1397

example through the membership operator) in order to apply the changing-type operator. Moreover, if in the 1398

result Data Set a different Measure Variable name is desired than the one assigned by default, it is possible to 1399

change the Variable name (see the rename operator). 1400

As for the Identifiers and the Attributes, the behaviour of these operators is the same as the typical behaviour of 1401

the unary or binary operators. 1402

 1403

Operation on Data Set Components 1404

For the same reasons above, the result Component cannot be the same as one of the operand Components and 1405

must be of the appropriate Scalar data type. 1406

 1407

Default Names for Variables and Value Domains used in this manual 1408

The following table shows the default Variable names and the relevant default Value Domain. These are only the 1409

names used in this manual for explanatory purposes and can be personalised in the implementations. If VTL 1410

rules are exchanged, the personalised names need to be shared with the partners of the exchange. 1411

 1412

Scalar data type Default Variable Default Value Domain

string string_var string_vd

6
 This according both to the mathematical meaning of a Variable and the VTL Information Model; in fact a

Represented Variable is defined on just one Value Domain, which has just one data type, independently of the Data

Structures and the Data Sets in which the Variable is used.

48

number num_var num_vd

integer int_var int_vd

time time_var time_vd

time_period time_period_var time_period_vd

date date_var date_vd

duration duration_var duration_vd

boolean bool_var bool_vd

Type Conversion and Formatting Mask 1413

The conversions between scalar types is provided by the operator cast, described in the section of the general 1414

purpose operators. Some particular types of conversion require the specification of a formatting mask, which 1415

specifies which format the source or the destination of the conversion should assume. The formatting masks for 1416

the various scalar types are explained here. 1417

If needed, the formatting Masks can be personalized in the VTL implementations. If VTL rules are exchanged, the 1418

personalised masks need to be shared with the partners of the exchange. 1419

The Numbers Formatting Mask 1420

The number formatting mask can be defined as a combination of characters whose meaning is the following: 1421

o “D” one numeric digit (if the scientific notation is adopted, D is only for the mantissa) 1422

o “E” one numeric digit (for the exponent of the scientific notation) 1423

o “*” an arbitrary number of digits 1424

o “+” at least one digit 1425

o “.” (dot) can be used as a separator between the integer and the decimal parts. 1426

o “,” (comma) can be used as a separator between the integer and the decimal parts. 1427

 1428

Examples of valid masks are: 1429

 DD.DDDDD, DD.D, D, D.DDDD, D*.D*, D+.D+ , DD.DDDEEEE 1430

The Time Formatting Mask 1431

The format of the values of the types time, date and time_period can be specified through specific formatting 1432

masks. A mask related to time, date and time_period is formed by a sequence of symbols which denote: 1433

- the time units that are used, for example years, months, days 1434

- the format in which they are represented, for example 4 digits for the year (2018), 2 digits for the month 1435

within the year (04 for April) and 2 digits for the day within the year and the month (05 for the 5th) 1436

- the order of these parts; for example, first the 4 digits for the year, then the 2 digits for the month and finally 1437

the 2 digits for the day 1438

- other (possible) typographical characters used in the representation; for example, a line between the year 1439

and the month and between the month and the day (e.g., 2018-04-05). 1440

The time formatting masks follows the general rules below. 1441

For a numerical representations of the time units: 1442

- A digit is denoted through the use of a special character which depends on the time unit. for example Y is 1443

for “year”, M is for “month” and D is for “day” 1444

- The special character is lowercase for the time units shorter than the day (for example h for “hour”, m for 1445

“minute”, s for “second”) and uppercase for time units equal to “day” or longer (for example W for “week”, Q 1446

for “quarter”, S for “semester”) 1447

49

- The number of letters matches the number of digits, for example YYYY means that the year is represented 1448

with four digits and MM that the month is of 2 digits 1449

- The numerical representation is assumed to be padded by leading 0 by default, for example MM means that 1450

April is represented as 04 and the year 33 AD as 0033 1451

- If the numerical representation is not padded, the optional digits that can be omitted (if equal to zero) are 1452

enclosed within braces; for example {M}M means that April is represented by 4 and December by 12, while 1453

{YYY}Y means that the 33 AD is represented by 33 1454

For textual representations of the time units: 1455

- Special words denote a textual localized representation of a certain unit, for example DAY means a textual 1456

representation of the day (MONDAY, TUESDAY …) 1457

- An optional number following the special word denote the maximum length, for example DAY3 is a textual 1458

representation that uses three characters (MON, TUE …) 1459

- The case of the special word correspond to the case of the value; for example day3 (lowercase) denotes the 1460

values mon, tue … 1461

- The case of the initial character of the special word correspond to the case of the initial character of the time 1462

format; for example Day3 denotes the values Mon, Tue … 1463

- The letter P denotes the period indicator, (i.e., day, week, month …) and the letter p denotes ond digit for the 1464

number of periods 1465

Representation of more time units: 1466

- If more time units are used in the same mask (for example years, months, days), it is assumed that the more 1467

detailed units (e.g., the day) are expressed through the order number that they assume within the less 1468

detailed ones (e.g., the month and the year). For example, if years, weeks and days are used, the weeks are 1469

within the year (from 1 to 53) and the days are within the year and the week (from 1 to 7). 1470

- The position of the digits in the mask denotes the position of the corresponding values; for example, 1471

YYYMMDD means four digits for the year followed by two digits for the month and then two digits for the 1472

day (e.g., 20180405 means the year 2018, month April, day 5th) 1473

- Any other character can be used in the mask, meaning simply that it appears in the same position; for 1474

example, YYYY-MM-DD means that the values of year, month and day are separated by a line (e.g., 2018-1475

04-05 means the year 2018, month April, day 5th) and \PMM denotes the letter “P” followed by two 1476

characters for the month. 1477

- The special characters and the special words, if prefixed by the reverse slash (\) in the mask, appear in the 1478

same position in the time format; for example \PMM\M means the letter “P” followed by two characters for 1479

the month and then the letter “M”; for example, P03M means a period of three months (this is an ISO 8601 1480

standard representation for a period of MM months). The reverse slash can appear in the format if needed 1481

by prefixing it with another reverse slash; for example YYYY\\MM means for digits for the year, a reverse 1482

slash and two digits for the month. 1483

- 1484

The special characters and the corresponding time units are the following: 1485

C century 1486

Y year 1487

S semester 1488

Q quarter 1489

M month 1490

W week 1491

D day 1492

h hour digit (by default on 24 hours) 1493

m minute 1494

s second 1495

d decimal of second 1496

P period indicator (see the “duration” codes below) 1497

p number of periods 1498

 1499

The special words for textual representations are the following: 1500

50

AM/PM indicator of AM / PM (e.g. am/pm for “am” or “pm”) 1501

MONTH textual representation of the month (e.g., JANUARY for January) 1502

DAY textual representation of the day (e.g., MONDAY for Monday) 1503

 1504

Examples of formatting masks for the time scalar type: 1505

A Scalar Value of type time denotes time intervals of any duration and expressed with any precision, which are 1506

the intervening time between two time points. 1507

These examples are about three possible ISO 8601 formats for expressing time intervals: 1508

 Start and end time points, such as "2015-03-03T09:30:45Z/2018-04-05T12:30:15Z" 1509

VTL Mask: YYYY-MM-DDThh:mm:ssZ/YYYY-MM-DDThh:mm:ssZ 1510

 Start and duration, such as "2015-03-03T09:30:45-01/P1Y2M10DT2H30M" 1511

VTL Mask: YYYY-MM-DDThh:mm:ss-01/PY\YM\MDD\DT{h}h\Hmm\M 1512

 Duration and end, such as "P1Y2M10DT2H30M/2018-04-05T12:30:00+02" 1513

VTL Mask: PY\YM\MDD\DT{h}h\Hmm\M/YYYY-MM-DDThh:mm:ssZ 1514

Example of other possible ISO formats having accuracy reduced to the day 1515

 Start and end, such as "20150303/20180405" 1516

VTL Mask: YYYY-MM-DD/YYYY-MM-DD 1517

 Start and duration, such as "2015-03-03/P1Y2M10D" 1518

VTL Mask: YYYY-MM-DD/PY\YM\MDD\D 1519

 Duration and end, such as "P1Y2M10D/2018-04-05" 1520

VTL Mask: PY\YM\MDD\DT/YYYY-MM-DD 1521

 1522

Examples of formatting masks for the date scalar type: 1523

A date scalar type is a point in time, equivalent to an interval of time having coincident start and end duration 1524

equal to zero. 1525

These examples about possible ISO 8601 formats for expressing dates: 1526

 Date and day time with separators: "2015-03-03T09:30:45Z" 1527

VTL Mask: YYYY-MM-DDThh:mm:ssZ 1528

 Date and day time without separators "20150303T093045-01 " 1529

VTL Mask: YYYYMMDDThhmmss-01 1530

Example of other possible ISO formats having accuracy reduced to the day 1531

 Date and day-time with separators "2015-03-03/2018-04-05" 1532

VTL Mask: YYYY-MM-DD/YYYY-MM-DD 1533

 Start and duration, such as "2015-03-03/P1Y2M10D" 1534

VTL Mask: YYYY-MM-DD/PY\YM\MDD\D 1535

 1536

Examples of formatting masks for the time_period scalar type: 1537

A time_period denotes non-overlapping time intervals having a regular duration (for example the years, the 1538

quarters of years, the months, the weeks and so on). The time_period values include the representation of the 1539

duration of the period. 1540

These examples are about possible formats for expressing time-periods: 1541

 Generic time period within the year such as: "2015Q4", "2015M12""2015D365" 1542

VTL Mask: YYYYP{ppp} where P is the period indicator and ppp three digits for the number of 1543

periods, in the values, the period indicator may assume one of the values of the duration scalar type 1544

listed below. 1545

 Monthly period: "2015M03" 1546

VTL Mask: YYYY\MMM 1547

 1548

51

Examples of formatting masks for the duration scalar type: 1549

A Scalar Value of type duration denotes the length of a time interval expressed with any precision and without 1550

connection to any particular time point (for example one year, half month, one hour and fifteen minutes). 1551

These examples are about possible formats for expressing durations (period / frequency) 1552

 Non ISO representation of the duration in one character, whose possible codes are: 1553

Code Duration 1554

 D Day 1555

 W Week 1556

 M Month 1557

 Q Quarter 1558

 S Semester 1559

 A Year 1560

VTL Mask: P (period indicator) 1561

 ISO 8601 composite duration: "P10Y2M12DT02H30M15S" (P stands for “period”) 1562

VTL Mask: \PYY\YM\MDD\DThh\Hmm\Mss\S 1563

 ISO 8601 duration in weeks: "P018W" (P stands for “period”) 1564

VTL Mask: \PWWW\W 1565

 ISO 4 characters representation: P10M (ten months), P02Q (two quarters) … 1566

VTL Mask: \PppP 1567

 1568

Examples of fixed characters used in the ISO 8601 standard which can appear as fixed characters in the relevant 1569

masks: 1570

P designator of duration 1571

T designator of time 1572

Z designator of UTC zone 1573

“+” designator of offset from UTC zone 1574

”-“ designator of offset form UTC zone 1575

/ time interval separator 1576

 1577

Attribute propagation 1578

The VTL has different default behaviours for Attributes and for Measures, to comply as much as possible with the 1579

relevant manipulation needs. At the Data Set level, the VTL Operators manipulate by default only the Measures 1580

and not the Attributes. At the Component level, instead, Attributes are calculated like Measures, therefore the 1581

algorithms for calculating Attributes, if any, can be specified explicitly in the invocation of the Operators. This is 1582

the behaviour of clauses like calc, keep, drop, rename and so on, either inside or outside the join (see the 1583

detailed description of these operators in the Reference Manual). 1584

The users which want to automatize the propagation of the Attributes’ Values can optionally enforce a 1585

mechanism, called Attribute Propagation rule, whose behaviour is explained in the User Manual (see the section 1586

“Behaviour for Attribute Components”). The adoption of this mechanism is optional, users are free to allow the 1587

attribute propagation rule or not. The users that do not want to allow Attribute propagation rules simply will not 1588

implement what follows. 1589

In short, the automatic propagation of an Attribute depends on a Boolean characteristic, called “virality”, which 1590

can be assigned to any Attribute of a Data Set (a viral Attribute has virality = TRUE, a non-viral Attribute has 1591

virality=FALSE, if the virality is not defined, the Attribute is considered as non-viral). 1592

By default, an Attribute propagates from the operand Data Sets (DS_i) to the result Data Set (DS_r) if it is “viral” 1593

at least in one of the operand Data Sets. By default, an Attribute which is viral in one of the operands DS_i is 1594

considered as viral also in the result DS_r. 1595

52

The Attribute propagation rule does not apply for the time series operators. 1596

The Attribute propagation rule does not apply if the operations on the Attributes to be propagated are explicitly 1597

specified in the expression (for example through the keep and calc operators). This way it is possible to keep in 1598

the result also Attribute which are non-viral in all the operands, to drop viral Attributes, to override the 1599

(possible) default calculation algorithm of the Attribute, to change the virality of the resulting Attributes. 1600

 1601

 1602

 1603

53

VTL-ML - General purpose operators 1604

Parentheses : () 1605

 1606

Syntax 1607

(op) 1608

 1609

Input parameters 1610

op the operand to be evaluated before performing other operations written outside the parentheses. 1611

According to the general VTL rule, operators can be nested, therefore any Data Set, Component or scalar 1612

op can be obtained through an expression as complex as needed (for example op can be written as the 1613

expression 2 + 3). 1614

 1615

Examples of valid syntaxes 1616

(DS_1 + DS_2) 1617

(CMP_1 - CMP_2) 1618

(2 + DS_1) 1619

(DS_2 - 3 * DS_3) 1620

 1621

Semantic for scalar operations 1622

Parentheses override the default evaluation order of the operators that are described in the section “VTL-ML – 1623

Evaluation order of the Operators”. The operations enclosed in the parentheses are evaluated first. For example 1624

(2+3)*4 returns 20, instead 2+3*4 returns 14 because the multiplication has higher precedence than the 1625

addition. 1626

 1627

Input parameters type 1628

op :: dataset 1629

 | component 1630

| scalar 1631

 1632

Result type 1633

result :: dataset 1634

| component 1635

| scalar 1636

 1637

Additional constraints 1638

None. 1639

 1640

Behaviour 1641

As mentioned, the op of the parentheses can be obtained through an expression as complex as needed (for 1642

example op can be written as DS_1 - DS_2. The part of the expression inside the parentheses is evaluated 1643

before the part outside of the parentheses. If more parentheses are nested, the inner parentheses are evaluated 1644

first, for example (20 – 10 / (2 + 3)) * 3 would give 54. 1645

 1646

Examples 1647

(DS_1 + DS_2) * DS_3 1648

(CMP_1 – CMP_2 / (CMP_3 + CMP_4)) * CMP_5 1649

Persistent assignment : <- 1650

 1651

Syntax 1652

re <- op 1653

 1654

54

Input Parameters 1655

re the result 1656

op the operand. According to the general VTL rule allowing the indentation of the operators, op can be 1657

obtained through an expression as complex as needed (for example op can be the expression DS_1 - 1658

DS_2). 1659

 1660

Examples of valid syntaxes 1661

DS_r <- DS_1 1662

DS_r <- DS_1 - DS_2 1663

 1664

Semantics for scalar operations 1665

empty 1666
 1667

Input parameters type 1668

 op :: dataset 1669

 1670

 1671

Result type 1672

result :: dataset 1673

 1674

Additional constraints 1675

The assignment cannot be used at Component level because the result of a Transformation cannot be a Data Set 1676

Component. When operations at Component level are invoked, the result is the Data Set which the output 1677

Components belongs to. 1678

 1679

Behaviour 1680

The input operand op is assigned to the persistent result re, which assumes the same value as op. As mentioned, 1681

the operand op can be obtained through an expression as complex as needed (for example op can be the 1682

expression DS_1 - DS_2). 1683

The result re is a persistent Data Set that has the same data structure as the Operand. For example in DS_r <- 1684

DS_1 the data structure of DS_r is the same as the one of DS_1. 1685

If the Operand op is a scalar value, the result Data Set has no Components and contains only such a scalar value. 1686

For example, income <- 3 assigns the value 3 to the persistent Data Set named income. 1687

 1688

Examples 1689

 1690

Given the operand Data Set DS_1: 1691

 1692

DS_1

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

 1693

Example 1: DS_r <- DS_1 results in: 1694

 1695

DS_r (persistent Data Set)

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

55

Non-persistent assignment : := 1696

Syntax 1697

re := op 1698

 1699

Input parameters 1700

re the result 1701

op the operand (according to the general VTL rule allowing the indentation of the operators, op can be 1702

obtained through an expression as complex as needed (for example op can be the expression DS_1 - 1703

DS_2). 1704

 1705

Examples of valid syntaxes 1706

DS_r := DS_1 1707

DS_r := 3 1708

DS_r := DS_1 - DS_2 1709

DS_r := 3 + 2 1710

 1711

Semantic for scalar operations 1712

empty 1713

 1714

Input parameters type 1715

 op :: dataset 1716

 | scalar 1717

 1718

Result type 1719

result :: dataset 1720

 1721

Additional constraints 1722

The assignment cannot be used at Component level because the result of a Transformation cannot be a Data Set 1723

Component. When operations at Component level are invoked, the result is the Data Set which the output 1724

Components belongs to. 1725

The same symbol denoting the non-persistent assignment Operator (:=) is also used inside other operations at 1726

Component level (for example in calc and aggr) in order to assign the result of the operation to the output 1727

Component: please note that in these cases the symbol := does not denote the non-persistent assignment (i.e., 1728

this Operator), which cannot operate at Component level, but a special keyword of the syntax of the other 1729

Operator in which it is used. 1730

 1731

Behaviour 1732

The value of the operand op is assigned to the result re, which is non-persistent and therefore is not stored. As 1733

mentioned, the operand op can be obtained through an expression as complex as needed (for example op can be 1734

the expression DS_1 - DS_2). 1735

The result re is a non-persistent Data Set that has the same data structure as the Operand. For example in DS_r 1736

:= DS_1 the data structure of DS_r is the same as the one of DS_1. 1737

If the Operand op is a scalar value, the result Data Set has no Components and contains only such a scalar value. 1738

For example, income := 3 assigns the value 3 to the non-persistent Data Set named income. 1739

 1740

Examples 1741

 1742

Given the operand Data Sets DS_1: 1743

 1744

DS_1

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

 1745

56

Example 1: DS_r := DS_1 results in: 1746

 1747

DS_r (non persistent Data Set)

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

 1748

Membership : # 1749

 1750

Syntax 1751

ds#comp 1752

 1753

Input Parameters 1754

ds the Data Set 1755

comp the Data Set Component 1756

 1757

Examples of valid syntaxes 1758

DS_1#COMP_3 1759

 1760

Semantic for scalar operations 1761

This operator cannot be applied to scalar values. 1762

 1763

Input parameters type 1764

ds :: dataset 1765

comp :: name < component > 1766

 1767

Result type 1768

result :: dataset 1769

 1770

Additional constraints 1771

comp must be a Data Set Component of the Data Set ds 1772

 1773

Behaviour 1774

The membership operator returns a Data Set having the same Identifier Components of ds and a single Measure. 1775

If comp is a Measure in ds, then comp is maintained in the result while all other Measures are dropped. 1776

If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds are dropped in the 1777

result and a new Measure is added. The Data Points’ values for the new Measure are the same as the values of 1778

comp in ds. A default conventional name is assigned to the new Measure depending on its type: for example 1779

num_var if the Measure is numeric, string_var if it is string and so on (the default name can be renamed through 1780

the rename operator if needed). 1781

The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are maintained in the result 1782

as viral, non-viral ones are dropped). If comp is an Attribute, it follows the Attribute propagation rule too. 1783

The same symbol denoting the membership operator (#) is also used inside other operations at Component level 1784

(for example in join, calc, aggr) in order to identify the Components to be operated: please note that in these 1785

cases the symbol # does not denote the membership operator (i.e., this operator, which does not operate at 1786

Component level), but a special keyword of the syntax of the other operator in which it is used. 1787

 1788

 1789

Examples 1790

Given the operand Data Set DS_1: 1791

 1792

57

DS_1

Id_1 Id_2 Me_1 Me_2 At_1

1 A 1 5

1 B 2 10 P

2 A 3 12

 1793

Example 1: DS_r := DS_1#Me_1 results in: 1794

 1795

(assuming that At_1 is not viral in DS_1) 1796

 1797

DS_r

Id_1 Id_2 Me_1

1 A 1

1 B 2

2 A 3

 1798

(assuming that At_1 is viral in DS_1) 1799

 1800

DS_r

Id_1 Id_2 Me_1 At_1

1 A 1

1 B 2 P

2 A 3

 1801

Example 2: DS_r := DS_1#Id_1 assuming that At_1 is viral in DS_1 results in: 1802

 1803

DS_r

Id_1 Id_2 num_var At_1

1 A 1

1 B 1 P

2 A 2

 1804

Example 3: DS_r := DS_1#At_1 assuming that At_1 is viral in DS_1 results in: 1805

 1806

DS_r

Id_1 Id_2 string_var At_1

1 A

1 B P P

2 A

 1807

User-defined operator call 1808

 1809

Syntax 1810

operatorName ({ argument { , argument }* }

) 1811

 1812

58

Input parameters 1813

operatorName the name of an existing user-defined operator 1814

argument argument passed to the operator 1815

 1816

Examples of valid syntaxes 1817

max1 (2, 3) 1818

 1819

Semantic for scalar operations 1820

It depends on the specific user-defined operator that is invoked. 1821

 1822

Input parameters type 1823

operatorName :: name 1824

argument :: A data type compatible with the type of the parameter of the user-defined operator that 1825

is invoked (see also the “Type syntax” section). 1826

 1827

 1828

Result type 1829

result :: The data type of the result of the user-defined operator that is invoked (see also the 1830

“Type syntax” section). 1831

 1832

Additional constraints 1833

 operatorName must refer to an operator created with the define operator statement. 1834

 The type of each argument value must be compliant with the type of the corresponding parameter of the 1835

user defined operator (the correspondence is in the positional order). 1836

 1837

Behaviour 1838

The invoked user-defined operator is evaluated. The arguments passed to the operator in the invocation are 1839

associated to the corresponding parameters in positional order, the first argument as the value of the first 1840

parameter, the second argument as the value of the second parameter, and so on. An underscore (“_”) can be 1841

used to denote that the value for an optional operand is omitted. One or more optional operands in the last 1842

positions can be simply omitted. 1843

 1844

Examples 1845

Example 1: 1846

 1847

Definition of the max1 operator (see also “define operator” in the VTL-DL): 1848

 1849

define operator max1 (x integer, y integer) 1850

returns boolean 1851

is if x > y then x else y 1852

end define operator 1853

 1854

User-defined operator call of the max1 operator: 1855

 1856

max1 (2, 3) 1857
 1858

Evaluation of an external routine : eval 1859

 1860

Syntax 1861
eval (externalRoutineName ({ argument } { , argument }*), language, returns outputType) 1862

 1863

Input parameters 1864

externalRoutineName the name of an external routine 1865

argument the arguments passed to the external routine 1866

language the implementation language of the routine 1867

outputType the data type of the object returned by eval (see the section: Data type syntax) 1868

 1869

59

Examples of valid syntaxes 1870

eval (routine1 (DS_1)) 1871

 1872

Semantics for scalar operations: 1873

This is not a scalar operation. 1874

 1875

Input parameters type 1876

externalRoutineName :: name 1877

argument :: any data type 1878

language :: string 1879

outputType :: any data type restricting Data Set or scalar 1880

 1881

Result Type 1882

result :: dataset 1883

 1884

Additional constraints 1885

 The eval is the only VTL Operator that does not allow nesting and therefore a Transformation can contain 1886

just one invocation of eval and no other invocations. In other words, eval cannot be nested as the operand 1887

of another operation as well as another operator cannot be nested as an operand of eval 1888

 The result of an expression containing eval must be persistent 1889

 externalRoutineName is the conventional name of a non-VTL routine 1890

 the invoked external routine must be consistent with the VTL principles, first of all its behaviour must be 1891

functional, so having in input and providing in output first-order functions 1892

 argument is an argument passed to the external routine, it can be a name or a value of a VTL artefacts or 1893

some other parameter required by the routine 1894

 the arguments passed to the routine correspond to the parameters of the invoked external routine in 1895

positional order; as usual the optional parameters are substituted by the underscore if missing. The 1896

conversion of the VTL input/output data types from and to the external routine processor is left to the 1897

implementation. 1898

 1899

Behaviour 1900

The eval operator invokes an external, non-VTL routine, and returns its result as a Data Set or a scalar. The 1901

specific data type can be given in the invocation. The routine specified in the eval operator can perform any 1902

internal logic. 1903

 1904

Examples 1905

Assuming that SQL3 is an SQL statement which produces DS_r starting from DS_1: 1906

 1907

DS_r := eval(SQL3(DS_1) , “SQL”, 1908

returns dataset { identifier<geo_area> ref_area, 1909

identifier<date> time, 1910

measure<number> obs_value, 1911

attribute<string> obs_status }) 1912

 1913

Assuming that f is an externally defined Java method: 1914

 1915

DS_r := DS_1[calc Me := eval(f(Me) + 1, “Java”, integer)] 1916
 1917

Type conversion : cast 1918

Syntax 1919
cast (op , scalarType { , mask}) 1920

 1921

Input parameters 1922

op the operand to be cast 1923

scalarType the name of the scalar type into which op has to be converted 1924

mask a character literal that specifies the format of op 1925

 1926

60

Examples of valid syntaxes 1927

See the examples below. 1928

 1929

Semantics for scalar operations: 1930

This operator converts the scalar type of op to the scalar type specified by scalarType. It returns a copy of op 1931

converted to the specified scalarType. 1932

 1933

Input parameters type 1934

op :: dataset{ measure<scalar> _ } 1935

 | component<scalar> 1936

 | scalar 1937

scalarType :: scalar type (see the section: Data type syntax) 1938

mask :: string 1939

 1940

Result type 1941

result :: dataset{ measure<scalar> _ } 1942

 | component<scalar> 1943

 | scalar 1944

 1945

Additional constraints 1946

 Not all the conversions are possible, the specified casting operation is allowed only according to the 1947

semantics described below. 1948

 The mask must adhere to one of the formats specified below. 1949
 1950

Behaviour 1951

Conversions between basic scalar types 1952

The VTL assumes that a basic scalar type has a unique internal and more possible external representations 1953

(formats). 1954

The external representations are those of the Value Domains which refers to such a basic scalar types (more 1955

Value Domains can refer to the same basic scalar type, see the VTL Data Types in the User Manual). For example, 1956

there can exist a boolean Value Domain which uses the values TRUE and FALSE and another boolean Value 1957

Domain which uses the values 1 and 0. The external representations are the ones of the Data Point Values and 1958

are obviously known by users. 1959

The unique internal representation of a basic scalar type, instead, is used by the cast operator as a technical 1960

expedient to make the conversion between external representations easier: not necessarily users are aware of it. 1961

In a conversion, the cast converts the source external representation into the internal representation (of the 1962

corresponding scalar type), then this last one is converted into the target external representation (of the target 1963

type). As mentioned in the User Manual, VTL does not prescribe any specific internal representation for the 1964

various scalar types, leaving different organisations free of using their preferred or already existing ones. 1965

In some cases, depending on the type of op, the output scalarType and the invoked operator, an automatic 1966

conversion is made, that is, even without the explicit invocation of the cast operator: this kind of conversion is 1967

called implicit casting. 1968

In other cases, more than all when the implicit casting is not possible, the type conversion must be specified 1969

explicitly through the invocation of the cast operator: this kind of conversion is called explicit casting. If an 1970

explicit casting is specified, the (possible) implicit casting is overridden. There are two main categories of 1971

implicit casting: 1972

 “Explicit with mask”: the explicit conversion requires a formatting mask that specifies how the actual 1973

casting is performed; 1974

 “Explicit w/o mask”: the explicit conversion does not requires a formatting mask. 1975

The table below summarises the possible castings between the basic scalar types. In particular, the input type is 1976

specified in the first column (row headings) and the output type in the first row (column headings). 1977

 1978

Expected

Provided

integer number boolean time date time_period string duration

integer - Implicit Explicit w/o
mask

Not feasible Not feasible Not feasible Implicit Not
feasible

61

number Explicit w/o
mask

- Explicit w/o
mask

Not feasible Not feasible Not feasible Implicit Not
feasible

boolean Explicit w/o
mask

Explicit w/o
mask

- Not feasible Not feasible Not feasible Implicit Not
feasible

time Not feasible Not feasible Not feasible - Not feasible Not feasible Explicit with
mask

Not
feasible

date Not feasible Not feasible Not feasible Implicit - Explicit w/o
mask

Explicit with
mask

Not
feasible

time_period Not feasible Not feasible Not feasible Implicit Explicit with
mask

- Explicit w/o
mask

Not
feasible

string Explicit w/o
mask

Explicit with
mask

Not feasible Explicit with
mask

Explicit with
mask

Explicit with
mask

- Explicit
with mask

duration Not feasible Not feasible Not feasible Not feasible Not feasible Not feasible Explicit with
mask

-

 1979

The type of casting can be personalised in specific environments, provided that the personalisation is explicitly 1980

documented with reference to the table above. For example, assuming that an explicit cast with mask is 1981

required and that in a specific environment a definite mask is used for such a kind of conversions, the cast can 1982

also become implicit provided that the mask that will be applied is specified. 1983

The implicit casting is performed when a value of a certain type is provided when another type is expected. Its 1984

behaviour is described here: 1985

 From integer to number: an integer is provided when a number is expected (for example, an integer and a 1986

number are passed as inputs of a n-ary numeric operator); it returns a number having the integer part equal 1987

to the integer and the decimal part equal to zero; 1988

 From integer to string: an integer is provided when a string is expected (for example, an integer is passed 1989

as an input of a string operator); it returns a string having the literal value of the integer; 1990

 From number to string: a number is provided when a string is expected; it returns the string having the 1991

literal value of the number; the decimal separator is converted into the character “.” (dot). 1992

 From boolean to string: a boolean is provided when a string is expected; the boolean value TRUE is 1993

converted into the string “TRUE” and FALSE into the string “FALSE”; 1994

 From date to time: a date (point in time) is provided when a time is expected (interval of time): the 1995

conversion results in an interval having the same start and end, both equal to the original date; 1996

 From time_period to time: a time_period (a regular interval of time, like a month, a quarter, a year …) is 1997

provided when a time (any interval of time) is expected; it returns a time value having the same start and 1998

end as the time_period value. 1999

An implicit cast is also performed from a value domain type or a set type to a basic scalar type: when a scalar 2000

value belonging to a Value Domains or a Set is involved in an operation (i.e., provided as input to an operator), 2001

the value is implicitly cast into the basic scalar type which the Value Domain refers to (for this relationship, see 2002

the description of Type System in the User Manual). For example, assuming that the Component birth_country is 2003

defined on the Value Domain country, which contains the ISO 3166-1 numeric codes and therefore refers to the 2004

basic scalar type integer, the (possible) invocation length(birth_country), which calculates the length of the input 2005

string, automatically casts the values of birth_country into the corresponding string. If the basic scalar type of the 2006

Value Domain is not compatible with the expression where it is used, an error is raised. This VTL feature is 2007

particularly important as it provides a general behaviour for the Value Domains and relevant Sets, preventing 2008

from the need of defining specific behaviours (or methods or operations) for each one of them. In other words, 2009

all the Values inherit the operations that can be performed on them from the basic scalar types of the respective 2010

Value Domains. 2011

The cast operator can be invoked explicitly even for the conversions which allow an implicit cast and in this case 2012

the same behaviour as the implicit cast is applied. 2013

The behaviour of the cast operator for the conversions that require explicit casting without mask is the 2014

following: 2015

 From integer to boolean: if the integer is different from 0, then TRUE is returned, FALSE otherwise. 2016

 From number to integer: converts a number with no decimal part into an integer; if the decimal part is 2017

present, a runtime error is raised. 2018

 From number to boolean: if the number is different from 0.0, then TRUE is returned, FALSE otherwise. 2019

62

 From boolean to integer: TRUE is converted into 1; FALSE into 0. 2020

 From boolean to number: TRUE is converted into 1.0; FALSE into 0.0. 2021

 From date to time_period: it converts a date into the corresponding daily value of time_period. 2022

 From string to integer: the integer having the literal value of the string is returned; if the string contains a 2023

literal that cannot be matched to an integer, a runtime error is raised. 2024

 From string to time_period: it converts a string value to a time_period value. 2025

When an explicit casting with mask is required, the conversion is made by applying the formatting mask which 2026

specifies the meaning of the characters in the output string. The formatting Masks are described in the section 2027

“VTL-ML – Typical Behaviour of the ML Operators”, sub-section “Type Conversion and Formatting Mask. 2028

The behaviour of the cast operator for such conversions is the following: 2029

 From time to string: it is applied the time formatting mask. 2030

 From date to string: it is applied the time_period formatting mask. 2031

 From time_period to date: it is applied a formatting mask which accepts two possible values (“START”, 2032

“END”). If “START” is specified, then the date is set to the beginning of the time_period; if “END” is specified, 2033

then the date is set to the end of the time_period. 2034

 From time_period to string: it is applied the time_period formatting mask. 2035

 From duration to string: a duration (an absolute time interval) is provided when a string is expected; it 2036

returns the string having the default string representation for the duration. 2037

 From string to number: the number having the literal value of the string is returned; if the string contains a 2038

literal that cannot be matched to a number, a runtime error is raised. The number is generated by using a 2039

number formatting mask. 2040

 From string to time: the time having the literal value of the string is returned; if the string contains a literal 2041

that cannot be matched to a date, a runtime error is raised. The time value is generated by using a time 2042

formatting mask. 2043

 From string to duration: the duration having the literal value of the string is returned; if the string contains 2044

a literal that cannot be matched to a duration, a runtime error is raised. The duration value is generated by 2045

using a time formatting mask. 2046

Conversions between basic scalar types and Value Domains or Set types 2047

A value of a basic scalar type can be converted into a value belonging to a Value Domain which refers to such a 2048

scalar type. The resulting scalar value must be one of the allowed values of the Value Domain or Set; otherwise, a 2049

runtime error is raised. This specific use of cast operators does not really correspond to a type conversion; in 2050

more formal terms, we would say that it acts as a constructor, i.e., it builds an instance of the output type. Yet, 2051

towards a homogeneous and possibly simple definition of VTL syntax, we blur the distinction between 2052

constructors and type conversions and opt for a unique formalism. An example is given below. 2053

Conversions between different Value Domain types 2054

As a result of the above definitions, conversions between values of different Value Domains are also possible. 2055

Since an element of a Value Domain is implicitly cast into its corresponding basic scalar type, we can build on it 2056

to turn the so obtained scalar type into another Value Domain type. Of course, this latter Value Domain type must 2057

use as a base type this scalar type. 2058

 2059

Examples 2060

 2061

Example 1: from string to number 2062

ds2 := ds1[calc m2 := cast(m1, number, “DD.DDD”) + 2)] 2063

In this case we use explicit cast from string to numbers. The mask is used to specify how the string must be 2064

interpreted in the conversion. 2065

 2066

Example 2: from string to date 2067

ds2 := ds1[calc m2 := cast(m1, date, “YYYY-MM-DD”)] 2068

In this case we use explicit cast from string to date. The mask is used to specify how the string must be 2069

interpreted in the conversion. 2070

 2071

63

Example 3: from number to integer 2072

ds2 := ds1[calc m2 := cast(m1, integer) + 3] 2073

In this case we cast a number into an integer, no mask is required. 2074

 2075

Example 4: from number to string 2076

ds2 := ds1[calc m2 := length(cast(m1, string))] 2077

In this case we cast a number into a string, no mask is required. 2078

 2079

Example 5: from date to string 2080

ds2 := ds1[calc m2 := cast(m1, string, “YY-MON-DAY hh:mm:ss”)] 2081

In this example a date instant is turned into a string. The mask is used to specify the string layout. 2082

 2083

Example 6: from string to GEO_AREA 2084

ds2 := ds1[calc m2 := cast(GEO_STRING, GEO_AREA)] 2085

In this example we suppose we have elements of Value Domain Subset for GEO_AREA. Let GEO_STRING be a 2086

string Component of Data Set ds1 with string values compatible with the GEO_AREA Value Domain Subset. 2087

Thus, the following expression moves ds1 data into ds2, explicitly casting strings to geographical areas. 2088

 2089

Example 7: from GEO_AREA to string 2090

ds2 := ds1[calc m2 := length(GEO_AREA)] 2091

In this example we use a Component GEO_AREA in a string expression, which calculates the length of the 2092

corresponding string; this triggers the automatic cast. 2093

 2094

Example 8: from GEO_AREA2 to GEO_AREA1 2095

ds2 := ds1 [calc m2 := cast (GEO, GEO_AREA1)] 2096

In this example we suppose we have to compare elements two Value Domain Subsets, They are both defined on 2097

top of Strings. The following cast expressions performs the conversion. 2098

Now, Component GEO is of type GEO_AREA2, then we specify it has to be cast into GEO_AREA1. As both 2099

work on strings (and the values are compatible), the conversion is feasible. In other words, the cast of an 2100

operand into GEO_AREA1 would expect a string. Then, as GEO is of type GEO_AREA2, defined on top of 2101

strings, it is implicitly cast to the respective string; this is compatible with what cast expects and it is then able to 2102

build a value of type GEO_AREA1. 2103

 2104

Example 9: from string to time_period 2105

In the following examples we convert from strings to time_periods, by using appropriate masks. 2106

The first quarter of year 2000 can be expressed as follows (other examples are possible): 2107

cast (“2000Q1”, time_period, “YYYY\QQ”) 2108

cast (“2000-Q1”, time_period, “YYYY-\QQ”) 2109

cast (“2000-1”, time_period, “YYYY-Q”) 2110

cast (“Q1-2000”, time_period, “\QQ-YYYY”) 2111

cast (“2000Q01”, time_period, “YYYY\QQQ”) 2112

Examples of daily data: 2113

cast (“2000M01D01”, time_period, “YYYY\MMM\DDD”) 2114

cast (“2000.01.01”, time_period, “YYYY\.MM\.DD”) 2115

 2116

64

VTL-ML - Join operators 2117

The Join operators are fundamental VTL operators. They are part of the core of the language and allow to obtain 2118

the behaviour of the majority of the other non-core operators, plus many additional behaviours that cannot be 2119

obtained through the other operators. 2120

The Join operators are four, namely the inner_join, the left_join, the full_join and the cross_join. Because their 2121

syntax is similar, they are described together. 2122

Join : inner_join, left_join, full_join, cross_join 2123

Syntax 2124

joinOperator (ds1 { as alias1 } { , dsN { as aliasN } }* { using usingComp { , usingComp }* } 2125

{ filter filterCondition } 2126

{ apply applyExpr 2127

 | calc calcClause 2128

 | aggr aggrClause { groupingClause } } 2129

{ keep comp {, comp }* | drop comp {, comp }* } 2130

{ rename compFrom to compTo { , compFrom to compTo }* } 2131

) 2132

joinOperator ::= { inner_join | left_join | full_join | cross_join }
1
 2133

calcClause ::= { calcRole } calcComp := calcExpr 2134

{ , { calcRole } calcComp := calcExpr }* 2135

calcRole ::= {identifier | measure | attribute | viral attribute}
1

2136

aggrClause ::= { aggrRole } aggrComp := aggrExpr 2137

{ , { aggrRole } aggrComp := aggrExpr }
*
 2138

aggrRole ::= { measure | attribute | viral attribute }
1

2139

groupingClause ::= { group by groupingId { , groupingId }* 2140

| group except groupingId { , groupingId }* 2141

| group all conversionExpr }
1
 2142

 { having havingCondition } 2143

 2144

 2145

Input parameters 2146

joinOperator the Join operator to be applied 2147

ds1, …, dsN the Data Set operands (at least one must be present) 2148

alias1, …, aliasN optional aliases for the input Data Sets, valid only within the “join” operation to make it 2149

easier to refer to them. If omitted, the Data Set name must be used. 2150

usingComp component of the input Data Sets whose values have to match in the join (the using 2151

clause is allowed for the left_join only under certain constraints described below and is 2152

not allowed at all for the full_join and cross_join) 2153

filterCondition a condition (boolean expression) at component level, having only Components of the 2154

input Data Sets as operands, which is evaluated for each joined Data Point and filters 2155

them (when TRUE the joined Data Point is kept, otherwise it is not kept) 2156

applyExpr an expression, having the input Data Sets as operands, which is pairwise applied to all 2157

their homonym Measure Components and produces homonym Measure Components in 2158

the result; for example if both the Data Sets ds1 and ds2 have the numeric measures m1 2159

and m2, the clause apply ds1 + ds2 would result in calculating m1 := ds1#m1 + 2160

ds2#m1 and m2 := ds1#m2 + ds2#m2 2161

calcClause clause that specifies the Components to be calculated, their roles and their calculation 2162

algorithms, to be applied on the joined and filtered Data Points. 2163

calcRole the role of the Component to be calculated 2164

calcComp the name of the Component to be calculated 2165

65

calcExpr expression at component level, having only Components of the input Data Sets as 2166

operands, used to calculate a Component 2167

aggrClause clause that specifies the required aggregations, i.e., the aggregated Components to be 2168

calculated, their roles and their calculation algorithm, to be applied on the joined and 2169

filtered Data Points 2170

aggrRole the role of the aggregated Component to be calculated; if omitted, the Measure role is 2171

assumed 2172

aggrComp the name of the aggregated Component to be calculated; this is a dependent Component 2173

of the result (Measure or Attribute, not Identifier) 2174

aggrExpr expression at component level, having only Components of the input Data Sets as 2175

operands, which invokes an aggregate operator (e.g. avg, count, max … , see also the 2176

corresponding sections) to perform the desired aggregation. Note that the count 2177

operator is used in an aggrClause without parameters, e.g.: 2178

DS_1 [aggr Me_1 := count () group by Id_1)] 2179

groupingClause the following alternative grouping options: 2180

group by the Data Points are grouped by the values of the specified Identifiers 2181

(groupingId). The Identifiers not specified are dropped in the result. 2182

group except the Data Points are grouped by the values of the Identifiers not 2183

specified as groupingId. The specified Identifiers are dropped in the 2184

result. 2185

group all converts the values of an Identifier Component using conversionExpr 2186

and keeps all the resulting Identifiers. 2187

groupingId Identifier Component to be kept (in the group by clause) or dropped (in the group 2188

except clause). 2189

conversionExpr specifies a conversion operator (e.g. time_agg) to convert an Identifier from finer to 2190

coarser granularity. The conversion operator is applied on an Identifier of the operand 2191

Data Set op. 2192

havingCondition a condition (boolean expression) at component level, having only Components of the 2193

input Data Sets as operands (and possibly constants), to be fulfilled by the groups of 2194

Data Points: only groups for which havingCondition evaluates to TRUE appear in the 2195

result. The havingCondition refers to the groups specified through the groupingClause, 2196

therefore it must invoke aggregate operators (e.g. avg, count, max, …, see also the 2197

section Aggregate invocation). A correct example of havingCondition is 2198

max(obs_value) < 1000, while the condition obs_value < 1000 is not a right 2199

havingCondition, because it refers to the values of single Data Points and not to the 2200

groups. The count operator is used in a havingCondition without parameters, e.g.: 2201

sum (ds group by id1 having count () >= 10) 2202

comp dependent Component (Measure or Attribute, not Identifier) to be kept (in the keep 2203

clause) or dropped (in the drop clause) 2204

compFrom the original name of the Component to be renamed 2205

compTo the new name of the Component atfer the renaming 2206

 2207

Examples of valid syntaxes 2208

inner_join (ds1 as d1, ds2 as d2 using Id1, Id2 2209

filter d1#Me1 + d2#Me1 <10 2210

apply d1 / d2 2211

keep Me1, Me2, Me3 2212

rename Id1 to Id10, id2 to id20 2213

) 2214

 2215

left_join (ds1 as d1, ds2 as d2 2216

 filter d1#Me1 + d2#Me1 <10, 2217

 calc Me1 := d1#Me1 + d2#Me3, 2218

 keep Me1 2219

 rename Id1 to Ident1, Me1 to Meas1 2220

) 2221

 2222

full_join (ds1 as d1, ds2 as d2 2223

 filter d1#Me1 + d2#Me1 <10, 2224

66

 aggr Me1 := sum(Me1), attribute At20 := avg(Me2) 2225

 group by Id1, Id2 2226

having sum(Me3) > 0 2227

) 2228

 2229

Semantics for scalar operations 2230

The join operator does not perform scalar operations. 2231

 2232

Input parameters type 2233

ds1, …, dsN :: dataset 2234

alias1, …, aliasN :: name 2235

usingId :: name < component > 2236

filterCondition :: component<boolean> 2237

applyExpr :: dataset 2238

calcComp :: name < component > 2239

calcExpr :: component<scalar> 2240

aggrComp :: name < component > 2241

aggrExpr :: component<scalar> 2242

groupingId :: name < identifier > 2243

conversionExpr :: component<scalar> 2244

havingCondition :: component<boolean> 2245

comp :: name < component > 2246

compFrom :: component<scalar> 2247

compTo :: component<scalar> 2248

 2249

Result type 2250

result :: dataset 2251

 2252

Additional constraints 2253

The aliases must be all distinct and different from the Data Set names. Aliases are mandatory for Data Sets which 2254

appear more than once in the Join (self-join) and for non-named Data Set obtained as result of a sub-expression. 2255

The using clause is not allowed for the full_join and for the cross_join, because otherwise a non-functional 2256

result could be obtained. 2257

If the using clause is not specified (we will label this case as “Case A”), calling Id(dsi) the set of Identifier 2258

Components of operand dsi, the following group of constraints must hold7: 2259

 For inner_join, for each pair dsi, dsj, either Id(dsi)  Id(dsj) or Id(dsj)  Id(dsi). In simpler words, the 2260

Identifiers of one of the joined Data Sets must be a superset of the identifiers of all the other ones. 2261

 For left_join and full_join, for each pair dsi, dsj, Id(dsi) = Id(dsj). In simpler words, the joined Data Sets 2262

must have the same Identifiers. 2263

 For cross-join (Cartesian product), no constraints are needed. 2264

If the using clause is specified (we will label this case as “Case B”, allowed only for the inner_join and the 2265

left_join), all the join keys must appear as Components in all the input Data Sets. Moreover two sub-cases are 2266

allowed: 2267

 Sub-case B1: the constraints of the Case A are respected and the join keys are a subset of the common 2268

Identifiers of the joined Data Sets; 2269

 Sub-case B2: 2270

o In case of inner_join, one Data Set acts as the reference Data Set which the others are joined to; 2271

in case of left_join, this is the “more to the left” Data Set (i.e., ds1); 2272

o All the input Data Sets, except the reference Data Set, have the same Identifiers [Id1, … , Idn]; 2273

o The using clause specifies all and only the common Identifiers of the non-reference Data Sets 2274

[Id1, … , Idn]. 2275

The join operators must fulfil also other constraints: 2276

 apply, calc and aggr clauses are mutually exclusive 2277

 keep and drop clauses are mutually exclusive 2278

 comp can be only dependent Components (Measures and Attributes, not Identifiers) 2279

 An Identifier not included in the group by clause (if any) cannot be included in the rename clause 2280

7
 These constraints hold also for the full_join and the cross_join, which do not allow the using clause.

67

 An Identifier included in the group except clause (if any) cannot be included in the rename clause. If the 2281

aggr clause is invoked and the grouping clause is omitted, no Identifier can be included in the rename 2282

clause 2283

 A dependent Component not included in the keep clause (if any) cannot be renamed 2284

 A dependent Component included in the drop clause (if any) cannot be renamed 2285

 2286

Behaviour 2287

The semantics of the join operators can be procedurally described as follows. 2288

 A relational join of the input operands is performed, according to SQL inner (inner_join), left-outer 2289

(left_join), full-outer (full_join) and Cartesian product (cross_join) semantics (these semantics will be 2290

explained below), producing an intermediate internal result, that is a Data Set that we will call “virtual” 2291

(VDS1). 2292

 The filterCondition, if present, is applied on VDS1, producing the Virtual Data Set VDS2. 2293

 The specified calculation algorithms (apply, calc or aggr), if present, are applied on VDS2. For the 2294

Attributes that have not been explicitly calculated in these clauses, the Attribute propagation rule is applied 2295

(see the User Manual), so producing the Virtual Data Set VDS3. 2296

 The keep or drop clause, if present, is applied on VDS3, producing the Virtual Data Set VDS4. 2297

 The rename clause, if present, is applied on VDS4, producing the Virtual Data Set VDS5. 2298

 The final automatic alias removal is performed in order to obtain the output Data Set. 2299

An alias can be optionally declared for each input Data Set. The aliases are valid only within the “join” operation, 2300

in particular to allow joining a dataset with itself (self join). If omitted, the input Data Sets are referenced only 2301

through their Data Set names. If the aliases are ambiguous (for example duplicated or equal to the name of 2302

another Data Set), an error is raised. 2303

The structure of the virtual Data Set VDS1 which is the output of the relational join is the following. 2304

For the inner_join, the left_join and the full_join, the virtual Data Set contains the following Components: 2305

 The Components used as join keys, which appear once and maintain their original names and roles. In 2306

the cases A and B1, all of them are Identifiers. In the sub-case B2, the result takes the roles from the 2307

reference Data Set. 2308

 In the sub-case B2: the Identifiers of the reference Data Set, which appear once and maintain their 2309

original name and role. 2310

 The other Components coming from exactly one input Data Set, which appear once and maintain their 2311

original name 2312

 The other Components coming from more than one input Data Set, which appears as many times as the 2313

Data Set they come from; to distinguish them, their names are prefixed with the alias (or the name) of 2314

the Data Set they come from, separated by the “#” symbol (e.g., dsi#cmpj). For example, if the 2315

Component “population” appears in two input Data Sets “ds1” and “ds2” that have the aliases “a” and 2316

“b” respectively, the Components “a#population” and “b#population” will appear in the virtual Data Set. 2317

If the aliases are not defined, the two Components are prefixed with the Data Set name (i.e., 2318

“ds1#population” and “ds2#population”). In this context, the symbol “#” does not denote the 2319

membership operator but acts just as a separator between the the Data Set and the Component names. 2320

 If the same Data Set appears more times as operand of the join (self-join) and the aliases are not defined, 2321

an exception is raised because it is not allowed that two or more Components in the virtual Data Set 2322

have the same name. In the self-join the aliases are mandatory to disambiguate the Component names. 2323

 If a Data Set in the join list is the result of a sub-expression, then an alias is mandatory all the same 2324

because this Data Set has no name. If the alias is omitted, an exception is raised. 2325

As for the cross_join, the virtual Data Set contains all the Components from all the operands, possibly prefixed 2326

with the aliases to avoid ambiguities. 2327

The semantics of the relational join is the following. 2328

The join is performed on some join keys, which are the Components of the input Data Sets whose values are used 2329

to match the input Data Points and produce the joined output Data Points. 2330

By default (only for the full_join and the cross_join), the join is performed on the subset of homonym Identifier 2331

Components of the input Data Sets. 2332

The parameter using allows to specify different join keys than the default ones, and can be used only for the 2333

inner_join and the left_join in order to preserve the functional behaviour of the operations. 2334

The different kinds of relational joins behave as follows. 2335

 inner_join: the Data Points of ds1, …, dsN are joined if they have the same values for the common 2336

Identifier Components or, if the using clause is present, for the specified Components. A (joined) virtual 2337

Data Point is generated in the virtual Data Set VDS1 when a matching Data Point is found for each one of the 2338

input Data Sets. In this case, the Values of the Components of a virtual Data Point are taken from the 2339

68

corresponding Components of the matching Data Points. If there is no match for one or more input Data Sets, 2340

no virtual Data Point is generated. 2341

 left_join: the join is ideally performed stepwise, between consecutive pairs of input Data Sets, starting from 2342

the left side and proceeding towards the right side. The Data Points are matched like in the inner_join, but a 2343

virtual Data Point is generated even if no Data Point of the right Data Set matches (in this case, the Measures 2344

and Attributes coming from the right Data Set take the NULL value in the virtual Data Set). Therefore, for 2345

each Data Points of the left Data Set a virtual Data Point is always generated. These stepwise operations are 2346

associative. More formally, consider the generic pair <dsi, dsi+1>, where dsi is the result of the left_join of the 2347

first “i” operands and dsi+1 is the i+1th operand. For each pair <dsi, dsi+1>, the joined Data Set is fed with all 2348

the Data Points that match in dsi and dsi+1 or are only in dsi. The constraints described above guarantee the 2349

absence of null values for the Identifier Components of the joined Data Set, whose values are always taken 2350

from the left Data Set. If the join succeeds for a Data Point in dsi, the values for the Measures and the 2351

Attributes are carried from dsi and dsi+1 as explained above. Otherwise, i.e., if no Data Point in dsi+1 matches 2352

the Data Point in dsi, null values are given to Measures and Attributes coming only from dsi+1. 2353

 full_join: the join is ideally performed stepwise, between consecutive pairs of input Data Sets, starting from 2354

the left side and proceeding toward the right side. The Data Points are matched like in the inner_join and 2355

left_join, but the using clause is not allowed and a virtual Data Point is generated either if no Data Point of 2356

the right Data Set matches with the left Data Point or if no Data Point of the left Data Set matches with the 2357

right Data Point (in this case, Measures and Attributes coming from the non matching Data Set take the NULL 2358

value in the virtual Data Set). Therefore, for each Data Points of the left and the right Data Set, a virtual Data 2359

Point is always generated. These stepwise operations are associative. More formally, consider the generic 2360

pair <dsi, dsi+1>, where dsi is the result of the full_join of the first “i” operands and dsi+1 is the i+1th operand. 2361

For each pair <dsi, dsi+1>, the resulting Data Set is fed with the Data Points that match in dsi and dsi+1 or that 2362

are only in dsi or in dsi+1. If for a Data Point in dsi the join succeeds, the values for the Measures and the 2363

Attributes are carried from dsi and dsi+1 as explained. Otherwise, i.e., if no Data Point in dsi+1 matches the 2364

Data Point in dsi, NULL values are given to Measures and Attributes coming only from dsi+1. Symmetrically, if 2365

no Data Point in dsi matches the Data Point in dsi+1, NULL values are given to Measures and Attributes 2366

coming only from dsi. The constraints described above guarantee the absence of NULL values on the 2367

Identifier Components. As mentioned, the using clause is not allowed in this case. 2368

 cross_join: the join is performed stepwise, between consecutive pairs of input Data Sets, starting from the 2369

left side and proceeding toward the right side. No match is performed but the Cartesian product of the input 2370

Data Points is generated in output. These stepwise operations are associative. More formally, consider the 2371

ordered pair <dsi, dsi+1>, where dsi is the result of the cross_ join of the first “i” operands and dsi+1 is the 2372

i+1-th operand. For each pair <dsi, dsi+1>, the resulting Data Set is fed with the Data Points obtained as the 2373

Cartesian product between the Data Points of dsi and dsi+1. The resulting Data Set will have all the 2374

Components from dsi and dsi+1. For the Data Sets which have at least one Component in common, the alias 2375

parameter is mandatory. As mentioned, the using parameter is not allowed in this case. 2376

 2377

The semantics of the clauses is the following. 2378

 filter takes as input a Boolean Component expression (having type component<boolean>). This clause 2379

filters in or out the input Data Points; when the expression is TRUE the Data Point is kept, otherwise it is 2380

not kept in the result. Only one filter clause is allowed. 2381

 apply combines the homonym Measures in the source operands whose type is compatible with the 2382

operators used in applyExpr, generating homonym Measures in the ouput. The expression applyExpr 2383

can use as input the names or aliases of the operand Data Sets. It applies the expression to all the n-uples 2384

of homonym Measures in the input Data Sets producing in the target a single homonym Measure for 2385

each n-uple. It can be thought of as the multi-measure version of the calc. For example, if the following 2386

aliases have been declared: d1, d2, d3, then the following expression d1+d2+d3, sums all the homonym 2387

Measures in the three input Data Sets, say M1 and M2, so as to obtain in the result: M1 := d1#M1 + 2388

d2#M1 + d3#M1 and M2 := d1#M2 + d2#M2 + d3#M2. It is not only a compact version of a multiple 2389

calc, but also essential when the number of Measures in the input operands is not known beforehand. 2390

Only one apply clause is allowed. 2391

 calc calculates new Identifier, Measure or Attribute Components on the basis of sub-expressions at 2392

Component level. Each Component is calculated through an independent sub-expression. It is possible 2393

to specify the role of the calculated Component among measure, identifier, attribute, or viral 2394

attribute, therefore the calc clause can be used also to change the role of a Component when possible. 2395

The keyword viral allows controlling the virality of Attributes (for the Attribute propagation rule see the 2396

User Manual). The following rule is used when the role is omitted: if the component exists in the 2397

operand Data Set then it maintains that role; if the component does not exist in the operand Data Set 2398

then the role is measure. The calcExpr are independent one another, they can only reference 2399

69

Components of the input Virtual Data Set and cannot use Components generated, for example, by other 2400

calcExpr . If the calculated Component is a new Component, it is added to the output virtual Data Set. If 2401

the Calculated component is a Measure or an Attribute that already exists in the input virtual Data Set, 2402

the calculated values overwrite the original values. If the Calculated component is an Identifier that 2403

already exists in the input virtual Data Set, an exception is raised because overwriting an Identifier 2404

Component is forbidden for preserving the functional behaviour. Analytic operators can be used in the 2405

calc clause. 2406

 aggr calculates aggregations of dependent Components (Measures or Attributes) on the basis of sub-2407

expressions at Component level. Each Component is calculated through an independent sub-expression. 2408

It is possible to specify the role of the calculated Component among measure, identifier, attribute, or 2409

viral attribute. The substring viral allows to control the virality of Attributes, if the Attribute 2410

propagation rule is adopted (see the User Manual). The aggr sub-expressions are independent of one 2411

another, they can only reference Components of the input Virtual Data Set and cannot use Components 2412

generated, for example, by other aggr sub-expressions. The aggr computed Measures and Attributes 2413

are the only Measures and Attributes returned in the output virtual Data Set (plus the possible viral 2414

Attributes, see below Attribute propagation). The sub-expressions must contain only Aggregate 2415

operators, which are able to compute an aggregated Value relevant to a group of Data Points. The groups 2416

of Data Points to be aggregated are specified through the groupingClause, which allows the following 2417

alternative options. 2418

group by the Data Points are grouped by the values of the specified Identifier. The Identifiers not 2419

specified are dropped in the result. 2420

group except the Data Points are grouped by the values of the Identifiers not specified in the clause. 2421

The specified Identifiers are dropped in the result. 2422

group all converts an Identifier Component using conversionExpr and keeps all the resulting 2423

Identifiers. 2424

The having clause is used to filter groups in the result by means of an aggregate condition evaluated on 2425

the single groups, for example the minimum number of rows in the group. 2426

If no grouping clause is specified, then all the input Data Points are aggregated in a single group and the 2427

clause returns a Data Set that contains a single Data Point and has no Identifier Components. 2428

 keep maintains in the output only the specified dependent Components (Measures and Attributes) of 2429

the input virtual Data Set and drops the non-specified ones. It has the role of a projection in the usual 2430

relational semantics (specifying which columns have to be projected in). Only one keep clause is 2431

allowed. If keep is used, drop must be omitted. 2432

 drop maintains in the output only the non-specified dependent Components (Measures and Attributes) 2433

of the input virtual Data Set (component<scalar>) and drops the specified ones. It has the role of a 2434

projection in the usual relational join semantics (specifying which columns will be projected out). Only 2435

one drop clause is allowed. If drop is used, keep must be omitted. 2436

 rename assigns new names to one or more Components (Identifier, Measure or Attribute Components). 2437

The resulting Data Set, after renaming all the specified Components, must have unique names of all its 2438

Components (otherwise a runtime error is raised). Only the Component name is changed and not the 2439

Component Values, therefore the new Component must be defined on the same Value Domain and Value 2440

Domain Subset as the original Component (see also the IM in the User Manual). If the name of a 2441

Component defined on a different Value Domain or Set is assigned, an error is raised. In other words, 2442

rename is a transformation of the variable without any change in its values. 2443

The semantics of the Attribute propagation in the join is the following. The Attributes calculated through the 2444

calc or aggr clauses are maintained unchanged. For all the other Attributes that are defined as viral, the 2445

Attribute propagation rule is applied (for the semantics, see the Attribute Propagation Rule section in the User 2446

Manual). This is done before the application of the drop, keep and rename clauses, which acts also on the 2447

Attributes resulting from the propagation. 2448

The semantics of the final automatic aliases removal is the following. After the application of all the clauses, the 2449

structure of the final virtual Data Set is further modified. All the Components of the form 2450

“alias#component_name” (or “dataset_name#component_name”) are implicitly renamed into 2451

“component_name”. This means that the prefixes in the Component names are automatically removed. It is 2452

responsibility of the user to guarantee the absence of duplicated Component names once the prefixes are 2453

removed. In other words, the user must ensure that there are no pairs of Components whose names are of the 2454

form “alias1#c1” and “alias2#c1” in the structure of the virtual Data Point, since the removal of “alias1” and 2455

“alias2” would cause the clash. If, after the aliases removal two Components have the same name, an error is 2456

raised. In particular, name conflicts may derive if the using clause is present and some homonym Identifier 2457

Components do not appear in it; these components should be properly renamed because cannot be removed; the 2458

70

input Data Set have homonym Measures and there is no apply clause which unifies them; these Measures can be 2459

renamed or removed. 2460

 2461

Examples 2462

 2463

Given the operand Data Sets DS_1 and DS_2: 2464

 2465

DS_1

Id_1 Id_2 Me_1 Me_2

1 A A B

1 B C D

2 A E F

 2466

DS_2

Id_1 Id_2 Me_1A Me_2

1 A B Q

1 B S T

3 A Z M

 2467

 2468

Example 1: 2469

DS_r := inner_join (DS_1 as d1, DS_2 as d2, 2470

keep Me_1, d2#Me_2, Me_1A) results in: 2471

 2472

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A

1 A A Q B

1 B C T S

 2473

Example 2: 2474

 DS_r := left_join (DS_1 as d1, DS_2 as d2, 2475

keep Me_1, d2#Me_2, Me_1A) results in: 2476

 2477

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A

1 A A Q B

1 B C T S

2 A E null null

 2478

Example 3: 2479

DS_r := full_join (DS_1 as d1, DS_2 as d2, 2480

keep Me_1, d2#Me_2, Me_1A) results in: 2481

 2482

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A

1 A A Q B

1 B C T S

2 A E null null

71

3 A null M Z

 2483

Example 4: 2484

DS_r := cross_join (DS_1 as d1, DS_2 as d2, 2485

rename d1#Id_1 to Id11, d1#Id_2 to Id12, d2#Id1 to Id21, d2#Id2 to Id22, d1#Me_2 2486

to Me12) 2487

results in: 2488

 2489

DS_r

Id_11 Id_12 Id_21 Id_22 Me_1 Me12 Me_1A Me_2

1 A 1 A A B B Q

1 A 1 B A B S T

1 A 3 A A B Z M

1 B 1 A C D B Q

1 B 1 B C D S T

1 B 3 A C D Z M

2 A 1 A E F B Q

2 A 1 B E F S T

2 A 3 A E F Z M

 2490

 2491

Example 5: 2492

DS_r := inner_join (DS_1 as d1, DS_2 as d2, 2493

filter Me_1 = “A”, 2494

 calc Me_4 = Me_1 || Me_1A, 2495

drop d1#Me_2) 2496

 2497

where || is the string concatenation, results in: 2498

 2499

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A Me_4

1 A A Q B AB

 2500

 2501

 2502

Example 6: 2503

DS_r := inner_join (DS_1 2504

calc Me_2 := Me_2 || “_NEW” 2505

filter Id_2 =”B” 2506

keep Me_1, Me_2) 2507

 2508

where || is the string concatenation, results in: 2509
 2510

DS_r

Id_1 Id_2 Me_1 Me_2

1 B C D_NEW

 2511

 2512

Example 7: 2513

Given the operand Data Sets DS_1 and DS_2: 2514

 2515

72

DS_1

Id_1 Id_2 Me_1 Me_2

1 A A B

1 B C D

2 A E F

 2516

DS_2

Id_1 Id_2 Me_1 Me_2

1 A B Q

1 B S T

3 A Z M

 2517

 2518

DS_r := inner_join (DS_1 as d1, DS_2 as d2, 2519

apply d1 || d2) 2520

 2521

DS_r

Id_1 Id_2 Me_1 Me_2

1 A AB BQ

1 B CS DT

 2522

 2523

 2524

73

VTL-ML - String operators 2525

String concatenation : || 2526

 2527

Syntax 2528

op1 || op2 2529

 2530

Input Parameters 2531

op1, op2 the operands 2532

 2533

Examples of valid syntaxes 2534
"Hello" || ", world!" 2535

ds_1 || ds_2 2536

 2537

Semantics for scalar operations 2538

Concatenates two strings. For example, "Hello" || ", world!" gives "Hello, world!" 2539

 2540

Input parameters type 2541

op1, op2 :: dataset { measure<string> _+ } 2542

| component<string> 2543

| string 2544

 2545

Result type 2546

result :: dataset { measure<string> _+ } 2547

| component<string> 2548

| string 2549

 2550

Additional constraints 2551

None. 2552

 2553

Behaviour 2554

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set 2555

Components” (see the section “Typical behaviours of the ML Operators”). 2556

 2557

Examples 2558

Given the Data_Sets DS_1 and DS_2: 2559

 2560

DS_1

Id_1 Id_2 Me_1

1 A "hello"

2 B "hi"

 2561

 2562

DS_2

Id_1 Id_2 Me_1

1 A "world"

2 B "there"

 2563

Example 1: DS_r := DS_1 || DS_2 results in: 2564

 2565

74

DS_r

Id_1 Id_2 Me_1

1 A "helloworld"

2 B "hithere"

 2566

Example 2 (on component): DS_r := DS_1[calc Me_2:= Me_1 || “ world”] results in: 2567

 2568

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello" "hello world"

2 B "hi" "hi world"

Whitespace removal : trim, rtrim, ltrim 2569

Syntax 2570

{trim|ltrim|rtrim}
1
 (op) 2571

 2572

Input parameters 2573

op the operand 2574

 2575

Examples of valid syntaxes 2576

trim("Hello ") 2577

trim(ds_1) 2578

 2579

Semantics for scalar operations 2580

Removes trailing or/and leading whitespace from a string. For example, trim("Hello ") gives "Hello". 2581

 2582

Input parameters type 2583

op :: dataset { measure<string> _+ } 2584

| component<string> 2585

| string 2586

 2587

Result type 2588

result :: dataset { measure<string> _+ } 2589

| component<string> 2590

| string 2591

 2592

Additional constraints 2593

None. 2594

 2595

Behaviour 2596

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set 2597

Component” (see the section “Typical behaviours of the ML Operators”). 2598

 2599

Examples 2600

 2601

Given the Data Set DS_1: 2602

 2603

DS_1

Id_1 Id_2 Me_1

1 A "hello "

2 B "hi "

 2604

75

Example 1: DS_r := rtrim(DS_1) results in: 2605

 2606

DS_r

Id_1 Id_2 Me_1

1 A "hello"

2 B "hi"

 2607

Example 2 (on component): DS_r := DS_1[calc Me_2:= rtrim(Me_1)] results in: 2608

 2609

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello " "hello"

2 B "hi " "hi"

Character case conversion : upper/lower 2610

Syntax 2611

{upper | lower}
1
(op) 2612

 2613

Input Parameters 2614

op the operand 2615

 2616

Examples of valid syntaxes 2617

upper("Hello") 2618

lower(ds_1) 2619

 2620

Semantics for scalar operations 2621

Converts the character case of a string in upper or lower case. For example, upper("Hello") gives "HELLO". 2622

 2623

Input Parameters type 2624

op :: dataset { measure<string> _+ } 2625

| component<string> 2626

| string 2627

 2628

Result type 2629

result :: dataset { measure<string> _+ } 2630

| component<string> 2631

| string 2632

 2633

Additional constraints 2634

None. 2635

 2636

Behaviour 2637

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set 2638

Component” (see the section “Typical behaviours of the ML Operators”). 2639

 2640

Examples 2641

Given the Data Set DS_1: 2642

 2643

DS_1

Id_1 Id_2 Me_1

1 A "hello"

2 B "hi"

76

 2644

Example 1: DS_r := upper(DS_1) results in: 2645

 2646

DS_r

Id_1 Id_2 Me_1

1 A "HELLO"

2 B "HI"

 2647

Example 2 (on component): DS_r := DS_1[calc Me_2:= upper(Me_1)] results in: 2648

 2649

DS_R

Id_1 Id_2 Me_1 Me_2

1 A "hello" "HELLO"

2 B "hi" "HI"

 2650

Sub-string extraction : substr 2651

Syntax 2652

substr (op, start, length) 2653

 2654

 2655

Input parameters 2656

op the operand 2657

start the starting digit (first character) of the string to be extracted 2658

length the length (number of characters) of the string to be extracted 2659

 2660

Examples of valid syntaxes 2661

substr (DS_1, 2 , 3) 2662

substr (DS_1, 2) 2663

substr (DS_1, _ , 3) 2664

substr (DS_1) 2665

 2666

Semantics for scalar operations 2667

The operator extracts a substring from op, which must be string type. The substring starts from the start
th

 2668

character of the input string and has a number of characters equal to the length parameter. 2669

 If start is omitted, the substring starts from the 1st position. 2670

 If length is omitted or overcomes the length of the input string, the substring ends at the end of the input 2671

string. 2672

 If start is greater than the length of the input string, an empty string is extracted. 2673
 2674

For example: 2675

substr (“abcdefghijklmnopqrstuvwxyz”, start:= 5 , length:= 10) gives: “efghijklmn”. 2676

substr (“abcdefghijklmnopqrstuvwxyz”, start:= 25 , length:= 10) gives: “yz”. 2677

substr (“abcdefghijklmnopqrstuvwxyz”, start:= 30 , length:= 10) gives: “”. 2678

 2679

Input parameters type 2680

op :: dataset { measure <string> _+ } 2681

| component <string> 2682

| string 2683

 2684

start :: component < integer [value >= 1] > 2685

| integer [value >= 1] 2686

 2687

77

 2688

length :: component < integer [value >= 0] > 2689

| integer [value >= 0] 2690

 2691

 2692

 2693

Result type 2694

result :: dataset { measure<string> _+ } 2695

| component<string> 2696

| string 2697

 2698

Additional constraints 2699

None. 2700

 2701

Behaviour 2702

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar 2703

Value or Data Set or Data Set Component”, as for the invocations at Component or Scalar level, the operator has 2704

the behaviour of the “Operators applicable on more than two Scalar Values or Data Set Components”, (see the 2705

section “Typical behaviours of the ML Operators”). 2706

 2707

Examples 2708

 2709

Given the operand Data Set DS_1: 2710

 2711

DS_1

Id_1 Id_2 Me_1 Me_2

1 A "hello world" "medium size text"

1 B "abcdefghilmno" "short text"

2 A "pqrstuvwxyz" "this is a long description"

 2712

Example 1: DS_r:= substr (DS_1 , 7) results in: 2713

 2714

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "world" " size text"

1 B "ghilmno" "text"

2 A "vwxyz" "s a long description"

 2715

Example 2: DS_r:= substr (DS_1 , 1 , 5) results in: 2716

 2717

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello" "mediu"

1 B "abcde" "short"

2 A "pqrst" "this "

 2718

Example3(on Components): DS_r:= DS_1 [calc Me_2:= substr (Me_2 , 1 , 5)] results in: 2719

 2720

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello world" "mediu"

78

1 B "abcdefghilmno" "short"

2 A "pqrstuvwxyz" "this "

 2721

String pattern replacement: replace 2722

Syntax 2723

replace (op , pattern1, pattern2) 2724

 2725

Input parameters 2726

op the operand 2727

pattern1 the pattern to be replaced 2728

pattern2 the replacing pattern 2729

 2730

Examples of valid syntaxes 2731

replace(DS_1, "Hello", "Hi") 2732

replace(DS_1, "Hello") 2733

 2734

Semantics for scalar operations 2735

Replaces all the occurrences of a specified string-pattern (pattern1) with another one (pattern2). If pattern2 is 2736

omitted then all occurrences of pattern1 are removed. For example: 2737

 2738

replace("Hello world", "Hello", "Hi") gives "Hi world" 2739

replace("Hello world", "Hello") gives " world" 2740

replace ("Hello", "ello", "i") gives "Hi" 2741

 2742

Input parameters type 2743

op :: dataset { measure<string> _+ } 2744

| component<string> 2745

| string 2746

pattern1, pattern2 :: component<string> 2747

| string 2748

 2749

Result type 2750

result :: dataset { measure<string> _+ } 2751

| component<string> 2752

| string 2753

 2754

Additional constraints 2755

None. 2756

 2757

Behaviour 2758

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar 2759

Value or Data Set or Data Set Component”, as for the invocations at Component or Scalar level, the operator has 2760

the behaviour of the “Operators applicable on more than two Scalar Values or Data Set Components”, (see the 2761

section “Typical behaviours of the ML Operators”). 2762

 2763

Examples 2764

Given the Data_ Set DS_1: 2765

 2766

DS_1

Id_1 Id_2 Me_1

1 A "hello world"

2 A "say hello"

3 A "he"

79

4 A "hello!"

 2767

Example 1: DS_r := replace (ds_1,"ello","i") results in: 2768

 2769

DS_r

Id_1 Id_2 Me_1

1 A "hi world"

2 A "say hi"

3 A "he"

4 A "hi! "

 2770

Example 2 (on component): DS_r := DS_1[calc Me_2:= replace (Me_1,"ello","i")] results in: 2771

 2772

DS_r

Id_1 Id_2 Me_1 Me_2

1 A " hello world" "hi world"

2 A " say hello" "say hi"

3 A "he" "he"

4 A "hello! " "hi! "

 2773

String pattern location : instr 2774

 2775

Syntax 2776
instr (op, pattern, start, occurrence) 2777

 2778

 2779

Input parameters 2780

op the operand 2781

pattern the string-pattern to be searched 2782

start the position in the input string of the character from which the search starts 2783

occurrence the occurrence of the pattern to search 2784

 2785

Examples of valid syntaxes 2786

instr (DS_1, “ab”, 2 , 3) 2787

instr (DS_1, “ab”, 2) 2788

instr (DS_1, “ab”, _ , 2) 2789

instr (DS_1, “ab”) 2790

 2791

Semantics for scalar operations 2792

The operator returns the position in the input string of a specified string (pattern). The search starts from the 2793

start
th

 character of the input string and finds the n
th
occurrence of the pattern, returning the position of its first 2794

character. 2795

 If start is omitted, the search starts from the 1st position. 2796

 If n
th
occurrence is omitted, the value is 1. 2797

If the n
th
occurrence of the string-pattern after the start

th
 character is not found in the input string, the returned 2798

value is 0. 2799

 2800

For example: 2801

instr ("abcde", "c") gives 3 2802

instr ("abcdecfrxcwsd", "c", _ , 3) gives 10 2803

instr ("abcdecfrxcwsd", "c", 5 , 3) gives 0 2804

80

 2805

Input parameters type 2806

op :: dataset { measure<string> _ } 2807

| component<string> 2808

| string 2809

pattern :: component<string> 2810

| string 2811

start :: component < integer [value >= 1] > 2812

| integer [value >= 1] 2813

occurrence :: component < integer [value >= 1] > 2814

| integer [value >= 1] 2815

 2816

Result type 2817

result :: dataset { measure<integer[value >= 0]> int_var } 2818

| component<integer[value >= 0]> 2819

| integer[value >= 0] 2820

 2821

Additional constraints 2822

For operations at Data Set level, the input Data Set must have exactly one string type Measure. 2823

 2824

Behaviour 2825

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar 2826

Value or Data Set or Data Set Component”, as for the invocations at Component or Scalar level, the operator has 2827

the behaviour of the “Operators applicable on more than two Scalar Values or Data Set Components”, (see the 2828

section “Typical behaviours of the ML Operators”). 2829

If op is a Data Set then instr returns a dataset with a single measure int_var of type integer. 2830

 2831

Examples 2832

Given the Data Set DS_1: 2833
 2834

DS_1

Id_1 Id_2 Me_1

1 A "hello world"

2 A "say hello"

3 A "he"

4 A "hi, hello! "

 2835

Example 1: DS_r:= instr(ds_1,”hello”) results in 2836
 2837

DS_r

Id_1 Id_2 int_var

1 A 1

2 A 5

3 A 0

4 A 5

 2838

Example 2 (on component): DS_r := DS_1[calc Me_2:=instr(Me_1,”hello”)] results in: 2839

 2840

DS_r

Id_1 Id_2 Me_1 Me_2

1 A “hello world” 1

2 A “say hello” 5

81

3 A “he” 0

4 A “hi, hello!” 5

 2841

 2842

Given the Data Set DS_2: 2843

 2844

DS_2

Id_1 Id_2 Me_1 Me_2

1 A "hello" "world"

2 B NULL "hi"

 2845

Example 3 (applying the instr operator at component level to a multi Measure Data Set): 2846

 2847

DS_r := DS_2 [calc Me_10:= instr(Me_1, "o"), Me_20:=instr(Me_2, "o")] results in: 2848

 2849

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10 Me_20

1 A "hello" "world" 5 2

2 B NULL "hi" null 0

 2850

 2851

Example 4 (applying the instr operator at Data Set level to a multi Measure Data Set): 2852

 2853

DS_r := instr(DS_2, "o") would give error because DS_2 has more Measures. 2854

 2855

String length : length 2856

Syntax 2857
length (op) 2858

 2859

Input Parameters 2860

op the operand 2861

 2862

Examples of valid syntaxes 2863

length("Hello, World!") 2864

length(DS_1) 2865

 2866

Semantics for scalar operations 2867

Returns the length of a string. For example, length("Hello, World!") gives 13 2868

For the empty string “” the value 0 is returned 2869

 2870

Input Parameters type 2871

 op :: dataset { measure<string> _ } 2872

| component<string> 2873

| string 2874

 2875

Result type 2876

result :: dataset { measure<integer[value >= 0]> int_var } 2877

| component<integer[value >= 0]> 2878

| integer[value >= 0] 2879

 2880

82

Additional constraints 2881

For operations at Data Set level, the input Data Set must have exactly one string type Measure. 2882

 2883

Behaviour 2884

The operator has the behaviour of the “Operators changing the data type” (see the section “Typical behaviours of 2885

the ML Operators”). 2886

If op is a Data Set then length returns a dataset with a single measure int_var of type integer. 2887

 2888

Examples 2889

 2890

Given the Data Set DS_1 2891

 2892

DS_1

Id_1 Id_2 Me_1

1 A "hello"

2 B null

 2893

Example 1: DS_r := length(DS_1) results in: 2894

 2895

DS_r

Id_1 Id_2 int_var

1 A 5

2 B null

 2896

 2897

Example 2 (on component): DS_r:= DS_1[calc Me_2:=length(Me_1)] results in 2898

 2899

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello" 5

2 B null null

 2900

Given the Data Set DS_2: 2901

 2902

DS_2

Id_1 Id_2 Me_1 Me_2

1 A "hello" "world"

2 B null "hi"

 2903

Example 3 (applying the length operator at component level to a multi Measure Data Set): 2904

 2905

DS_r := DS_2 [calc Me_10:= length(Me_1), Me_20:=length(Me_2)] results in: 2906

 2907

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10 Me_20

1 A "hello" "world" 5 5

2 B null "hi" null 2

83

 2908

 2909

Example 4 (length operator applied at Data Set level to a multi Measure Data Set): 2910

 2911

DS_r := length(DS_2) would give error because DS_2 has more Measures. 2912

84

VTL-ML - Numeric operators 2913

Unary plus : + 2914

Syntax 2915

+ op 2916

 2917

Input parameters 2918

op the operand 2919

 2920

Examples of valid syntaxes 2921

+ DS_1 2922

+ 3 2923

 2924

Semantics for scalar operations 2925

The operator + returns the operand unchanged. For example: 2926

+ 3 gives 3 2927

+ (- 5) gives - 5 2928

 2929

Input Parameters type 2930

 op :: dataset { measure<number> _+ } 2931

| component<number> 2932

| number 2933

 2934

Result type 2935

result :: dataset { measure<number> _+ } 2936

| component<number> 2937

| number 2938

 2939

Additional constraints 2940

None. 2941

 2942

Behaviour 2943

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set 2944

Component” (see the section “Typical behaviours of the ML Operators”). 2945

According to the general rules about data types, the operator can be applied also on sub-types of number, that is 2946

the type integer. If the type of the operand is integer then the result has type integer. If the type of the operand is 2947

number then the result has type number. 2948

 2949

Examples 2950

Given the operand Data Set DS_1: 2951

 2952

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 1.0 5

10 B 2.3 10

11 A 3.2 12

 2953

Example 1: DS_r := + DS_1 results in: 2954

 2955

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 1.0 5

85

10 B 2.3 10

11 A 3.2 12

 2956

Example 2 (on components): DS_r := DS_1 [calc Me_3 := + Me_1] results in: 2957

 2958

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 1.0 5 1.0

10 B 2.3 10 2.3

11 A 3.2 12 3.2

Unary minus: - 2959

Syntax 2960

- op 2961

 2962

Input parameters 2963

op the operand 2964

 2965

Examples of valid syntaxes 2966

- DS_1 2967

- 3 2968

 2969

Semantics for scalar operations 2970
The operator - inverts the sign of op. For example: 2971

- 3 gives - 3 2972

- (- 5) gives 5 2973

 2974

Input Parameters type 2975

 op :: dataset { measure<number> _+ } 2976

| component<number> 2977

| number 2978

 2979

Result type 2980

result :: dataset { measure<number> _+ } 2981

| component<number> 2982

| number 2983

 2984

Additional constraints 2985

None. 2986

 2987

Behaviour 2988

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set 2989

Component” (see the section “Typical behaviours of the ML Operators”). 2990

According to the general rules about data types, the operator can be applied also on sub-types of number, that is 2991

the type integer. If the type of the operand is integer then the result has type integer. If the type of the operand is 2992

number then the result has type number. 2993

 2994

Examples 2995

Given the operand Data Set DS_1: 2996

 2997

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 1 5.0

86

10 B 2 10.0

11 A 3 12.0

 2998

Example 1: DS_r := - DS_1 results in: 2999

 3000

DS_r

Id_1 Id_2 Me_1 Me_2

10 A -1 -5.0

10 B -2 -10.0

11 A -3 -12.0

 3001

Example 2 (on components): DS_r := DS_1 [calc Me_3 := - Me_1] results in: 3002

 3003

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 1 5.0 -1

10 B 2 10.0 -2

11 A 3 12.0 -3

 3004

 3005

Addition : + 3006

Syntax 3007
op1 + op2 3008

 3009

Input parameters 3010

op1 the first addendum 3011

op2 the second addendum 3012

 3013

Examples of valid syntaxes 3014

DS_1 + DS_2 3015

3 + 5 3016

 3017

Semantics for scalar operations 3018

The operator addition returns the sum of two numbers. For example: 3019

3 + 5 gives 8 3020

 3021

Input parameters type 3022

 op1, op2 :: dataset { measure<number> _+ } 3023

| component<number> 3024

| number 3025

 3026

Result type 3027

result :: dataset { measure<number> _+ } 3028

| component<number> 3029

| number 3030

 3031

Additional constraints 3032

None. 3033

 3034

87

Behaviour 3035

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set 3036

Components” (see the section “Typical behaviours of the ML Operators”). 3037

According to the general rules about data types, the operator can be applied also on sub-types of number, that is 3038

the type integer. If the type of both operands is integer then the result has type integer. If one of the operands is 3039

of type number, then the other operand is implicitly cast to number and therefore the result has type number. 3040

 3041

Examples 3042

Given the operand Data Sets DS_1 and DS_2: 3043

 3044

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 5 5.0

10 B 2 10.5

11 A 3 12.2

11 B 4 20.3

 3045

DS_2

Id_1 Id_2 Me_1 Me_2

10 A 10 3.0

10 C 11 6.2

11 B 6 7.0

 3046

Example 1: DS_r := DS_1 + DS_2 results in: 3047

 3048

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 15 8.0

11 B 10 27.3

 3049

Example 2: DS_r := DS_1 + 3 results in: 3050

 3051

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 8 8.0

10 B 5 13.5

11 A 6 15.2

11 B 7 23.3

 3052

Example 3 (on components): DS_r := DS_1 [calc Me_3 := Me_1 + 3.0] results in: 3053

 3054

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 5 5.0 8.0

10 B 2 10.5 5.0

11 A 3 12.2 6.0

11 B 4 20.3 7.0

88

Subtraction : - 3055

Syntax 3056

op1 - op2 3057

 3058

Input Parameters 3059

op1 the minuend 3060

op2 the subtrahend 3061

 3062

Examples of valid syntaxes 3063

DS_1 - DS_2 3064

3 - 5 3065

 3066

Semantics for scalar operations 3067

The operator subtraction returns the difference of two numbers. For example: 3068

3 - 5 gives - 2 3069

 3070

Input Parameters type 3071

 op1, op2:: dataset { measure<number> _+ } 3072

| component<number> 3073

| number 3074

 3075

Result type 3076

result :: dataset { measure<number> _+ } 3077

| component<number> 3078

| number 3079

 3080

Additional constraints 3081

None. 3082

 3083

Behaviour 3084

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set 3085

Components” (see the section “Typical behaviours of the ML Operators”). 3086

According to the general rules about data types, the operator can be applied also on sub-types of number, that is 3087

the type integer. If the type of both operands is integer then the result has type integer. If one of the operands is 3088

of type number, then the other operand is implicitly cast to number and therefore the result has type number. 3089

 3090

Examples 3091

Given the operand Data Sets DS_1 and DS_2: 3092

 3093

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 5 5.0

10 B 2 10.5

11 A 3 12.2

11 B 4 20.3

 3094

DS_2

Id_1 Id_2 Me_1 Me_2

10 A 10 3.0

10 C 11 6.2

11 B 6 7.0

 3095

Example 1: DS_r := DS_1 - DS_2 results in: 3096

89

 3097

DS_r

Id_1 Id_2 Me_1 Me_2

10 A -5 2.0

11 B -2 13.3

 3098

Example 2: DS_r := DS_1 - 3 results in: 3099

 3100

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 2 2.0

10 B -1 7.5

11 A 0 9.2

11 B 1 17.3

 3101

Example 3 (on components): DS_r := DS_1 [calc Me_3 := Me_1 - 3] results in: 3102

 3103

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 5 5.0 2

10 B 2 10.5 -1

11 A 3 12.2 0

11 B 4 20.3 1

 3104

Multiplication : * 3105

Syntax 3106

op1 * op2 3107

 3108

Input parameters 3109

op1 the multiplicand 3110

op2 the multiplier 3111

 3112

Examples of valid syntaxes 3113

DS_1 * DS_2 3114

3 * 5 3115

 3116

Semantics for scalar operations 3117

The operator multiplication returns the product of two numbers. For example: 3118

3 * 5 gives 15 3119

 3120

Input parameters type 3121

 op1, op2 :: dataset { measure<number> _+ } 3122

| component<number> 3123

| number 3124

 3125

Result type 3126

result :: dataset { measure<number> _+ } 3127

| component<number> 3128

| number 3129

90

 3130

Additional constraints 3131

None. 3132

 3133

Behaviour 3134

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set 3135

Components” (see the section “Typical behaviours of the ML Operators”). 3136

According to the general rules about data types, the operator can be applied also on sub-types of number, that is 3137

the type integer. If the type of both operands is integer then the result has type integer. If one of the operands is 3138

of type number, then the other operand is implicitly cast to number and therefore the result has type number. 3139

 3140

Examples 3141

Given the operand Data Sets DS_1 and DS_2: 3142

 3143

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 100 7.6

10 B 10 12.3

11 A 20 25.0

11 B 2 20.0

 3144

DS_2

Id_1 Id_2 Me_1 Me_2

10 A 1 2.0

10 C 5 3.0

11 B 2 1.0

 3145

Example 1: DS_r := DS_1 * DS_2 results in: 3146

 3147

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 100 15.2

11 B 4 20.0

 3148

Example 2: DS_r := DS_1 * -3 results in: 3149

 3150

DS_r

Id_1 Id_2 Me_1 Me_2

10 A -300 -22.8

10 B -30 -36.9

11 A -60 -75.0

11 B -6 -60.0

 3151

 3152

Example 3 (on components): DS_r := DS_1 [calc Me_3 := Me_1 * Me_2] results in: 3153

 3154

91

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 100 7.6 760.0

10 B 10 12.3 123.0

11 A 20 25.0 500.0

11 B 2 20.0 40.0

 3155

Division : / 3156

Syntax 3157

op1 / op2 3158

 3159

Input parameters 3160

op1 the dividend 3161

op2 the divisor 3162

 3163

Examples of valid syntaxes 3164

DS_1 / DS_2 3165

3 / 5 3166

 3167

Semantics for scalar operations 3168

The operator division divides two numbers. For example: 3169

3 / 5 gives 0.6 3170

 3171

Input parameters type 3172

 op1, op2 :: dataset { measure<number> _+ } 3173

| component<number> 3174

| number 3175

 3176

Result type 3177

result :: dataset { measure<number> _+ } 3178

| component<number> 3179

| number 3180

 3181

Additional constraints 3182

None. 3183

 3184

Behaviour 3185

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set 3186

Components” (see the section “Typical behaviours of the ML Operators”). 3187

According to the general rules about data types, the operator can be applied also on sub-types of number, that is 3188

the type integer. The result has type number. 3189

If op2 is 0 then the operation generates a run-time error. 3190

 3191

Examples 3192

Given the operand Data Sets DS_1 and DS_2: 3193

 3194

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 100 7.6

10 B 10 12.3

92

11 A 20 25.0

11 B 10 12.3

 3195

DS_2

Id_1 Id_2 Me_1 Me_2

10 A 1 2.0

10 C 5 3.0

11 B 2 1.0

 3196

Example 1: DS_r := DS_1 / DS_2 results in: 3197

 3198

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 100 3.8

11 B 10 25.0

 3199

Example 2: DS_r := DS_1 / 10 results in: 3200

 3201

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 10 0.76

10 B 1 1.23

11 A 2 2.5

11 B 0.2 2.0

 3202

Example 3 (on components): DS_r := DS_1 [calc Me_3 := Me_2 / Me_1] results in: 3203

 3204

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 100 7.6 0.076

10 B 10 12.3 1.23

11 A 20 25.0 1.25

11 B 2 20.0 10.0

 3205

Modulo : mod 3206

Syntax 3207

mod (op1 , op2) 3208

 3209

Input parameters 3210

op1 the dividend 3211

op2 the divisor 3212

 3213

Examples of valid syntaxes 3214

93

mod (DS_1, DS_2) 3215

mod (DS_1, 5) 3216

mod (5, DS_2) 3217

mod (5, 2) 3218

 3219

Semantics for scalar operations 3220

The operator mod returns the remainder of op1 divided by op2. It returns op1 if divisor op2 is 0. For example: 3221

mod (5, 2) gives 1 3222

mod (5, -2) gives -1 3223

mod (8, 2) gives 0 3224

mod (9, 0) gives 9 3225

 3226

Input Parameters type 3227

 op1, op2 :: dataset { measure<number> _+ } 3228

| component<number> 3229

| number 3230

divisor :: number 3231

 3232

Result type 3233

result :: dataset { measure<number> _+ } 3234

| component<number> 3235

| number 3236

 3237

Additional constraints 3238

None. 3239

 3240

Behaviour 3241

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set 3242

Components” (see the section “Typical behaviours of the ML Operators”). 3243

According to the general rules about data types, the operator can be applied also on sub-types of number, that is 3244

the type integer. If the type of both operands is integer then the result has type integer. If one of the operands is 3245

of type number, then the other operand is implicitly cast to number and therefore the result has type number. 3246

 3247

Examples 3248

Given the operand Data Sets DS_1 and DS_2: 3249

 3250

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 100 0.7545

10 B 10 18.45

11 A 20 1.87

11 B 9 12.3

 3251

DS_2

Id_1 Id_2 Me_1 Me_2

10 A 1 0.25

10 C 5 3.0

11 B 2 2.0

 3252

 3253

Example 1: DS_r := mod (DS_1, DS_2) results in: 3254

 3255

94

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 0 0.0045

11 B 1 0.3

 3256

Example 2: DS_r := mod (DS_1, 15) results in: 3257

 3258

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 10 0.7545

10 B 10 3.45

11 A 5 1.87

11 B 9 12.3

 3259

Example 3 (on components): DS_r := DS_1[calc Me_3 := mod(DS_1#Me_1, 3.0)] results in: 3260
 3261

DS_r

Id_1 Id_2 Me_1 Me_2 ME_3

10 A 100 0.7545 1.0

10 B 10 18.45 1.0

11 A 20 1.87 2.0

11 B 9 12.3 0.0

 3262

Rounding : round 3263

Syntax 3264

round (op , numDigit) 3265

 3266

Input parameters 3267

op the operand 3268

numDigit the number of positions to round to 3269

 3270

Examples of valid syntaxes 3271

round (DS_1 , 2) 3272

round (DS_2) 3273

round (3.14159 , 2) 3274

round (3.14159 , _) 3275

 3276

Semantics for scalar operations 3277

The operator round rounds the operand to a number of positions at the right of the decimal point equal to the 3278

numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the rouding 3279

happens at the left of the decimal point. The rounding operation leaves the numDigit position unchanged if the 3280

numDigit+1 position is between 0 and 4, otherwise it adds 1 to the number that is in the numDigit position. All 3281

the positions greater than numDigit are set to 0. The basic scalar type of the result is integer if numDigit is 3282

omitted, number otherwise. 3283

For example: 3284

round (3.14159, 2) gives 3.14 3285

round (3.14159, 4) gives 3.1416 3286

round (12345.6, 0) gives 12346.0 3287

95

round (12345.6) gives 12346 3288

round (12345.6, _) gives 12346 3289

round (12345.6, -1) gives 12350.0 3290

 3291

Input parameters type 3292

 op1 :: dataset { measure<number> _+ } 3293

| component<number> 3294

| number 3295

numDigit:: component < integer > 3296

| integer 3297

 3298

Result type 3299

result :: dataset { measure<number> _+ } 3300

| component<number> 3301

| number 3302

 3303

Additional constraints 3304

None. 3305

 3306

Behaviour 3307

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar 3308

Value or Data Set or Data Set Component”, as for the invocations at Component or Scalar level, the operator has 3309

the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set Components”, (see the 3310

section “Typical behaviours of the ML Operators”). 3311

 3312

Examples 3313

Given the operand Data Set DS_1: 3314

 3315

DS_1

Id_1 Id_1 Me_1 Me_2

10 A 7.5 5.9

10 B 7.1 5.5

11 A 36.2 17.7

11 B 44.5 24.3

 3316

Example 1: DS_r := round(DS_1, 0) results in: 3317

 3318

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 8.0 6.0

10 B 7.0 6.0

11 A 36.0 18.0

11 B 45.0 24.0

 3319

Example 2 (on components): DS_r := DS_1 [calc Me_10:= round(Me_1)] results in: 3320
 3321

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 7.5 5.9 8

10 B 7.1 5.5 7

11 A 36.2 17.7 36

96

11 B 44.5 24.3 45

 3322

Example 3 (on components) : DS_r := DS_1 [calc Me_20:= round(Me_1 , -1)] results in: 3323
 3324

DS_r

Id_1 Id_2 Me_1 Me_2 Me_20

10 A 7.5 5.9 10

10 B 7.1 5.5 10

11 A 36.2 17.7 40

11 B 44.5 24.3 40

 3325

Truncation : trunc 3326

Syntax 3327
trunc (op , numDigit) 3328

 3329

Input Parameters 3330

op the operand 3331

numDigit the number of position from which to trunc 3332

 3333

Examples of valid syntaxes 3334

trunc (DS_1 , 2) 3335

trunc (DS_1) 3336

trunc (3.14159 , 2) 3337

trunc (3.14159 , _) 3338

 3339

Semantics for scalar operations 3340

The operator trunc truncates the operand to a number of positions at the right of the decimal point equal to the 3341

numDigit parameter. The decimal point is assumed to be at position 0. If numDigit is negative, the truncation 3342

happens at the left of the decimal point. The truncation operation leaves the numDigit position unchanged. All 3343

the positions greater than numDigit are eliminated. The basic scalar type of the result is integer if numDigit is 3344

omitted, number otherwise. 3345

For example: 3346

trunc (3.14159, 2) gives 3.14 3347

trunc (3.14159, 4) gives 3.1415 3348

trunc (12345.6, 0) gives 12345.0 3349

trunc (12345.6) gives 12345 3350

trunc (12345.6, _) gives 12345 3351

trunc(12345.6, -1) gives 12340.0 3352

 3353

Input parameters type 3354

 op :: dataset { measure<number> _+ } 3355

| component<number> 3356

| number 3357

numDigit :: component < integer > 3358

| integer 3359

 3360

Result type 3361

result :: dataset { measure<number> _+ } 3362

| component<number> 3363

| number 3364

 3365

Additional constraints 3366

None. 3367

 3368

97

Behaviour 3369

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar 3370

Value or Data Set or Data Set Component”, as for the invocations at Component or Scalar level, the operator has 3371

the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set Components”, (see the 3372

section “Typical behaviours of the ML Operators”). 3373

 3374

Examples 3375

 3376

Given the operand Data Set DS_1: 3377

 3378

DS_1

Id_1 Id_1 Me_1 Me_2

10 A 7.5 5.9

10 B 7.1 5.5

11 A 36.2 17.7

11 B 44.5 24.3

 3379

Example 1: DS_r := trunc(DS_1, 0) results in: 3380

 3381

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 7.0 5.0

10 B 7.0 5.0

11 A 36.0 17.0

11 B 44.0 24.0

 3382

Example 2 (on components): DS_r := DS_1[calc Me_10:= trunc(Me_1)] results in: 3383
 3384

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 7.5 5.9 7

10 B 7.1 5.5 7

11 A 36.2 17.7 36

11 B 44.5 24.3 44

 3385

Example 3 (on components): DS_r := DS_1[calc Me_20:= trunc(Me_1 , -1)] results in: 3386
 3387

DS_r

Id_1 Id_2 Me_1 Me_2 Me_20

10 A 7.5 5.9 0

10 B 7.1 5.5 0

11 A 36.2 17.7 30

11 B 44.5 24.3 40

 3388

98

Ceiling : ceil 3389

Syntax 3390

ceil (op) 3391

 3392

Input parameters 3393

op the operand 3394

 3395

Examples of valid syntaxes 3396

ceil (DS_1) 3397

ceil (3.14159) 3398

 3399

Semantics for scalar operations 3400

The operator ceil returns the smallest integer greater than or equal to op. 3401

For example: 3402

 ceil(3.14159) gives 4 3403

 ceil(15) gives 15 3404

 ceil(-3.1415) gives -3 3405

ceil(-0.1415) gives 0 3406

 3407

Input parameters type 3408

op :: dataset { measure<number> _+ } 3409

| component<number> 3410

| number 3411

 3412

Result type 3413

result :: dataset { measure<integer> _+ } 3414

| component< integer > 3415

| integer 3416

 3417

Additional constraints 3418

None. 3419

 3420

Behaviour 3421

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set 3422

Component” (see the section “Typical behaviours of the ML Operators”). 3423

 3424

Examples 3425

Given the operand Data Set DS_1: 3426

 3427

DS_1

Id_1 Id_1 Me_1 Me_2

10 A 7.0 5.9

10 B 0.1 -5.0

11 A -32.2 17.7

11 B 44.5 -0.3

 3428

Example 1: DS_r := ceil (DS_1) results in: 3429

 3430

DS_r

Id_1 Id_1 Me_1 Me_2

10 A 7 6

10 B 1 -5

11 A -32 18

99

11 B 45 0

 3431

Example 2 (on components): DS_r := DS_1 [Me_10 := ceil (Me_1)] results in: 3432

 3433

DS_r

Id_1 Id_1 Me_1 Me_2 Me_10

10 A 7.0 5.9 7

10 B 0.1 -5.0 1

11 A -32.2 17.7 -32

11 B 44.5 -0.3 45

 3434

Floor: floor 3435

Syntax 3436

floor (op) 3437

 3438

Input parameters 3439

op the operand 3440

 3441

Examples of valid syntaxes 3442

floor (DS_1) 3443

floor (3.14159) 3444

 3445

Semantics for scalar operations 3446

The operator floor returns the greatest integer which is smaller than or equal to op. 3447

For example: 3448

floor(3.1415) gives 3 3449

floor(15) gives 15 3450

 floor(-3.1415) gives -4 3451

floor(-0.1415) gives -1 3452

 3453

Input parameters type 3454

op :: dataset { measure<number> _+ } 3455

| component<number> 3456

| number 3457

 3458

Result type 3459

result :: dataset { measure<integer> _+ } 3460

| component< integer > 3461

| integer 3462

 3463

Additional constraints 3464

None. 3465

 3466

Behaviour 3467

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set 3468

Component” (see the section “Typical behaviours of the ML Operators”). 3469

 3470

Examples 3471

Given the operand Data Set DS_1: 3472

 3473

DS_1

Id_1 Id_1 Me_1 Me_2

100

10 A 7.0 5.9

10 B 0.1 -5.0

11 A -32.2 17.7

11 B 44.5 -0.3

 3474

Example 1: DS_r := floor (DS_1) results in: 3475

 3476

DS_r

Id_1 Id_1 Me_1 Me_2

10 A 7 5

10 B 0 -5

11 A -33 17

11 B 44 -1

 3477

Example 2 (on components): DS_r := DS_1 [Me_10 := floor (Me_1)] results in: 3478

 3479

DS_r

Id_1 Id_1 Me_1 Me_2 Me_10

10 A 7.5 5.9 7

10 B 0.1 -5.5 0

11 A -32.2 17.7 -33

11 B 44.5 -0.3 44

Absolute value : abs 3480

Syntax 3481
abs (op) 3482

 3483

Input parameters 3484

op the operand 3485

 3486

Examples of valid syntaxes 3487

abs (DS_1) 3488

abs (-5) 3489

 3490

Semantics for scalar operations 3491

The operator abs calculates the absolute value of a number. 3492

For example: 3493

abs (-5.49) gives 5.49 3494

abs (5.49) gives 5.49 3495

 3496

Input parameters type 3497

 3498

op :: dataset { measure<number> _+ } 3499

| component<number> 3500

| number 3501

 3502

Result type 3503

 3504

result :: dataset { measure<number [value >= 0]> _+ } 3505

| component<number [value >= 0]> 3506

101

| number [value >= 0] 3507

 3508

Additional constraints 3509

None. 3510

 3511

Behaviour 3512

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set 3513

Component” (see the section “Typical behaviours of the ML Operators”). 3514

 3515

Examples 3516

Given the operand Data Set DS_1: 3517

 3518

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 0.484183 0.7545

10 B -0.515817 -13.45

11 A -1.000000 187.0

 3519

Example 1: DS_r := abs (DS_1) results in: 3520

 3521

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 0.484183 0.7545

10 B 0.515817 13.45

11 A 1.000000 187

 3522

Example 2 (on components): DS_r := DS_1 [Me_10 := abs(Me_1)] results in: 3523

 3524

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 0.484183 0.7545 0.484183

10 B -0.515817 -13.45 0.515817

11 A -1.000000 187 1.000000

 3525

Exponential : exp 3526

Syntax 3527

exp (op) 3528

 3529

Input parameters 3530

op the operand 3531

 3532

Examples of valid syntaxes 3533

exp (DS_1) 3534

exp (5) 3535

 3536

Semantics for scalar operations 3537

The operator exp returns e (base of the natural logarithm) raised to the op-th power. 3538

For example; 3539

exp (5) gives 148.41315… 3540

exp (1) gives 2.71828… (the number e) 3541

102

exp (0) gives 1.0 3542

exp (-1) gives 0.36787… (the number 1/e) 3543

 3544

Input parameters type 3545

op:: dataset { measure<number> _+ } 3546

| component<number> 3547

| number 3548

 3549

Result type 3550

result :: dataset { measure<number[value > 0]> _+ } 3551

| component<number [value > 0]> 3552

| number[value > 0] 3553

 3554

Additional constraints 3555

None. 3556

 3557

Behaviour 3558

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set 3559

Component” (see the section “Typical behaviours of the ML Operators”). 3560

 3561

Examples 3562

Given the operand Data Set DS_1: 3563

 3564

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 5 0.7545

10 B 8 13.45

11 A 2 1.87

 3565

 3566

Example 1: DS_r := exp(DS_1) results in: 3567

 3568

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 148.413 2.126547

10 B 2980.95 693842.3

11 A 7.38905 6.488296

 3569

Example 2 (on components): DS_r := DS_1 [Me_1 := exp (Me_1)] results in: 3570

 3571

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 148.413 0.7545

10 B 2980.95 13.45

11 A 7.389 1.87

 3572

Natural logarithm : ln 3573

Syntax 3574
ln (op) 3575

103

 3576

Input parameters 3577

op the operand 3578

 3579

Examples of valid syntaxes 3580

ln (DS_1) 3581

ln (148) 3582

 3583

Semantics for scalar operations 3584

The operator ln calculates the natural logarithm of a number. 3585

For example: 3586

ln (148) gives 4.997… 3587

ln (e) gives 1.0 3588

ln (1) gives 0.0 3589

ln (0,5) gives -0.693… 3590

 3591

Input parameters type 3592

 op :: dataset { measure<number [value > 0] > _+ } 3593

| component<number [value > 0] > 3594

| number [value > 0] 3595

 3596

Result type 3597

result :: dataset { measure<number > _+ } 3598

| component<number > 3599

| number 3600

 3601

Additional constraints 3602

None. 3603

 3604

Behaviour 3605

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set 3606

Component” (see the section “Typical behaviours of the ML Operators”). 3607

 3608

Examples 3609

Given the operand Data Set DS_1: 3610

 3611

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 148.413 0.7545

10 B 2980.95 13.45

11 A 7.38905 1.87

 3612

 3613

Example 1: DS_r := ln(DS_1) results in: 3614

 3615

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 5.0 -0.281700

10 B 8.0 2.598979

11 A 2.0 0.625938

 3616

Example 2 (on components): DS_r := DS_1 [Me_2 := ln (DS_1#Me_1) results in: 3617

 3618

104

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 148.413 5.0

10 B 2980.95 8.0

11 A 7.38905 2.0

 3619

Power : power 3620

Syntax 3621
power (base , exponent) 3622

 3623

Input parameters 3624

base the operand 3625

exponent the exponent of the power 3626

 3627

Examples of valid syntaxes 3628

power (DS_1, 2) 3629

power (5, 2) 3630

 3631

Semantics for scalar operations 3632

The operator power raises a number (the base) to another one (the exponent). 3633

For example: 3634

power (5, 2) gives 25 3635

power (5, 1) gives 5 3636

power (5, 0) gives 1 3637

power (5, -1) gives 0.2 3638

power (-5, 3) gives -125 3639

 3640

Input parameters type 3641

base :: dataset { measure<number> _+ } 3642

| component<number> 3643

| number 3644

exponent :: component<number> 3645

| number 3646

 3647

Result type 3648

result :: dataset { measure<number> _+ } 3649

| component<number> 3650

| number 3651

 3652

Additional constraints 3653

None. 3654

 3655

Behaviour 3656

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar 3657

Value or Data Set or Data Set Component”, as for the invocations at Component or Scalar level, the operator has 3658

the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set Components”, (see the 3659

section “Typical behaviours of the ML Operators”). 3660

 3661

Examples 3662

Given the operand Data Set DS_1: 3663

 3664

DS_1

Id_1 Id_2 Me_1 Me_2

105

10 A 3 0.7545

10 B 4 13.45

11 A 5 1.87

 3665

 3666

Example 1: DS_r := power(DS_1, 2) results in: 3667

 3668

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 9 0.56927

10 B 16 180.9025

11 A 25 3.4969

 3669

Example 2 (on components): DS_r := DS_1[calc Me_1 := power(Me_1, 2)] results in: 3670

 3671

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 9 0.7545

10 B 16 13.45

11 A 25 1.87

 3672

Logarithm : log 3673

Syntax 3674
log (op , num) 3675

 3676

Input parameters 3677

op the base of the logarithm 3678

num the number to which the logarithm is applied 3679

 3680

Examples of valid syntaxes 3681

log (DS_1, 2) 3682

log (1024, 2) 3683

 3684

Semantics for scalar operations 3685

The operator log calculates the logarithm of num base op. 3686

For example: 3687

log (1024, 2) gives 10 3688

log (1024, 10) gives 3.01 3689

 3690

Input parameters type 3691

op :: dataset { measure<number [value > 1] > _+ } 3692

| component<number [value > 1] > 3693

| number [value > 1] 3694

num :: component<integer [value > 0]> 3695

| integer [value > 0] 3696

 3697

Result type 3698

result :: dataset { measure<number> _+ } 3699

| component<number> 3700

| number 3701

106

 3702

Additional constraints 3703

None. 3704

 3705

Behaviour 3706

As for the invocations at Data Set level, the operator has the behaviour of the “Operators applicable on one Scalar 3707

Value or Data Set or Data Set Component”, as for the invocations at Component or Scalar level, the operator has 3708

the behaviour of the “Operators applicable on two Scalar Values or Data Sets or Data Set Components”, (see the 3709

section “Typical behaviours of the ML Operators”). 3710

 3711

Examples 3712

Given the operand Data Set DS_1: 3713

 3714

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 1024 0.7545

10 B 64 13.45

11 A 32 1.87

 3715

 3716

Example 1: DS_r := log (DS_1, 2) results in: 3717

 3718

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 10.0 -0.40641

10 B 6.0 3.749534

11 A 5.0 0.903038

 3719

Example 2 (on components): DS_r := DS_1 [calc Me_1 := log (Me_1, 2)] results in: 3720

 3721

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 10.0 0.7545

10 B 6.0 13.45

11 A 5.0 1.87

 3722

Square root : sqrt 3723

Syntax 3724
sqrt (op) 3725

 3726

Input parameters 3727

op the operand 3728

 3729

Examples of valid syntaxes 3730

sqrt (DS_1) 3731

sqrt (5) 3732

 3733

Semantics for scalar operations 3734

The operator sqrt calculates the square root of a number. For example: 3735

sqrt (25) gives 5 3736

107

 3737

Input parameters type 3738

op :: dataset { measure<number [value >= 0] > _+ } 3739

| component<number [value >= 0] > 3740

| number [value >= 0] 3741

 3742

Result type 3743

result :: dataset { measure<number[value >= 0] > _+ } 3744

| component<number[value >= 0] > 3745

| number[value >= 0] 3746

 3747

Additional constraints 3748

None. 3749

 3750

Behaviour 3751

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or Data Set 3752

Component” (see the section “Typical behaviours of the ML Operators”). 3753

 3754

Examples 3755

Given the operand Data Set DS_1: 3756

 3757

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 16 0.7545

10 B 81 13.45

11 A 64 1.87

 3758

 3759

Example 1: DS_r := sqrt(DS_1) results in: 3760

 3761

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 4 0.86862

10 B 9 3.667424

11 A 8 1.367479

 3762

 3763

Example 2 (on components): DS_r := DS_1 [calc Me_1 := sqrt (Me_1)] results in: 3764

 3765

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 4 0.7545

10 B 9 13.45

11 A 8 1.87

 3766

 3767

 3768

108

VTL-ML - Comparison operators 3769

Equal to : = 3770

 3771

Syntax 3772

left = right 3773

 3774

Input parameters 3775

left the left operand 3776

right the right operand 3777

 3778

Examples of valid syntaxes 3779

DS_1 = DS_2 3780

 3781

Semantics for scalar operations 3782

The operator returns TRUE if the left is equal to right, FALSE otherwise. 3783

For example: 3784

5 = 9 gives: FALSE 3785

5 = 5 gives: TRUE 3786

“hello” = “hi” gives: FALSE 3787

 3788

Input parameters type 3789

left, 3790

right :: dataset {measure<scalar> _ } 3791

| component<scalar> 3792

| scalar 3793

 3794

Result type 3795

result :: dataset { measure<boolean> bool_var } 3796

| component<boolean> 3797

| boolean 3798

 3799

Additional constraints 3800

Operands left and right must be of the same scalar type 3801

 3802

Behaviour 3803

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical 3804

behaviours of the ML Operators”). 3805

 3806

Examples 3807

Given the operand Data Set DS_1: 3808

 3809

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total NULL

2012 G Total Total 0.286

2012 S Total Total 0.064

2012 M Total Total 0.043

2012 F Total Total 0.08

2012 W Total Total 0.08

 3810

109

Example 1: DS_r := DS_1 = 0.08 results in: 3811

 3812

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total NULL

2012 G Total Total FALSE

2012 S Total Total FALSE

2012 M Total Total FALSE

2012 F Total Total TRUE

2012 W Total Total TRUE

 3813

Example 2 (on Components): DS_r := DS_1 [calc Me_2 := Me_1 = 0.08] results in: 3814

 3815

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

2012 B Total Total NULL NULL

2012 G Total Total 0.286 FALSE

2012 S Total Total 0.064 FALSE

2012 M Total Total 0.043 FALSE

2012 F Total Total 0.08 TRUE

2012 W Total Total 0.08 TRUE

 3816

Not equal to : <> 3817

 3818

Syntax 3819
 left <> right 3820

 3821

Input parameters 3822

left the left operand 3823

right the right operand 3824

 3825

Examples of valid syntaxes 3826

DS_1 <> DS_2 3827

 3828

Semantics for scalar operations 3829

The operator returns FALSE if the left is equal to right, TRUE otherwise. 3830

For example: 3831

5 <> 9 gives: TRUE 3832

5 <> 5 gives: FALSE 3833

“hello” <> “hi” gives: TRUE 3834

 3835

Input parameters type 3836

left, 3837

right :: dataset {measure<scalar> _ } 3838

| component<scalar> 3839

| scalar 3840

 3841

110

Result type 3842

result :: dataset { measure<boolean> bool_var } 3843

| component<boolean> 3844

| boolean 3845

 3846

Additional constraints 3847

Operands left and right must be of the same scalar type 3848

 3849

Behaviour 3850

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical 3851

behaviours of the ML Operators”). 3852

 3853

Examples 3854

Given the operand Data Sets DS_1 and DS_2: 3855

 3856

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.1

R Total Percentage Total NULL

 3857

 3858

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.5

R Total Percentage Total 3

 3859

Example 1: DS_r := DS_1 <> DS_2 results in: 3860
 3861

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total TRUE

R Total Percentage Total NULL

 3862

Note that due to the behaviour for NULL values, if the value for Greece in the second operand had also been 3863

NULL, then the result would still be NULL for Greece. 3864

 3865

Example 2 (on Components): DS_r := DS_1 [Me_2 := Me_1<>7.5] results in: 3866

 3867

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

G Total Percentage Total 7.5 TRUE

R Total Percentage Total 3 NULL

 3868

 3869

Greater than : > >= 3870

Syntax 3871

left { > | >= }
1
 right 3872

 3873

111

Input parameters 3874

left the left operand part of the comparison 3875

right the right operand part of the comparison 3876

 3877

Examples of valid syntaxes 3878

DS_1 > DS_2 3879

DS_1 >= DS_2 3880

 3881

Semantics for scalar operations 3882

The operator > returns TRUE if left is greater than right, FALSE otherwise. 3883

The operator >= returns TRUE if left is greater than or equal to right, FALSE otherwise. 3884

For example: 3885

5 > 9 gives: FALSE 3886

5 >= 5 gives: TRUE 3887

“hello” > “hi” gives: FALSE 3888

 3889

Input parameters type 3890

left, 3891

right :: dataset {measure<scalar> _ } 3892

| component<scalar> 3893

| scalar 3894

 3895

Result type 3896

result :: dataset { measure<boolean> bool_var } 3897

| component<boolean> 3898

| boolean 3899

 3900

Additional constraints 3901

Operands left and right must be of the same scalar type 3902

 3903

Behaviour 3904

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical 3905

behaviours of the ML Operators”). 3906

 3907

Examples 3908

Given the operand Data Set DS_1: 3909

 3910

DS_1

Id_1 Id_2 Id_3 Id_4 Id_5 Me_1

2 G 2011 Total Percentage NULL

2 R 2011 Total Percentage 12.2

2 F 2011 Total Percentage 29.5

 3911

Example 1: DS_r := DS_1 > 20 results in: 3912

 3913

DS_r

Id_1 Id_2 Id_3 Id_4 Id_5 bool_var

2 G 2011 Total Percentage NULL

2 R 2011 Total Percentage FALSE

2 F 2011 Total Percentage TRUE

 3914

Example 2 (on Components): DS_r := DS_1 [Me_2 := Me_1 > 20] results in: 3915

 3916

112

DS_r

Id_1 Id_2 Id_3 Id_4 Id_5 Me_1 Me_2

2 G 2011 Total Percentage NULL NULL

2 R 2011 Total Percentage 12.2 FALSE

2 F 2011 Total Percentage 29.5 TRUE

 3917

Given the left operand Data Set: 3918
 3919

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.1

R Total Percentage Total 42.5

 3920

and the right operand Data Set: 3921

 3922

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.5

R Total Percentage Total 33.7

 3923

Example 3: DS_r:= DS_1 > DS_2 results in: 3924

 3925

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total FALSE

R Total Percentage Total TRUE

 3926

If the Me_1 column for Germany in the DS_2 Data Set had a NULL value the result would be: 3927

 3928

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total NULL

R Total Percentage Total TRUE

 3929

Less than : < <= 3930

 3931

Syntax 3932

 left { < | <= }
1
 right 3933

 3934

Input parameters 3935

left the left operand 3936

right the right operand 3937

 3938

Examples of valid syntaxes 3939

DS_1 < DS_2 3940

DS_1 <= DS_2 3941

113

 3942

Semantics for scalar operations 3943

The operator < returns TRUE if left is smaller than right, FALSE otherwise. 3944

The operator <= returns TRUE if left is smaller than or equal to right, FALSE otherwise. 3945

For example: 3946

5 < 4 gives: FALSE 3947

5 <= 5 gives: TRUE 3948

“hello” < “hi” gives: TRUE 3949

 3950

Input parameters type 3951

left, right :: dataset {measure<scalar> _ } 3952

| component<scalar> 3953

| scalar 3954

 3955

Result type 3956

result :: dataset { measure<boolean> bool_var } 3957

| component<boolean> 3958

| boolean 3959

 3960

Additional constraints 3961

Operands left and right must be of the same scalar type 3962

 3963

Behaviour 3964

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical 3965

behaviours of the ML Operators”). 3966

 3967

Examples 3968

Given the operand Data Set DS_1: 3969

 3970

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total 46818219

2012 M Total Total NULL

2012 F Total Total 5401267

2012 W Total Total 7954662

 3971

Example 1: DS_r := DS_1 < 15000000 results in: 3972

 3973

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total TRUE

2012 G Total Total TRUE

2012 S Total Total FALSE

2012 M Total Total NULL

2012 F Total Total TRUE

2012 W Total Total TRUE

 3974

114

Between : between 3975

 3976

Syntax 3977

between (op, from, to) 3978

 3979

Input parameters 3980

op the Data Set to be checked 3981

from the left delimiter 3982

to the right delimiter 3983

 3984

Examples of valid syntaxes 3985

ds2 := between(ds1, 5,10) 3986

ds2 := ds1 [calc m1 := between(me2, 5, 10)] 3987

 3988

Semantics for scalar operations 3989

The operator returns TRUE if op is greater than or equal to from and lower than or equal to to. In other terms, it 3990

is a shortcut for the following: 3991

 3992

op >= from and op <= to 3993

 3994

The types of op, from and to must be compatible scalar types. 3995

 3996

Input parameters type 3997

op :: dataset {measure<scalar> _} 3998

| component<scalar> 3999

| scalar 4000

 4001

from :: scalar | component<scalar> 4002

to :: scalar | component<scalar> 4003

 4004

Result type 4005

result :: dataset { measure<booelan> bool_var } 4006

| component<boolean> 4007

| boolean 4008

 4009

Additional constraints 4010

The type of the operand (i.e., the measure of the dataset, the type of the component, the scalar type) must be the 4011

same as that of from and to. 4012

 4013

Behaviour 4014

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical 4015

behaviours of the ML Operators”). 4016

 4017

Examples 4018

 4019

Given the following Data Set DS_1: 4020

 4021

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 6

R Total Percentage Total -2

 4022

Example 1: DS_r:= between(ds1, 5,10) results in: 4023

 4024

DS_1

Id_1 Id_2 Id_3 Id_4 bool_var

115

G Total Percentage Total TRUE

R Total Percentage Total FALSE

 4025

Element of: in / not_in 4026

 4027

Syntax 4028
op in collection 4029

op not_in collection 4030

 4031

collection ::= set | valueDomainName 4032

 4033

Input parameters 4034

op the operand to be tested 4035

collection the the Set or the Value Domain which contains the values 4036

set the Set which contains the values (it can be a Set name or a Set literal) 4037

valueDomainName the name of the Value Domain which contains the values 4038
 4039

Examples of valid syntaxes 4040

ds := ds_2 in {1,4,6} as usual, here the braces denote a set literal (it contains the values 1, 4 and 6) 4041

ds := ds_3 in mySet 4042

ds := ds_3 in myValueDomain 4043

 4044

Semantics for scalar operations 4045

The in operator returns TRUE if op belongs to the collection, FALSE otherwise. 4046

The not_in operator returns FALSE if op belongs to the collection, TRUE otherwise. 4047

For example: 4048

 1 in { 1, 2, 3 } returns TRUE 4049

“a” in { “c, “ab”, “bb”, “bc” } returns FALSE 4050

“b” not_in { “b”, ”hello”, ”c”} returns FALSE 4051

“b” not_in { “a”, ”hello”, ”c”} returns TRUE 4052

 4053

Input parameters type 4054

op :: dataset {measure<scalar> _ } 4055

| component<scalar> 4056

| scalar 4057

collection :: set<scalar> | name<value_domain> 4058

 4059

Result type 4060

result :: dataset { measure<boolean> bool_var } 4061

| component<boolean> 4062

| boolean 4063

 4064

Additional constraints 4065

The operand must be of a basic scalar data type compatible with the basic scalar type of the collection. 4066

 4067

Behaviour 4068

Semantics 4069

The in operator evaluates to TRUE if the operand is an element of the specified collection and FALSE otherwise, 4070

the not_in the opposite. 4071

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical 4072

behaviours of the ML Operators”). 4073

The collection can be either a set of values defined in line or a name that references an externally defined Value 4074

Domain or Set. 4075

 4076

Examples 4077

Given the operand Data Set DS_1: 4078

116

 4079

DS_1

Id_1 Id_2 Me_1

2012 BS 0

2012 GZ 4

2012 SQ 9

2012 MO 6

2012 FJ 7

2012 CQ 2

 4080

Example 1: 4081

 4082

DS_r := DS_1 in { “BS”, “MO”, “HH”, “PP” } results in: 4083

 4084

DS_r

Id_1 Id_2 bool_var

2012 BS TRUE

2012 GZ FALSE

2012 SQ FALSE

2012 MO TRUE

2012 FJ FALSE

2012 CQ FALSE

 4085

Example 2 (on Components): 4086

 4087

DS_r := DS_1 [calc Me_2:= Me_1 in { “BS”, “MO”, “HH”, “PP” }] results in: 4088

 4089

DS_r

Id_1 Id_2 Me_1 Me_2

2012 BS 0 TRUE

2012 GZ 4 FALSE

2012 SQ 9 FALSE

2012 MO 6 TRUE

2012 FJ 7 FALSE

2012 CQ 2 FALSE

 4090

Given the previos Data Set DS_1 and the following Value Domain named myGeoValueDomain (which has the 4091

basic scalar type string) : 4092

 4093

myGeoValueDomain

Code Meaning

AF Afghanistan

BS Bahamas

FJ Fiji

GA Gabon

KH Cambodia

117

MO Macao

PK Pakistan

QA Quatar

UG Uganda

 4094

 4095

Example 3 (on external Value Domain): 4096

 4097

DS_r := DS_1#Id_2 in myGeoValueDomain results in: 4098
 4099

DS_r

Id_1 Id_2 bool_var

2012 BS TRUE

2012 GZ FALSE

2012 SQ FALSE

2012 MO TRUE

2012 FJ TRUE

2012 CQ FALSE

 4100

 4101

match_characters match_characters 4102

 4103

Syntax 4104

 4105

match_characters (op , pattern) 4106

 4107

Input parameters 4108

op the dataset to be checked 4109

pattern the regular expression to check the Data Set or the Component against 4110

 4111

Examples of valid syntaxes 4112

 4113

match_characters(ds1, “[abc]+\d\d”) 4114

ds1 [calc m1 := match_characters(ds1, “[abc]+\d\d”)] 4115

 4116

Semantics for scalar operations 4117

match_characters returns TRUE if op matches the regular expression regexp, FALSE otherwise. The 4118

string regexp is an Extended Regular Expression as described in the POSIX standard. Different 4119

implementations of VTL may implement different versions of the POSIX standard therefore it is 4120

possible that match_characters may behave in slightly different ways. 4121

 4122

Input parameters type 4123

 4124

op :: dataset {measure<string> _} 4125

| component<string> 4126

| string 4127

pattern :: string | component<string> 4128

 4129

 4130

Result type 4131

result :: dataset { measure<booelan> bool_var } 4132

118

| component<boolean> 4133

| boolean 4134

 4135

Additional constraints 4136

If op is a Data Set then it has exactly one measure. 4137

pattern is a POSIX regular expression. 4138

 4139

Behaviour 4140

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical 4141

behaviours of the ML Operators”). 4142

 4143

Examples 4144

Given the following Dataset DS_1: 4145

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total AX123

R Total Percentage Total AX2J5

 4146

 4147

DS_r:=(ds1, “[:alpha:]{2}[:digit:]{3}”) results in: 4148

 4149

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total TRUE

R Total Percentage Total FALSE

 4150

 4151

Isnull: isnull 4152

Syntax 4153

isnull (op) 4154

 4155

Input parameters 4156

operand mandatory the operand 4157

 4158

Examples of valid syntaxes 4159

isnull(DS_1) 4160

 4161

Semantics for scalar operations 4162

The operator returns TRUE if the value of the operand is NULL, FALSE otherwise. 4163

 4164

Examples 4165

isnull(“Hello”) gives: FALSE 4166

isnull(NULL) gives: TRUE 4167

 4168

Input parameters type 4169

op :: dataset {measure<scalar> _} 4170

| component<scalar> 4171

| scalar 4172

 4173

Result type 4174

result :: dataset { measure<boolean> bool_var } 4175

| component<boolean> 4176

| boolean 4177

119

 4178

Additional constraints 4179

If op is a Data Set then it has exactly one measure. 4180

 4181

Behaviour 4182

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical 4183

behaviours of the ML Operators”). 4184

 4185

Examples 4186

Given the operand Data Set DS_1: 4187

 4188

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total NULL

2012 M Total Total 417546

2012 F Total Total 5401267

2012 N Total Total NULL

 4189

Example 1: DS_r := isnull(DS_1) results in: 4190

 4191

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total FALSE

2012 G Total Total FALSE

2012 S Total Total TRUE

2012 M Total Total FALSE

2012 F Total Total FALSE

2012 N Total Total TRUE

 4192

Example 2 (on Components): DS_r := DS_1[Me_2 := is_null(Me_1)] results in: 4193

 4194

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

2012 B Total Total 11094850 FALSE

2012 G Total Total 11123034 FALSE

2012 S Total Total NULL TRUE

2012 M Total Total 417546 FALSE

2012 F Total Total 5401267 FALSE

2012 N Total Total NULL TRUE

 4195

 4196

120

Exists in : exists_in 4197

 4198

Syntax 4199

exists_in (op1, op2 { , retain }) 4200

 4201

retain ::= true | false | all 4202

 4203

Input parameters 4204

op1 the operand dataset 4205

op2 the operand dataset 4206

retain the optional parameter to specify the Data Points to be returned (default: all) 4207

 4208

Examples of valid syntaxes 4209

exists_in (DS_1, DS_2, true) 4210

exists_in (DS_1, DS_2) 4211

exists_in (DS_1, DS_2, all) 4212

 4213

Semantics for scalar operations 4214

This operator cannot be applied to scalar values. 4215

 4216

Input parameters type 4217

op1, 4218

op2 :: dataset 4219

 4220

Result type 4221

result :: dataset { measure<boolean> bool_var } 4222

 4223

Additional constraints 4224

op2 has all the identifier components of op1. 4225

 4226

Behaviour 4227

The operator checks if the combinations of values of the Identifiers existing in op1also exist in op2. 4228

The result has the same Identifiers as op1 and a boolean Measure bool_var whose value, for each Data Point of 4229

op1, is TRUE if the combination of values of the Identifier Components existing in op1 is found in a Data Point of 4230

op2, FALSE otherwise. If retain is all then both the Data Points having bool_var = TRUE and bool_var = FALSE are 4231

returned. 4232

If retain is true then only the data points with bool_var = TRUE are returned. If retain is false then only the Data 4233

Points with bool_var = FALSE are returned.If the retain parameter is omitted, the default is all. 4234

The operator has the typical behaviour of the “Operators changing the data type” (see the section “Typical 4235

behaviours of the ML Operators”). 4236

 4237

Examples 4238

Given the operand Data Sets DS_1 and DS_2: 4239
 4240

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total 46818219

2012 M Total Total 417546

2012 F Total Total 5401267

2012 W Total Total 7954662

 4241

 4242

 4243

121

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 0.023

2012 G Total M 0.286

2012 S Total Total 0.064

2012 M Total M 0.043

2012 F Total Total NULL

2012 W Total Total 0.08

 4244

Example 1: DS_r := exists_in (DS_1, DS_2, all) results in: 4245

 4246

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total TRUE

2012 G Total Total FALSE

2012 S Total Total TRUE

2012 M Total Total FALSE

2012 F Total Total TRUE

2012 W Total Total TRUE

 4247

Example 2: DS_r := exists_in (DS_1, DS_2, true) results in: 4248

 4249

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total TRUE

2012 S Total Total TRUE

2012 F Total Total TRUE

2012 W Total Total TRUE

 4250

Example 3: DS_r := exists_in (DS_1, DS_2, false) results in: 4251

 4252

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 G Total Total FALSE

2012 M Total Total FALSE

 4253

122

VTL-ML - Boolean operators 4254

Logical conjunction: and 4255

 4256

Syntax 4257

op1 and op2 4258

 4259

Input parameters 4260

op1 the first operand 4261

op2 the seconf operand 4262

 4263

Examples of valid syntaxes 4264

DS_1 and DS_2 4265

 4266

Semantics for scalar operations 4267

The and operator returns TRUE if both operands are TRUE, otherwise FALSE. The two operands must be of 4268

boolean type. 4269

For example: 4270

FALSE and FALSE gives FALSE 4271

FALSE and TRUE gives FALSE 4272

TRUE and FALSE gives FALSE 4273

TRUE and TRUE gives TRUE 4274

 4275

Input parameters type 4276

op1, 4277

op2 :: dataset {measure<boolean> _ } 4278

| component<boolean> 4279

| boolean 4280

 4281

Result type 4282

result :: dataset { measure<boolean> _} 4283

| component<boolean> 4284

| boolean 4285

 4286

Additional constraints 4287

None. 4288

 4289

Behaviour 4290

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section “Typical 4291

behaviours of the ML Operators”). 4292

 4293

Examples 4294

Given the operand Data Sets DS_1 and DS_2: 4295
 4296

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 FALSE

M 65 B 2013 TRUE

F 15 U 2013 FALSE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

123

 4297

 4298

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 FALSE

M 64 B 2013 TRUE

M 65 B 2013 TRUE

F 15 U 2013 TRUE

F 64 U 2013 FALSE

F 65 U 2013 FALSE

 4299

 4300

Example 1: DS_r:= DS_1 and DS_2 results in: 4301

 4302

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 FALSE

M 64 B 2013 FALSE

M 65 B 2013 TRUE

F 15 U 2013 FALSE

F 64 U 2013 FALSE

F 65 U 2013 FALSE

 4303

Example 2 (on Components): DS_r := DS_1 [Me_2:= Me_1 and true] results in: 4304

 4305

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 TRUE TRUE

M 64 B 2013 FALSE FALSE

M 65 B 2013 TRUE TRUE

F 15 U 2013 FALSE FALSE

F 64 U 2013 FALSE FALSE

F 65 U 2013 TRUE TRUE

Logical disjunction : or 4306

Syntax 4307
op1 or op2 4308

 4309

Input parameters 4310

op1 the first operand 4311

op2 the second operand 4312

 4313

Examples of valid syntaxes 4314

DS_1 or DS_2 4315

 4316

Semantics for scalar operations 4317

124

The or operator returns TRUE if at least one of the operands is TRUE, otherwise FALSE. The two operands must 4318

be of boolean type. 4319

For example: 4320

FALSE or FALSE gives FALSE 4321

FALSE or TRUE gives TRUE 4322

TRUE or FALSE gives TRUE 4323

TRUE or TRUE gives TRUE 4324

 4325

Input parameters type 4326

op1, 4327

op2 :: dataset {measure<boolean> _ } 4328

| component<boolean> 4329

| boolean 4330

Result type 4331

result :: dataset { measure<boolean> _ } 4332

| component<boolean> 4333

| boolean 4334

 4335

Additional constraints 4336

None. 4337

 4338

Behaviour 4339

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section “Typical 4340

behaviours of the ML Operators”). 4341

 4342

Examples 4343

 Given the operand Data Sets DS_1 and DS_2: 4344

 4345

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 FALSE

M 65 B 2013 TRUE

F 15 U 2013 FALSE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

 4346

 4347

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 FALSE

M 64 B 2013 TRUE

M 65 B 2013 TRUE

F 15 U 2013 TRUE

F 64 U 2013 FALSE

F 65 U 2013 FALSE

 4348

Example 1: DS_r:= DS_1 or DS_2 results in: 4349
 4350

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

125

M 15 B 2013 TRUE

M 64 B 2013 TRUE

M 65 B 2013 TRUE

F 15 U 2013 TRUE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

 4351

Example 2 (on Components): DS_r:= DS_1 [Me_2:= Me_1 or true] results in: 4352

 4353

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 TRUE TRUE

M 64 B 2013 FALSE TRUE

M 65 B 2013 TRUE TRUE

F 15 U 2013 FALSE TRUE

F 64 U 2013 FALSE TRUE

F 65 U 2013 TRUE TRUE

 4354

Exclusive disjunction : xor 4355

Syntax 4356
op1 xor op2 4357

 4358

Input parameters 4359

op1 the first operand 4360

op2 the second operand 4361
 4362

 4363

Examples of valid syntaxes 4364

DS_1 xor DS_2 4365

 4366

Semantics for scalar operations 4367

The xor operator returns TRUE if only one of the operand is TRUE (but not both), FALSE otherwise. The two 4368

operands must be of boolean type. 4369

For example: 4370

FALSE xor FALSE gives FALSE 4371

FALSE xor TRUE gives TRUE 4372

TRUE xor FALSE gives TRUE 4373

TRUE xor TRUE gives FALSE 4374

 4375

Input parameters type 4376

op1, 4377

op2 :: dataset {measure<boolean> _ } 4378

| component<boolean> 4379

| boolean 4380

 4381

Result type 4382

result :: dataset { measure<boolean> _ } 4383

| component<boolean> 4384

| boolean 4385

 4386

126

Additional constraints 4387

None. 4388

 4389

Behaviour 4390

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section “Typical 4391

behaviours of the ML Operators”). 4392

 4393

Examples 4394

Given the operand Data Sets DS_1 and DS_2: 4395

 4396

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 FALSE

M 65 B 2013 TRUE

F 15 U 2013 FALSE

F 64 U 2013 FALSE

F 65 U 2013 trTRUEue

 4397

 4398

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 FALSE

M 64 B 2013 TRUE

M 65 B 2013 TRUE

F 15 U 2013 TRUE

F 64 U 2013 FALSE

F 65 U 2013 FALSE

 4399

Example 1: DS_r:=DS_1 xor DS_2 results in: 4400

 4401

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 TRUE

M 65 B 2013 FALSE

F 15 U 2013 TRUE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

 4402

Example 2 (on Components): DS_r:= DS_1 [Me_2:= Me_1 xor true] results in: 4403

 4404

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 TRUE FALSE

M 64 B 2013 FALSE TRUE

127

M 65 B 2013 TRUE FALSE

F 15 U 2013 FALSE TRUE

F 64 U 2013 FALSE TRUE

F 65 U 2013 TRUE FALSE

 4405

Logical negation : not 4406

 4407

Syntax 4408

not op 4409

 4410

Input parameters 4411

op the operand 4412
 4413

Examples of valid syntaxes 4414

not DS_1 4415

 4416

Semantics for scalar operations 4417

The not operator returns TRUE if op is FALSE, otherwise TRUE. The input operand must be of boolean type. 4418

For example: 4419

not FALSE gives TRUE 4420

not TRUE gives FALSE 4421
 4422

Input parameters type 4423

op :: dataset {measure<boolean> _ } 4424

| component<boolean> 4425

| boolean 4426

 4427

Result type 4428

result :: dataset { measure<boolean> _ } 4429

| component<boolean> 4430

| boolean 4431

 4432

Additional constraints 4433

None. 4434

 4435

Behaviour 4436

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section “Typical 4437

behaviours of the ML Operators”). 4438

 4439

Examples 4440

Given the operand Data Set DS_1: 4441
 4442

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 FALSE

M 65 B 2013 TRUE

F 15 U 2013 FALSE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

 4443

128

Example 1: DS_r:= not DS_1 results in: 4444

 4445

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 FALSE

M 64 B 2013 TRUE

M 65 B 2013 FALSE

F 15 U 2013 TRUE

F 64 U 2013 TRUE

F 65 U 2013 false

 4446

Example 2 (on Components): DS_r:= DS_1 [calc Me_2 := not Me_1] results in: 4447

 4448

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 TRUE FALSE

M 64 B 2013 FALSE TRUE

M 65 B 2013 TRUE FALSE

F 15 U 2013 FALSE TRUE

F 64 U 2013 FALSE TRUE

F 65 U 2013 TRUE FALSE

 4449

129

VTL-ML - Time operators 4450

This chapter describes the time operators, which are the operators dealing with time, date and time_period 4451

basic scalar types. The general aspects of the behaviour of these operators is described in the section “Behaviour 4452

of the Time Operators”. 4453

The time data type is the most general type and denotes a generic time interval, having start and end points in 4454

time and therefore a duration, which is the time intervening between the start and end points. The date data type 4455

denotes a generic time instant (a point in time), which is a time interval with zero duration. The time_period data 4456

type denotes a regular time interval whose regular duration is explicitly represented inside each time_period 4457

value and is named period_indicator. In some sense, we say that date and time_period are special cases of time, 4458

the former with coinciding extremes and zero duration and the latter with regular duration. The time data type is 4459

overarching in the sense that it comprises date and time_period. Finally, duration data type represents a generic 4460

time span, independently of any specific start and end date. 4461

The time, date and time period formats used here are explained in the User Manual in the section “External 4462

representations and literals used in the VTL Manuals”. 4463

The period indicator P id of the duration type and its possible values are: 4464

 D Day 4465

 W Week 4466

 M Month 4467

 Q Quarter 4468

 S Semester 4469

 A Year 4470

 4471

As already said, these representation are not prescribed by VTL and are not part of the VTL standard, each VTL system 4472

can personalize the representation of time, date, time_period and duration as desired. The formats shown above are only 4473

the ones used in the examples. 4474

For a fully-detailed explanation, please refer to the User Manual. 4475

 4476

Period indicator : period_indicator 4477

 4478

The operator period_indicator extracts the period indicator from a time_period value. 4479

Syntax 4480

period_indicator ({ op }) 4481

 4482

Input parameters 4483

op the operand 4484

 4485

Examples of valid syntaxes 4486

period_indicator (ds_1) 4487

period_indicator (if used in a clause the operand op can be omitted) 4488

 4489

Semantics for scalar operations 4490

period_indicator returns the period indicator of a time_period value. The period indicator is the part of the 4491

time_period value which denotes the duration of the time period (e.g. day, week, month …). 4492

 4493

Input parameters type 4494

op :: dataset { identifier <time_period> _ , identifier _* } 4495

 | component<time_period> 4496

 | time_period 4497

 4498

Result type 4499

result :: dataset { measure<duration> duration_var } 4500

 | component <duration> 4501

 | duration 4502

 4503

130

Additional constraints 4504

If op is a Data Set then it has exactly an Identifier of type time_period and may have other Identifiers. If the 4505

operator is used in a clause and op is omitted, then the Data Set to which the clause is applied has exactly an 4506

Identifier of type time_period. 4507

 4508

Behaviour 4509

The operator extracts the period indicator part of the time_period value. The period indicator is computed for 4510

each Data Point. When the operator is used in a clause, it extracts the period indicator from the time_period 4511

value the Data Set to which the clause is applied. 4512

The operator returns a Data Set with the same Identifiers of op and one Measure of type duration named 4513

duration_var. As for all the Variables, a proper Value Domain must be defined to contain the possible values of 4514

the period indicator and duration_var. The values used in the examples are listed at the beginning of this chapter 4515

"VTL-ML Time operators". 4516

Examples 4517

Given the Data Set DS_1: 4518

DS_r

Id_1 Id_2 Id_3 Me_1

A 1 2010 10

A 1 2013Q1 50

 4519

Example 1: DS_r := period_indicator (DS_1) results in: 4520

 4521

DS_r

Id_1 Id_2 Id_3 duration_var

A 1 2010 A

A 1 2013Q1 Q

 4522

Example 2 (on component): DS_r := DS_1 [filter period_indicator (Id_3) = “A"] results in: 4523

 4524

DS_r

Id_1 Id_2 Id_3 Me_1

A 1 2010 10

 4525

 4526

 4527

Fill time series : fill_time_series 4528

 4529

Syntax 4530

fill_time_series (op { , limitsMethod }) 4531

 4532
limitsMethod ::= single | all 4533

 4534

Input parameters 4535

op the operand 4536

limitsMethod method for determining the limits of the time interval to be filled (default: all) 4537

 4538

Examples of valid syntaxes 4539

fill_time_series (ds) 4540

fill_time_series (ds, all) 4541

131

 4542

Semantics for scalar operations 4543

The fill_time_series operator does not perform scalar operations. 4544

 4545

Input parameters type: 4546

op :: dataset { identifier <time > _ , identifier _* } 4547

 4548

Result type: 4549

result :: dataset { identifier <time > _ , identifier _* } 4550

 4551

 4552

Additional constraints 4553

The operand op has an Identifier of type time, date or time_period and may have other Identifiers. 4554

 4555

Behaviour 4556

This operator can be applied only on Data Sets of time series and returns a Data Set of time series. 4557

The operator fills the possibly missing Data Points of all the time series belonging to the operand op within the 4558

time limits automatically determined by applying the limit_method. 4559

If limitsMmethod is all, the time limits are determined with reference to all the time_series of the Data Set: the 4560

limits are the minimum and the maximum values of the reference time Identifier Component of the Data Set. 4561

If limitsMmethod is single, the time limits are determined with reference to each single time_series of the Data 4562

Set: the limits are the minimum and the maximum values of the reference time Identifier Component of the time 4563

series. 4564

The expected Data Points are determined, for each time series, by considering the limits above and the period 4565

(frequency) of the time series: all the Identifiers are kept unchanged except the reference time Identifier, which is 4566

increased of one period at a time (e.g. day, week, month, quarter, year) from the lower to the upper time limit. 4567

For each increase, an expected Data Point is identified. 4568

If this expected Data Points is missing, it is added to the Data Set. For the added Data Points, Measures and 4569

Attributes assume the NULL value. 4570

The output Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set. The 4571

ouput Data Set contains the same time series as the operand, because the time series Identifiers (all the 4572

Identifiers except the reference time Identifier) are not changed. 4573

As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to know which is the 4574

reference time Identifier as well as the period of each time series. 4575

 4576

Examples 4577

Given the Data Set DS_1, which contains yearly time series, where Id_2 is the reference time Identifier of time 4578

type: 4579
 4580

DS_1

Id_1 Id_2 Me_1

A 2010-01/2010-12 "hello world"

A 2012-01/2012-12 "say hello"

A 2013-01/2013-12 "he"

B 2011-01/2011-12 "hi, hello! "

B 2012-01/2012-12 "hi”

B 2014-01/2014-12 “hello!”

 4581

Example 1: DS_r := fill_time_series (DS_1, single) results in: 4582

 4583

DS_r

Id_1 Id_2 Me_1

A 2010-01/2010-12 "hello world"

132

A 2011-01/2011-12 NULL

A 2012-01/2012-12 "say hello"

A 2013-01/2013-12 "he"

B 2011-01/2011-12 "hi, hello! "

B 2012-01/2012-12 "hi”

B 2013-01/2013-12 NULL

B 2014-01/2014-12 “hello!”

 4584

Example 2: DS_r := fill_time_series (DS_1, all) results in: 4585

 4586

DS_r

Id_1 Id_2 Me_1

A 2010-01/2010-12 "hello world"

A 2011-01/2011-12 NULL

A 2012-01/2012-12 "say hello"

A 2013-01/2013-12 "he"

A 2014-01/2014-12 NULL

B 2010-01/2010-12 NULL

B 2011-01/2011-12 "hi, hello! "

B 2012-01/2012-12 "hi”

B 2013-01/2013-12 NULL

B 2014-01/2014-12 “hello!”

 4587

Given the Data Set DS_2, which contains yearly time series, where Id_2 is the reference time Identifier of date 4588

type and conventionally each period is identified by its last day: 4589
 4590

DS_2

Id_1 Id_2 Me_1

A 2010-12-31 "hello world"

A 2012-12-31 "say hello"

A 2013-12-31 "he"

B 2011-12-31 "hi, hello! "

B 2012-12-31 "hi”

B 2014-12-31 “hello!”

 4591

Example 3: DS_r := fill_time_series (DS_2, single) results in: 4592

 4593

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 "hello world"

A 2011-12-31 NULL

A 2012-12-31 "say hello"

A 2013-12-31 "he"

B 2011-12-31 "hi, hello! "

133

B 2012-12-31 "hi”

B 2013-12-31 NULL

B 2014-12-31 “hello!”

 4594

Example 4: DS_r := fill_time_series (DS_2, all) results in: 4595

 4596

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 "hello world"

A 2011-12-31 NULL

A 2012-12-31 "say hello"

A 2013-12-31 "he"

A 2014-12-31 NULL

B 2010-12-31 NULL

B 2011-12-31 "hi, hello! "

B 2012-12-31 "hi”

B 2013-12-31 NULL

B 2014-12-31 “hello!”

 4597

 4598

Given the Data Set DS_3, which contains yearly time series, where Id_2 is the reference time Identifier of 4599

time_period type: 4600
 4601

DS_3

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2012Y "say hello"

A 2013Y "he"

B 2011Y "hi, hello! "

B 2012Y "hi”

B 2014Y “hello!”

 4602

Example 5: DS_r := fill_time_series (DS_3, single) results in: 4603

 4604

DS_r

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2013Y "he"

B 2011Y "hi, hello! "

B 2012Y "hi”

B 2013Y NULL

B 2014Y “hello!”

134

 4605

Example 6: DS_r := fill_time_series (DS_3, all) results in: 4606

 4607

DS_r

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2013Y "he"

A 2014Y NULL

B 2010Y NULL

B 2011Y "hi, hello! "

B 2012Y "hi”

B 2013Y NULL

B 2014Y “hello!”

 4608

 4609

Given the Data Set DS_4, which contains both quarterly and annual time series relevant to the same 4610

phenomenon “A”, where Id_2 is the reference time Identifier of time_period type,: 4611

 4612

DS_4

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2012Y "say hello"

A 2010Q1 “he”

A 2010Q2 "hi, hello! "

A 2010Q4 "hi”

A 2011Q2 “hello!”

 4613

Example 7: DS_r := fill_time_series (DS_4, single) results in: 4614

 4615

DS_r

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2010Q1 “he”

A 2010Q2 "hi, hello! "

A 2010Q3 NULL

A 2010Q4 "hi”

A 2011Q2 “hello!”

 4616

Example 8: DS_r := fill_time_series (DS_4, all) results in: 4617

 4618

135

DS_r

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2010Q1 “he”

A 2010Q2 "hi, hello! "

A 2010Q3 NULL

A 2010Q4 "hi”

A 2011Q1 NULL

A 2011Q2 “hello!”

A 2011Q3 NULL

A 2011Q4 NULL

A 2012Q1 NULL

A 2012Q2 NULL

A 2012Q3 NULL

A 2012Q4 NULL

 4619

136

 4620

Flow to stock : flow_to_stock 4621

 4622

Syntax 4623
flow_to_stock (op) 4624

 4625

Input Parameters 4626

op the operand 4627

 4628

Examples of valid syntaxes 4629

flow_to_stock (ds_1) 4630

 4631

Semantics for scalar operations 4632

This operator does not perform scalar operations. 4633

 4634

Input parameters type: 4635

op :: dataset { identifier < time > _ , identifier _* , measure<number> _+ } 4636

 4637

Result type: 4638

result :: dataset { identifier < time > _ , identifier _* , measure<number> _+ } 4639

 4640

Additional constraints 4641

The operand dataset has an Identifier of type time, date or time_period and may have other Identifiers. 4642

 4643

Behaviour 4644

The statistical data that describe the “state” of a phenomenon on a given moment (e.g. resident population on a 4645

given moment) are often referred to as “stock data”. 4646

On the contrary, the statistical data that describe “events” which can happen continuously (e.g. changes in the 4647

resident population, such as births, deaths, immigration, emigration), are often referred to as “flow data”. 4648

This operator takes in input a Data Set which are interpreted as flows and calculates the change of the 4649

corresponding stock since the beginning of each time series by summing the relevant flows. In other words, the 4650

operator perform the cumulative sum from the first Data Point of each time series to each other following Data 4651

Point of the same time series. 4652

The flow_to_stock operator can be applied only on Data Sets of time series and returns a Data Set of time series. 4653

The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set and 4654

contains the same time series as the operand, because the time series Identifiers (all the Identifiers except the 4655

reference time Identifier) are not changed. 4656

As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to know which is the 4657

time Identifier as well as the period of each time series. 4658

 4659

 4660

Examples 4661

 4662

Given the Data Set DS_1, which contains yearly time series, where Id_2 is the reference time Identifier of time 4663

type: 4664
 4665

DS_1

Id_1 Id_2 Me_1

A 2010-01/2010-12 2

A 2011-01/2011-12 5

A 2012-01/2012-12 -3

A 2013-01/2013-12 9

B 2010-01/2010-12 4

137

B 2011-01/2011-12 -8

B 2012-01/2012-12 0

B 2013-01/2013-12 6

 4666

Example 1: DS_r := flow_to_stock (DS_1) results in: 4667

 4668

DS_r

Id_1 Id_2 Me_1

A 2010-01/2010-12 2

A 2011-01/2011-12 7

A 2012-01/2012-12 4

A 2013-01/2013-12 13

B 2010-01/2010-12 4

B 2011-01/2011-12 -4

B 2012-01/2012-12 -4

B 2013-01/2013-12 2

 4669

 4670

Given the Data Set DS_2, which contains yearly time series, where Id_2 is the reference time Identifier of date 4671

type (conventionally each period is identified by its last day): 4672
 4673

DS_2

Id_1 Id_2 Me_1

A 2010-12-31 2

A 2011-12-31 5

A 2012-12-31 -3

A 2013-12-31 9

B 2010-12-31 4

B 2011-12-31 -8

B 2012-12-31 0

B 2013-12-31 6

 4674

Example 2: DS_r := flow_to_stock (DS_2) results in: 4675

 4676

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 2

A 2011-12-31 7

A 2012-12-31 4

A 2013-12-31 13

B 2010-12-31 4

B 2011-12-31 -4

B 2012-12-31 -4

B 2013-12-31 2

138

 4677

Given the Data Set DS_3, which contains yearly time series, where Id_2 is the reference time Identifier of 4678

time_period type: 4679
 4680

DS_3

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 5

A 2012Y -3

A 2013Y 9

B 2010Y 4

B 2011Y -8

B 2012Y 0

B 2013Y 6

 4681

Example 3: DS_r := flow_to_stock (DS_3) results in: 4682

 4683

DS_r

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 7

A 2012Y 4

A 2013Y 13

B 2010Y 4

B 2011Y -4

B 2012Y -4

B 2013Y 2

 4684

 4685

Given the Data Set DS_4, which contains both quarterly and annual time series relevant to the same 4686

phenomenon “A”, where Id_2 is the reference time Identifier of time_period type: 4687

 4688

DS_4

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 7

A 2012Y 4

A 2013Y 13

A 2010Q1 2

A 2010Q2 -3

A 2010Q3 7

A 2010Q4 -4

 4689

Example 4: DS_r := flow_to_stock (DS_3) results in: 4690

 4691

139

DS_r

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 9

A 2012Y 13

A 2013Y 26

A 2010Q1 2

A 2010Q2 -1

A 2010Q3 6

A 2010Q4 2

 4692

 4693

Stock to flow : stock_to_flow 4694

 4695

Syntax 4696

stock_to_flow (op) 4697

 4698

Input parameters 4699

 4700

op the operand 4701

 4702

Examples of valid syntaxes 4703

stock_to_flow (ds_1) 4704

 4705

Semantics for scalar operations 4706

This operator does not perform scalar operations. 4707

 4708

Input parameters type: 4709

op :: dataset { identifier < time > _ , identifier _* , measure<number> _+ } 4710

 4711

Result type: 4712

result :: dataset { identifier < time > _ , identifier _* , measure<number> _+ } 4713

 4714

Additional constraints 4715

The operand dataset has an Identifier of type time, date or time_period and may have other Identifiers. 4716

 4717

Behaviour 4718

The statistical data that describe the “state” of a phenomenon on a given moment (e.g. resident population on a 4719

given moment) are often referred to as “stock data”. 4720

On the contrary, the statistical data that describe “events” which can happen continuously (e.g. changes in the 4721

resident population, such as births, deaths, immigration, emigration), are often referred to as “flow data”. 4722

This operator takes in input a Data Set of time series which is interpreted as stock data and, for each time series, 4723

calculates the corresponding flow data by subtracting from the measure values of each regular period the 4724

corresponding measure values of the previous one. 4725

The stock_to_flow operator can be applied only on Data Sets of time series and returns a Data Set of time series. 4726

The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set and 4727

contains the same time series as the operand, because the time series Identifiers (all the Identifiers except the 4728

reference time Identifier) are not changed. 4729

The Attribute propagation rule is not applied. 4730

As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to know which is the 4731

time Identifier as well as the period of each time series. 4732

 4733

140

 4734

Examples 4735

 4736

Given the Data Set DS_1, which contains yearly time series, where Id_2 is the reference time Identifier of time 4737

type: 4738

 4739

DS_1

Id_1 Id_2 Me_1

A 2010-01/2010-12 2

A 2011-01/2011-12 7

A 2012-01/2012-12 4

A 2013-01/2013-12 13

B 2010-01/2010-12 4

B 2011-01/2011-12 -4

B 2012-01/2012-12 -4

B 2013-01/2013-12 2

 4740

Example 1: DS_r := stock_to_flow (DS_1) results in: 4741

 4742

DS_r

Id_1 Id_2 Me_1

A 2010-01/2010-12 2

A 2011-01/2011-12 5

A 2012-01/2012-12 -3

A 2013-01/2013-12 9

B 2010-01/2010-12 4

B 2011-01/2011-12 -8

B 2012-01/2012-12 0

B 2013-01/2013-12 6

 4743

 4744

Given the Data Set DS_2, which contains yearly time series, where Id_2 is the reference time Identifier of date 4745

type (conventionally each period is identified by its last day): 4746

 4747

DS_2

Id_1 Id_2 Me_1

A 2010-12-31 2

A 2011-12-31 7

A 2012-12-31 4

A 2013-12-31 13

B 2010-12-31 4

B 2011-12-31 -4

B 2012-12-31 -4

B 2013-12-31 2

 4748

Example 2: DS_r := stock_to_flow (DS_2) results in: 4749

141

 4750

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 2

A 2011-12-31 5

A 2012-12-31 -3

A 2013-12-31 9

B 2010-12-31 4

B 2011-12-31 -8

B 2012-12-31 0

B 2013-12-31 6

 4751

 4752

Given the Data Set DS_3, which contains yearly time series, where Id_2 is the reference time Identifier of 4753

time_period type: 4754

 4755

DS_3

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 7

A 2012Y 4

A 2013Y 13

B 2010Y 4

B 2011Y -4

B 2012Y -4

B 2013Y 2

 4756

Example 3: DS_r := stock_to_flow (DS_3) results in: 4757

 4758

DS_r

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 5

A 2012Y -3

A 2013Y 9

B 2010Y 4

B 2011Y -8

B 2012Y 0

B 2013Y 6

 4759

 4760

 4761

Given the Data Set DS_4, which contains both quarterly and annual time series relevant to the same 4762

phenomenon “A”, where Id_2 is the time Identifier of time_period type: 4763

 4764

142

DS_4

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 9

A 2012Y 13

A 2013Y 26

A 2010Q1 2

A 2010Q2 -1

A 2010Q3 6

A 2010Q4 2

 4765

Example 4: DS_r := stock_to_flow (DS_4) results in: 4766

 4767

DS_r

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 7

A 2012Y 4

A 2013Y 13

A 2010Q1 2

A 2010Q2 -3

A 2010Q3 7

A 2010Q4 -4

 4768

Time shift : timeshift 4769

Syntax 4770

timeshift (op , shiftNumber) 4771

 4772

Input parameters 4773

op the operand 4774

shiftNumber the number of periods to be shifted 4775

 4776

Examples of valid syntaxes 4777

timeshift (DS_1, 2) 4778

timeshift (DS_1) 4779

 4780

Semantics for scalar operations 4781

This operator does not perform scalar operations. 4782

 4783

Input parameters type: 4784

op :: dataset { identifier < time > _ , identifier _* } 4785

shiftNumber :: integer 4786

 4787

Result type: 4788

result :: dataset { identifier < time > _ , identifier _* } 4789

 4790

Additional constraints 4791

The operand dataset has an Identifier of type time, date or time_period and may have other Identifiers. 4792

143

. 4793

 4794

Behaviour 4795

This operator takes in input a Data Set of time series and, for each time series of the Data Set, shifts the reference 4796

time Identifier of a number of periods (of the time series) equal to the shift_number parameter. If shift_number 4797

is negative, the shift is in the past, otherwise in the future. For example, if the period of the time series is month 4798

and shift_number is -1 the reference time Identifier is shifted of two months in the past. 4799

The operator can be applied only on Data Sets of time series and returns a Data Set of time series. 4800

The result Data Set has the same Identifier, Measure and Attribute Components as the operand Data Set and 4801

contains the same time series as the operand, because the time series Identifiers (all the Identifiers except the 4802

reference time Identifier) are not changed. 4803

The Attribute propagation rule is not applied. 4804

As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to know which is the 4805

time Identifier as well as the period of each data point. 4806

 4807

Examples 4808

Given the Data Set DS_1, which contains yearly time series, where Id_2 is the reference time Identifier of time 4809

type: 4810

 4811

DS_1

Id_1 Id_2 Me_1

A 2010-01/2010-12 "hello world"

A 2011-01/2011-12 NULL

A 2012-01/2012-12 "say hello"

A 2013-01/2013-12 "he"

B 2010-01/2010-12 "hi, hello! "

B 2011-01/2011-12 "hi”

B 2012-01/2012-12 NULL

B 2013-01/2013-12 “hello!”

 4812

Example 1: DS_r := time_shift (DS_1 , -1) results in: 4813

 4814

DS_r

Id_1 Id_2 Me_1

A 2009-01/2009-12 "hello world"

A 2010-01/2010-12 NULL

A 2011-01/2011-12 "say hello"

A 2012-01/2012-12 "he"

B 2009-01/2009-12 "hi, hello! "

B 2010-01/2010-12 "hi”

B 2011-01/2011-12 NULL

B 2012-01/2012-12 “hello!”

 4815

 4816

Given the Data Set DS_2, which contains yearly time series, where Id_2 is the reference time Identifier of date 4817

type (conventionally each period is identified by its last day): 4818

 4819

144

DS_2

Id_1 Id_2 Me_1

A 2010-12-31 "hello world"

A 2011-12-31 NULL

A 2012-12-31 "say hello"

A 2013-12-31 "he"

B 2010-12-31 "hi, hello! "

B 2011-12-31 "hi”

B 2012-12-31 NULL

B 2013-12-31 “hello!”

 4820

Example 2: DS_r := time_shift (DS_2 , 2) results in: 4821

 4822

DS_r

Id_1 Id_2 Me_1

A 2012-12-31 "hello world"

A 2013-12-31 NULL

A 2014-12-31 "say hello"

A 2015-12-31 "he"

B 2012-12-31 "hi, hello! "

B 2013-12-31 "hi”

B 2014-12-31 NULL

B 2015-12-31 “hello!”

 4823

 4824

Given the Data Set DS_3, which contains yearly time series, where Id_2 is the reference time Identifier of 4825

time_period type: 4826

 4827

DS_3

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2013Y "he"

B 2010Y "hi, hello! "

B 2011Y "hi”

B 2012Y NULL

B 2013Y “hello!”

 4828

Example 3: DS_r := time_shift (DS_3 , 1) results in: 4829

 4830

DS_r

Id_1 Id_2 Me_1

A 2011Y "hello world"

145

A 2012Y NULL

A 2013Y "say hello"

A 2014Y "he"

B 2011Y "hi, hello! "

B 2012Y "hi”

B 2013Y NULL

B 2014Y “hello!”

 4831

 4832

Given the Data Set DS_4, which contains both quarterly and annual time series relevant to the same 4833

phenomenon “A”, where Id_2 is the reference time Identifier of time_period type: 4834

 4835

DS_4

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2013Y "he"

A 2010Q1 "hi, hello! "

A 2010Q2 "hi”

A 2010Q3 NULL

A 2010Q4 “hello!”

 4836

Example 4: DS_r := time_shift (DS_3 , -1) results in: 4837

 4838

DS_r

Id_1 Id_2 Me_1

A 2009Y "hello world"

A 2010Y NULL

A 2011Y "say hello"

A 2012Y "he"

A 2009Q4 "hi, hello! "

A 2010Q1 "hi”

A 2010Q2 NULL

A 2010Q3 “hello!”

 4839

Time aggregation : time_agg 4840

The operator time_agg converts time, date and time_period values from a smaller to a larger duration. 4841

 4842

Syntax 4843

time_agg (periodIndTo { , periodIndFrom } { , op } { , first | last }) 4844

 4845

Input parameters 4846

146

op the scalar value, the Component or the Data Set to be converted. If not specified, then 4847

time_agg is used in combination within an aggregation operator 4848

periodIndFrom the source period indicator 4849

periodIndTo the target period indicator 4850

 4851

 4852

Examples of valid syntaxes 4853

sum (DS group all time_agg (Me, “A”)) 4854

time_agg (“A”, cast (“2012Q1”, time_period , ”YYYY\Qq”)) 4855

time_agg(“M”, cast (“2012-12-23”, date, “YYYY-MM-DD”)) 4856

time_agg(“M”, DS1) 4857

ds_2 := ds1[calc Me1 := time_agg(“M”,Me1)] 4858

 4859

Semantics for scalar operations 4860

The operator converts a time, date or time_period value from a smaller to a larger duration. 4861

 4862

Input parameters type 4863

op :: dataset { identifier < time > _ , identifier _* } 4864

 | component<time> 4865

| time 4866

periodIndFrom :: duration 4867

periodIndTo :: duration 4868

 4869

Result type 4870

op :: dataset { identifier < time > _ , identifier _* } 4871

 | component<time> 4872

| time 4873

 4874

Additional constraints 4875

If op is a Data Set then it has exactly an Identifier of type time, date or time_period and may have other Identifiers. 4876

It is only possible to convert smaller duration values to larger duration values (e.g. it is possible to convert 4877

monthly data to annual data but the contrary is not allowed). 4878

 4879

Behaviour 4880

The scalar version of this operator takes as input a time, date or time_period value, converts it to periodIndTo 4881

and returns a scalar of the corresponding type. 4882

The Data Set version acts on a single Measure Data Set of type time, date or time_period and returns a Data Set 4883

having the same structure. 4884

Finally, VTL also provides a component version, for use in combination with an aggregation operator, because 4885

the change of frequency requires an aggregation. In this case, the operator converts the period_indicator of the 4886

data points (e.g., convert monthly data to annual data). 4887

On time type, the operator maps the input value into the comprising larger regular interval, whose duration is 4888

the one specified by the periodIndTo parameter. 4889

On date type, the operator maps the input value into the comprising larger period, whose duration is the one 4890

specified by the periodIndTo parameter, which is conventionally represented either by the start or by the end 4891

date, according to the first/last parameter. 4892

On time_period type, the operator maps the input value into the comprising larger time period specified by the 4893

periodIndTo parameter (the original period indicator is converted in the target one and the number of periods is 4894

adjusted correspondingly). 4895

The input duration periodIndFrom is optional. In case of time_period Data Points, the input duration can be 4896

inferred from the internal representation of the value. In case of time or date types, it is inferred by the 4897

implementation. Filters on input time series can be obtained with the filter clause. 4898

 4899

 4900

Examples 4901

Given the Data Set DS_1 4902

 4903

147

DS_1

Id_1 Id_2 Me_1

2010Q1 A 20

2010Q2 A 20

2010Q3 A 20

2010Q1 B 50

2010Q2 B 50

2010Q1 C 10

2010Q2 C 10

 4904

Example 1: DS_r := sum (DS_1) group all time_agg (“A” , _ , Me_1) results in: 4905

 4906

DS_r

Id_1 Id_2 Me_1

2010 A 60

2011 B 100

2010 C 20

 4907

 4908

Example 2: DS_r := time _agg (“Q”, cast (“2012M01”, time_period, ”YYYY\MMM”)) 4909

 4910

Returns: “2012Q1”. 4911

 4912

Example 3: The following example maps a date to quarter level, 2012 (end of the period). 4913

 4914

time_agg(“Q”, cast(“20120213”, date, ”YYYYMMDD”), _ , false) 4915

 4916

and produces a date value corresponding to the string “20120331” 4917

 4918

Example 4: The following example maps a date to year level, 2012 (beginning of the period). 4919

 4920

time_agg(cast(”A”, “2012M1”, date, ”YYYYMMDD”), _, true) 4921

 4922

and produces a date value corresponding to the string “20120101”. 4923

 4924

Actual time : current_date 4925

 4926

Syntax 4927

current_date () 4928

 4929

Input parameters 4930

None 4931

 4932

Examples of valid syntax 4933

current_date 4934

 4935

Semantics for scalar operations 4936

The operator current_date returns the current time as a date type. 4937

148

 4938

Input parameters type 4939

This operator has no input parameters. 4940

 4941

Result type 4942

result :: date 4943

 4944

Additional constraints 4945

None. 4946

 4947

Behaviour 4948

The operator return the current date 4949

 4950

Examples 4951

cast (current_date, string, "YYYY.MM.DD") 4952

 4953

149

VTL-ML - Set operators 4954

Union: union 4955

 4956

Syntax 4957

union (dsList) 4958

 4959
 dsList ::= ds { , ds }* 4960

 4961

Input parameters 4962

dsList the list of Data Sets in the union 4963

 4964

Examples of valid syntaxes 4965

union (ds2, ds3) 4966

 4967

Semantics for scalar operations 4968

This operator does not perform scalar operations. 4969

 4970

Input parameters type 4971

ds :: dataset 4972

 4973

Result type 4974

result :: dataset 4975

 4976

Additional constraints 4977

All the Data Sets in dsList have the same Identifier, Measure and Attribute Components. 4978

 4979

Behaviour 4980

The union operator implements the union of functions (i.e., Data Sets). The resulting Data Set has the same 4981

Identifier, Measure and Attribute Components of the operand Data Sets specified in the dsList, and contains the 4982

Data Points belonging to any of the operand Data Sets. 4983

The operand Data Sets can contain Data Points having the same values of the Identifiers. To avoid duplications of 4984

Data Points in the resulting Data Set, those Data Points are filtered by chosing the Data Point belonging to the left 4985

most operand Data Set. For instance, let's assume that in union (ds1, ds2) the operand ds1 contains a Data 4986

Point dp1 and the operand ds2 contains a Data Point dp2 such that dp1 has the same Identifiers values of dp2, 4987

then the resulting Data Set contains dp1 only. 4988

The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section “Typical 4989

behaviours of the ML Operators”). 4990

The automatic Attribute propagation is not applied. 4991

 4992

Examples 4993
 4994

Given the operand Data Sets DS_1 and DS_2: 4995
 4996

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

 4997

 4998

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

150

2012 N Total Total 23

2012 S Total Total 5

 4999

 5000

Example 1: DS_r := union(DS_1,DS_2) results in: 5001
 5002

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

2012 N Total Total 23

2012 S Total Total 5

 5003

Given the operand Data Sets DS_1 and DS_2: 5004
 5005

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

 5006

 5007

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 23

2012 S Total Total 5

 5008

 5009

Example 2: DS_r := union (DS_1, DS_2) results in: 5010
 5011

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

2012 S Total Total 5

Intersection : intersect 5012

Syntax 5013

intersect (dsList) 5014

 5015

 dsList ::= ds { , ds }* 5016

 5017

Input parameters 5018

dsList the list of Data Sets in the intersection 5019

151

 5020

Examples of valid syntaxes 5021

intersect (ds2, ds3) 5022

 5023

Semantics for scalar operations 5024

This operator cannot be applied to scalar values. 5025

 5026

Input parameters type 5027

ds :: dataset 5028

 5029

Return type 5030

result :: dataset 5031

 5032

Additional constraints 5033

All the Data Sets in dsList have the same Identifier, Measure and Attribute Components. 5034

 5035

Behaviour 5036

The intersect operator implements the intersection of functions (i.e., Data Sets). The resulting Data Set has the 5037

same Identifier, Measure and Attribute Components of the operand Data Sets specified in the dsList, and 5038

contains the Data Points belonging to all the operand Data Sets. 5039

The operand Data Sets can contain Data Points having the same values of the Identifiers. To avoid duplications of 5040

Data Points in the resulting Data Set, those Data Points are filtered by chosing the Data Point belonging to the left 5041

most operand Data Set. For instance, let's assume that in intersect (ds1, ds2) the operand ds1 contains a Data 5042

Point dp1 and the operand ds2 contains a Data Point dp2 such that dp1 has the same Identifiers values of dp2, 5043

then the resulting Data Set contains dp1 only. 5044

The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section “Typical 5045

behaviours of the ML Operators”). 5046

The automatic Attribute propagation is not applied. 5047

 5048

Examples 5049

Given the operand Data Sets DS_1 and DS_2: 5050
 5051

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 1

2012 G Total Total 2

2012 F Total Total 3

 5052

 5053

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2011 B Total Total 10

2012 G Total Total 2

2011 M Total Total 40

 5054

Example 1: DS_r := intersect(DS_1,DS_2) results in: 5055

 5056

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 G Total Total 2

 5057

152

Set difference : setdiff 5058

 5059

Syntax 5060

setdiff (ds1, ds2) 5061

 5062

Input parameters 5063

ds1 the first Data Set in the difference (the minuend) 5064

ds2 the second Data Set in the difference (the subtrahend) 5065

 5066

Examples of valid syntaxes 5067

setdiff (ds2, ds3) 5068

 5069

Semantics for scalar operations 5070

This operator cannot be applied to scalar values. 5071

 5072

Input parameters type 5073

ds1, ds2 :: dataset 5074

 5075

Result type 5076

result :: dataset 5077

 5078

Additional constraints 5079

The operand Data Sets have the same Identifier, Measure and Attribute Components. 5080

 5081

Behaviour 5082

The operator implements the set difference of functions (i.e. Data Sets), interpreting the Data Points of the input 5083

Data Sets as the elements belonging to the operand sets, the minuend and the subtrahend, respectively. The 5084

operator returns one single Data Set, with the same Identifier, Measure and Attribute Components as the 5085

operand Data Sets, containing the Data Points that appear in the first Data Set but not in the second. In other 5086

words, for setdiff (ds1, ds2), the resulting Dataset contains all the data points Data Point dp1 of the operand ds1 5087

such that there is no Data Point dp2 of ds2 having the same values for homonym Identifier Components. 5088

The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section “Typical 5089

behaviours of the ML Operators”). 5090

The automatic Attribute propagation is not applied. 5091

 5092

Examples 5093

Given the operand Data Sets DS_1 and DS_2: 5094
 5095

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 10

2012 G Total Total 20

2012 F Total Total 30

2012 M Total Total 40

2012 I Total Total 50

2012 S Total Total 60

 5096

 5097

 5098

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2011 B Total Total 10

2012 G Total Total 20

153

2012 F Total Total 30

2012 M Total Total 40

2012 I Total Total 50

2012 S Total Total 60

 5099

Example 1: DS_r := setdiff (DS_1, DS_2) results in: 5100

 5101

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 10

 5102

Given the operand Data Sets DS_1 and DS_2 : 5103
 5104

DS_1

Id_1 Id_2 Id_3 Me_1

R M 2011 7

R F 2011 10

R T 2011 12

 5105

 5106

DS_2

Id_1 Id_2 Id_3 Me_1

R M 2011 7

R F 2011 10

 5107

Example 2: DS_r := setdiff (DS_1 , DS_2) results in: 5108

 5109

DS_r

Id_1 Id_2 Id_3 Me_1

R T 2011 12

 5110

 5111

Simmetric difference : symdiff 5112

 5113

Syntax 5114

symdiff (ds1, ds2) 5115

 5116

Input parameters 5117

ds1 the first Data Set in the difference 5118

ds2 the second Data Set in the difference 5119

 5120

Examples of valid syntaxes 5121

symdiff (ds_2, ds_3) 5122

 5123

Semantics for scalar operations 5124

This operator cannot be applied to scalar values. 5125

 5126

Input parameters type 5127

154

ds1, ds2 :: dataset 5128

 5129

Result type 5130

result :: dataset 5131

 5132

Additional constraints 5133

The operand Data Sets have the same Identifier, Measure and Attribute Components. 5134

 5135

Behaviour 5136

The operator implements the symmetric set difference between functions (i.e. Data Sets), interpreting the Data 5137

Points of the input Data Sets as the elements in the operand Sets. The operator returns one Data Set, with the 5138

same Identifier, Measure and Attribute Components as the operand Data Sets, containing the Data Points that 5139

appear in the first Data Set but not in the second and the Data Points that appear in the second Data Set but not 5140

in the first one. 5141

Data Points are compared to one another by Identifier Components. For symdiff (ds1, ds2), the resulting Data 5142

Set contains all the Data Points dp1 contained in ds1 for which there is no Data Point dp2 in ds2 with the same 5143

values for homonym Identifier components and all the Data Points dp2 contained in ds2 for which there is no 5144

Data Point dp1 in ds1 with the same values for homonym Identifier Components. 5145

The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section “Typical 5146

behaviours of the ML Operators”). 5147

The automatic Attribute propagation is not applied. 5148

 5149

Examples 5150

Given the operand Data Sets DS_1 and DS_2 : 5151

 5152

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 1

2012 G Total Total 2

2012 F Total Total 3

2012 M Total Total 4

2012 I Total Total 5

2012 S Total Total 6

 5153

 5154

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2011 B Total Total 1

2012 G Total Total 2

2012 F Total Total 3

2012 M Total Total 4

2012 I Total Total 5

2012 S Total Total 6

 5155

Example 1: DS_r := symdiff (DS_1, DS_2) results in: 5156
 5157

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 1

2011 B Total Total 1

 5158

155

VTL-ML - Hierarchical aggregation 5159

Hierarchical roll-up : hierarchy 5160

Syntax 5161

hierarchy (op , hr { condition condComp { , condComp }* } { rule ruleComp } { mode } { input } { output }) 5162

mode ::= non_null | non_zero | partial_null | partial_zero | always_null | always_zero

5163

input ::= dataset | rule | rule_priority 5164

output ::= computed | all 5165

 5166

Input parameters 5167

op the operand Data Set. 5168

hr the hierarchical Ruleset to be applied. 5169

condComp condComp is a Component of op to be associated (in positional order) to the 5170

conditioning Value Domains or Variables defined in hr (if any). 5171

ruleComp ruleComp is the Identifier of op to be associated to the rule Value Domain or Variable 5172

defined in hr. 5173

mode this parameter specifies how to treat the possible missing Data Points corresponding to 5174

the Code Items in the right side of a rule and which Data Points are produced in output. 5175

The meaning of the possible values of the parameter is explained below. 5176

input this parameter specifies the source of the values used as input of the hierarchical rules. 5177

The meaning of the possible values of the parameter is explained below. 5178

output this parameter specifies the content of the resulting Data Set. The meaning of the 5179

possible values of the parameter is explained below. 5180

 5181

Examples of valid syntaxes 5182

hierarchy (DS1, HR1 rule Id_1 non_null all) 5183

hierarchy (DS2, HR2 condition Comp_1, Comp_2 rule Id_3 non_zero rule computed) 5184

 5185

Semantics for scalar operations 5186

This operator cannot be applied to scalar values. 5187

 5188

Input parameters type 5189

op :: dataset { measure<number> _ } 5190

hr :: name < hierarchical > 5191

condComp :: name < component > 5192

ruleComp :: name < dentifier > 5193

 5194

Result type 5195

result :: dataset {measure<number> _ } 5196

 5197

Additional constraints 5198

If hr is defined on Value Domains then it is mandatory to specify the condition (if any) and the rule parameters. 5199

Moreover, the Components specified as condComp and ruleComp must belong to the operand op and must take 5200

values on the Value Domains corresponding, in positional order, to the ones specified in the condition and rule 5201

parameter of hr. 5202

If hr is defined on Variables, the specification of condComp and ruleComp is not needed, but they can be 5203

specified all the same if it is desired to show explicitly in the invocation which are the involved Components: in 5204

this case, the condComp and ruleComp must be the same and in the same order as the Variables specified in in 5205

the condition and rule signatures of hr. 5206

 5207

Behaviour 5208

The hierarchy operator applies the rules of hr to op as specified in the parameters. The operator returns a Data 5209

Set with the same Identifiers and the same Measure as op. The Attribute propagation rule is applied on the 5210

groups of Data Points which contribute to the same Data Points of the result. 5211

The behaviours relevanto to the different options of the input parameters are the following. 5212

156

First, the parameter input is considered to determine the source of the Data Points used as input of the 5213

Hierarchy. The possible options of the parameter input and the corresponding behaviours are the following: 5214

dataset For each Rule of the Ruleset and for each item on the right hand side of the Rule, the operator 5215

takes the input Data Points exclusively from the operand op. 5216

rule For each Rule of the Ruleset and for each item on the right-hand side of the Rule: 5217

 if the item is not defined as the result (left-hand side) of another Rule, the current Rule 5218

takes the input Data Points from the operand op 5219

 if the item is defined as the result of another Rule, the current Rule takes the input Data 5220

Points from the computed output of such other Rule; 5221

rule_priority For each Rule of the Ruleset and for each item on the right-hand side of the Rule: 5222

 if the item is not defined as the result (left-hand side) of another rule, the current Rule 5223

takes the input Data Points from the operand op. 5224

 if the item is defined as the result of another Rule, then: 5225

o if an expected input Data Point exists in the computed output of such other Rule 5226

and its Measure is not NULL, then the current Rule takes such Data Point; 5227

o if an expected input Data Point does not exist in the computed output of such 5228

other Rule or its measure is NULL, then the current Rule takes the Data Point 5229

from op (if any) having the same values of the Identifiers; 5230

if the parameter input is not specified then it is assumed to be rule. 5231

Then the parameter mode is considered, to determine the behaviour for missing Data Points and for the Data 5232

Points to be produced in the output. The possible options of the parameter mode and the corresponding 5233

behaviours are the following: 5234

non_null the result Data Point is produced when its computed Measure value is not NULL (i.e., when no 5235

Data Point corresponding to the Code Items of the right side of the rule is missing or has NULL 5236

Measure value); in the calculation, the possible missing Data Points corresponding to the Code 5237

Items of the right side of the rule are considered existing and having a Measure value equal to 5238

NULL; 5239

non_zero the result Data Point is produced when its computed Measure value is not equal to 0 (zero); 5240

the possible missing Data Points corresponding to the Code Items of the right side of the rule 5241

are considered existing and having a Measure value equal to 0; 5242

partial_null the result Data Point is produced if at least one Data Point corresponding to the Code Items of 5243

the right side of the rule is found (whichever is its Measure value); the possible missing Data 5244

Points corresponding to the Code Items of the right side of the rule are considered existing and 5245

having a NULL Measure value; 5246

partial_zero the result Data Point is produced if at least one Data Point corresponding to the Code Items of 5247

the right side of the rule is found (whichever is its Measure value); the possible missing Data 5248

Points corresponding to the Code Items of the right side of the rule are considered existing and 5249

having a Measure value equal to 0 (zero); 5250

always_null the result Data Point is produced in any case; the possible missing Data Points corresponding 5251

to the Code Items of the right side of the rule are considered existing and having have a 5252

Measure value equal to NULL; 5253

always_zero the result Data Point is produced in any case; the possible missing Data Points corresponding 5254

to the Code Items of the right side of the rule are considered existing and having a Measure 5255

value equal to 0 (zero); 5256

If the parameter mode is not specified, then it is assumed to be non_null 5257

 5258

The following table summarizes the behaviour of the options of the parameter “mode” 5259

 5260

OPTION of the
MODE

PARAMETER:

Missing Data
Points are

considered:

Null Data
Points are

considered:

Condition for
evaluating the rule

Returned Data
Points

Non_null NULL NULL
If all the involved Data

Points are not NULL

Only not NULL
Data Points (Zeros
are returned too)

Non_zero Zero NULL
If at least one of the

involved Data Points is
<> zero

Only not zero Data
Points (NULLS are

returned too)

157

Partial_null NULL NULL
If at least one of the

involved Data Points
is not NULL

Data Points of any
value (NULL, not

NULL and zero too)

Partial_zero Zero NULL
If at least one of the

involved Data Points
is not NULL

Data Points of any
value (NULL, not

NULL and zero too)

Always_null NULL NULL Always
Data Points of any
value (NULL, not

NULL and zero too)

Always_zero Zero NULL Always
Data Points of any
value (NULL, not

NULL and zero too)

 5261

Finally the parameter output is considered, to determine the content of the resulting Data Set. The possible 5262

options of the parameter output and the corresponding behaviours are the following: 5263

computed the resulting Data Set contains only the set of Data Points computed according to the Ruleset 5264

all the resulting Data Set contains the union between the set of Data Points “R” computed 5265

according to the Ruleset and the set of Data Points of op that have different combinations of 5266

values for the Identifiers. In other words, the result is the outcome of the following (virtual) 5267

expression: union (setdiff (op , R) , R) 5268

If the parameter output is not specified then it is assumed to be computed. 5269

 5270

Examples 5271

Given the following hierarchical ruleset: 5272

 5273

define hierarchical ruleset HR_1 (valuedomain rule VD_1) is 5274

 A = J + K + L 5275

; B = M + N + O 5276

; C = P + Q 5277

; D = R + S 5278

; E = T + U + V 5279

; F = Y + W + Z 5280

; G = B + C 5281

; H = D + E 5282

; I = D + G 5283

end hierarchical ruleset 5284

 5285

And given the operand Data Set DS_1 (where At_1 is viral and the propagation rule says that the alphabetic 5286

order prevails the NULL prevails on the alphabetic characters and the Attribute value for missing Data Points 5287

is assumed as NULL): 5288

 5289

DS_1

Id_1 Id_2 Me_1 At_1

2010 M 2 Dx

2010 N 5 Pz

2010 O 4 Pz

2010 P 7 Pz

2010 Q -7 Pz

2010 S 3 Ay

2010 T 9 Bq

2010 U NULL Nj

158

2010 V 6 Ko

 5290

 5291

Example 1: DS_r := hierarchy (DS_1, HR_1 rule Id_2 non_null) results in: 5292

 5293

DS_r

Id_1 Id_2 Me_1 At_1

2010 B 11 Dx

2010 C 0 Pz

2010 G 19 Dx

 5294
 5295

Example 2: DS_r := hierarchy (DS_1, HR_1 rule Id_2 non_zero) results in: 5296

 5297

DS_r

Id_1 Id_2 Me_1 At_1

2010 B 11 Dx

2010 D 3 NULL

2010 E NULL Bq

2010 G 11 Dx

2010 H NULL NULL

2010 I 14 NULL

 5298
 5299

Example 2: DS_r := hierarchy (DS_1, HR_1 rule Id_2 partial_null) results in: 5300

 5301

DS_r

Id_1 Id_2 Me_1 At_1

2010 B 11 Dx

2010 C 0 Pz

2010 D NULL NULL

2010 E NULL Bq

2010 G 11 Dx

2010 H NULL NULL

2010 I NULL NULL

 5302

 5303

159

VTL-ML - Aggregate and Analytic operators 5304

 5305

The following table lists the operators that can be invoked in the Aggregate or in the Analytic invocations 5306

described below and their main characteristics. 5307
 5308

Operator Description Allowed

invocations

Type of the resulting

Measure

Type of the operand

Measures

count number of Data Points Aggregate

Analytic

integer any

min minimum value of a set of values Aggregate

Analytic

any any

max maximum value of a set of values Aggregate

Analytic

any any

median median value of a set of numbers Aggregate

Analytic

number number

sum sum of a set of numbers Aggregate

Analytic

number number

avg average value of a set of numbers Aggregate

Analytic

number number

stddev_pop population standard deviation of a

set of numbers

Aggregate

Analytic

number number

stddev_samp sample standard deviation of a set

of numbers

Aggregate

Analytic

number number

var_pop population variance of a set of

numbers

Aggregate

Analytic

number number

var_samp sample variance of a set of

numbers

Aggregate

Analytic

number number

first_value first value in an ordered set of
values

Analytic any any

last_value last value in an ordered set of
values

Analytic any any

lag in an ordered set of Data Points, it
returns the value(s) taken from a
Data Point at a given physical
offset prior to the current Data
Point

Analytic any any

lead in an ordered set of Data Points, it
returns the value(s) taken from a
Data Point at a given physical
offset beyond the current Data
Point

Analytic any any

rank rank (order number) of a Data

Point in an ordered set of Data

Points

Analytic integer any

160

ratio_to_report ratio of a value to the sum of a set
of values

Analytic number number

 5309

Aggregate invocation 5310

Syntax 5311

 5312

in a Data Set expression: 5313
aggregateOperator (firstOperand { , additionalOperand }* { groupingClause }) 5314

 5315

in a Component expression within an aggr clause) 5316

aggregateOperator (firstOperand { , additionalOperand }*) { groupingClause } 5317

 5318

 5319

aggregateOperator ::= avg | count | max | median | min | stddev_pop 5320

 | stddev_samp | sum | var_pop | var_samp 5321

groupingClause ::= { group by groupingId {, groupingId}* 5322

 | group except groupingId {, groupingId}* 5323

 | group all conversionExpr }
1
 5324

 { having havingCondition }

5325

 5326

 5327

Input Parameters 5328

aggregateOperator the keyword of the aggregate operator to invoke (e.g., avg, count, max …) 5329

firstOperand the first operand of the invoked aggregate operator (a Data Set for an invocation at 5330

Data Set level or a Component of the input Data Set for an invocation at Component 5331

level within a aggr operator or a aggr clause in a join operation) 5332

additionalOperand an additional operand (if any) of the invoked operator. The various operators can have 5333

a different number of parameters. The number of parameters, their types and if they 5334

are mandatory or optional depend on the invoked operator 5335
groupingClause the following alternative grouping options: 5336

group by the Data Points are grouped by the values of the specified Identifiers 5337

(groupingId). The Identifiers not specified are dropped in the result. 5338

group except the Data Points are grouped by the values of the Identifiers not 5339

specified as groupingId. The Identifiers specified as groupingId are 5340

dropped in the result. 5341

group all converts the values of an Identifier Component using conversionExpr 5342

and keeps all the resulting Identifiers. 5343

groupingId Identifier Component to be kept (in the group by clause) or dropped (in the group 5344

except clause). 5345

conversionExpr specifies a conversion operator (e.g., time_agg) to convert data from finer to coarser 5346

granularity. The conversion operator is applied on an Identifier of the operand Data 5347

Set op. 5348

havingCondition a condition (boolean expression) at component level, having only Components of the 5349

input Data Sets as operands (and possibly constants), to be fulfilled by the groups of 5350

Data Points: only groups for which havingCondition evaluates to TRUE appear in the 5351

result. The havingCondition refers to the groups specified through the 5352

groupingClause, therefore it must invoke aggregate operators (e.g. avg, count, max 5353

…, see also the corresponding sections). A correct example of havingCondition is: 5354

max(obs_value) < 1000 5355

while the condition obs_value < 1000 is not a right havingCondition, because it refers 5356

to the values of single Data Points and not to the groups. The count operator is used in 5357

a havingCondition without parameters, e.g.: 5358

sum (ds group by id1 having count () >= 10) 5359

 5360

Examples of valid syntaxes 5361

avg (DS_1) 5362

avg (DS_1 group by Id_1, Id_2) 5363

161

avg (DS_1 group except Id_1, Id_2) 5364

avg (DS_1 group all time_agg ("Q")) 5365

 5366

Semantics for scalar operations 5367

The aggregate operators cannot be applied to scalar values. 5368

 5369

Input parameters type 5370

firstOperand :: dataset 5371

| component 5372

additionalOperand :: see the type of the additional parameter (if any) of the invoked 5373

aggregateOperator. The aggregate operators and their parameters are 5374

described in the following sections. 5375

groupingId :: name < identifier > 5376

conversionExpr :: identifier 5377

havingCondition :: component<boolean> 5378

 5379

Result type: 5380

result :: dataset 5381

| component 5382

 5383

Additional constraints 5384

The Aggregate invocation cannot be nested in other Aggregate or Analytic invocations. 5385

The aggregate operations at component level can be invoked within the aggr clause, both as part of a join 5386

operator and the aggr operator (see the parameter aggrExpr of those operators). 5387

The basic scalar types of firstOperand and additionalOperand (if any) must be compliant with the specific basic 5388

scalar types required by the invoked operator (the required basic scalar types are described in the table at the 5389

beginning of this chapter and in the sections of the various operators below). 5390

The conversionExpr parameter applies just one conversion operator to just one Identifier belonging to the input 5391

Data Set. The basic scalar type of the Identifier must be compatible with the basic scalar type of the conversion 5392

operator. 5393

If the grouping clause is omitted, then all the input Data Points are aggregated in a single group and the clause 5394

returns a Data Set that contains a single Data Point and has no Identifiers. 5395
 5396

Behaviour 5397

The aggregateOperator is applied as usual to all the measures of the firstOperand Data Set (if invoked at Data 5398

Set level) or to the firstOperand Component of the input Data Set (if invoked at Component level). In both cases, 5399

the operator calculates the required aggregated values for groups of Data Points of the input Data Set. The 5400

groups of Data Points to be aggregated are specified through the groupingClause, which allows the following 5401

alternative options. 5402

 5403

group by the Data Points are grouped by the values of the specified Identifiers. The Identifiers not 5404

specified are dropped in the result. 5405

group except the Data Points are grouped by the values of the Identifiers not specified in the clause. The 5406

specified Identifiers are dropped in the result. 5407

group all converts an Identifier Component using conversionExpr and keeps all the Identifiers. 5408

 5409

The having clause is used to filter groups in the result by means of an aggregate condition evaluated on the 5410

single groups (for example the minimum number of rows in the group). 5411

If no grouping clause is specified, then all the input Data Points are aggregated in a single group and the operator 5412

returns a Data Set that contains a single Data Point and has no Identifiers. 5413

For the invocation at Data Set level, the resulting Data Set has the same Measures as the operand. For the 5414

invocation at Component level, the resulting Data Set has the Measures explicitly calculated (all the other 5415

Measures are dropped because no aggregation behaviour is specified for them). 5416

For invocation at Data Set level, the Attribute propagation rule is applied. For invocation at Component level, 5417

the Attributes calculated within the aggr clause are maintained in the result; for all the other Attributes that are 5418

defined as viral, the Attribute propagation rule is applied (for the semantics, see the Attribute Propagation Rule 5419

section in the User Manual). 5420

As mentioned, the Aggregate invocation at component level can be done within the aggr clause, both as part of a 5421

Join operator and the aggr operator (see the parameter aggrExpr of those operators), therefore, for a better 5422

comprehension fo the behaviour at Component level, see also those operators. 5423

162

 5424
 5425

Examples 5426

 5427

Given the Data Set DS_1 5428

 5429

DS_1

Id_1 Id_2 Id_3 Me_1 At_1

2010 E XX 20

2010 B XX 1 H

2010 R XX 1 A

2010 F YY 23

2011 E XX 20 P

2011 B ZZ 1 N

2011 R YY -1 P

2011 F XX 20 Z

2012 L ZZ 40 P

2012 E YY 30 P

 5430

Example1: DS_r := avg (DS_1 group by Id_1) provided that At_1 is non viral, results in: 5431
 5432

DS_r

Id_1 Me_1

2010 11.25

2011 10

2012 35

 5433

Note: the example above can be rewritten equivalently in the following forms: 5434

 5435

DS_r := avg (DS_1 group except Id_2, Id_3) 5436

DS_r := avg (DS_1#Me_1 group by Id_1) 5437

 5438

Example2: DS_r := sum (DS_1 group by Id_1, Id_3) provided that At_1 is non viral, results in: 5439

 5440

DS_r

Id_1 Id_3 Me_1

2010 XX 22

2010 YY 23

2011 XX 40

2011 ZZ 1

2011 YY -1

2012 ZZ 40

2012 YY 30

 5441

Example3: DS_r := avg (DS_1) provided that At_1 is non viral results in: 5442

 5443

163

DS_r

Me_1

15.5

 5444

Example4: DS_r := DS_1 [aggr Me_2 := max (Me_1) , Me_3 := min (Me_1) group by Id_1] 5445

 5446

provided that At_1 is viral and the first letter in alphabetic order prevails and NULL prevails on 5447

all the other characters, results in: 5448

 5449

DS_r

Id_1 Me_2 Me_3 At_1

2010 23 1

2011 20 -1 N

2012 40 30 P

Analytic invocation 5450

Syntax 5451

analyticOperator (firstOperand { , additionalOperand }* over (analyticClause)) 5452

 5453

analyticOperator ::= avg | count | max | median | min | stddev_pop 5454

 | stddev_samp | sum | var_pop | var_samp 5455

 | first_value | lag | last_value | lead | rank | ratio_to_report 5456

analyticClause ::= { partitionClause } { orderClause } { windowClause } 5457

partitionClause ::= partition by identifier { , identifier }* 5458

orderClause ::= order by component { asc | desc } { , component { asc | desc } }* 5459

windowClause ::= { data points | range }
1
 between limitClause and limitClause 5460

limitClause ::= { num preceding | num following | current data point | unbounded preceding | 5461

unbounded following }
1
 5462

Parameters 5463

analyticOperator the keyword of the analytic operator to invoke (e.g., avg, count, max …) 5464

firstOperand the first operand of the invoked analytic operator (a Data Set for an invocation at Data 5465

Set level or a Component of the input Data Set for an invocation at Component level 5466

within a calc operator or a calc clause in a join operation) 5467

additionalOperand an additional operand (if any) of the invoked operator. The various operators can have 5468

a different number of parameters. The number of parameters, their types and if they 5469

are mandatory or optional depend on the invoked operator 5470

analyticClause clause that specifies the analytic behaviour 5471

partitionClause clause that specifies how to partition Data Points in groups to be analysed separately. 5472

The input Data Set is partitioned according to the values of one or more Identifier 5473

Components. If the clause is omitted, then the Data Set is partitioned by the Identifier 5474

Components that are not specified in the orderClause. 5475

orderClause clause that specifies how to order the Data Points. The input Data Set is ordered 5476

according to the values of one or more Components, in ascending order if asc is 5477

specified, in descending order if desc is specified, by default in ascending order if the 5478

asc and desc keywords are omitted. 5479

windowClause clause that specifies how to apply a sliding window on the ordered Data Points. The 5480

keyword data points means that the sliding window includes a certain number of 5481

Data Points before and after the current Data Point in the order given by the 5482

orderClause. The keyword range means that the sliding windows includes all the Data 5483

Points whose values are in a certain range in respect to the value, for the current Data 5484

Point, of the Measure which the analytic is applied to. 5485

164

limitClause clause that can specify either the lower or the upper boundaries of the sliding window. 5486

Each boundary is specified in relationship either to the whole partition or to the 5487

current data point under analysis by using the following keywords: 5488

 unbounded preceding means that the sliding window starts at the first Data Point 5489

of the partition (it make sense only as the first limit of the window) 5490

 unbounded following indicates that the sliding window ends at the last Data Point 5491

of the partition (it makes sense only as the second limit of the window) 5492

 current data point specifies that the window starts or ends at the current Data 5493

Point. 5494

 num preceding specifies either the number of data points to consider preceding 5495

the current data point in the order given by the orderClause (when data points is 5496

specified in the window clause), or the maximum difference to consider, as for the 5497

Measure which the analytic is applied to, between the value of the current Data 5498

Point and the generic other Data Point (when range is specified in the windows 5499

clause). 5500

 num following specifies either the number of data points to consider following the 5501

current data point in the order given by the orderClause (when data points is 5502

specified in the window clause), or the maximum difference to consider, as for the 5503

Measure which the analytic is applied to, between the values of the generic other 5504

Data Point and the current Data Point (when range is specified in the windows 5505

clause). 5506

If the whole windowClause is omitted then the default is data points between 5507

unbounded preceding and current data point. 5508

identifier an Identifier Component of the input Data Set 5509

component a Component of the input Data Set 5510

num a scalar number 5511

 5512

Examples of valid syntaxes 5513

sum (DS_1 over (partition by Id_1 order by Id_2)) 5514

sum (DS_1 over (order by Id_2)) 5515

avg (DS_1 over (order by Id_1 data points between 1 preceding and 1 following)) 5516

DS_1 [calc M1 := sum (Me_1 over (order by Id_1))] 5517

 5518

Semantics for scalar operations 5519

The analytic operators cannot be applied to scalar values. 5520

 5521

Input parameters type 5522

firstOperand :: dataset 5523

 | component 5524

additionalOperand :: see the type of the additional parameter (if any) of the invoked operator. The operators 5525

and their parameters are described in the following sections. 5526

identifier :: name < identifier > 5527

component :: name < component > 5528

num :: integer 5529

 5530

Result type 5531

result :: dataset 5532

 | component 5533

 5534

Additional constraints 5535

The analytic invocation cannot be nested in other Aggregate or Analytic invocations. 5536

The analytic operations at component level can be invoked within the calc clause, both as part of a Join operator 5537

and the calc operator (see the parameter calcExpr of those operators). 5538

The basic scalar types of firstOperand and additionalOperand (if any) must be compliant with the specific basic 5539

scalar types required by the invoked operator (the required basic scalar types are described in the table at the 5540

beginning of this chapter and in the sections of the various operators below). 5541

 5542

165

Behaviour 5543

The analytic Operator is applied as usual to all the Measures of the input Data Set (if invoked at Data Set level) or 5544

to the specified Component of the input Data Set (if invoked at Component level). In both cases, the operator 5545

calculates the desired output values for each Data Point of the input Data Set. 5546

The behaviour of the analytic operations can be procedurally described as follows: 5547

 The Data Points of the input Data Set are first partitioned (according to partitionBy) and then ordered 5548

(according to orderBy). 5549

 The operation is performed for each Data Point (named “current Data Point”) of the input Data Set. For each 5550

input Data Point, one output Data Point is returned, having the same values of the Identifiers. The analytic 5551

operator is applied to a “window” which includes a set of Data Points of the input Data Set and returns the 5552

values of the Measure(s) of the output Data Point. 5553

 If windowClause is not specified, then the set of Data Points which contribute to the analytic operation is 5554

the whole partition which the current Data Point belongs to 5555

 If windowClause is specified, then the set of Data Points is the one specified by windowClause (see 5556

windowsClause and LimitClause explained above). 5557

For the invocation at Data Set level, the resulting Data Set has the same Measures as the input Data Set 5558

firstOperand. For the invocation at Component level, the resulting Data Set has the Measures of the input Data 5559

Set plus the Measures explicitly calculated through the calc clause. 5560

For the invocation at Data Set level, the Attribute propagation rule is applied. For invocation at Component level, 5561

the Attributes calculated within the calc clause are maintained in the result; for all the other Attributes that are 5562

defined as viral, the Attribute propagation rule is applied (for the semantics, see the Attribute Propagation Rule 5563

section in the User Manual). 5564

As mentioned, the Analytic invocation at component level can be done within the calc clause, both as part of a 5565

Join operator and the calc operator (see the parameter aggrCalc of those operators), therefore, for a better 5566

comprehension fo the behaviour at Component level, see also those operators. 5567

 5568

Examples 5569

 5570

Given the Data Set DS_1: 5571

 5572

DS_r

Id_1 Id_2 Id_3 Me_1

2010 E XX 5

2010 B XX -3

2010 R XX 9

2010 E YY 13

2011 E XX 11

2011 B ZZ 7

2011 E YY -1

2011 F XX 0

2012 L ZZ -2

2012 E YY 3

 5573

Example1: 5574

 5575

DS_r := sum (DS_1 over (order by Id_1, Id_2, Id_3 data points between 1 preceding and 1 following)) 5576

 results in: 5577

 5578

DS_r

Id_1 Id_2 Id_3 Me_1

166

2010 B XX 2

2010 E XX 15

2010 E YY 27

2010 R XX 29

2011 B ZZ 27

2011 E XX 17

2011 E YY 10

2011 F XX 2

2012 E YY 1

2012 L ZZ 1

Counting the number of data points: count 5579

Aggregate syntax 5580

count (dataset { groupingClause }) (in a Data Set expression) 5581

count (component) { groupingClause } (in a Component expression within an aggr clause) 5582

count () (in an having clause) 5583

 5584

Analytic syntax 5585

count (dataset over (analyticClause)) (in a Data Set expression) 5586

count (component over (analyticClause)) (in a Component expression within a calc clause) 5587

 5588

Input parameters 5589

dataset the operand Data Set 5590

component the operand Component 5591

groupingClause see Aggregate invocation 5592

analyticClause see Analytic invocation 5593

 5594

Examples of valid syntaxes 5595

See Aggregate and Analytic invocations above, at the beginning of the section. 5596

 5597

Semantics for scalar operations 5598

This operator cannot be applied to scalar values. 5599

 5600

Input parameters type 5601

dataset :: dataset 5602

component :: component 5603

 5604

Result type 5605

result :: dataset { measure<integer> int_var } 5606

 | component<integer> 5607

 5608

Additional constraints 5609

None. 5610

 5611

Behaviour 5612

The operator returns the number of the input Data Points. 5613

For other details, see Aggregate and Analytic invocations. 5614

 5615

Examples 5616

Given the Data Set DS_1: 5617

167

 5618

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX iii

2011 A YY jjj

2011 B YY iii

2012 A XX kkk

2012 B YY iii

 5619

 5620

Example 1: DS_r := count (DS_1 group by Id_1) results in: 5621
 5622

DS_r

Id_1 Int_var

2011 3

2012 2

 5623

Example 1: use of count in a having clause: 5624

 5625

DS_r := sum (DS_1 group by Id_1 having count() > 2) results in: 5626

 5627

DS_r

Id_1 Int_var

2011 3

 5628

Minimum value : min 5629

Aggregate syntax 5630

min (dataset { groupingClause }) (in a Data Set expression) 5631

min (component) { groupingClause } (in a Component expression within an aggr clause) 5632

 5633

Analytic syntax 5634

min (dataset over (analyticClause)) (in a Data Set expression) 5635

min (component over (analyticClause)) (in a Component expression within a calc clause) 5636

 5637

Input parameters 5638

dataset the operand Data Set 5639

component the operand Component 5640

groupingClause see Aggregate invocation 5641

analyticClause see Analytic invocation 5642

 5643

Examples of valid syntaxes 5644

See Aggregate and Analytic invocations above, at the beginning of the section. 5645

 5646

Semantics for scalar operations 5647

This operator cannot be applied to scalar values. 5648

 5649

168

Input parameters type 5650

dataset :: dataset 5651

component :: component 5652

 5653

Result type 5654

result :: dataset 5655

 | component 5656

 5657

Additional constraints 5658

None. 5659

 5660

Behaviour 5661

The operator returns the minimum value of the input values. 5662

For other details, see Aggregate and Analytic invocations. 5663

 5664

Examples 5665

Given the Data Set DS_1: 5666

 5667

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

 5668

Example 1: DS_r := min (DS_1 group by Id_1) results in: 5669
 5670

DS_r

Id_1 Me_1

2011 3

2012 2

Maximum value : max 5671

Aggregate syntax 5672

max (dataset { groupingClause }) (in a Data Set expression) 5673

max (component) { groupingClause } (in a Component expression within an aggr clause) 5674

 5675

Analytic syntax 5676

max (dataset over (analyticClause)) (in a Data Set expression) 5677

max (component over (analyticClause)) (in a Component expression within a calc clause) 5678

 5679

Input parameters 5680

dataset the operand Data Set 5681

component the operand Component 5682

groupingClause see Aggregate invocation 5683

analyticClause see Analytic invocation 5684

 5685

169

Examples of valid syntaxes 5686

See Aggregate and Analytic invocations above, at the beginning of the section. 5687

 5688

Semantics for scalar operations 5689

This operator cannot be applied to scalar values. 5690

 5691

Input parameters type 5692

dataset :: dataset 5693

component :: component 5694

 5695

Result type 5696

result :: dataset 5697

 | component 5698

 5699

Additional constraints 5700

None. 5701

 5702

Behaviour 5703

The operator returns the maximum of the input values. 5704

For other details, see Aggregate and Analytic invocations. 5705

 5706

Examples 5707

Given the Data Set DS_1: 5708

 5709

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

 5710

Example 1: DS_r := max (DS_1 group by Id_1) results in: 5711
 5712

DS_r

Id_1 Me_1

2011 7

2012 4

Median value : median 5713

Aggregate syntax 5714

median (dataset { groupingClause }) (in a Data Set expression) 5715

median (component) { groupingClause } (in a Component expression within an aggr clause) 5716

 5717

Analytic syntax 5718

median (dataset over (analyticClause)) (in a Data Set expression) 5719

median (component over (analyticClause)) (in a Component expression within a calc clause) 5720

 5721

170

Input parameters 5722

dataset the operand Data Set 5723

component the operand Component 5724

groupingClause see Aggregate invocation 5725

analyticClause see Analytic invocation 5726

 5727

Examples of valid syntaxes 5728

See Aggregate and Analytic invocations above, at the beginning of the section. 5729

 5730

Semantics for scalar operations 5731

This operator cannot be applied to scalar values. 5732

 5733

Input parameters type 5734

dataset :: dataset {measure<number>_+} 5735

component :: component<number> 5736

 5737

Result type 5738

result :: dataset { measure<number> _+ } 5739

 | component<number> 5740

 5741

Additional constraints 5742

None. 5743

 5744

Behaviour 5745

The operator returns the median value of the input values. 5746

For other details, see Aggregate and Analytic invocations. 5747

 5748

Examples 5749

Given the Data Set DS_1: 5750

 5751

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

 5752

 5753

Example 1: DS_r := median (DS_1 group by Id_1) results in: 5754
 5755

DS_r

Id_1 Me_1

2011 5

2012 3

Sum : sum 5756

Aggregate syntax 5757

sum (dataset { groupingClause }) (in a Data Set expression) 5758

sum (component) { groupingClause } (in a Component expression within an aggr clause) 5759

 5760

171

Analytic syntax 5761

sum (dataset over (analyticClause)) (in a Data Set expression) 5762

sum (component over (analyticClause)) (in a Component expression within a calc clause) 5763

 5764

Input parameters 5765

dataset the operand Data Set 5766

component the operand Component 5767

groupingClause see Aggregate invocation 5768

analyticClause see Analytic invocation 5769

 5770

Examples of valid syntaxes 5771

See Aggregate and Analytic invocations above, at the beginning of the section. 5772

 5773

Semantics for scalar operations 5774

This operator cannot be applied to scalar values. 5775

 5776

Input parameters type 5777

dataset :: dataset { measure<number> _+ } 5778

component :: component<number> 5779

 5780

Result type 5781

result :: dataset { measure<number> _+ } 5782

 | component<number> 5783

 5784

Additional constraints 5785

None. 5786

 5787

Behaviour 5788

The operator returns the sum of the input values. 5789

For other details, see Aggregate and Analytic invocations. 5790

 5791

Examples 5792

Given the Data Set DS_1 : 5793

 5794

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

 5795

Example 1: DS_r := sum (DS_1 group by Id_1) results in: 5796
 5797

DS_r

Id_1 Me_1

2011 15

2012 6

 5798

172

Average value : avg 5799

Aggregate syntax 5800

avg (dataset { groupingClause }) (in a Data Set expression) 5801

avg (component) { groupingClause } (in a Component expression within an aggr clause) 5802

 5803

Analytic syntax 5804

avg (dataset over (analyticClause)) (in a Data Set expression) 5805

avg (component over (analyticClause)) (in a Component expression within a calc clause) 5806

 5807

Input parameters 5808

dataset the operand Data Set 5809

component the operand Component 5810

groupingClause see Aggregate invocation 5811

analyticClause see Analytic invocation 5812

 5813

Examples of valid syntaxes 5814

See Aggregate and Analytic invocations above, at the beginning of the section. 5815

 5816

Semantics for scalar operations 5817

This operator cannot be applied to scalar values. 5818

 5819

Input parameters type 5820

dataset :: dataset {measure<number> _+} 5821

component :: component<number> 5822

 5823

Result type 5824

result :: dataset { measure<number> _+ } 5825

 | component<number> 5826

Additional constraints 5827

None. 5828

 5829

Behaviour 5830

The operator returns the mean of the input values. 5831

For other details, see Aggregate and Analytic invocations. 5832

 5833

Examples 5834

Given the Data Set DS_1: 5835

 5836

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

 5837

Example 1: DS_r := avg (DS_1 group by Id_1) results in: 5838
 5839

DS_r

Id_1 Me_1

2011 5

173

2012 3

 5840

Population standard deviation : stddev_pop 5841

Aggregate syntax 5842

stddev_pop (dataset { groupingClause }) (in a Data Set expression) 5843

stddev_pop (component) { groupingClause } (in a Component expression within an aggr clause) 5844

 5845

Analytic syntax 5846

stddev_pop (dataset over (analyticClause)) (in a Data Set expression) 5847

stddev_pop (component over (analyticClause)) (in a Component expression within a calc clause) 5848

 5849

Input parameters 5850

dataset the operand Data Set 5851

component the operand Component 5852

groupingClause see Aggregate invocation 5853

analyticClause see Analytic invocation 5854

 5855

Examples of valid syntaxes 5856

See Aggregate and Analytic invocations above, at the beginning of the section. 5857

 5858

Semantics for scalar operations 5859

This operator cannot be applied to scalar values. 5860

 5861

Input parameters type 5862

dataset :: dataset { measure<number> _+ } 5863

component :: component<number> 5864

 5865

Result type 5866

result :: dataset { measure<number> _+ } 5867

 | component<number> 5868

 5869

Additional constraints 5870

None. 5871

 5872

Behaviour 5873

The operator returns the “population standard deviation” of the input values. 5874

For other details, see Aggregate and Analytic invocations. 5875

 5876

Examples 5877

 5878

Given the Data Set DS_1: 5879

 5880

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

 5881

Example 1: DS_r := stddev_pop (DS_1 group by Id_1) results in: 5882

174

 5883

DS_r

Id_1 Me_1

2011 1.633

2012 1

 5884

Sample standard deviation : stddev_samp 5885

Aggregate syntax 5886

stddev_samp (dataset { groupingClause }) (in a Data Set expression) 5887

stddev_samp (component) { groupingClause } (in a Component expr. within an aggr clause) 5888

 5889

Analytic syntax 5890

stddev_samp (dataset over (analyticClause)) (in a Data Set expression) 5891

stddev_samp (component over (analyticClause)) (in a Component expr. within a calc clause) 5892

 5893

Input parameters 5894

dataset the operand Data Set 5895

component the operand Component 5896

groupingClause see Aggregate invocation 5897

analyticClause see Analytic invocation 5898

 5899

Semantics for scalar operations 5900

This operator cannot be applied to scalar values. 5901

 5902

Examples of valid syntaxes 5903

See Aggregate and Analytic invocations above, at the beginning of the section. 5904

 5905

Input parameters type 5906

dataset :: dataset { measure<number> _+ } 5907

component :: component<number> 5908

 5909

Result type 5910

result :: dataset { measure<number> _+ } 5911

| component<number> 5912

 5913

Additional constraints 5914

None. 5915

 5916

Behaviour 5917

The operator returns the “sample standard deviation” of the input values. 5918

For other details, see Aggregate and Analytic invocations. 5919

 5920

Examples 5921

Given the Data Set DS_1: 5922

 5923

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

175

2011 B YY 7

2012 A XX 2

2012 B YY 4

 5924

Example 1: DS_r := stddev_samp (DS_1 group by Id_1) results in: 5925
 5926

DS_r

Id_1 Me_1

2011 2

2012 1.4142

 5927

Population variance : var_pop 5928

Aggregate syntax 5929

var_pop (dataset { groupingClause }) (in a Data Set expression) 5930

var_pop (component) { groupingClause } (in a Component expression within an aggr clause) 5931

 5932

Analytic syntax 5933

var_pop (dataset over (analyticClause)) (in a Data Set expression) 5934

var_pop (component over (analyticClause)) (in a Component expression within a calc clause) 5935

 5936

Input parameters 5937

dataset the operand Data Set 5938

component the operand Component 5939

groupingClause see Aggregate invocation 5940

analyticClause see Analytic invocation 5941

 5942

Examples of valid syntaxes 5943

See Aggregate and Analytic invocations above, at the beginning of the section. 5944

 5945

Semantics for scalar operations 5946

This operator cannot be applied to scalar values. 5947

 5948

Input parameters type 5949

dataset :: dataset {measure<number>_+} 5950

component :: component<number> 5951

 5952

Result type 5953

result :: dataset { measure<number> _+ } 5954

 | component<number> 5955

 5956

Additional constraints 5957

None. 5958

 5959

Behaviour 5960

The operator returns the “population variance” of the input values. 5961

For other details, see Aggregate and Analytic invocations. 5962

 5963

Examples 5964

Given the Data Set DS_1 : 5965

 5966

176

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

 5967

Example 1: DS_r := var_pop (DS_1 group by Id_1) results in: 5968
 5969

DS_r

Id_1 Me_1

2011 2,6667

2012 1

Sample variance : var_samp 5970

Aggregate syntax 5971

var_samp (dataset { groupingClause }) (in a Data Set expression) 5972

var_samp (component) { groupingClause } (in a Component expression within an aggr clause) 5973

 5974

Analytic syntax 5975

var_samp (dataset over (analyticClause)) (in a Data Set expression) 5976

var_samp (component over (analyticClause)) (in a Component expression within a calc clause) 5977

 5978

Input parameters 5979

dataset the operand Data Set 5980

component the operand Component 5981

groupingClause see Aggregate invocation 5982

analyticClause see Analytic invocation 5983

 5984

Examples of valid syntaxes 5985

See Aggregate and Analytic invocations above, at the beginning of the section. 5986

 5987

Semantics for scalar operations 5988

This operator cannot be applied to scalar values. 5989

 5990

Input parameters type 5991

dataset :: dataset {measure<number>_+} 5992

component :: component<number> 5993

 5994

Result type 5995

result :: dataset { measure<number> _+ } 5996

 | component<number> 5997

 5998

Additional constraints 5999

None. 6000

 6001

Behaviour 6002

The operator returns the sample variance of the input values. 6003

177

For other details, see Aggregate and Analytic invocations. 6004

 6005

Examples 6006

 6007

Given the Data Set DS_1 6008

 6009

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

 6010

Example 1: DS_r := var_samp (DS_1 group by [Id_1]) results in: 6011

 6012

DS_r

Id_1 Me_1

2011 4

2012 2

 6013

First value : first_value 6014

Syntax 6015

first_value (dataset over (analyticClause)) (in a Data Set expression) 6016

first_value (component over (analyticClause)) (in a Component expression within a calc clause) 6017

 6018

Input parameters 6019

dataset the operand Data Set 6020

component the operand Component 6021

analyticClause see Analytic invocation 6022

 6023

Examples of valid syntaxes 6024

See Analytic invocation above, at the beginning of the section. 6025

 6026

Semantics for scalar operations 6027

This operator cannot be applied to scalar values. 6028

 6029

Input parameters type 6030

dataset :: dataset { measure<scalar> _+ } 6031

component :: component<scalar> 6032

 6033

Result type 6034

result :: dataset 6035

 | component<scalar> 6036

 6037

Additional constraints 6038

The Aggregate invocation is not allowed. 6039

 6040

178

Behaviour 6041

The operator returns the first value (in the value order) of the set of Data Points that belong to the same analytic 6042

window as the current Data Point. 6043

When invoked at Data Set level, it returns the first value for each Measure of the input Data Set. The first value of 6044

different Measures can result from different Data Points. 6045

When invoked at Component level, it returns the first value of the specified Component. 6046

For other details, see Analytic invocation. 6047

 6048

Examples 6049

Given the Data Set DS_1 : 6050

 6051

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

 6052

Example 1: 6053

 6054

DS_r := first_value (DS_1 over (partition by Id_1, Id_2 order by Id_3 data points between 1 preceding and 6055

1 following)) 6056

 6057

results in: 6058

 6059

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 3 1

A XX 1995 4 5

A XX 1996 6 5

A YY 1993 5 3

A YY 1994 5 2

A YY 1995 2 2

A YY 1996 2 2

 6060

Last value : last_value 6061

Syntax 6062

last_value (dataset over (analyticClause)) (in a Data Set expression) 6063

last_value (component over (analyticClause)) (in a Component expression within a calc clause) 6064

 6065

Input parameters 6066

dataset the operand Data Set 6067

179

component the operand Component 6068

analyticClause see Analytic invocation 6069

 6070

Examples of valid syntaxes 6071

See Analytic invocation above, at the beginning of the section. 6072

 6073

Semantics for scalar operations 6074

This operator cannot be applied to scalar values. 6075

 6076

Input parameters type 6077

dataset :: dataset {measure<scalar> _+} 6078

component :: component<scalar> 6079

 6080

Result type 6081

result :: dataset 6082

 | component<scalar> 6083

 6084

Additional constraints 6085

The Aggregate invocation is not allowed. 6086

 6087

Behaviour 6088

The operator returns the last value (in the value order) of the set of Data Points that belong to the same analytic 6089

window as the current Data Point. 6090

When invoked at Data Set level, it returns the last value for each Measure of the input Data Set. The last value of 6091

different Measures can result from different Data Points. 6092

When invoked at Component level, it returns the last value of the speficied Component. 6093

For other details, see Analytic invocation. 6094

 6095

Examples 6096

 6097

Given the Data Set DS_1: 6098

 6099

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

 6100

 6101

Example 1: 6102

 6103

DS_r := last_value (DS_1 over (partition by Id_1, Id_2 order by Id_3 data points between 1 preceding and 6104

1 following)) 6105

 6106

results in: 6107

 6108

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 4 9

180

A XX 1994 7 9

A XX 1995 7 9

A XX 1996 7 8

A YY 1993 9 4

A YY 1994 10 4

A YY 1995 10 7

A YY 1996 10 7

 6109

Lag : lag 6110

Syntax 6111

 6112

in a Data Set expression: 6113

lag (dataset {, offset {, defaultValue } } over ({ partitionClause } orderClause)) 6114

 6115

In a Component expression within a calc clause: 6116

lag (component {, offset {, defaultValue } } over ({ partitionClause } orderClause)) 6117

 6118

Input parameters 6119

dataset the operand Data Set 6120

component the operand Component 6121

offset the relative position prior to the current Data Point 6122

defaultValue the value returned when the offset goes outside of the partition. 6123

partitionClause see Analytic invocation 6124

orderClause see Analytic invocation 6125

 6126

Examples of valid syntaxes 6127

See Analytic invocation above, at the beginning of the section. 6128

 6129

Semantics for scalar operations 6130

This operator cannot be applied to scalar values. 6131

 6132

Input parameters type 6133

dataset :: dataset 6134

component :: component 6135

offset :: integer [value > 0] 6136

default value :: scalar 6137

 6138

Result type 6139

result :: dataset 6140

 | component 6141

 6142

Additional constraints 6143

The Aggregate invocation is not allowed. 6144

The windowClause of the Analytic invocation syntax is not allowed. 6145

 6146

Behaviour 6147

In the ordered set of Data Points of the current partition, the operator returns the value(s) taken from the Data 6148

Point at the specified physical offset prior to the current Data Point. 6149

If defaultValue is not specified then the value returned when the offset goes outside the partition is NULL. 6150

For other details, see Analytic invocation. 6151

 6152

Examples 6153

Given the Data Set DS_1 : 6154

 6155

181

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

 6156

 6157

Example 1: DS_r := lag (DS_1 , 1 over (partition by Id_1 , Id_2 order by Id_3)) results in: 6158
 6159

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 NULL NULL

A XX 1994 3 1

A XX 1995 4 9

A XX 1996 7 5

A YY 1993 NULL NULL

A YY 1994 9 3

A YY 1995 5 4

A YY 1996 10 2

 6160

lead : lead 6161

Syntax 6162

 6163

in a Data Set expression: 6164
lead (dataset , {offset {, defaultValue } } over ({ partitionClause } orderClause)) 6165

 6166

in a Component expression within a calc clause: 6167

lead (component , {offset {, defaultValue } } over ({ partitionClause } orderClause)) 6168

 6169

Input parameters 6170

dataset the operand Data Set 6171

component the operand Component 6172

offset the relative position beyond the current Data Point 6173

defaultValue the value returned when the offset goes outide the partition. 6174

partitionClause see Analytic invocation 6175

orderClause see Analytic invocation 6176

 6177

Examples of valid syntaxes 6178

See Analytic invocation above, at the beginning of the section. 6179

 6180

Semantics for scalar operations 6181

This operator cannot be applied to scalar values. 6182

 6183

182

Input parameters type 6184

dataset :: dataset 6185

component :: component 6186

offset :: integer [value > 0] 6187

default value :: scalar 6188

 6189

Result type 6190

result :: dataset 6191

 | component 6192

 6193

Additional constraints 6194

The Aggregate invocation is not allowed. 6195

The windowClause of the Analytic invocation syntax is not allowed. 6196

 6197

Behaviour 6198

In the ordered set of Data Points of the current partition, the operator returns the value(s) taken from the Data 6199

Point at the specified physical offset beyond the current Data Point. 6200

If defaultValue is not specified, then the value returned when the offset goes outside the partition is NULL. 6201

For other details, see Analytic invocation. 6202

 6203

Examples 6204

Given the Data Set DS_1 6205

 6206

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

 6207

Example 1: DS_r := lead (DS_1 , 1 over (partition by Id_1 , Id_2 order by Id_3)) results in: 6208
 6209

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 4 9

A XX 1994 7 5

A XX 1995 6 8

A XX 1996 NULL NULL

A YY 1993 5 4

A YY 1994 10 2

A YY 1995 2 7

A YY 1996 NULL NULL

 6210

183

Rank : rank 6211

Syntax 6212

rank (over ({ partitionClause } orderClause)) (in a Component expression within a calc clause) 6213

 6214

Input parameters 6215

partitionClause see Analytic invocation 6216

orderClause see Analytic invocation 6217

 6218

Examples of valid syntaxes 6219

See Analytic invocation above, at the beginning of the section. 6220

 6221

Semantics for scalar operations 6222

This operator cannot be applied to scalar values. 6223

 6224

Input parameters type 6225

dataset :: dataset 6226

component :: component 6227

 6228

Result type 6229

result :: dataset { measure<integer> int_var } 6230

 | component<integer> 6231

 6232

Additional constraints 6233

The invocation at Data Set level is not allowed. 6234

The Aggregate invocation is not allowed. 6235

The windowClause of the Analytic invocation syntax is not allowed. 6236

 6237

Behaviour 6238
The operator returns an order number (rank) for each Data Point, starting from the number 1 and following the order 6239

specified in the orderClause. If some Data Points are in the same order according to the specified orderClause, the 6240

same order number (rank) is assigned and a gap appears in the sequence of the assigned ranks (for example, if four Data 6241

Points have the same rank 5, the following assigned rank would be 9). 6242

For other details, see Analytic invocation. 6243

 6244

Examples 6245

Given the Data Set DS_1: 6246

 6247

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 3 1

A XX 2001 4 9

A XX 2002 7 5

A XX 2003 6 8

A YY 2000 9 3

A YY 2001 5 4

A YY 2002 10 2

A YY 2003 5 7

 6248

 6249

Example 1: 6250

 6251

DS_r := DS_1 [calc Me2 := rank (over (partition by Id_1 , Id_2 order by Me_1)) results in: 6252
 6253

184

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 3 1

A XX 2001 4 2

A XX 2002 7 4

A XX 2003 6 3

A YY 2000 9 3

A YY 2001 5 1

A YY 2002 10 4

A YY 2003 5 1

 6254

Ratio to report : ratio_to_report 6255

Syntax 6256

ratio_to_report (dataset over (partitionClause)) (in a Data Set expression) 6257

ratio_to_report (component over (partitionClause)) (in a Component expr. within a calc clause) 6258

 6259

Input parameters 6260

dataset the operand Data Set 6261

component the operand Component 6262

partitionClause see Analytic invocation 6263

 6264

Examples of valid syntaxes 6265

See Analytic invocation above, at the beginning of the section. 6266

 6267

Semantics for scalar operations 6268

This operator cannot be applied to scalar values. 6269

 6270

Input parameters type 6271

dataset :: dataset { measure<number>_+ } 6272

component :: component<number> 6273

 6274

Result type 6275

result :: dataset { measure<number> _+ } 6276

 | component<number> 6277

 6278

Additional constraints 6279

The Aggregate invocation is not allowed. 6280

The orderClause and windowClause of the Analytic invocation syntax are not allowed. 6281

 6282

Behaviour 6283

The operator returns the ratio between the value of the current Data Point and the sum of the values of the 6284

partition which the current Data Point belongs to. 6285

For other details, see Analytic invocation. 6286

 6287

Examples 6288

Given the Data Set DS_1: 6289

 6290

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 3 1

185

A XX 2001 4 3

A XX 2002 7 5

A XX 2003 6 1

A YY 2000 12 0

A YY 2001 8 8

A YY 2002 6 5

A YY 2003 14 -3

 6291
 6292

Example 1: DS_r := ratio_to_report (DS_1 over (partition by Id_1, Id_2)) results in: 6293

 6294

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 0.15 0,1

A XX 2001 0.2 0.3

A XX 2002 0.35 0.5

A XX 2003 0.3 0.1

A YY 2000 0.3 0

A YY 2001 0.2 0.8

A YY 2002 0.15 0.5

A YY 2003 0.35 -0.3

 6295

186

VTL-ML - Data validation operators 6296

check_datapoint 6297

Syntax 6298

check_datapoint (op , dpr { components listComp } {

output output }) 6299

listComp ::= comp { , comp }* 6300

output ::= invalid | all | all_measures 6301

Input parameters 6302

op the Data Set to check 6303

dpr the Data Point Ruleset to be used 6304

listComp if dpr is defined on Value Domains then listComp is the list of Components of op to be 6305

associated (in positional order) to the conditioning Value Domains defined in dpr. If dpr is 6306

defined on Variables then listComp is the list of Components of op to be associated (in 6307

positional order) to the conditioning Variables defined in dpr (for documentation purposes). 6308

comp Component of op 6309

output specifies the Data Points and the Measures of the resulting Data Set: 6310

invalid the resulting Data Set contains a Data Point for each Data Point of op and 6311

each Rule in dpr that evaluates to FALSE on that Data Point. The resulting 6312

Data Set has the Measures of op. 6313

all the resulting Data Set contains a data point for each Data Point of op and 6314

each Rule in dpr. The resulting Data Set has the boolean Measure bool_var. 6315

all_measures the resulting Data Set contains a Data Point for each Data Point of op and 6316

each Rule in dpr. The resulting dataset has the Measures of op and the 6317

boolean Measure bool_var. 6318

If not specified then output is assumed to be invalid. See the Behaviour for further details. 6319

Examples of valid syntaxes 6320

check_datapoint (DS1, DPR invalid) 6321

check_datapoint (DS1, DPR all_measures) 6322

 6323

Semantics for scalar operations 6324

This operator cannot be applied to scalar values. 6325

 6326

Input parameters type: 6327

op :: dataset 6328

dpr :: name < datapoint > 6329

comp :: name < component > 6330

 6331

Result type: 6332

result :: dataset 6333

 6334

Additional constraints 6335

If dpr is defined on Value Domains then it is mandatory to specify listComp. The Components specified in 6336

listComp must belong to the operand op and be defined on the Value Domains specified in the signature of dpr. 6337

If dpr is defined on Variables then the Components specified in the signature of dpr must belong to the operand 6338

op. 6339

If dpr is defined on Variables and listComp is specified then the Components specified in listComp are the same, 6340

in the same order, as those specified in op (they are provided for documentation purposes). 6341

 6342

187

Behaviour 6343

It returns a Data Set having the following Components: 6344

 the Identifier Components of op 6345

 the Identifier Component ruleid whose aim is to identify the Rule that has generated the actual Data 6346

Point (it contains at least the Rule name specified in dpr 8) 6347

 if the output parameter is invalid: the original Measures of op (no boolean measure) 6348

 if the output parameter is all: the boolean Measure bool_var whose value is the result of the evaluation 6349

of a rule on a Data Point (TRUE, FALSE or NULL). 6350

 if the output parameter is all_measures: the original measures of op and the boolean Measure bool_var 6351

whose value is the result of the evaluation of a rule on a Data Point (TRUE, FALSE or NULL). 6352

 the Measure errorcode that contains the errorcode specified in the rule 6353

 the Measure errorlevel that contains the errorlevel specified in the rule 6354

 6355

A Data Point of op can produce several Data Points in the resulting Data Set, each of them with a different value 6356

of ruleid. If output is invalid then the resulting Data Set contains a Data Point for each Data Point of op and each 6357

rule of dpr that evaluates to FALSE. If output is all or all_measures then the resulting Data Set contains a Data 6358

Point for each Data Point of op and each rule of dpr. 6359

Examples 6360

define datapoint ruleset dpr1 (variable Id_3, Me_1) is 6361

 when Id_3 = “CREDIT” then Me_1 >= 0 errorcode “Bad credit” 6362

 ; when Id_3 = “DEBIT” then Me_1 >= 0 errorcode “Bad debit” 6363

end datapoint ruleset 6364
 6365

Given the Data Set DS_1: 6366

 6367

DS_1

Id_1 Id_2 Id_3 Me_1

2011 I CREDIT 10

2011 I DEBIT -2

2012 I CREDIT 10

2012 I DEBIT 2

 6368

DS_r := check_datapoint (DS_1, dpr1) results in: 6369
 6370

DS_r

Id_1 Id_2 Id_3 ruleid obs_value errorcode errorlevel

2011 I DEBIT dpr1_2 -2 Bad debit

 6371

 6372

DS_r := check_datapoint (DS_1, dpr1 all) results in: 6373
 6374

DS_r

Id_1 Id_2 Id_3 ruleid bool_var errorcode errorlevel

2011 I CREDIT dpr1_1 true

2011 I CREDIT dpr1_2 true

2011 I DEBIT dpr1_1 true

8
 The content of ruleid maybe personalised in the implementation

188

2011 I DEBIT dpr1_2 false Bad debit

2012 I CREDIT dpr1_1 true

2012 I CREDIT dpr1_2 true

2012 I DEBIT dpr1_1 true

2012 I DEBIT dpr1_2 true

 6375

check_hierarchy 6376

Syntax 6377

check_hierarchy (op , hr { condition condComp { , condComp }* } { rule ruleComp } 6378

 { mode } { input } { output }) 6379

mode ::= non_null | non_zero | partial_null | partial_zero | always_null | always_zero 6380

input ::= dataset | dataset_priority 6381

output ::= invalid | all | all_measures 6382

 6383

 6384

Input parameters 6385

op the Data Set to be checked 6386

hr the hierarchical Ruleset to be used 6387

condComp condComp is a Component of op to be associated (in positional order) to the conditioning 6388

Value Domains or Variables defined in hr (if any). 6389

ruleComp ruleComp is the Identifier of op to be associated to the rule Value Domain or Variable defined 6390

in hr. 6391

mode this parameter specifies how to treat the possible missing Data Points corresponding to the 6392

Code Items in the left and right sides of the rules and which Data Points are produced in 6393

output. The meaning of the possible values of the parameter is explained below. 6394

input this parameter specifies the source of the values used as input of the comparisons. The 6395

meaning of the possible values of the parameter is explained below. 6396

output this parameter specifies the structure and the content of the resulting dataset. The meaning of 6397

the possible values of the parameter is explained below. 6398

 6399

Examples of valid syntaxes 6400

check_hierarchy (DS1, HR_2 non_null dataset invalid) 6401

check_hierarchy (DS1, HR_3 non_zero dataset_priority all) 6402

 6403

Input parameters type 6404

op :: dataset { measure<number> _ } 6405

hr :: name < hierarchical > 6406

condComp :: name < component > 6407

ruleComp :: name < identifier > 6408

 6409

Result type 6410

result :: dataset {measure<number> _ } 6411

 6412

Additional constraints 6413

If hr is defined on Value Domains then it is mandatory to specify the condition (if any in the ruleset hr) and the 6414

rule parameters. Moreover, the Components specified as condComp and ruleComp must belong to the operand 6415

189

op and must take values on the Value Domains corresponding, in positional order, to the ones specified in the 6416

condition and rule parameter of hr. 6417

If hr is defined on Variables, the specification of condComp and ruleComp is not needed, but they can be 6418

specified all the same if it is desired to show explicitly in the invocation which are the involved Components: in 6419

this case, the condComp and ruleComp must be the same and in the same order as the Variables specified in in 6420

the condition and rule signatures of hr. 6421

 6422

 6423

Behaviour 6424

 6425

The check_hierarchy operator applies the Rules of the Ruleset hr to check the Code Items Relations between 6426

the Code Items present in op (as for the Code Items Relations, see the User Manual - section “Generic Model for 6427

Variables and Value Domains”). The operator checks if the relation between the left and the right member is 6428

fulfilled, giving TRUE in positive case and FALSE in negative case. 6429

 6430

The Attribute propagation rule is applied on each group of Data Points which contributes to the same Data Point 6431

of the result. 6432

 6433

The behaviours relevanto to the different options of the input parameters are the following. 6434

First, the parameter input is used to determine the source of the Data Points used as input of the 6435

check_hierarchy. The possible options of the parameter input and the corresponding behaviours are the 6436

following: 6437

dataset this option addresses the case where all the input Data Points of all the Rules of the Ruleset are 6438

expected to be taken from the input Data Set (the operand op). 6439

 For each Rule of the Ruleset and for each item on the left and right sides of the Rule, the 6440

operator takes the input Data Points exclusively from the operand op. 6441

dataset_prority this option addresses the case where the input Data Points of all the Rules of the Ruleset are 6442

preferably taken from the input Data Set (the operand op), however if a valid Measure value 6443

for an expected Data Point is not found in op, the attempt is made to take it from the computed 6444

output of a (possible) other Rule. 6445

 For each Rule of the Ruleset and for each item on the left and right sides of the Rule: 6446

 if the item is not defined as the result (left side) of another Rule that applies the Code Item 6447

relation “is equal to” (=), the current Rule takes the input Data Points from the operand 6448

op. 6449

 if the item is defined as result of another Rule R that applies the Code Item relation “is 6450

equal to” (=), then: 6451

o if an expected input Data Point exists in op and its Measure is not NULL, then the 6452

current Rule takes such Data Point from op; 6453

o if an expected input Data Point does not exist in op or its measure is NULL, then 6454

the current Rule takes the Data Point (if any) that has the same Identifiers’ values 6455

from the computed output of the other Rule R; 6456

if the parameter input is not specified then it is assumed to be dataset. 6457

Then the parameter mode is considered, to determine the behaviour for missing Data Points and for the Data 6458

Points to be produced in the output. The possible options of the parameter mode and the corresponding 6459

behaviours are the following: 6460

non_null the result Data Point is produced when all the items involved in the comparison exist and have 6461

not NULL Measure value (i.e., when no Data Point corresponding to the Code Items of the left 6462

and right sides of the rule is missing or has NULL Measure value); under this option, in 6463

evaluating the comparison, the possible missing Data Points corresponding to the Code Items 6464

of the left and right sides of the rule are considered existing and having a NULL Measure value; 6465

non_zero the result Data Point is produced when at least one of the items involved in the comparison 6466

exist and have Measure not equal to 0 (zero); the possible missing Data Points corresponding 6467

to the Code Items of the left and right sides of the rule are considered existing and having a 6468

Measure value equal to 0; 6469

partial_null the result Data Point is produced if at least one Data Point corresponding to the Code Items of 6470

the left and right sides of the rule is found (whichever is its Measure value); the possible 6471

190

missing Data Points corresponding to the Code Items of the left and right sides of the rule are 6472

considered existing and having a NULL Measure value; 6473

partial_zero the result Data Point is produced if at least one Data Point corresponding to the Code Items of 6474

the left and right sides of the rule is found (whichever is its Measure value); the possible 6475

missing Data Points corresponding to the Code Items of the left and right sides of the rule are 6476

considered existing and having a Measure value equal to 0 (zero); 6477

always_null the result Data Point is produced in any case; the possible missing Data Points corresponding 6478

to the Code Items of the left and right sides of the rule are considered existing and having a 6479

Measure value equal to NULL; 6480

always_zero the result Data Point is produced in any case; the possible missing Data Points corresponding 6481

to the Code Items of the left and right sides of the rule are considered existing and having a 6482

Measure value equal to 0 (zero); 6483

If the parameter mode is not specified, then it is assumed to be non_null. 6484

The following table summarizes the behaviour of the options of the parameter “mode” 6485

 6486

OPTION of the
MODE

PARAMETER:

Missing Data
Points are

considered:

Null Data
Points are

considered:

Condition for
evaluating the rule

Returned Data
Points

Non_null NULL NULL
If all the involved Data

Points are not NULL

Only not NULL
Data Points (Zeros
are returned too)

Non_zero Zero NULL
If at least one of the

involved Data Points is
<> zero

Only not zero Data
Points (NULLS are

returned too)

Partial_null NULL NULL
If at least one of the

involved Data Points
is not NULL

Data Points of any
value (NULL, not

NULL and zero too)

Partial_zero Zero NULL
If at least one of the

involved Data Points
is not NULL

Data Points of any
value (NULL, not

NULL and zero too)

Always_null NULL NULL Always
Data Points of any
value (NULL, not

NULL and zero too)

Always_zero Zero NULL Always
Data Points of any
value (NULL, not

NULL and zero too)

 6487

Finally the parameter output is considered, to determine the structure and content of the resulting Data Set. The 6488

possible options of the parameter output and the corresponding behaviours are the following: 6489

all all the Data Points produced by the comparison are returned, both the valid ones (TRUE) and 6490

the invalid ones (FALSE) besides the possible NULL ones. The result of the comparison is 6491

returned in the boolean Measure bool_var. The original Measure Component of the Data Set op 6492

is not returned. 6493

invalid only the invalid (FALSE) Data Points produced by the comparison are returned. The result of 6494

the comparison (boolean Measure bool_var) is not returned. The original Measure Component 6495

of the Data Set op is returned and contains the Measure values taken from the Data Points on 6496

the left side of the rule. 6497

all_measures all the Data Points produced by the comparison are returned, both the valid ones (TRUE) and 6498

the invalid ones (FALSE) besides the possible NULL ones. The result of the comparison is 6499

returned in the boolean Measure bool_var. The original Measure Component of the Data Set op 6500

is returned and contains the Measure values taken from the Data Points on the left side of the 6501

rule. 6502

191

If the parameter output is not specified then it is assumed to be invalid. 6503

In conclusion, the operator returns a Data Set having the following Components: 6504

 all the Identifier Components of op 6505

 the additional Identifier Component ruleid, whose aim is to identify the Rule that has generated the 6506

actual Data Point (it contains at least the Rule name specified in hr 9) 6507

 if the output parameter is all: the boolean Measure bool_var whose values are the result of the 6508

evaluation of the Rules (TRUE, FALSE or NULL). 6509

 if the output parameter is invalid: the original Measure of op, whose values are taken from the Measure 6510

values of the Data Points of the left side of the Rule 6511

 if the output parameter is all_measures: the boolean Measure bool_var, whose value is the result of the 6512

evaluation of a Rule on a Data Point (TRUE, FALSE or NULL), and the original Measure of op, whose 6513

values are taken from the Measure values of the Data Points of the left side of the Rule 6514

 the Measure imbalance, which contains the difference between the Measure values of the Data Points on 6515

the left side of the Rule and the Measure values of the corresponding calculated Data Points on the right 6516

side of the Rule 6517

 the Measure errorcode, which contains the errorcode value specified in the Rule 6518

 the Measure errorlevel, which contains the errorlevel value specified in the Rule 6519

 6520

Note that a gereric Data Point of op can produce several Data Points in the resulting Data Set, one for each Rule 6521

in which the Data Point appears as the left member of the comparison. 6522

 6523
 6524

Examples 6525

See also the examples in define hierarchical ruleset. 6526

 6527

Given the following hierarchical ruleset: 6528

 6529

define hierarchical ruleset HR_1 (valuedomain rule VD_1) is 6530

 R010 : A = J + K + L errorlevel 5 6531

; R020 : B = M + N + O errorlevel 5 6532

; R030 : C = P + Q errorcode XX errorlevel 5 6533

; R040 : D = R + S errorlevel 1 6534

; R060 : F = Y + W + Z errorlevel 7 6535

; R070 : G = B + C 6536

; R080 : H = D + E errorlevel 0 6537

; R090 : I = D + G errorcode YY errorlevel 0 6538

; R100 : M >= N errorlevel 5 6539

; R110 : M <= G errorlevel 5 6540

end hierarchical ruleset 6541

 6542

And given the operand Data Set DS_1 (where At_1 is viral and the propagation rule says that the alphabetic 6543

order prevails the NULL prevails on the alphabetic characters and the Attribute value for missing Data Points is 6544

assumed as NULL): 6545

 6546

DS_1

Id_1 Id_2 Me_1

2010 A 5

2010 B 11

2010 C 0

2010 G 19

2010 H NULL

9
 The content of ruleid maybe personalised in the implementation

192

2010 I 14

2010 M 2

2010 N 5

2010 O 4

2010 P 7

2010 Q -7

2010 S 3

2010 T 9

2010 U NULL

2010 V 6

 6547

Example 1: DS_r := check_hierarchy (DS_1, HR_1 rule Id_2 partial_null all) results in: 6548

 6549

DS_r

Id_1 Id_2 ruleid Bool_var imbalance errorcode errorlevel

2010 A R010 NULL NULL NULL 5

2010 B R020 TRUE 0 NULL 5

2010 C R030 TRUE 0 XX 5

2010 D R040 NULL NULL NULL 1

2010 E R050 NULL NULL NULL 0

2010 F R060 NULL NULL NULL 7

2010 G R070 FALSE 8 NULL NULL

2010 H R080 NULL NULL NULL 0

2010 I R090 NULL NULL YY 0

2010 M R100 FALSE -3 NULL 5

2010 M R110 TRUE -17 NULL 5

 6550

 6551

check 6552

Syntax 6553

check (op { errorcode errorcode } { errorlevel errorlevel } { imbalance imbalance } { output }) 6554

output ::= invalid | all 6555

Input parameters 6556

op a boolean Data Set (a boolean condition expressed on one or more Data Sets) 6557

errorcode the error code to be produced when the condition evaluates to FALSE. It must be a valid value 6558

of the errorcode_vd Value Domain (or string if the errorcode_vd Value Domain is not found). 6559

It can be a Data Set or a scalar. If not specified then errorcode is NULL. 6560

errorlevel the error level to be produced when the condition evaluates to FALSE. It must be a valid value 6561

of the errorlevel_vd Value Domain (or integer if the errorcode_vd Value Domain is not found). 6562

It can be a Data Set or a scalar. If not specified then errorlevel is NULL. 6563

193

imbalance the imbalance to be computed. imbalance is a numeric mono-measure Data Set with the same 6564

Identifiers of op. If not specified then imbalance is NULL. 6565

output specifies which Data Points are returned in the resulting Data Set: 6566

invalid returns the Data Points of op for which the condition evaluates to 6567

FALSE 6568

all returns all Data Points of op 6569

If not specified then output is all. 6570

Examples of valid syntaxes 6571

check (DS1 > DS2 errorcode myerrorcode errorlevel myerrorlevel imbalance DS1 - DS2 invalid) 6572

Input parameters type: 6573

op :: dataset 6574

errorcode :: errorcode_vd 6575

errorlevel :: errorlevel_vd 6576

imbalance :: number 6577

Result type: 6578

result :: dataset 6579

Additional constraints 6580

op has exactly a boolean Measure Component. 6581

Behaviour 6582

It returns a Data Set having the following components: 6583

 the Identifier Components of op 6584

 a boolean Measure named bool_var that contains the result of the evaluation of the boolean dataset op 6585

 the Measure imbalance that contains the specified imbalance 6586

 the Measure errorcode that contains the specified errorcode 6587

 the Measure errorlevel that contains the specified errorlevel 6588

If output is all then all data points are returned. If output is invalid then only the Data Points where bool_var is 6589

FALSE are returned. 6590

 6591

Examples 6592

 6593

Given the Data Sets DS_1 and DS_2 : 6594

 6595

DS_1

Id_1 Id_2 Me_1

2010 I 1

2011 I 2

2012 I 10

2013 I 4

2014 I 5

2015 I 6

2010 D 25

2011 D 35

2012 D 45

194

2013 D 55

2014 D 50

2015 D 75

 6596

DS_2

Id_1 Id_2 Me_1

2010 I 9

2011 I 2

2012 I 10

2013 I 7

2014 I 5

2015 I 6

2010 D 50

2011 D 35

2012 D 40

2013 D 55

2014 D 65

2015 D 75

 6597

Example 1: DS_r := check (DS1 >= DS2 imbalance DS1 - DS2) returns: 6598

 6599

DS_r

Id_1 Id_2 bool_var imbalance errorcode errorlevel

2010 I FALSE -8 NULL NULL

2011 I TRUE 0 NULL NULL

2012 I TRUE 0 NULL NULL

2013 I FALSE -3 NULL NULL

2014 I TRUE 0 NULL NULL

2015 I TRUE 0 NULL NULL

2010 D FALSE -25 NULL NULL

2011 D TRUE 0 NULL NULL

2012 D TRUE 5 NULL NULL

2013 D TRUE 0 NULL NULL

2014 D FALSE -15 NULL NULL

2015 D TRUE 0 NULL NULL

 6600

195

VTL-ML - Conditional operators 6601

if-then-else : if 6602

 6603

Syntax 6604

if condition then thenOperand else elseOperand 6605

 6606

Input parameters 6607

 6608

condition a Boolean condition (dataset, component or scalar) 6609

thenOperand the operand returned when condition evaluates to true 6610

elseOperand the operand returned when condition evaluates to false 6611

 6612

Examples of valid syntaxes 6613

if A > B then A else B 6614

 6615

Semantics for scalar operations 6616

The if operator returns thenOperand if condition evaluates to true, elseOperand otherwise. For example, 6617

considering the statement: 6618

if x1 > x2 then 2 else 5, 6619

for x1 = 3, x2 =0 it returns 2 6620

for x1 = 0, x2 =3 it returns 5 6621

 6622

Input Parameters type 6623

condition :: dataset { measure <boolean> _ } 6624

| component<Boolean> 6625

| boolean 6626

thenOperand :: dataset 6627

| component 6628

| scalar 6629

elseOperand :: dataset 6630

| component 6631

| scalar 6632

 6633

Result type 6634

result :: dataset 6635

| component< 6636

| scalar 6637

 6638

Additional constraints 6639

 The operands thenOperand and elseOperand must be of the same scalar type. 6640

 If the operation is at scalar level, thenOperand and elseOperand are scalar then condition must be 6641

scalar too (a boolean scalar). 6642

 If the operation is at Component level, at least one of thenOperand and elseOperand is a 6643

Component (the other one can be scalar) and condition must be a Component too (a boolean 6644

Component); thenOperand, elseOperand and the other Components referenced in condition must 6645

belong to the same Data Set. 6646

 If the operation is at Data Set level, at least one of thenOperand and elseOperand is a Data Set (the 6647

other one can be scalar) and condition must be a Data Set too (having a unique boolean Measure) 6648

and must have the same Identifiers as thenOperand or/and ElseOperand 6649

o If thenOperand and elseOperand are both Data Sets then they must have the same 6650

Components in the same roles 6651

o If one of thenOperand and elseOperand is a Data Set and the other one is a scalar, the 6652

Measures of the operand Data Set must be all of the same scalar type as the scalar operand. 6653

 6654

 6655

196

Behaviour 6656

For operations at Component level, the operation is applied for each Data Point of the unique input Data Set, the 6657

if-then-else operator returns the value from the thenOperand Component when condition evaluates to true, 6658

otherwise it returns the value from the elseOperand Component. If one of the operands thenOperand or 6659

elseOperand is scalar, such a scalar value can be returned depending on the outcome of the condition. 6660

For operations at Data Set level, the if-then-else operator returns the Data Point from thenOperand when the 6661

Data Point of condition having the same Identifiers’ values evaluates to true, and returns the Data Point from 6662

elseOperand otherwise. If one of the operands thenOperand or elseOperand is scalar, such a scalar value can 6663

be returned (depending on the outcome of the condition) and in this case it feeds the values of all the Measures 6664

of the result Data Point. 6665

The behaviour for two Data Sets can be procedurally explained as follows. First the condition Data Set is 6666

evaluated, then its true Data Points are inner joined with thenOperand and its false Data Points are inner 6667

joined with elseOperand, finally the union is made of these two partial results (the condition ensures that there 6668

cannot be conflicts in the union). 6669

 6670

Examples 6671

 6672

Example 1: given the operand Data Sets DS_cond, DS_1, DS_2 : 6673
 6674

DS_cond

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total M 5451780

2012 B Total F 5643070

2012 G Total M 5449803

2012 G Total F 5673231

2012 S Total M 23099012

2012 S Total F 23719207

2012 F Total M 31616281

2012 F Total F 33671580

2012 I Total M 28726599

2012 I Total F 30667608

2012 A Total M NULL

2012 A Total F NULL

 6675

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 S Total F 25.8

2012 F Total F NULL

2012 I Total F 20.9

2012 A Total M 6.3

 6676

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total M 0.12

2012 G Total M 22.5

2012 S Total M 23.7

2012 A Total F NULL

 6677

197

DS_r := if (DS_cond#Id_4 = "F") then DS_1 else DS_2 returns: 6678
 6679

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 S Total F 25.8

2012 F Total F NULL

2012 I Total F 20.9

Nvl : nvl 6680

Syntax 6681
nvl (op1 , op2) 6682

 6683

Input parameters 6684

op1 the first operand 6685

op2 the second operand 6686

 6687

Examples of valid syntaxes 6688

nvl (ds1#m1, 0) 6689

 6690

Semantics for scalar operations 6691

The operator nvl returns op2 when op1 is null, otherwise op1. For example: 6692

nvl (5, 0) returns 5 6693

nvl (null, 0) returns 0 6694

 6695

Input Parameters type 6696

op1 :: dataset 6697

| component<scalar> 6698

| scalar 6699

 6700

op2 :: dataset 6701

| component 6702

| <scalar> 6703

 6704

Result type 6705

result :: dataset 6706

| component 6707

| scalar 6708

 6709

Additional constraints 6710

If op1 and op2 are scalar values then they must be of the same type. 6711

If op1 and op2 are Components then they must be of the same type. 6712

If op1 and op2 are Data Sets then they must have the same Components. 6713

 6714

Behaviour 6715

The operator nvl returns the value from op2 when the value from op1 is null, otherwise it returns the value from 6716

op1. 6717

The operator has the typical behaviour of the operators applicable on two scalar values or Data Sets or Data Set 6718

Components. 6719

Also the following statement gives the same result: if isnull (op1) then op2 else op1 6720

 6721

Examples 6722

 6723

Example 1: Given the input Data Set DS_1 6724
 6725

198

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total NULL

2012 M Total Total 417546

2012 F Total Total 5401267

2012 N Total Total NULL

 6726

DS_r := nvl (DS_1, 0) returns: 6727
 6728

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total 0

2012 M Total Total 417546

2012 F Total Total 5401267

2012 N Total Total 0

199

VTL-ML - Clause operators 6729

Filtering Data Points : filter 6730

 6731

Syntax 6732

op [filter filterCondition] 6733

 6734

Input parameters 6735

op the operand 6736

filterCondition the filter condition 6737

 6738

Examples of valid syntaxes 6739

DS_1 [filter Me_3 > 0] 6740

DS_1 [filter Me_3 + Me_2 <= 0] 6741

 6742

Semantics for scalar operations 6743

This operator cannot be applied to scalar values. 6744

 6745

Input parameters type: 6746

op :: dataset 6747

filterCondition :: component<boolean> 6748

 6749

Result type: 6750

result :: dataset 6751

 6752

Additional constraints: 6753
None. 6754

 6755

Behaviour 6756

The operator takes as input a Data Set (op) and a boolean Component expression (filterCondition) and filters the 6757

input Data Points according to the evaluation of the condition. When the expression is TRUE the Data Point is 6758

kept in the result, otherwise it is not kept (in other words, it filters out the Data Points of the operand Data Set 6759

for which filterCondition condition evaluates to FALSE or NULL). 6760

 6761

Examples 6762

 6763

Given the Data Set DS_1: 6764

DS_1

Id_1 Id_2 Id_3 Me_1 At_1

1 A XX 2 E

1 A YY 2 F

1 B XX 20 F

1 B YY 1 F

2 A XX 4 E

2 A YY 9 F

 6765

Example1: DS_r := DS_1 [filter Id_1 = 1 and Me_1 < 10] results in: 6766

 6767

DS_r

Id_1 Id_2 Id_3 Me_1 At_1

200

1 A XX 2 E

1 A YY 2 F

1 B YY 1 F

Calculation of a Component : calc 6768

 6769

Syntax 6770
op [calc { calcRole } calcComp := calcExpr { , { calcRole } calcComp := calcExpr }*] 6771

 6772

 calcRole ::= identifier | measure | attribute | viral attribute 6773

 6774

Input parameters 6775

op the operand 6776

calcRole the role to ba assigned to a Component to be calculated 6777

calcComp the name of a Component to be calculated 6778

calcExpr expression at component level, having only Components of the input Data Sets as operands, 6779

used to calculate a Component 6780

 6781

Examples of valid syntaxes 6782

DS_1 [calc Me_3 := Me_1 + Me_2] 6783

 6784

Semantics for scalar operations 6785

This operator cannot be applied to scalar values. 6786

 6787

Input parameters type: 6788

op :: dataset 6789

calcComp :: name < component > 6790

calcExpr :: component<scalar> 6791

 6792

Result type: 6793

result :: dataset 6794

 6795

Additional constraints 6796

The calcComp parameter cannot be the name of an Identifier component. 6797

All the components used in calcComp must belong to the operand Data Set op. 6798

 6799

Behaviour 6800

The operator calculates new Identifier, Measure or Attribute Components on the basis of sub-expressions at 6801

Component level. Each Component is calculated through an independent sub-expression. It is possible to specify 6802

the role of the calculated Component among measure, identifier, attribute, or viral attribute, therefore the calc 6803

clause can be used also to change the role of a Component when possible. The keyword viral allows controlling 6804

the virality of the calculated Attributes (for the attribute propagation rule see the User Manual). When the role is 6805

omitted, the following rule is applied: if the component exists in the operand Data Set then it maintains its role; if 6806

the component does not exist in the operand Data Set then its role is Measure. 6807

The calcExpr sub-expressions are independent one another, they can only reference Components of the input 6808

Data Set and cannot use Components generated, for example, by other calcExpr. If the calculated Component is a 6809

new Component, it is added to the output Data Set. If the Calculated component is a Measure or an Attribute that 6810

already exists in the input Data Set, the calculated values overwrite the original values. If the calculated 6811

Component is an Identifier that already exists in the input Data Set, an exception is raised because overwriting 6812

an Identifier Component is forbidden for preserving the functional behaviour. Analytic invocations can be used 6813

in the calc clause. 6814

 6815

 6816

Examples 6817

 6818

 6819

Given the Data Set DS_1: 6820

201

DS_1

Id_1 Id_2 Id_3 Me_1

1 A CA 20

1 B CA 2

2 A CA 2

 6821

Example1: DS_r := DS_1 [calc Me_1:= Me_1 * 2] results in: 6822

 6823

DS_r

Id_1 Id_2 Id_3 Me_1

1 A CA 40

1 B CA 4

2 A CA 4

 6824

Example2: DS_r := DS_1 [calc attribute At_1:= “EP”] results in: 6825

 6826

DS_r

Id_1 Id_2 Id_3 Me_1 At_1

1 A CA 40 EP

1 B CA 4 EP

2 A CA 4 EP

 6827

Aggregation : aggr 6828

 6829

Syntax 6830

op [aggr aggrClause { groupingClause }] 6831

 6832

aggrClause ::= { aggrRole } aggrComp := aggrExpr 6833

{ , { aggrRrole } aggrComp:= aggrExpr }
*
 6834

 6835

groupingClause ::= { group by groupingId {, gropuingId }* 6836

| group except groupingId {, groupingId }* 6837

| group all conversionExpr }
1
 6838

 { having havingCondition } 6839

 6840
aggrRole::= measure | attribute | viral attribute 6841

 6842

 6843

Input Parameters 6844

op the operand 6845

aggrClause clause that specifies the required aggregations, i.e., the aggregated Components to be 6846

calculated, their roles and their calculation algorithm, to be applied on the joined and 6847

filtered Data Points 6848

aggrRole the role of the aggregated Component to be calculated 6849

aggrComp the name of the aggregated Component to be calculated; this is a dependent Component 6850

of the result (Measure or Attribute, not Identifier) 6851

202

aggrExpr expression at component level, having only Components of the input Data Sets as 6852

operands, which invokes an aggregate operator (e.g. avg, count, max … , see also the 6853

corresponding sections) to perform the desired aggregation. Note that the count 6854

operator is used in an aggrClause without parameters, e.g.: 6855

DS_1 [aggr Me_1 := count () group by Id_1)] 6856

groupingClause the following alternative grouping options: 6857

group by the Data Points are grouped by the values of the specified Identifiers 6858

(groupingId). The Identifiers not specified are dropped in the result. 6859

group except the Data Points are grouped by the values of the Identifiers not 6860

specified as groupingId. The Identifiers specified as groupingId are 6861

dropped in the result. 6862

group all converts the values of an Identifier Component using conversionExpr 6863

and keeps all the resulting Identifiers. 6864

groupingId Identifier Component to be kept (in the group by clause) or dropped (in the group 6865

except clause). 6866

conversionExpr specifies a conversion operator (e.g., time_agg) to convert an Identifier from finer to 6867

coarser granularity. The conversion operator is applied on an Identifier of the operand 6868

Data Set op. 6869

havingCondition a condition (boolean expression) at component level, having only Components of the 6870

input Data Sets as operands (and possibly constants), to be fulfilled by the groups of 6871

Data Points: only groups for which havingCondition evaluates to TRUE appear in the 6872

result. The havingCondition refers to the groups specified through the groupingClause, 6873

therefore it must invoke aggregate operators (e.g. avg, count, max …, see also the 6874

section Aggregate invocation). A correct example of havingCondition is: 6875

max(obs_value) < 1000 6876

instead the condition obs_value < 1000 is not a right havingCondition, because it 6877

refers to the values of the single Data Points and not to the groups. The count operator 6878

is used in a havingCondition without parameters, e.g.: 6879

sum (DS_1 group by id1 having count () >= 10) 6880

 6881

Examples of valid syntaxes 6882

DS_1 [aggr M1 := min (Me_1) group by Id_1, Id_2] 6883

DS_1 [aggr M1 := min (Me_1) group except Id_1, Id_2] 6884

 6885

Semantics for scalar operations 6886

This operator cannot be applied to scalar values. 6887

 6888

Input parameters type: 6889

op :: dataset 6890

aggrComp :: name < component > 6891

aggrExpr :: component<scalar> 6892

groupingId :: name <identifier > 6893

conversionExpr :: identifier<scalar> 6894

havingCondition :: component<boolean> 6895

 6896

Result type: 6897

result :: dataset 6898

 6899

Additional constraints 6900

The aggrComp parameter cannot be the name of an Identifier component. 6901

All the components used in aggrExpr must belong to the operand Data Set op. 6902

The conversionExpr parameter applies just one conversion operator to just one Identifier belonging to the input 6903

Data Set. The basic scalar type of the Identifier must be compatible with the basic scalar type of the conversion 6904

operator. 6905

 6906

203

Behaviour 6907

The operator aggr calculates aggregations of dependent Components (Measures or Attributes) on the basis of 6908

sub-expressions at Component level. Each Component is calculated through an independent sub-expression. It is 6909

possible to specify the role of the calculated Component among measure attribute, or viral attribute. The 6910

substring viral allows to control the virality of Attributes, if the Attribute propagation rule is adopted (see the 6911

User Manual). When the role is omitted, the following rule is applied: if the component exists in the operand Data 6912

Set then it maintains its role; if the component does not exist in the operand Data Set then its role is Measure. 6913

The aggrExpr sub-expressions are independent of one another, they can only reference Components of the input 6914

Data Set and cannot use Components generated, for example, by other aggrExpr sub-expressions. The aggr 6915

computed Measures and Attributes are the only Measures and Attributes returned in the output Data Set (plus 6916

the possible viral Attributes). The sub-expressions must contain only Aggregate operators, which are able to 6917

compute an aggregated Value relevant to a group of Data Points. The groups of Data Points to be aggregated are 6918

specified through the groupingClause, which allows the following alternative options. 6919

group by the Data Points are grouped by the values of the specified Identifiers. The Identifiers not 6920

specified are dropped in the result. 6921

group except the Data Points are grouped by the values of the Identifiers not specified in the clause. The 6922

specified Identifiers are dropped in the result. 6923

group all converts an Identifier Component using conversionExpr and keeps all the other Identifiers. 6924

 6925

The having clause is used to filter groups in the result by means of an aggregate condition evaluated on the 6926

single groups (for example the minimum number of Data Points in the group). 6927

If no grouping clause is specified, then all the input Data Points are aggregated in a single group and the clause 6928

returns a Data Set that contains a single Data Point and has no Identifiers. 6929

The Attributes calculated through the aggr clauses are maintained in the result. For all the other Attributes that 6930

are defined as viral, the Attribute propagation rule is applied (for the semantics, see the Attribute Propagation 6931

Rule section in the User Manual). 6932

 6933

 6934

Examples 6935

 6936

Given the Data Set DS_1: 6937

DS_1

Id_1 Id_2 Id_3 Me_1

1 A XX 0

1 A YY 2

1 B XX 3

1 B YY 5

2 A XX 7

2 A YY 2

 6938

Example1: DS_r := DS_1 [aggr Me_1:= sum(Me_1) group by Id_1 , Id_2] results in: 6939

 6940

DS_r

Id_1 Id_2 Me_1

1 A 2

1 B 8

2 A 9

 6941

Example2: DS_r := DS_1 [aggr Me_3:= min(Me_1) group except Id_3] results in: 6942

 6943

204

DS_r

Id_1 Id_2 Me_3

1 A 0

1 B 3

2 A 2

 6944

Example3: DS_r := DS_1 [aggr Me_1:= sum(Me_1), Me_2 := max(Me_1) 6945

 group by Id_1 , Id_2 6946

having mean (Me_1) > 2] results in: 6947

 6948

 6949

DS_r

Id_1 Id_2 Me_1 Me_2

1 B 8 5

2 A 9 7

 6950

Maintaining Components: keep 6951

 6952

Syntax 6953

op [keep comp {, comp }*] 6954

 6955

Input parameters 6956

op the operand 6957

comp a component to keep 6958

 6959

Examples of valid syntaxes 6960

DS_1 [keep Me_2, Me_3] 6961

 6962

Semantics for scalar operations 6963

This operator cannot be applied to scalar values. 6964

 6965

Input parameters type: 6966

op :: dataset 6967

comp :: name < component > 6968

 6969

Result type: 6970

result :: dataset 6971

 6972

Additional constraints: 6973

All the Components comp must belong to the input Data Set op. 6974

The Components comp cannot be Identifiers in op. 6975

 6976

Behaviour 6977

The operator takes as input a Data Set (op) and some Component names of such a Data Set (comp). These 6978

Components can be Measures or Attributes of op but not Identifiers. The operator maintains the specified 6979

Components, drops all the other dependent Components of the Data Set (Measures and Attributes) and 6980

maintains the independent Components (Identifiers) unchanged. This operation corresponds to a projection in 6981

the usual relational join semantics (specifying which columns will be projected in among Measures and 6982

Attributes). 6983

 6984

 6985

205

Examples 6986

 6987

Given the Data Set DS_1: 6988

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2 At_1

2010 A XX 20 36 E

2010 A YY 4 9 F

2010 B XX 9 10 F

 6989

Example1: DS_r := DS_1 [keep Me_1] results in: 6990

 6991

DS_r

Id_1 Id_2 Id_3 Me_1

2010 A XX 20

2010 A YY 4

2010 B XX 9

 6992

Removal of Components: drop 6993

 6994

Syntax 6995
op [drop comp { , comp }*] 6996

 6997

Input parameters 6998

op the operand 6999

comp a Component to drop 7000

 7001

Examples of valid syntaxes 7002

DS_1 [drop Me_2, Me_3] 7003

 7004

Semantics for scalar operations 7005

This operator cannot be applied to scalar values. 7006

 7007

Input parameters type: 7008

op :: dataset 7009

comp :: name < component > 7010

 7011

Result type: 7012

result :: dataset 7013

 7014

Additional constraints: 7015

All the Components comp must belong to the input Data Set op. 7016

The Components comp cannot be Identifiers in op. 7017

 7018

Behaviour 7019

The operator takes as input a Data Set (op) and some Component names of such a Data Set (comp). These 7020

Components can be Measures or Attributes of op but not Identifiers. The operator drops the specified 7021

Components and maintains all the other Components of the Data Set. This operation corresponds to a projection 7022

in the usual relational join semantics (specifying which columns will be projected out). 7023

 7024

Examples 7025

 7026

206

Given the Data Set DS_1: 7027

 7028

DS_1

Id_1 Id_2 Id_3 Me_1 At_1

2010 A XX 20 E

2010 A YY 4 F

2010 B XX 9 F

 7029

Example1: DS_r := DS_1 [drop At_1] results in: 7030

 7031

DS_r

Id_1 Id_2 Id_3 Me_1

2010 A XX 20

2010 A YY 4

2010 B XX 9

Change of Component name : rename 7032

Syntax 7033

op [rename comp_from to comp_to { , comp_from to comp_to}*] 7034

 7035

Input Parameters 7036

op the operand 7037

comp_from the original name of the Component to rename 7038

comp_to the new name of the Component after the renaming 7039

 7040

Examples of valid syntaxes 7041

DS_1 [rename Me_2 to Me_3] 7042
 7043

Semantics for scalar operations 7044

This operator cannot be applied to scalar values. 7045

 7046

Input Parameters type 7047

op :: dataset 7048

comp_from :: name < component > 7049

comp_to :: name < component > 7050

 7051

Result type 7052

result :: dataset 7053

 7054

Additional constraints 7055

The corresponding pairs of Components before and after the renaming (dsc_from and dsc_to) must be defined 7056

on the same Value Domain and the same Value Domain Subset. 7057

The components used in dsc_from must belong to the input Data Set and the component used in the dsc_to 7058

cannot have the same names as other Components of the result Data Set. 7059

 7060

Behaviour 7061

The operator assigns new names to one or more Components (Identifier, Measure or Attribute Components). 7062

The resulting Data Set, after renaming the specified Components, must have unique names of all its Components 7063

(otherwise a runtime error is raised). Only the Component name is changed and not the Component Values, 7064

therefore the new Component must be defined on the same Value Domain and Value Domain Subset as the 7065

original Component (see also the IM in the User Manual). If the name of a Component defined on a different 7066

207

Value Domain or Set is assigned, an error is raised. In other words, rename is a transformation of the variable 7067

without any change in its values. 7068

 7069

 7070

Examples 7071

 7072

Given the Data Set DS_1: 7073

 7074

DS_1

Id_1 Id_2 Id_3 Me_1 At_1

1 B XX 20 F

1 B YY 1 F

2 A XX 4 E

2 A YY 9 F

 7075

Example1: DS_r := DS_1 [rename Me_1 to Me_2, At_1 to At_2] results in: 7076

 7077

DS_r

Id_1 Id_2 Id_3 Me_2 At_2

1 B XX 20 F

1 B YY 1 F

2 A XX 4 E

2 A YY 9 F

Pivoting : pivot 7078

 7079

Syntax 7080

op [pivot identifier , measure] 7081

 7082

Input parameters 7083

op the operand 7084

identifier the Identifier Component of op to pivot 7085

measure the Measure Component of op to pivot 7086

 7087

 7088

Examples of valid syntaxes 7089

DS_1 [pivot Id_2, Me_1] 7090

 7091

Semantics for scalar operations 7092

This operator cannot be applied to scalar values. 7093

 7094

Input Parameters type 7095

op :: dataset 7096

identifier :: name < identifier > 7097

measure :: name < measure > 7098

 7099

Result type 7100

result :: dataset 7101

 7102

208

Additional constraints 7103

The Measures created by the operator according to the behaviour described below must be defined on the same 7104

Value Domain as the input Measure. 7105

 7106

Behaviour 7107

The operator transposes several Data Points of the operand Data Set into a single Data Point of the resulting Data 7108

Set. The semantics of pivot can be procedurally described as follows. 7109

 7110

1. It creates a virtual Data Set VDS as a copy of op 7111

2. It drops the Identifier Component identifier and all the Measure Components from VDS. 7112

3. It groups VDS by the values of the remaining Identifiers. 7113

4. For each distinct value of identifier in op, it adds a corresponding measure to VDS, named as the value of 7114

identifier. These Measures are initialized with the NULL value. 7115

5. For each Data Point of op, it finds the Data Point of VDS having the same values as for the common 7116

Identifiers and assigns the value of measure (taken from the current Data Point of op) to the Measure of 7117

VDS having the same name as the value of identifier (taken from the Data Point of op). 7118
 7119

The result of the last step is the output of the operation. 7120
 7121

Note that pivot may create Measures whose names are non-regular (i.e. they may contain special characters, 7122

reserved keywords, etc.) according to the rules about the artefact names described in the User Manual (see the 7123

section “The artefact names” in the chapter “VTL Transformations”). As said in the User Manual, those names 7124

must be quoted to be referenced within an expression. 7125

 7126

Examples 7127

 7128

Given the Data Set DS_1: 7129

 7130

DS_1

Id_1 Id_2 Me_1 At_1

1 A 5 E

1 B 2 F

1 C 7 F

2 A 3 E

2 B 4 E

2 C 9 F

 7131

Example1: DS_r := Ds_1 [pivot Id_2, Me_1] results in: 7132

 7133

DS_r

Id_1 A B C

1 5 2 7

2 3 4 9

 7134

Unpivoting : unpivot 7135

 7136

Syntax 7137

op [unpivot identifier , measure] 7138

 7139

209

Input parameters 7140

op the dataset operand 7141

identifier the Identifier Component to be created 7142

measure the Measure Component to be created 7143

 7144

Examples of valid syntaxes 7145

DS [unpivot Id_5, Me_3] 7146

 7147

Semantics for scalar operations 7148

This operator cannot be applied to scalar values. 7149

 7150

Input Parameters type 7151

op :: dataset 7152

identifier :: name < identifier > 7153

measure :: name < measure > 7154

 7155

Result type 7156

result :: dataset 7157

 7158

Additional constraints 7159

All the measures of op must be defined on the same Value Domain. 7160

 7161

Behaviour 7162

The unpivot operator transposes a single Data Point of the operand Data Set into several Data Points of the 7163

result Data set. Its semantics can be procedurally described as follows. 7164

 7165

1. It creates a virtual Data Set VDS as a copy of op 7166

2. It adds adds the Identifier Component identifier and the Measure Component measure to VDS. 7167

3. For each Data Point DP and for each Measure M of op whose value is not NULL, the operator inserts a 7168

Data Point into VDS whose values are assigned as specified in the following points 7169

4. The VDS Identifiers other than identifier are assigned the same values as the corresponding Identifiers of 7170

the op Data Point 7171

5. The VDS identifier is assigned a value equal to the name of the Measure M of op 7172

6. The VDS measure is assigned a value equal to the value of the Measure M of op 7173

 7174

The result of the last step is the output of the operation. 7175

 7176

When a Measure is NULL then unpivot does not create a Data Point for that Measure. 7177

Note that in general pivoting and unpivoting are not exactly symmetric operations, i.e., in some cases the unpivot 7178

operation applied to the pivoted Data Set does not recreate exactly the original Data Set (before pivoting). 7179

 7180

Examples 7181

 7182

Given the Data Set DS_1: 7183

 7184

DS_1

Id_1 A B C

1 5 2 7

2 3 4 9

 7185

 7186

Example1: DS_r := DS_1 [unpivot Id_2, Me_1] results in: 7187

 7188

DS_r

Id_1 Id_2 Me_1

210

1 A 5

1 B 2

1 C 7

2 A 3

2 B 4

2 C 9

 7189

Subspace : sub 7190

 7191

Syntax 7192

op [sub identifier = value { , identifier = value }*] 7193

 7194

Input parameters 7195

op dataset 7196

identifier Identifier Component of the input Data Set op 7197

value valid value for identifier 7198

 7199

Examples of valid syntaxes 7200

DS_r := DS_1 [Id_2 = "A", Id_5 = 1] 7201

 7202

Semantics for scalar operations 7203

This operator cannot be applied to scalar values. 7204

 7205

Input Parameters type 7206

op :: dataset 7207

identifier :: name < identifier > 7208

value :: scalar 7209

 7210

Result type 7211

result :: dataset 7212

 7213

Additional constraints 7214

The specified Identifier Components identifier(s) must belong to the input Data Set op. 7215

Each Identifier Component can be specified only once. 7216

The specified value must be an allowed value for identifier. 7217

 7218

 7219

Behaviour 7220

 7221

The operator returns a Data Set in a subspace of the one of the input Dataset. Its behaviour can be procedurally 7222

described as follows: 7223

 7224

1. It creates a virtual Data Set VDS as a copy of op 7225

2. It maintains the Data Points of VDS for which identifier = value (for all the specified identifier) and 7226

eliminates all the Data Points for which identifier <> value (even for only one specified identifier) 7227

3. It projects out (“drops”, in VTL terms) all the identifier(s) 7228

 7229

The result of the last step is the output of the operation. 7230

 7231

The resulting Data Set has the Identifier Components that are not specified as identifier(s) and has the same 7232

Measure and Attribute Components of the input Data Set. 7233

 7234

The result Data Set does not violate the functional constraint because after the filter of the step 2, all the 7235

remaining identifier(s) do not contain the same Values for all the Data Points. In other words, given that the input 7236

211

Data Set is a 1st order function and therefore does not contain duplicates, the result Data Set is a 1st order 7237

function as well. To show this, let K1,…,Km,…,Kn be the Identifier components for the generic input Data Set DS. 7238

Let us suppose that K1,…,Km are assigned to fixed values by using the subspace operator. A duplicate could arise 7239

only if in the result there are two Data Points DPr1 and DPr2 having the same value for Km+1,…,Kn , but this is 7240

impossible since such Data Points had same K1,…,Km in the original Data Set DS, which did not contain 7241

duplicates. 7242

 7243

If we consider the vector space of Data Points individuated by the n-uples of Identifier components of a Data Set 7244

DS(K1,…,Kn,…) (along, e.g., with the operators of sum and multiplication), we have that the subspace operator 7245

actually performs a subsetting of such space into another space with fewer Identifiers. This can be also seen as 7246

the equivalent of a dice operation performed on hyper-cubes in multi-dimensional data warehousing. 7247

 7248

 7249

Examples 7250

 7251

Given the Data Set DS_1: 7252

 7253

DS_1

Id_1 Id_2 Id_3 Me_1 At_1

1 A XX 20 F

1 A YY 1 F

1 B XX 4 E

1 B YY 9 F

2 A XX 7 F

2 A YY 5 E

2 B XX 12 F

2 B YY 15 F

 7254

Example1: DS_r := DS_1 [sub Id_1 = 1, Id_2 = “A”] results in: 7255

 7256

DS_r

Id_3 Me_1 At_1

XX 20 F

YY 1 F

 7257

Example 2: DS_r := DS_1 [sub Id_1 = 1, Id_2 = “B”, Id_3 = “YY”] results in: 7258
 7259

DS_r

Me_1 At_1

9 F

 7260

Example 3: DS_r := DS_1 [sub Id_2 = “A”] + DS_1 [sub Id_2 = “B”] results in: 7261

 7262

 7263

Assuming that At_1 is viral and that in the propagation rule the greater value prevails, results in: 7264
 7265

DS_r

Id_1 Id_3 Me_1 At_1

1 XX 24 F

212

1 YY 10 F

2 XX 19 F

2 YY 20 F

 7266

 7267

 7268

