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Foreword  26 

 27 

The Task force for the Validation and Transformation Language (VTL), created in 2012-2013 28 
under the initiative of the SDMX Secretariat, is pleased to present the draft version of VTL  2.0. 29 

The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the 30 
consideration that SDMX already had a package for transformations and expressions in its 31 
information model, while a specific implementation language was missing. To make this 32 
framework operational, a standard language for defining validation and transformation rules 33 
(operators, their syntax and semantics) had to be adopted, while appropriate SDMX formats 34 
for storing and exchanging rules, and web services to retrieve them, had to be designed. The 35 
present VTL  2.0 package is only concerned with the first element, i.e., a formal definition of 36 
each operator, together with a general description of VTL, its core assumptions and the 37 
information model it is based on. 38 

The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM 39 
communities and the work started in summer 2013. The intention was to provide a language 40 
usable by statisticians to express logical validation rules and transformations on data, 41 
described as either dimensional tables or unit-record data. The assumption is that this logical 42 
formalization of validation and transformation rules could be converted into specific 43 
programming languages for execution (SAS, R, Java, SQL, etc.), and would provide at the same 44 
time, a “neutral” business-level expression of the processing taking place, against which 45 
various implementations can be mapped. Experience with existing examples suggests that 46 
this goal would be attainable.  47 

An important point that emerged is that several standards are interested in such a kind of 48 
language. However, each standard operates on its model artefacts and produces artefacts 49 
within the same model (property of closure). To cope with this, VTL has been built upon a 50 
very basic information model (VTL IM), taking the common parts of GSIM, SDMX and DDI, 51 
mainly using artefacts from GSIM 1.1, somewhat simplified and with some additional detail. In 52 
this way, existing standards (GSIM, SDMX, DDI, others) would be allowed to adopt VTL by 53 
mapping their information model against the VTL IM. Therefore, although a work-product of 54 
SDMX, the VTL language in itself is independent of SDMX and will be usable with other 55 
standards as well. Thanks to the possibility of being mapped with the basic part of the IM of 56 
other standards, the VTL IM also makes it possible to collect and manage the basic definitions 57 
of data represented in different standards. 58 

For the reason described above, the VTL specifications are designed at logical level, 59 
independently of any other standard, including SDMX. The VTL specifications, therefore, are 60 
self-standing and can be implemented either on their own or by other standards (including 61 
SDMX). In particular, the work for the SDMX implementation of VTL is going in parallel with 62 
the work for designing this VTL version, and will entail a future update of the SDMX 63 
documentation.  64 

The first public consultation on VTL (version 1.0) was held in 2014. Many comments were 65 
incorporated in the VTL 1.0 version, published in March 2015. Other suggestions for 66 
improving the language, received afterwards, fed the discussion for building the draft version 67 
1.1, which contained many new features, was completed in the second half of 2016 and 68 
provided for public consultation until the beginning of 2017.  69 
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The high number and wide impact of comments and suggestions induced a high workload on 70 
the VTL TF, which agreed to proceed in two steps for the publication of the final 71 
documentation, taking also into consideration that some first VTL implementation initiatives 72 
had already been launched.  The first step, the current one, is dedicated to fixing some high-73 
priority features and making them as much stable as possible.  A second step, scheduled for 74 
the next period, is aimed at acknowledging and fixing other features considered of minor 75 
impact and priority, which will be added hopefully without affecting either the features 76 
already published in this documentation, or the possible relevant implementations. Moreover, 77 
taking into account the number of very important new features that have been introduced in 78 
this version in respect to the VTL 1.0, it was agreed that the current VTL version should be 79 
considered as a major one and thus named VTL 2.0. 80 

The VTL 2.0 package contains the general VTL specifications, independently of the possible 81 
implementations of other standards; in its final release, it will include: 82 

a) Part 1 – the user manual, highlighting the main characteristics of VTL, its core 83 
assumptions and the information model the language is based on; 84 

b) Part 2 – the reference manual, containing the full library of operators ordered by 85 
category, including examples; this version will support more validation and 86 
compilation needs compared to VTL 1.0.   87 

c) eBNF notation (extended Backus-Naur Form) which is the technical notation to be 88 
used as a test bed for all the examples.  89 

The present document is the part 1. 90 

The latest version of VTL is freely available online at https://sdmx.org/?page_id=5096 91 
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Introduction 201 

This document presents the Validation and Transformation Language (also known as ‘VTL’) 202 
version 2.0.  203 

The purpose of VTL is to allow a formal and standard definition of algorithms to validate 204 
statistical data and calculate derived data.  205 

The first development of VTL aims at enabling, as a priority, the formalisation of data 206 
validation algorithms rather than tackling more complex algorithms for data compilation. In 207 
fact, the assessment of business cases showed that the majority of the institutions ascribes 208 
(prescribes) a higher priority to a standard language for supporting the validation processes 209 
and in particular to the possibility of sharing validation rules with the respective data 210 
providers, in order to specify the quality requirements and allow validation also before 211 
provision.  212 

This document is the outcome of a second iteration of the first phase, and therefore still 213 
presents a version of VTL primarily oriented to support the data validation. However, as the 214 
features needed for validation also include simple calculations, this version of VTL can 215 
support basic compilation needs as well. In general, validation is considered as a particular 216 
case of transformation; therefore, the term “Transformation” is meant to be more general, 217 
including validation as well. The actual operators included in this version of VTL are 218 
described in the Reference Manual. 219 

Although VTL is developed under the umbrella of the SDMX governance, DDI and GSIM users 220 
may also be highly interested in adopting a language for validation and transformation. In 221 
particular, organizations involved in the SDMX, DDI and GSIM communities and in the High-222 
Level Group for the modernisation of statistical production and services (HLG) expressed 223 
their wish of having a unique language, usable in SDMX, DDI and GSIM.  224 

Accordingly, the task-force working for the VTL development agreed on the objective of 225 
adopting a common language, in the hope of avoiding the risk of having diverging variants. 226 

As a consequence, VTL is designed as a language relatively independent of the details of 227 
SDMX, DDI and GSIM. It is based on an independent information model (IM), made of the very 228 
basic artefacts common to these standards. Other models can inherit the VTL language by 229 
unequivocally mapping their artefacts to those of the VTL IM.  230 

Structure of the document 231 

The following main sections of the document describe the following topics: 232 

The general characteristics of  the VTL, which are also the main requirements that the VTL is 233 
aimed to fulfil. 234 

The changes of VTL 2.0 in respect to VTL 1.0. 235 

The Information Model on which the language is based. In particular, it describes the generic 236 
model of the data artefacts for which the language is aimed to validate and transform, the 237 
generic model of the variables and value domains used for defining the data artefacts and the 238 
generic model of the transformations. 239 

The Data Types that the VTL manipulates, i.e. types of artefacts that can be passed in input to 240 
or are returned in output from the VTL operators.   241 
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The general rules for defining the Transformations, which are the algorithms that describe 242 
how the operands are transformed into the results.  243 

The characteristics, the invocation and the behaviour of the VTL Operators, taking into 244 
account the perspective of users that need to learn how to use them.  245 

A final part highlights some issues related to the governance of VTL developments and to 246 
future work, following a number of comments, suggestions and other requirements which 247 
were submitted to the task-force in order to enhance the VTL package. 248 

A short annex gives some background information about the BNF (Backus-Naur Form) syntax 249 
used for providing a context-free representation of VTL.  250 

The Extended BNF (EBNF) representation of the VTL 1.0 package is available at 251 
https://sdmx.org/?page_id=5096. The VTL 2.0 representation will be added as soon as it is 252 
available. 253 

 254 
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General characteristics of the VTL 255 

This section lists and briefly illustrates some general high-level characteristics of the 256 
validation and transformation language.  They have been discussed and shared as 257 
requirements for the language in the VTL working group since the beginning of the work and 258 
have been taken into consideration for the design of the language. 259 

User orientation 260 

 The language is designed for users without information technology (IT) skills, who 261 
should be able to define calculations and validations independently, without the 262 
intervention of IT personnel; 263 

o The language is based on a “user” perspective and a “user” information model 264 
(IM) and not on possible IT perspectives (and IMs) 265 

o As much as possible, the language is able to manipulate statistical data at an 266 
abstract/conceptual level, independently of the IT representation used to 267 
store or exchange the data observations (e.g. files, tables, xml tags), so 268 
operating on abstract (from IT) model artefacts to produce other abstract 269 
(from IT) model artefacts  270 

o It references IM objects and does not use direct references to IT objects 271 

 The language is intuitive and friendly (users should be able to define and understand 272 
validations and transformations as easily as possible), so the syntax is: 273 

o Designed according to mathematics, which is a universal knowledge; 274 

o Expressed in English to be shareable in most countries; 275 

o As simple, intuitive and self-explanatory as possible; 276 

o Based on common mathematical expressions, which involve “operands” 277 
operated on by “operators” to obtain a certain result; 278 

o Designed with minimal redundancies (e.g. possibly avoiding operators 279 
specifying the same operation in different ways without concrete reasons). 280 

 The language is oriented to statistics, and therefore it is capable of operating on 281 
statistical objects and envisages the operators needed in the statistical processes and 282 
in particular in the data validation phases, for example:  283 

o Operators for data validations and edit; 284 

o Operators for aggregation, even according to hierarchies; 285 

o Operators for dimensional processing (e.g. projection, filter); 286 

o Operators for statistics (e.g. aggregation, mean, median, variance …); 287 

Integrated approach 288 

 The language is independent of the statistical domain of the data to be processed; 289 
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o VTL has no dependencies on the subject matter (the data content); 290 

o VTL is able to manipulate statistical data in relation to their structure. 291 

 The language is suitable for the various typologies of data of a statistical environment 292 
(for example dimensional data, survey data, registers data, micro and macro, 293 
quantitative and qualitative) and is supported by an information model (IM) which 294 
covers these typologies; 295 

o The IM allows the representation of the various typologies of data of a 296 
statistical environment at a conceptual/logical level (in a way abstract from IT 297 
and from the physical storage); 298 

o The various typologies of data are described as much as possible in an 299 
integrated way, by means of common IM artefacts for their common aspects; 300 

o The principle of the Occam’s razor is applied as an heuristic principle in 301 
designing the conceptual IM, so keeping everything as simple as possible or, in 302 
other words, unifying the model of apparently different things as much as 303 
possible. 304 

 The language (and its IM) is independent of the phases of the statistical process and 305 
usable in any one of them; 306 

o Operators are designed to be independent of the phases of the process, their 307 
syntax does not change in different phases and is not bound to some 308 
characteristic restricted to a specific phase (operators’ syntax is not aware of 309 
the phase of the process); 310 

o In principle, all operators are allowed in any phase of the process (e.g. it is 311 
possible to use the operators for data validation not only in the data collection 312 
but also, for example, in data compilation for validating the result of a 313 
compilation process; similarly it is possible to use the operators for data 314 
calculation, like the aggregation, not only in data compilation but also in data 315 
validation processes); 316 

o Both collected and calculated data are equally permitted as inputs of a 317 
calculation, without changes in the syntax of the operators/expression; 318 

o Collected and calculated data are represented (in the IM) in a homogeneous 319 
way with regards to the metadata needed for calculations. 320 

 The language is designed to be applied not only to SDMX but also to other standards; 321 

o VTL, like any consistent language, relies on a specific information model, as it 322 
operates on the VTL IM artefacts to produce other VTL IM artefacts. In 323 
principle, a language cannot be applied as-is to another information model 324 
(e.g. SDMX, DDI, GSIM); this possibility exists only if there is a unambiguous 325 
correspondence between the artefacts of those information models and the 326 
VTL IM (that is if their artefacts correspond to the same mathematical notion);  327 

o The goal of applying the language to more models/standards is achieved by 328 
using a very simple, generic and conceptual Information Model (the VTL IM), 329 
and mapping this IM to the models of the different standards (SDMX, DDI, 330 
GSIM, …); to the extent that the mapping is straightforward and unambiguous, 331 
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the language can be inherited by other standards (with the proper 332 
adjustments);  333 

o To achieve an unambiguous mapping, the VTL IM is deeply inspired by the 334 
GSIM IM and uses the same artefacts when possible1; in fact, GSIM is designed 335 
to provide a formal description of data at business level against which other 336 
information models can be mapped; moreover, loose mappings between GSIM 337 
and SDMX and between GSIM and DDI are already available2; a very small 338 
subset of the GSIM artefacts is used in the VTL IM in order to keep the model 339 
and the language as simple as possible (Occam’s razor principle); these are the 340 
artefacts strictly needed for describing the data involved in Transformations, 341 
their structure and the variables and value domains;  342 

o GSIM artefacts are supplemented, when needed, with other artefacts that are 343 
necessary for describing calculations; in particular, the SDMX model for 344 
Transformations is used; 345 

o As mentioned above, the definition of the VTL IM artefacts is based on 346 
mathematics and is expressed at an abstract user level. 347 

Active role for processing 348 

 The language is designed to make it possible to drive in an active way the execution of 349 
the calculations (in addition to documenting them) 350 

 For the purpose above, it is possible either to implement a calculation engine that 351 
interprets the VTL and operates on the data or to rely on already existing IT tools (this 352 
second option requires a translation from the VTL to the language of the IT tool to be 353 
used for the calculations) 354 

 The VTL grammar is being described formally using the universally known Backus 355 
Naur Form notation (BNF), because this allows the VTL expressions to be formally 356 
parsed and then processed; the formal description allow the expressions: 357 

o To be parsed against the rules of the formal grammar; on the IT level, this 358 
requires the implementation of a parser that compiles the expressions and 359 
checks their correctness; 360 

o To be translated from the VTL to the language of the IT tool to be used for the 361 
calculation; on the IT level, this requires the implementation of a proper 362 
translator; 363 

o To be translated from/to other languages if needed (through the 364 
implementation of a proper translator. 365 

 The inputs and the outputs of the calculations and the calculations themselves are  366 
artefacts of the IM  367 

                                                        

1 See the next section (VTL Information Model) and the section “Relationships between VTL and  GSIM”  

2 See at: http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards; 

http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards
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o This is a basic property of any robust language because it allows calculated 368 
data to be operands of further calculations; 369 

o If the artefacts are persistently stored, their definition is persistent as well; if 370 
the artefacts are non-persistently stored (used only during the calculation 371 
process like input from other systems, intermediate results, external outputs) 372 
their definition can be non-persistent; 373 

o Because the definition of the algorithms of the calculations is based on the 374 
definition of their input artefacts (in particular on the data structure of the 375 
input data), the latter must be available when the calculation is defined;  376 

o The VTL is designed to make the data structure of the output of a calculation 377 
deducible from the calculation algorithm and from the data structure of the 378 
operands (this feature ensures that the calculated data can be defined 379 
according to the IM and can be used as operands of further calculations);  380 

o In the IT implementation, it is advisable to automate (as much as possible) the 381 
structural definition of the output of a calculation, in order to enforce the 382 
consistency of the definitions and avoid unnecessary overheads for the 383 
definers. 384 

 The VTL and its information model make it possible to check automatically the overall 385 
consistency of the definitions of the calculations, including with respect to the artefact 386 
of the IM, and in particular to check: 387 

o the correctness of the expressions with respect to the syntax of the language 388 

o the integrity of the expressions with respect to their input and output artefacts 389 
and the corresponding structures and properties (for example, the input 390 
artefacts must exist, their structure components referenced in the expression 391 
must exist, qualitative data cannot be manipulated through quantitative 392 
operators, and so on) 393 

o the consistency of the overall graph of the calculations (for example, in order 394 
to avoid that the result of a calculation goes as input to the same calculation, 395 
there should not be cycles in the sequence of calculations, thus eliminating the 396 
risk of producing unpredictable and erroneous results); 397 

Independence of IT implementation  398 

 According to the “user orientation” above, the language is designed so that users are 399 
not required to be aware of the IT solution; 400 

o To use the language, the users need to know only the abstract view of the data 401 
and calculations and do not need to know the aspects of the IT 402 
implementation, like the storage structures, the calculation tools and so on. 403 

 The language is not oriented to a specific IT implementation and permits many 404 
possible different implementations (this property is particularly important in order to 405 
allow different institutions to rely on different IT environments and solutions);  406 
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o The VTL provides only for a logical/conceptual layer for defining the data 407 
transformations, which applies on a logical/conceptual layer of data 408 
definitions 409 

o The VTL does not prescribe any technical/physical tool or solution,  so that it 410 
is possible to implement the VTL by using many different IT tools 411 

o The link between the logical/conceptual layer of the VTL definitions and the IT 412 
implementation layer is out of the scope of the VTL;  413 

 The language does not require to the users the awareness of the storage data 414 
structure; the operations on the data are specified according to the conceptual/logical 415 
structure,  and so are independent of the storage  structure; this ensures that the 416 
storage structure may change without necessarily affecting the conceptual structure 417 
and the user expressions; 418 

o Data having the same conceptual/logical structure may be accessed using the 419 
same statements, even if they have different storage structures; 420 

o The VTL provides for data storage and retrieval at a conceptual/logical level; 421 
the mapping and the conversion between the conceptual and the storage 422 
structures of the data is left to the IT implementation (and users need not be 423 
aware of it); 424 

o By mapping the logical and the storage data structures, the IT 425 
implementations can make it possible to store/retrieve data in/from different 426 
IT data stores (e.g. relational databases, dimensional databases, xml files, 427 
spread-sheets, traditional files); 428 

 The language is not strictly connected with some specific IT tool to perform the 429 
calculations (e.g. SQL, statistical packages,  other languages, XML tools,…);  430 

o The syntax of the VTL is independent of existing IT calculation tools; 431 

o On the IT level, this may require a translation from the VTL to the language of 432 
the IT tool to be used for the calculation;  433 

o By implementing the proper translations at the IT level, different institutions 434 
can use different IT tools to execute the same algorithms; moreover, it is 435 
possible for the same institution to use different IT tools within an integrated 436 
solution (e.g. to exploit different abilities of different tools); 437 

o VTL instructions do not change if the IT solution changes (for example 438 
following the adoption of another IT tool), so avoiding impacts on users as 439 
much as possible;  440 

Extensibility, customizability 441 

 The language is made of few “core” constructs, which are the fundamental building 442 
blocks into which any operation can be decomposed, and a “standard library”, which 443 
contains a number of standard operators built from the core constructs; these are the 444 
standard parts of the language, which can be extended gradually by the VTL 445 
maintenance body, enriching the available operators according to the evolution of the 446 
business needs, so progressively making the language more powerful; 447 
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 Other organizations can define additional operators having a customized behaviour 448 
and a functional syntax, so extending their own library by means of custom-designed 449 
operators. As obvious, these additional operators are not part of the standard VTL 450 
library.  To exchange VTL definitions with other institutions, the possible custom 451 
libraries need to be pre-emptively shared. 452 

 In addition, it is possible to call external routines of other languages/tools, provided 453 
that they are compatible with the IM; this requisite is aimed to fulfil specific 454 
calculation needs without modifying the operators of the language,  so exploiting the 455 
power of the other languages/tools if necessary for specific purposes. In this case: 456 

o The external routines should be compatible with, and relate back to, the 457 
conceptual IM of the calculations as for its inputs and outputs, so that the 458 
integrity of the definitions is ensured 459 

o The external routines are not part of the language, so their use is subject to 460 
some limitations (e.g. it is impossible to parse them as if they were operators 461 
of the language) 462 

o The use of external routines compromises the IT implementation 463 
independence, the abstraction and the user orientation; therefore external 464 
routines should be used only for specific needs and in limited cases, whereas 465 
widespread and generic needs should be fulfilled through the operators of the 466 
language;  467 

 Whilst an Organisation adopting VTL can extend its own library by defining 468 
customized parts, on its own total responsibility, in order to improve the standard 469 
language for specific purposes (e.g. for supporting possible algorithms not permitted 470 
by the standard part), it is important that the customized parts remain compliant with 471 
the VTL IM and the VTL fundamentals. Adopting Organizations are totally in charge of 472 
any activity for maintaining and sharing their customized parts. Adopting 473 
Organizations are also totally in charge of any possible maintenance activity to 474 
maintain the compliance between their customized parts and the possible VTL future 475 
versions.  476 

Language effectiveness 477 

 The language is oriented to give full support to the various typologies of data of a 478 
statistical environment (for example dimensional data, survey data, registers data, 479 
micro and macro, quantitative and qualitative, …) described as much as possible in a 480 
coherent way, by means of common IM artefacts for their common aspects, and 481 
relying on mathematical notions, as mentioned above. The various types of statistical 482 
data are considered as mathematical functions, having independent variables 483 
(Identifiers) and dependent variables (Measures, Attributes3), whose extensions can 484 
be thought as logical tables (DataSets) made of rows (Data Points) and columns  485 
(Identifiers, Measures, Attributes). 486 

                                                        
3 The Measures bear information about the real world and the Attributes about the Data Set or some part of it. 
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 The language supports operations on the Data Sets (i.e. mathematical functions) in 487 
order to calculate new Data Sets from the existing ones, on their structure components 488 
(Identifiers, Measures, Attributes), on their Data Points.  489 

 The algorithms are specified by means of mathematical expressions which compose 490 
the operands (Data Sets, Components …) by means of operators (e.g. +,-,*,/,>,<) to 491 
obtain a certain result (Data Sets, Components …);  492 

 The validation is considered as a kind of calculation having as an operand the Data 493 
Sets to be validated and producing a Data Set containing information about the result 494 
of the validation;  495 

 Calculations on multiple measures are supported by most operators, as well as 496 
calculations on the attributes of the Data Sets and calculations involving missing 497 
values; 498 

 The operations are intended to be consistent with the real world historical changes 499 
which induce changes of the artefacts (e.g. of the code lists, of the hierarchies …); 500 
however, because different standards may represent historical changes in different 501 
ways, the implementation of this aspect is left to the standards (e.g. SDMX, DDI …), to 502 
the institutions and to the implementers adopting the VTL  and therefore the VTL 503 
specifications does not prescribe any particular methodology for representing the 504 
historical changes of the artefacts (e.g. versioning, qualification of time validity);  505 

 Almost all the VTL operators can be nested, meaning that in the invocation of an 506 
operator any operand can be the result of the invocation of other operators which 507 
calculate it;  508 

 The results of the calculations can be permanently stored or not, according to the 509 
needs;  510 

 511 
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Evolution of VTL 2.0 in respect to VTL 1.0 512 

Important contributions gave origin to the work that brought to this VTL 2017 version. 513 

Firstly, it was not possible to acknowledge immediately - in VTL 1.0 - all of the remarks 514 
received during the 1.0 public review. Secondly, the publication of VTL 1.0 triggered the 515 
launch of other reviews and proofs of concepts, by several institutions and organizations, 516 
aimed at assessing the ability of VTL of supporting properly their real use cases.  517 

The suggestions coming from these activities had a fundamental role in designing the new 518 
version of the language.   519 

The main improvements are described below.  520 

The Information Model 521 

The VTL  Information Model describes the artefacts that VTL manipulates (i.e. it provides  a 522 
generic model for defining Data and their structures, Variables, Value Domains and so on) and 523 
the structural metadata which define validations and transformations (i.e. a generic model for 524 
Transformations). 525 

In VTL 2.0, some mistakes of VTL 1.0 have been corrected and new kinds of artefacts have 526 
been introduced in order to make the representation more complete and to facilitate the 527 
mapping with the artefacts of other standards (e.g. SDMX, DDI …). 528 

As already said, VTL is intended to operate at logical/conceptual level and independently of 529 
the implementation, actually allowing different implementations. For this reason, VTL-IM 2.0 530 
provides only for a core abstract view of data and calculations and leaves out the 531 
implementation aspects.  532 

Some other aspects, even if logically related to the representation of data and calculations, are 533 
intentionally left out because they can depend on the actual implementation too. Some of 534 
them are mentioned hereinafter (for example the representation of real-world historical 535 
changes that impact model artefacts).  536 

The operational metadata needed for supporting real processing systems are also out of VTL 537 
scope.   538 

The implementation of the VTL-IM 2.0 abstract model artefacts needs to take into account the 539 
specificities of the standards (like SDMX, DDI …) and the information systems for which it is 540 
used.  541 

Structural artefacts and reusable rules 542 

The structural artefacts of the VTL IM (e.g. a set of code items) as well as the artefacts of other 543 
existing standards (like SDMX, DDI, or others) are intrinsically reusable. These so-called 544 
“structural” artefacts can be referenced as many times as needed.    545 

In order to empower the capability of reusing definitions, a main requirement for VTL 2.0 has 546 
been the introduction of reusable rules (for example, validation or aggregation rules defined 547 
once and applicable to different cases). 548 
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The reusable rules are defined through the VTL definition language and applied through the 549 
VTL manipulation language. 550 

The core language and the standard library 551 

VTL 1.0 contains a flat list of operators, in principle not related one to another. A main 552 
suggestion for VTL 2.0 was to identify a core set of primitive operators able to express all of 553 
the other operators present in the language. This was done in order to specify the semantics 554 
of available operators more formally, avoiding possible ambiguities about their behaviour and 555 
fostering coherent implementations.  The distinction between ‘core’ and ‘standard’ library is 556 
not important to the VTL users but is largely of interest of the VTL technical implementers. 557 

The suggestion above has been acknowledged, so VTL 2.0 manipulation language consists of a 558 
core set of primitive operators and a standard library of derived operators, definable in term 559 
of the primitive ones. The standard library contains essentially the VTL 1.0 operators 560 
(possibly enhanced) and the new operators introduced with VTL 2.0 (see below).   561 

In particular, the VTL core includes an operator called “join” which allows to extend the 562 
common scalar operations to the Data Sets.   563 

The user defined operators 564 

VTL 1.0 does not allow to define new operators from existing ones, and thus the possible  565 
operators are predetermined.  Besides, thanks to the core operators and the standard library, 566 
VTL 2.0 allows to define new operators (also called “user-defined operators”) starting from 567 
existing ones. This is achieved by means of a specific statement of the VTL-DL (the “define 568 
operator” statement, see the Reference Manual). 569 

This a main mechanism to enforce the requirements of having an extensible and customizable 570 
language and to introduce custom operators (not existing in the standard library) for specific 571 
purposes. 572 

As obvious, because the user-defined operators are not part of the standard library, they are 573 
not standard VTL operators and are applicable only in the context in which they have been 574 
defined. In particular, if there is the need of applying user-defined operators in other contexts, 575 
their definitions need to be pre-emptively shared.   576 

The VTL Definition Language 577 

VTL 1.0 contains only a manipulation language (VTL-ML), which allows to specify the 578 
transformations of the VTL artefacts by means of expressions. 579 

A VTL Definition Language (VTL-DL) has been introduced in version 2.0. 580 

In fact, VTL 2.0 allows reusable rules and user-defined operators, which do not exist in VTL 581 
1.0 and need to be defined beforehand in order to be invoked in the expressions of the VTL 582 
manipulation language.  The VTL-DL provides for their definition. 583 

Second, VTL 1.0 was initially intended to work on top of an existing standard, such as SDMX, 584 
DDI or other, and therefore the definition of the artefacts to be manipulated (Data and their 585 
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structures, Variables, Value Domains and so on) was assumed to be made using the 586 
implementing standards and not VTL itself.  587 

During the work for the VTL 1.1 draft version, it was proposed to make the VTL definition 588 
language able to define also those VTL-IM artefacts that have to be manipulated.  A draft 589 
version of a possible artefacts definition language was included in VTL 1.1 public consultation, 590 
held until the beginning of 2017. The comments received and the following analysis 591 
evidenced that the artefact definition language cannot include the aspects which are left out of 592 
the IM (for example the representation of the historical changes of the real world impacting 593 
the model artefacts) yet are: i. needed in the implementations; ii. influenced by other 594 
implementation-specific aspects; iii. in real applications, bound to be extended by means of 595 
other context-related metadata and adapted to the specific environment.  596 

In conclusion, the artefact definition language has been excluded from this VTL version and 597 
the opportunity of introducing it will be further explored in the near future.     598 

In respect to VTL 1.0, VTL 2.0 definition language (VTL-DL) is completely new (there is no 599 
definition language in VTL 1.0).  600 

The functional paradigm 601 

In the VTL Information Model, the various types of statistical data are considered as 602 
mathematical functions, having independent variables (Identifiers) and dependent variables 603 
(Measures, Attributes), whose extensions can be thought of as logical tables (Data Sets) made 604 
of rows (Data Points) and columns (Identifiers, Measures, Attributes). Therefore, the main 605 
artefacts to be manipulated using VTL are the logical Data Sets, i.e., first-order mathematical 606 
functions4.  607 

Accordingly, VTL uses a functional programming paradigm, meaning a paradigm that treats 608 
computations as the evaluation of higher-order mathematical functions5, which manipulate 609 
the first-order ones (i.e., the logical Data Sets), also termed “operators” or “functionals”. The 610 
functional paradigm avoids changing-state and mutable data and makes use of expressions for 611 
defining calculations.  612 

It was observed, however, that the functional paradigm was not sufficiently achieved in VTL 613 
1.0 because in some particular cases a few operators could have produced non-functional 614 
results. In effects, even if this regarded only temporary results (not persistent), in specific 615 
cases, this behaviour could have led to unexpected results in the subsequent calculation chain.  616 

Accordingly, some VTL 1.0 operators have been revised in order to enforce their functional 617 
behaviour. 618 

                                                        
4 A first-order function is a function that does not take other functions as arguments and does not provide 
another function as result. 

5 A higher-order function is a function that takes one or more other functions as arguments and/or provides 
another function as result. 
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The operators 619 

The VTL 2.0 manipulation language (VTL-ML) has been upgraded in respect to the VTL 1.0. In 620 
fact VTL 2.0 introduces a number of new powerful operators, like the analytical and the 621 
aggregate functions, the data points and hierarchy  checks, various clauses and so on, and 622 
improve many existing operators, first of all the “join”, which substitutes the “merge” of the 623 
VTL 1.0.  The complete list of the VTL 2.0 operators is in the reference manual.  624 

Some rationalisations have brought to the elimination of some operators whose behaviour 625 
can be easily reproduced through the use of other operators. Some examples are the “attrcalc” 626 
operator which is now simply substituted by the already existing “calc” and the “query 627 
syntax” that was allowed for accessing a subset of Data Points of a Data Set, which on one side 628 
was not coherent with the rest of the VTL syntax conventions and on the other side can be 629 
easily substituted by the “filter” operator.   630 

Even in respect to the draft VTL 1.1 many rationalisations have been applied, also following 631 
the very numerous comments received during the relevant public consultation.  632 
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VTL Information Model 633 

Introduction 634 

The VTL Information Model (IM) is a generic model able to describe the artefacts that VTL can 635 
manipulate, i.e. to give the definition of the artefact structure and relationships with other 636 
artefacts.  637 

The knowledge of the artefacts definition is essential for parsing VTL expressions and 638 
performing VTL operations correctly. Therefore, it is assumed that the referenced artefacts 639 
are defined before or at the same time the VTL expressions are defined. 640 

The results of VTL expressions must be defined as well, because it must always be possible to 641 
take these results as operands of further expressions to build a chain of transformations as 642 
complex as needed. In other words, VTL is meant to be “closed”, meaning that operands and 643 
results of the VTL expressions are always artefacts of the VTL IM. As already mentioned, the 644 
VTL is designed to make it possible to deduce the data structure of the result from the 645 
calculation algorithm and the data structure of the operands.  646 

VTL can manage persistent or temporary artefacts, the former stored persistently in the 647 
information system, the latter only used temporarily.  The definition of the persistent artefact 648 
must be persistent as well, while the definition of temporary artefacts can be temporary6. 649 

The VTL IM provides a formal description at business level of the artefacts which VTL can 650 
manipulate, which is the same purpose as the Generic Statistical Information Model (GSIM) 651 
with a broader scope. As a matter of fact, the VTL Information Model uses GSIM artefacts as 652 
much as possible (GSIM 1.1 version) 7. Besides, GSIM already provides a first mapping with 653 
SDMX and DDI that can be used for the technical implementation8. Note that the description of 654 
the GSIM 1.1 classes and relevant definitions can be consulted in the “Clickable GSIM” of the 655 
UNECE site9.  However, the detailed mapping between the VTL IM and the IMs of the other 656 
standards is out of the scope of this document and is left to the competent bodies of the other 657 
standards. 658 

Like GSIM, the VTL IM provides for a model at a logical/conceptual level, which is 659 
independent of the implementation and allows different possible implementations.  660 

The VTL IM provides for an abstract view of the core artefacts used in the VTL calculations 661 
and intentionally leaves out implementation aspects. Some other aspects, even if logically 662 
related to the representation of data and calculations, are also left out because they can 663 

                                                        
6 The definition of a temporary artefact can be also persistent, if needed. 

7 See also the section “Relations with the GSIM Information model”  

8 For the GSIM – DDI and GSIM – SDMX mappings, see also the relationships between GSIM and other standards 
at the UNECE site http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards.  About the 
mapping with SDMX, however, note that here it is assumed that the SDMX artefacts Data Set and Data Structure 
Definition may represent both dimensional and unit data (not only dimensional data) and may be mapped 
respectively to the VTL artefacts Data Set and Data Structure. 

9 Hyperlink “http://www1.unece.org/stat/platform/display/GSIMclick/Clickable+GSIM” 

http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards
http://www1.unece.org/stat/platform/display/GSIMclick/Clickable+GSIM
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depend on the actual implementation too (for example, the textual descriptions of the VTL 664 
artefacts,  the representation of the historical changes of the real world).  665 

The operational metadata needed for supporting real processing systems are also left out 666 
from the VTL scope (for example the specification of the way data are managed, i.e. collected, 667 
stored, validated, calculated/estimated, disseminated ...).   668 

Therefore the VTL IM cannot autonomously support real processing systems, and for this 669 
purpose needs to be properly integrated and adapted, also adding more metadata (e.g., other 670 
classes of artefacts,  properties of the artefacts,  relationships among artefacts …). 671 

Even the possible VTL implementations in other standards (like SDMX and DDI) would 672 
require proper adjustments and improvements of the IM described here.   673 

The VTL IM is inspired to the modelling approach that consists in using more modelling levels, 674 
in which a model of a certain level models the level below and is an instance of a model of the 675 
level above.  676 

For example, assuming conventionally that the level 0 is the level of the real world to be 677 
modelled and ignoring possible levels higher than the one of the VTL IM, the VTL modelling 678 
levels could be described as follows:   679 

Level 0 – the real world 680 

Level 1 – the extensions of the data which model some aspect of the real world. For 681 
example, the content of the data set “population from United Nations”: 682 

 Year Country  Population 683 

2016   China    1,403,500,365 684 
2016   India  1,324,171,354 685 
2016 USA     322,179,605 686 
… 687 
2017 China  1,409,517,397 688 
2017 India  1,339,180.127 689 
2017 USA     324,459,463 690 
… 691 

Level 2 – the definitions of specific data structures (and relevant transformations) 692 
which are the model of the level 1. An example: the data structure of the data set 693 
“population from United Nations” has one measure component called “population” and 694 
two identifier components called Year and Country. 695 

Level 3 – the VTL Information Model, i.e. the generic model which the specific data 696 
structures (and relevant transformations) must conform. An example of IM rule about 697 
the data structure: a Data Set may be structured by just one Data Structure, a Data 698 
Structure may structure any number of Data Sets.  699 

A similar approach is very largely used, in particular in the information technology and for 700 
example  by the Object Management Group10, even if the terminology and the enumeration of  701 
the levels is different. The main correspondences are:  702 

VTL Level 1 (extensions)  – OMG M0 (instances) 703 

                                                        
10 For example in the Common Warehouse Metamodel and  Meta-Object Facility specifications 
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VTL Level 2 (definitions)  – OMG M1 (models)   704 

VTL Level 3 (information model) – OMG M2 (metamodels)   705 

Often the level 1 is seen as the level of the data, the level 2 of the metadata and the level 3 of 706 
the meta-metadata, even if the term metadata is too generic and somewhat ambiguous. In fact 707 
“metadata” is any data describing another data, while “definition” is a particular metadata 708 
which is the model of another data.  For example, referring to the example above, a possible 709 
other data set which describes how the population figures are obtained is certainly a 710 
metadata, because it gives information about another data (the population data set), but it is 711 
not at all its definition, because it does not describe the information structure of the 712 
population data set.   713 

The VTL IM is illustrated in the following sections. 714 

The first section describes the generic model for defining the statistical data and their 715 
structures, which are the fundamental artefacts to be transformed. In fact, the ultimate goal of 716 
the VTL is to act on statistical data to produce other statistical data. 717 

In turn, data items are characterized in terms of variables, value domains, code items and 718 
similar artefacts. These are the basic bricks that compose the data structures, fundamental to 719 
understand the meaning of the data, ensuring harmonization of different data when needed, 720 
validating and processing them. The second section presents the generic model for these 721 
kinds of artefacts. 722 

Finally, the VTL transformations, written in the form of mathematical expressions, apply the 723 
operators of the language to proper operands in order to obtain the needed results. The third 724 
section depicts the generic model of the transformations.   725 

Generic Model for Data and their structures 726 

This Section provides a formal model for the structure of data as operated on by the 727 
Validation and Transformation Language (VTL). 728 

As already said, GSIM artefacts are used as much as possible. Some differences between this 729 
model and GSIM are because, in the VTL IM, both unit and dimensional data are considered as 730 
first-order mathematical functions having independent and dependent variables and are 731 
treated in the same way.  732 

For each Unit (e.g. a person) or Group of Units of a Population (e.g. groups of persons of a 733 
certain age and civil status), identified by means of the values of the independent variables 734 
(e.g. either the “person id” or the age and the civil status), a mathematical function provides 735 
for the values of the dependent variables, which are the properties to be known (e.g. the 736 
revenue, the expenses …).  737 

A mathematical function can be seen as a logical table made of rows and columns. Each 738 
column holds the values of a variable (either independent or dependent); each row holds the 739 
association between the values of the independent variables and the values of the dependent 740 
variables (in other words, each row is a single “point” of the function). 741 

In this way, the manipulation of any kind of data (unit and dimensional) is brought back to the 742 
manipulation of very simple and well-known objects, which can be easily understood and 743 
managed by users. According to these assumptions, there would no longer be the need of 744 
distinguishing between unit and dimensional data, and in fact VTL does not introduces such a 745 
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distinction at all. Nevertheless, even if such a distinction is not part of the VTL IM, this aspect 746 
is illustrated hereinafter in order to make it easier to map the VTL IM to the GSIM IM and the 747 
DDI IM, which have such a distinction.  748 

Starting from this assumption, each mathematical function (logical table) may be defined 749 
likewise a GSIM Dimensional Data Set and the function structure likewise a GSIM Dimensional 750 
Data Structure, having Identifier, Measure and Attribute Components. The Identifier 751 
components are the independent variables of the function, the Measures and Attribute 752 
Components are the dependent variables. Obviously, the GSIM artefacts “Data Set” and “Data 753 
Set Structure” have to be strictly interpreted as logical artefacts on a mathematical level, not 754 
necessarily corresponding to physical data sets and physical data structures.  755 

In order to avoid any possible misunderstanding with respect to SDMX, also take note that the 756 
VTL Data Set in general does not correspond to the SDMX Dataset. In fact, a SDMX Dataset is a 757 
physical set of data (the data exchanged in a single interaction), while the VTL Data Set is a 758 
logical set of data, in principle independent of its possible physical representation and 759 
handling (like the exchange of part of it). The right mapping is between the VTL Data Set and 760 
the SDMX Dataflow. 761 

 762 

Data model diagram  763 

 764 

 765 
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Explanation of the Diagram  783 

Data Set:  a mathematical function (logical table) that describes some properties of some 784 
groups of units of a population. In general, the groups of units may be composed of one or 785 
more units. For unit data, each group is composed of a single unit. For dimensional data, each 786 
group may be composed of any number of units. A VTL Data Set is considered as a logical set 787 
of observations (Data Points) having the same logical structure and the same general 788 
meaning, independently of the possible physical representation or storage. Between the VTL 789 
Data Sets and the physical datasets there can be relationships of any cardinality: for example, 790 
a VTL Data Set may be stored either in one or in many physical data sets, as well as many VTL 791 
Data Sets may be stored in the same physical datasets (or database tables). The mapping 792 
between the VTL logical artefacts and the physical artefacts is left to the VTL implementations 793 
and is out of scope of this document. The VTL Data Set is similar to the GSIM Data Set, the 794 
relationship between them is described in a following section. 795 

Data Point: a single value of the function, i.e. a single association between the values of the 796 
independent variables and the values of the dependent variables. A Data Point corresponds to 797 
a row of the logical table that describes the function, therefore the extension of the function 798 
(Data Set) is a set of Data Points. Some Data Points of the function can be unknown (i.e. 799 
missing or NULL), for example the possible ones relevant to future dates. The single Data 800 
Points do not need to be individually defined, because their definition is the definition of the 801 
function (i.e. the Data Set definition).  This artefact is the same as the GSIM Data Point.  802 

Data Structure: the structure of a mathematical function, having independent and dependent 803 
variables. The independent variables are called “Identifier components”, the dependent 804 
variables are called either “Measure Components” or “Attribute Components”. The distinction 805 
between Measure and Attribute components is conventional and essentially based on their 806 
meaning: the Measure Components give information about the real world, while the Attribute 807 
components give information about the function itself.  The VTL Data Structure is similar to 808 
the GSIM Data Structure, the relationship between them is described in a following section.  809 

Data Structure Component: any component of the data structure, which can be either an 810 
Identifier, or a Measure, or an Attribute Component. This artefact is the same as in GSIM. 811 

Identifier Component (or simply Identifier): a component of the data structure that is 812 
an independent variable of the function. This artefact is the same as in GSIM. In respect 813 
to SDMX, an Identifier Component may be either a Group Identifier, which contributes 814 
to identify a group of statistical units and correspond to a SDMX Dimension, or a 815 
Measure Identifier, which contributes to identify a Measure and corresponds to a 816 
SDMX Measure Dimension.  817 

Measure Component (or simply Measure): a component of the data structure that is a 818 
dependent variable of the function and gives information about the real world. This 819 
artefact is the same as in GSIM.  820 

Attribute Component (or simply Attribute): a component of the data structure that is 821 
a dependent variable of the function and gives information about the function itself. 822 
This artefact is the same as in GSIM. In case the automatic propagation of the Attributes 823 
is supported (see the section  “Behaviour for Attribute  Components”), the Attributes 824 
can be further classified in normal Attributes  (not automatically propagated) and Viral 825 
Attributes (automatically propagated).  826 
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There can be from 0 to N Identifiers in a Data Structure. A Data Set having no identifiers can 827 
contain just one Data Point, whose independent variables are not explicitly represented.   828 

There can be from 0 to N Measures in a Data Structure. A Data Set without Measures is 829 
allowed because the Identifiers can be considered as functional dependent from themselves 830 
(so having also the role of Measure).  In an equivalent way, the combinations of values of the 831 
Identifiers can be considered as “true” (i.e. existing), therefore it can be thought  that there is 832 
an implicit Boolean measure having value “TRUE” for all the Data Points. 11   833 

The extreme case of a Data Set having no Identifiers, Measures and Attributes is allowed. A 834 
Data Set of this kind is assumed to contain just one scalar Value whose meaning is specified 835 
only through the Data Set name. As for the VTL operations, these Data Sets are managed like 836 
the scalar Values. 837 

Note that the VTL in most cases manages Measure and Attribute Components in different 838 
ways, as explained in the section “The general behaviour of operations on datasets” below, 839 
therefore the distinction between Measures and Attributes may be significant for the VTL. 840 

Represented Variable: a characteristic of a statistical population (e.g. the country of birth) 841 
represented in a specific way (e.g. through the ISO numeric country code). This artefact is the 842 
same as in GSIM. A represented variable may contribute to define any number of Data 843 
Structure Components. 844 

Functional Integrity 845 

The VTL data model requires a functional dependency between the Identifier Components 846 
and all the other Components of a Data Set.  It follows that a Data Set can also be seen as a 847 
tabular structure with a finite number of columns (which correspond to its Components) and 848 
rows (which correspond to its individual Data Points), in fact for each combination of values 849 
of the Identifier Components’ columns (which identify an individual Data Point),  there is just 850 
one value for each Measure and Attribute (contained in the corresponding columns).  851 

The functional dependency translates into the following functional integrity requirements: 852 

 Each Component has a distinct name in the Data Structure of the Data Set and contains 853 

one scalar value for each Data Point. 854 

 All the Identifier Components of the Data Set must contain a significant value for all the 855 

Data Points (i.e. such value cannot be unknown (“NULL”)).  856 

 In a Data Set there cannot exist two or more Data Points having the same values for all 857 

the Identifier Components (i.e. the same Data Point key). 858 

 When a Measure or Attribute Component has no significant value (i.e. “NULL”) for a 859 

Data Point, it is considered unknown for that Data Point. 860 

                                                        
11 For example, this is the case of a relationship that does not have properties: imagine a Data Set containing the 
relationship between the students and the courses that they have followed, without any other information: the 
corresponding Data Set would have StudentId and CourseId as Identifiers and would not have any explicit 
measure. 
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 When a Data Point is missing (i.e. a possible combination of values of the independent 861 

variables is missing), all its Measure and Attribute Components are by default 862 

considered  unknown (unless otherwise specified). 863 

The VTL expects the input Data Sets to be functionally integral and is designed to ensure that 864 
the resulting Data Set are functionally integral too.  865 

 866 

Relationships between VTL and GSIM  867 

As mentioned earlier, the VTL Data Set and Data Structure artefacts are similar to the 868 
corresponding GSIM artefact. VTL, however, does not make a distinction between Unit and 869 
Dimensional Data Sets and Data Structures.  870 

In order to explain the relationships between VTL and GSIM, the distinction between Unit and 871 
Dimensional Data Sets can be introduced virtually even in the VTL artefacts.  In particular, the 872 
GSIM Data Set may be a GSIM Dimensional Data Set or a GSIM Unit Data Set, while a VTL Data 873 
Set may (virtually) be: 874 

either a (virtual) VTL Dimensional Data Set: a kind of (Logical) Data Set describing 875 
groups of units of a population that may be composed of many units. This (virtual) 876 
artefact would be the same as the GSIM Dimensional Data Set; 877 

or a (virtual) VTL Unit Data Set: a kind of (Logical) Data Set describing single units of 878 
a population. This (virtual) artefact would be the same as the Unit Data Record in 879 
GSIM, which has its own structure and can be thought of as a mathematical function. 880 
The difference is that the VTL Unit Data Set would not correspond to the GSIM Unit 881 
Data Set, because the latter cannot be considered as a mathematical function: in fact it 882 
can have many GSIM Unit Data Records with different structures.  883 

A similar relationship exists between VTL and GSIM Data Structures. In particular, introducing 884 
in VTL the virtual distinction between Unit and Dimensional Data Structures, while a GSIM 885 
Data Structure may be a GSIM Dimensional Data Structure or a GSIM Unit Data Structure, a 886 
VTL Data Structure may (virtually) be: 887 

either a (virtual) VTL Dimensional Data Structure: the structure of (0..n) 888 
Dimensional Data Sets. This artefact would be the same as in GSIM; 889 

or a (virtual) VTL Unit Data Structure: the structure of (0..n) Unit Data Sets. This 890 
artefact would be the same as the Logical Record in GSIM, which corresponds to a 891 
single structure and can be thought as the structure of a mathematical function.  The 892 
difference is that the VTL Unit Data Structure would not correspond to the GSIM Unit 893 
Data Structure, because the latter cannot be considered as the structure of a 894 
mathematical function: in fact, it can have many Logical Records with different 895 
structures. 896 

The following diagram summarizes the relationships between the GSIM and the VTL Data Sets 897 
and Data Structures, according to the explanation given above.  898 

Please take into account that the distinction between Dimensional and Unit Data Set and Data 899 
Structure is not used by the VTL language and is not part of the VTL IM. This virtual 900 
distinction is highlighted here and in the diagram below just for clarifying the mapping of the 901 
VTL IM with GSIM and DDI.  902 



Version 1.1 Page: 27 

 

 903 

GSIM – VTL mapping diagram about data structures: 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

Examples  919 

As a first simple example of Data Sets seen as mathematical functions, let us consider the 920 
following table:   921 

 922 

Production of the American Countries 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

This table is equivalent to a proper mathematical function: in fact, it fulfils the functional 934 
integrity requirements above. The Table can be defined as a Data Set, whose name can be 935 

Ref.Date Country Meas.Name Meas.Value Status 

2013 Canada Population 50 Final 

2013 Canada GNP 600 Final 

2013 USA Population 250 Temporary 

2013 USA GNP 2400 Final 

… … … … … 

2014 Canada Population 51 Unavailable 

2014 Canada GNP 620 Temporary 

… … … … … 
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“Production of the American Countries”.  Each row of the table is a Data Point belonging to the 936 
Data Set. The Data Structure of this Data Set has five Data Structure Components: 937 

 Reference Date (Identifier Component) 938 
 Country  (Identifier Component)  939 
 Measure Name (Identifier Component - Measure Identifier)  940 
 Measure Value (Measure Component) 941 
 Status  (Attribute Component) 942 

 943 
As a second example, let us consider the following physical table, in which the symbol “###” 944 
denotes cells that are not allowed to contain a value or contain the “NULL” value.  945 
 946 

Institutional Unit Data 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

This table does not fulfil the functional integrity requirements above because its rows (i.e. the 961 
Data Points) either have different structures (in term of allowed columns) or have NULL 962 
values in the Identifiers. However, it is easy to recognize that there exist two possible 963 
functional structures (corresponding to the Row Types I and II), so that the original table can 964 
be split in the following ones: 965 

 966 

Row Type I - Institutional Unit register 967 

 968 

 969 

 970 

 971 

 972 

Row Type I.U. ID Ref.Date 
I.U. 

Name 

I.U. 

Sector 
Assets Liabilities 

I A ### AAAAA Private ### ### 

II A 2013 ### ### 1000 800 

II A 2014 ### ### 1050 750 

I B ### BBBBB Public ### ### 

II B 2013 ### ### 1200 900 

II B 2014 ### ### 1300 950 

I C ### CCCCC Private ### ### 

II C 2013 ### ### 750 900 

II C 2014 ### ### 800 850 

… … … … … … … 

I.U. ID I.U. Name I.U. Sector 

A AAAAA Private 

B BBBBB Public 

C CCCCC Private 

… … … 
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 973 

Row Type II - Institutional Unit Assets and Liabilities 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 

 982 

 983 

Each of these two tables corresponds to a mathematical function and can be represented like 984 
in the first example above. Therefore, they would be 2 distinct logical Data Sets according to 985 
the VTL IM, even if stored in the same physical table.  986 

In correspondence to one physical table (the former) there are two logical tables (the latter), 987 
so that the definitions will be the following ones: 988 

 989 

VTL Data Set 1: Record type I - Institutional Units register   990 

Data Structure 1: 991 
 I.U. ID   (Identifier Component) 992 
 I.U. Name  (Measure Component) 993 
 I.U. Sector  (Measure Component) 994 

 995 

VTL Data Set 2: Record type II - Institutional Units Assets and Liabilities   996 

Data Structure 2: 997 
 I.U. ID   (Identifier Component) 998 
 Reference Date (Identifier Component) 999 
 Assets   (Measure Component) 1000 
 Liabilities  (Measure Component) 1001 

 1002 

These examples clarify the meaning of “logical” table or Data Set in VTL, that is a set of data  1003 
that can be considered as the extensional form of a mathematical function, whichever 1004 
technical format is used, regardless it is persistent or not and, in case, wherever it is stored. 1005 

In the example above, one physical data set corresponds to more than one logical VTL Data 1006 
Sets, with a 1 to many correspondence. In the general case, between physical and logical data 1007 
sets there can be any correspondence (1 to 1, 1 to many, many to 1, many to many). 1008 

 1009 

I.U. ID Ref.Date Assets Liabilities 

A 2013 1000 800 

A 2014 1050 750 

B 2013 1200 900 

B 2014 1300 950 

C 2013 750 900 

C 2014 800 850 

… … … … 
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The data artefacts  1010 

The list of the VTL artefacts related to the manipulation of the data is given here, together 1011 
with the information that the VTL may need to know about them12.  1012 

For the sake of simplicity, the names of the artefacts can be abbreviated in the VTL manuals 1013 
(in particular the parts of the names shown between parentheses can be omitted).   1014 

As already mentioned, this list provides an abstract view of the core metadata needed for the 1015 
manipulation of the data structures but leaves out implementation and operational aspects.  1016 
For example, textual descriptions of the artefacts are left out, as well as any specification of 1017 
temporal validity of the artefacts, procedural metadata (specification of the way data are 1018 
processed, i.e., collected, stored, validated, calculated/estimated, disseminated ...) and so on.  1019 
In order to support real systems, the implementers can conveniently adjust this model to their 1020 
environments and integrate it by adding additional metadata (e.g. other properties of the 1021 
artefacts, other classes of artefacts, other relationships among artefacts …). 1022 

Data Set 1023 

Data Set name name of the Data Set  1024 

Data Structure name  reference to the data structure of the Data Set 1025 

Data Structure  1026 

Data Structure name name of the Data Structure (the Structure Components are 1027 
specified in the following artefact) 1028 

(Data) Structure Component 1029 

Data Structure name  the data structure which the Data Structure Component 1030 
belongs to 1031 

Component name the name of the Component  1032 

Component Role  IDENTIFIER or MEASURE or ATTRIBUTE (or also VIRAL 1033 
ATTRIBUTE if the automatic propagation is supported) 1034 

Represented Variable the Represented Variable which defines the Component (see 1035 
also below) 1036 

 1037 

The Data Points have the same information structure as the Data Sets they belong to, in fact 1038 
they form the extensions of the relevant Data Sets; VTL does not require to define them 1039 
explicitly.  1040 

  1041 

                                                        
12 For example, for ensuring correct operations, the knowledge of the Data Structure of the input Data Sets is 
essential at parsing time, in order to check the correctness of the VTL expression and determine the Data 
Structure of the result, and at execution time to perform the calculations 
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Generic Model for Variables and Value Domains 1042 

This Section provides a formal model for the Variables, the Value Domains, their Values and 1043 
the possible (Sub)Sets of Values. These artefacts can be referenced in the definition of the VTL 1044 
Data Structures and as parameters of some VTL Operators.  1045 

Variable and Value Domain model diagram 1046 
 1047 
 1048 
 1049 

 1050 
 1051 
 1052 
 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

 1066 

   1067 

 1068 

 1069 

 1070 
 1071 
  1072 
 1073 
 1074 
 1075 
White box:   same as in GSIM 1.1 1076 
Light grey: similar to GSIM 1.1 1077 
Dark grey additional detail (in respect to GSIM 1.1)  1078 

 1079 
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Explanation of the Diagram  1080 

Even in the case of Variables and Value Domains, the GSIM artefacts are used as much as 1081 
possible.  The differences are mainly due to the fact that GSIM does not distinguish explicitly 1082 
between Value Domains and their (Sub)Sets, while in the VTL IM this is made more explicit in 1083 
order to allow different Data Set Components relevant to the same aspect of the reality (e.g. 1084 
the geographic area) to share the same Value Domain and, at the same time, to take values in 1085 
different Subsets of it.  This is essential for VTL for several operations and in particular for 1086 
validation purposes.  For example, it may happen that the same Represented Variable, say the 1087 
“place of birth”, in a Data Set takes values in the Set of the European Counties, in another one 1088 
takes values in the set of the African countries, and so on, even at different levels of details 1089 
(e.g. the regions, the cities). The definition of the exact Set of Values that a Data Set 1090 
Component can take may be very important for VTL, in particular for validation purposes.  1091 
The specification of the Set of Values that the Data Set Components may assume is equivalent, 1092 
on the mathematical plane, to the specification of the domain and the co-domain of the 1093 
mathematical function corresponding to the Data Set.  1094 

Data Set:  see the explanation given in the previous section (Generic Model for Data and their 1095 
structures).  1096 

Data Set Component: a component of the Data Set, which matches with just one Data 1097 
Structure Component of the Data Structure of such a Data Set and takes values in a (sub)set of 1098 
the corresponding Value Domain13; this (sub)set of allowed values may either coincide with 1099 
the set of all the values belonging to the Value Domain or be a proper subset of it. In respect to 1100 
a Data Structure Component, a Data Set Component bears the important additional 1101 
information of the set of allowed values of the Component, which can be different Data Set by 1102 
Data Set even if their data structure is the same.  1103 

Data Structure:  a Data Structure; see the explanation already given in the previous section 1104 
(Generic Model for Data and their structures).   1105 

Data Structure Component:  a component of a Data Structure; see the explanation already 1106 
given in the previous section (Generic Model for Data and their structures). A Data Structure 1107 
Component is defined by a Represented Variable.   1108 

Represented Variable: a characteristic of a statistical population (e.g. the country of birth) 1109 
represented in a specific way (e.g. through the ISO code). This artefact is the same as in GSIM. 1110 
A represented variable may take value in (or may be measured by) just one Value Domain.   1111 

Value Domain: the domain of allowed values for one or more represented variables. This 1112 
artefact is very similar to the corresponding artefact in GSIM. Because of the distinction 1113 
between Value Domain and its Value Domain Subsets, a Value Domain is the wider set of 1114 
values that can be of interest for representing a certain aspect of the reality like the time, the 1115 
geographical area, the economic sector and so on. As for the mathematical meaning, a Value 1116 
Domain is meant to be the representation of a “space of events” with the meaning of the 1117 

                                                        
13 This is the Value Domain which measures the Represented Variable, which defines the Data Structure 
Component, which the Data Set Component matches to. 
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probability theory14. Therefore, a single Value of a Value Domain is a representation of a 1118 
single “event” belonging to this space of events.  1119 

Described Value Domain: a Value Domain defined by a criterion (e.g. the domain of 1120 
the positive integers). This artefact is the same as in GSIM. 1121 

Enumerated Value Domain: a Value Domain defined by enumeration of the allowed 1122 
values (e.g. domain of ISO codes of the countries). This artefact is the same as in GSIM. 1123 

Code List: the list of all the Code Items belonging to an enumerated Value Domain, 1124 
each one representing a single “event” with the meaning of the probability theory. As 1125 
for its mathematical meaning, this list is unique for a Value Domain, cannot contain 1126 
repetitions (each Code Item can be present just once) and cannot contain ambiguities 1127 
(each Code Item must have a univocal meaning, i.e., must represent a single event of 1128 
the space of the events).   This artefact is the same as in GSIM except for the 1129 
multiplicity of the relationship with the Enumerated Value Domain which is 1:1.  In fact 1130 
like it happens for the Data Set, the VTL considers the Code List as an artefact at a 1131 
logical level, corresponding to its mathematical meaning. A logical VTL Code List, 1132 
however, may be obtained as the composition of more physical lists of codes if needed: 1133 
the mapping between the logical and the physical lists is out of scope of this document 1134 
and is left to the implementations, provided that the basic conceptual properties of the 1135 
VTL Code List are ensured (unicity, no repetitions, no ambiguities). In practice, as for 1136 
the VTL IM, the Code List artefact matches 1:1 with the Enumerated Value Domain 1137 
artefact, therefore they can be considered as the same artefact. 1138 

Code Item: an allowed Value of an enumerated Value Domain. A Code Item is the association 1139 
of a Value with the relevant meaning (called “category” in GSIM). An example of Code Item is a 1140 
single country ISO code (the Value) associated to the country it represents (the category). As 1141 
for the mathematical meaning, a Code Item is the representation of an “event” of a space of 1142 
events (i.e. the relevant Value Domain), according to the notions of “event” and “space of 1143 
events” of the probability theory (see also the note above). 1144 

Value: an allowed value of a Value Domain. Please note that on a logical / mathematical level, 1145 
both the Described and the Enumerated Value Domains contain Values, the only difference is 1146 
that the Values of the Enumerated Value Domains are explicitly represented by enumeration, 1147 
while the Values of the Described Value Domains are implicitly represented through a 1148 
criterion.    1149 

 1150 

The following artefacts are aimed at representing possible subsets of the Value Domains. This 1151 
is needed for validation purposes, because very often not all the values of the Value Domain 1152 
are allowed in a Data Structure Component, but only a subset of them (e.g. not all the 1153 
countries but only the European countries). This is needed also for transformation purposes, 1154 

                                                        
14 According to the probability theory, a random experiment is a procedure that returns a result belonging a 
predefined set of possible results (for example, the determination of the “geographic location” may be 
considered as a random experiment that returns a point of the Earth surface as a result). The “space of results” is 
the space of all the possible results. Instead an “event” is a set of results (going back to the example of the 
geographic location, the event “Europe” is the set of points of the European territory and more in general an 
“event” corresponds to a “geographical area”).  The “space of events” is the space of all the possible “events” (in 
the example, the space of the geographical areas). 
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for example to filter the Data Points according to a subset of Values of a certain Data Structure 1155 
Component (e.g. extract only the European Countries from some data relevant to the World 1156 
Countries) . Although this detail does not exist in GSIM, these artefacts are compliant with the 1157 
GSIM artefacts described above, aimed at representing the Value Domains: 1158 

Value Domain Subset (or simply Set): a subset of Values of a Value Domain. This artefact 1159 
does not exist in GSIM, however it is compliant with the GSIM Value Domain. Hereinafter a 1160 
Value Domain Subset is simply called Set, because it can be any set of Values belonging to the 1161 
Value Domain (even the set of all the values of the Value Domain).   1162 

Described Value Domain Subset (or simply Described Set): a described (defined by 1163 
a criterion) subset of Values of a Value Domain (e.g. the countries having more than 1164 
100 million inhabitants, the integers between 1 and 100). This artefact does not exist 1165 
in GSIM, however it is compliant with the GSIM Described Value Domain. 1166 

Enumerated Value Domain Subset (or simply Enumerated Set): an enumerated 1167 
subset of a Value Domain (e.g. the enumeration of the European countries). This 1168 
artefact does not exist in GSIM, however it is compliant with the GSIM Enumerated 1169 
Value Domain. 1170 

Set List: the list of all the Values belonging to an Enumerated Set (e.g. the list of the ISO 1171 
codes of the European countries), without repetitions (each Value is present just once). 1172 
As obvious, these Values must belong to the Value Domain of which the Set is a subset. 1173 
This artefact does not exist in GSIM, however, it is compliant with the Code List in GSIM 1174 
which has a similar role. The Set List enumerates the Values contained in the Set (e.g. 1175 
the European country codes), without the associated categories (e.g. the names of the 1176 
countries), because the latter are already maintained in the Code List / Code Items of 1177 
the relevant Value Domain (which enumerates all the possible Values with the 1178 
associated categories). In practice, as for the VTL IM, the Set List artefact coincides 1:1 1179 
with the Enumerated Set artefact, therefore they can be considered as the same 1180 
artefact. 1181 

Set Item: an allowed Value of an enumerated Set. The Value must belong to the same Value 1182 
Domain the Set belongs to. Each Set Item refers to just one Value and just one Set. A Value can 1183 
belong to any number of Sets. A Set can contain any number of Values.   1184 

Relations and operations between Code Items 1185 

The VTL allows the representation of logical relations between Code Items, considered as 1186 
events of the probability theory and belonging to the same enumerated Value Domain (space 1187 
of events).  The VTL artefact that allows expressing the Code Item Relations is the Hierarchical 1188 
Ruleset, which is described in the reference manual. 1189 

As already explained, each Code Item is the representation of an event, according to the 1190 
notions of “event” and “space of events” of the probability theory. The relations between Code 1191 
Items aim at expressing the logical implications between the events of a space of events (i.e. in 1192 
a Value Domain). The occurrence of an event, in fact, may imply the occurrence or the non-1193 
occurrence of other events. For example: 1194 

 The event UnitedKingdom implies the event Europe (e.g. if a person lives in UK he/she 1195 
also lives in Europe), meaning that the occurrence of the former implies the occurrence 1196 
of the latter. In other words, the geo-area of UK is included in the geo-area of the 1197 
Europe. 1198 
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 The events Belgium, Luxembourg, Netherlands are mutually exclusive (e.g. if a person 1199 
lives in one of these countries he/she does not live in the other ones), meaning that the 1200 
occurrence of one of them implies the non-occurrence of the other ones (Belgium AND 1201 
Luxembourg = impossible event; Belgium AND Netherlands = impossible event; 1202 
Luxembourg AND Netherlands = impossible event). In other words, these three geo-1203 
areas do not overlap.  1204 

 The occurrence of one of the events Belgium, Netherlands or Luxembourg (i.e. Belgium 1205 
OR Netherlands OR Luxembourg) implies the occurrence of the event Benelux (e.g. if a 1206 
person lives in one of these countries he/she also lives in Benelux) and vice-versa (e.g. 1207 
if a person lives in Benelux, he/she lives in one of these countries). In other words, the 1208 
union of these three geo-areas coincides with the geo-area of the Benelux. 1209 

The logical relationships between Code Items are very useful for validation and 1210 
transformation purposes. Considering for example some positive and additive data, like for 1211 
example the population, from the relationships above it can be deduced that: 1212 

 The population of United Kingdom should be lower than the population of Europe. 1213 
 There is no overlapping between the populations of Belgium, Netherlands and 1214 

Luxembourg, so that these populations can be added in order to obtain aggregates. 1215 
 The sum of the populations of Belgium, Netherlands and Luxembourg gives the 1216 

population of Benelux. 1217 

A Code Item Relation is composed of two members, a 1st (left) and a 2nd (right) member. The 1218 
envisaged types of relations are: “is equal to” (=), “implies” (<), “implies or is equal to” (<=), 1219 
“is implied by” (>), and “is implied by or is equal to” (>=). “Is equal to” means also “implies 1220 
and is implied”.  For example: 1221 

UnitedKingdom < Europe  means (UnitedKingdom implies Europe) 1222 

In other words, this means that if a point of space belongs to United Kingdom it also 1223 
belongs to Europe. 1224 

The left members of a Relation are single Code Items. The right member can be either a single 1225 
Code Item, like in the example above, or a logical composition of Code Items: these are the 1226 
Code Item Relation Operands. The logical composition can be defined by means of 1227 
Operators, whose goal is to compose some Code Items (events) in order to obtain another 1228 
Code Item (event) as a result. In this simple algebra, two operators are envisaged:  1229 

 the logical OR of mutually exclusive Code Items, denoted “+”, for example: 1230 

Benelux = Belgium + Luxembourg + Netherlands 1231 

This means that if a point of space belongs to Belgium OR Luxembourg OR Netherlands 1232 
then it also belongs to Benelux and that if a point of space belongs to Benelux then it 1233 
also belongs either to Belgium OR to Luxembourg OR to Netherlands (disjunction). In 1234 
other words, the statement above says that territories of Belgium, Netherland and 1235 
Luxembourg are non-overlapping and their union is the territory of Benelux.  1236 
Consequently, as for the additive measures (and being equal the other possible 1237 
Identifiers),   the sum of the measure values referred to Belgium, Luxembourg and 1238 
Netherlands is equal to the measure value of Benelux.  1239 

 the logical complement of an implying Code Item in respect to another Code Item 1240 
implied by it, denoted “-“, for example: 1241 
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EUwithoutUK = EuropeanUnion - UnitedKingdom  1242 

In simple words, this means that if a point of space belongs to the European Union and 1243 
does not belong to the United Kingdom, then it belongs to EUwithoutUK and that if a 1244 
point of space belongs to EUwithoutUK then it belongs to the European Union and not 1245 
to the United Kingdom. In other words, the statement above says that territory of the 1246 
United Kingdom is contained in the territory of the European Union and its 1247 
complement is the territory of EUwithoutUK. As a consequence, considering a positive 1248 
and additive measure (and being equal the other possible Identifiers), the difference of 1249 
the measure values referred to EuropeanUnion and UnitedKingdom is equal to the 1250 
measure value of EUwithoutUK. 1251 

Please note that the symbols “+” and “-“ do not denote the usual operations of sum and 1252 
subtraction, but logical operations between Code Items seen as events of the probability 1253 
theory. In other words,  two or more Code Items cannot be summed or subtracted to obtain 1254 
another Code Item, because they are events (and not numbers), and therefore they can be 1255 
manipulated only through logical operations like “OR” and  “Complement”.  1256 

Note also that the “+” also acts as a declaration that all the Code Items denoted by “+” are 1257 
mutually exclusive (i.e. the corresponding events cannot happen at the same time), as well as 1258 
the “-“ acts as a declaration that all the Code Items denoted by “-” are mutually exclusive. 1259 
Furthermore, the “-“ acts also as a declaration that the relevant Code item implies the result of 1260 
the composition of all the Code Items denoted by the “+”. 1261 

At intuitive level, the symbol “+” means “with” (Benelux = Belgium with Luxembourg with 1262 
Netherland) while the symbol “-“ means “without” (EUwithoutUK = EuropeanUnion without 1263 
UnitedKingdom).    1264 

When these relations are applied to additive numeric Measures (e.g. the population relevant 1265 
to geographical areas), they allow to obtain the Measure Values of the left member Code Items 1266 
(i.e. the population of Benelux and EUwithoutUK) by summing or subtracting the Measure 1267 
Values relevant to the component Code Items (i.e. the population of Belgium, Luxembourg and 1268 
Netherland in the former case, EuropeanUnion and UnitedKingdom in the latter). This is why 1269 
these logical operations are denoted in VTL through the same symbols as the usual sum and 1270 
subtraction.  Please note also that this is valid whichever the Data Set and the additive 1271 
Measure are (provided that the possible other Identifiers of the Data Set Structure have the 1272 
same Values).  1273 

These relations occur between Code Items (events) belonging to the same Value Domain 1274 
(space of events).  They are typically aimed at defining aggregation hierarchies, either 1275 
structured in levels (classifications), or without levels (chains of free aggregations) or a 1276 
combination of these options. These hierarchies can be recursive, i.e. the aggregated Code 1277 
Items can in their turn be the components of more aggregated ones, without limitations to the 1278 
number of recursions. 1279 

For example, the following relations are aimed at defining the continents and the whole world 1280 
in terms of individual countries: 1281 

 World = Africa + America + Asia + Europe + Oceania 1282 
 Africa = Algeria + … + Zimbabwe 1283 
 America = Argentina + … + Venezuela 1284 
 Asia = Afghanistan + … + Yemen 1285 
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 Europe = Albania + … + Vatican City 1286 
 Oceania = Australia + … +  Vanuatu 1287 

A simple model diagram for the Code Item Relations and Code Item Relation Operands is the 1288 
following: 1289 

 1290 

 1291 

 1292 

 1293 

 1294 

 1295 

 1296 

 1297 

This diagram tells that a Code Item Relation has a first and a second member. The first 1298 
member (the left one) refers to just one Code Item, the second member (the right one) may 1299 
refer to one or more Code Item Relation Operands; each  Code Item Relation Operand refers 1300 
to just one Code Item.  1301 

Conditioned Code Item Relations 1302 

The Code Items (coded events) of a Code Item Relation can be conditioned by the Values 1303 
(events) of other Value Domains (spaces of events).  Both the Code Items belonging to the first 1304 
and the second member of the Relation can be conditioned.   1305 

A common case is the conditioning relevant to the reference time, which allows to express the 1306 
historical validity of a Relation (see also the section about the historical changes below). For 1307 
example, the European Union (EU) changed its composition in terms of countries many times, 1308 
therefore the Code Item Relationship between EU and its component countries depends  on 1309 
the reference time, i.e. is conditioned by the Values of the “reference time” Value Domain.  1310 

The VTL allows to express the conditionings by means of Boolean expressions which make 1311 
reference to the Values of the conditioning Value Domains (for more details, see the 1312 
Hierarchical Rulesets in the Reference Manual).  1313 

The historical changes  1314 

The changes in the real world may induce changes in the artefacts of the VTL-IM and in the 1315 
relationships between them, so that some definitions may be considered valid only with 1316 
reference to certain time values.  For example, the birth of a new country as well as the split 1317 
or the merge of existing countries in the real world would induce changes in the Code Items 1318 
belonging to the Geo Area Value Domain, in the composition of the relevant Sets, in the 1319 
relationships between the Code Items and so on. The same may obviously happen for other 1320 
Value Domains. 1321 

A correct representation of the historical changes of the artefacts is essential for VTL, because 1322 
the VTL operations are meant to be consistent with these historical changes, in order to 1323 
ensure a proper behaviour in relation to each time. With regard to this aspect, VTL must face a 1324 
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complex environment, because it is intended to work also on top of other standards, whose 1325 
assumptions for representing historical changes may be heterogeneous. Moreover, different 1326 
institutions may use different conventions in different systems.   1327 

Naturally, adopting a common convention for representing the historical changes of the 1328 
artefacts would be a good practice, because the definitions made by different bodies would be 1329 
given through the same methodology and therefore would be easily comparable one another. 1330 
In practice, however, different conventions are already in place and have to be taken into 1331 
account, because there can also be strong motivations to maintain them. For this reason, the 1332 
VTL does not impose any definite representation for the historical changes and leaves users 1333 
free of maintaining their own conventions, which are considered as part of the data content to 1334 
be processed rather than of the language.  1335 

As a matter of fact, the VTL-IM intentionally does not include any mechanism for representing 1336 
historical changes and needs to be properly integrated to this purpose. This aspect is left to 1337 
the standards and the institutions adopting VTL and the implementers of VTL systems, which 1338 
can adapt and enrich the VTL-IM as needed. 1339 

Even if presented here for association of ideas with the relations between Code Items, whose 1340 
temporal dependency is intuitive, these considerations about the temporal validity of the 1341 
definitions are valid in general.   1342 

Moreover, as already mentioned, the possibility of integrating the VTL-IM with additional 1343 
metadata is needed also for other purposes, and not only for dealing with the temporal 1344 
validity.  1345 

It is appropriate here to highlight some relationships between the VTL artefacts and some 1346 
possible temporal conventions, because this can guide VTL implementers in extending the 1347 
VTL-IM according to their needs. 1348 

First, we want to distinguish between two main temporal aspects: the so-called validity time 1349 
and operational time. Validity time is the time during which a definition is assumed to be true 1350 
as an abstraction of the real world (for example, Estonia belongs to EU “from 1st May 2004 to 1351 
current date”). Operational time is the time period during which a definition is available in the 1352 
processing system and may produce operational effects. The following considerations refers 1353 
only to the former. 1354 

The assignment of identifiers to the abstractions of the real world is strictly related to the 1355 
possible basic temporal assumptions.  Two main options can be considered:  1356 

a) The same identifier is assigned to the abstraction even if some aspects of such an 1357 
abstraction change in time. For example, the identifier EU is assigned to the European 1358 
Union even if the participant countries change. Under this option, a single identifier 1359 
(e.g. EU) is used to represent the whole history of an abstraction,  following the 1360 
intuitive conceptualization in which abstractions are identified independently of time 1361 
and maintain the same identity even if they change with time. The variable aspects of 1362 
an abstraction are therefore described by specifying their validity periods (for 1363 
example, the participation of Estonia in the EU can be specified through the relevant 1364 
start and end dates). 1365 

b) Different Identifiers are assigned to the abstraction when some aspects of the 1366 
abstraction change in time. For example, more Identifiers (e.g. EU1, … , EU9) represent 1367 
the European Union, one for each period during which its participant countries remain 1368 
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stable. This option is based on the conceptualization in which the abstractions are 1369 
identified in connection with the time period in which they do not change, so that an 1370 
Code Item (e.g. EU1) corresponds to an abstraction (e.g. the European Union) only for 1371 
the time period in which the abstraction remain stable (e.g. EU1 represents the 1372 
European Union from when it was created by the founder countries, to the first time it 1373 
changed composition).  An example of adoption of this option b) is the common 1374 
practice of giving versions to Code Lists or Code Items for representing time changes 1375 
(e.g. EUv1, … , EUv9 where v=version), being each version assumed as invariable.  1376 

As a consequence, the general assumptions of VTL for the representation of the historical 1377 
changes are the following: 1378 

 The choice of adopting the options described above is left to the implementations. 1379 
 The VTL Identifiers are different depending on the two options above; for example in 1380 

the option a) there would exist one Identifier for the European Union (e.g. EU) while in 1381 
the option b) there would exist many different Identifiers, corresponding to the 1382 
different versions of the European Union  (e.g. EU1, … , EU9).  1383 

 If the Code Items are versioned for managing temporal changes (option b), the version 1384 
is considered to be part of the VTL univocal identifier of the Code Item, therefore  1385 
different versions are equivalent to different Code Items. As explained above, in fact, 1386 
the European Union would be represented by many Code Items (e.g. EUv1, … , EUv9). 1387 
The same applies if the Code Items are versioned by means of dates (e.g. start/end  1388 
dates …) or other conventions instead than version numbers. As obvious, the temporal 1389 
validity of  EUv1, … , EUv9, if represented, should not overlap. 1390 

The implementers of VTL systems can add the temporal validity (through validity dates or 1391 
versions) to any class of artefacts or relations of the VTL-IM (as well as any other additional 1392 
characteristic useful for the implementation, like the textual descriptions of the artefacts or 1393 
others).  If the temporal validity is not added, the occurrences of the class are assumed to be 1394 
valid “ever”. 1395 

The Variables and Value Domains artefacts  1396 

The list of the VTL artefacts related to Variables and Value Domains is given here, together 1397 
with the information that the VTL need to know about them. For the sake of simplicity, the 1398 
names of some artefacts are often abbreviated in the VTL manuals (in particular the parts of 1399 
the names shown between parentheses can be omitted).   1400 

As already mentioned, this model provides an abstract view of the core metadata supporting 1401 
the definition of the data structures but leaves out implementation and operational aspects.  1402 
For example, the textual descriptions of the artefacts are left out, as well as the specification of 1403 
the temporal validity of the artefacts, the procedural metadata (the specification of the way 1404 
data are processed, i.e. collected, stored, validated, calculated/estimated, disseminated ...) and 1405 
so on.  In order to support real systems, the implementers can conveniently adjust this model 1406 
and integrate it by adding other metadata (e.g. other properties of the artefacts, other classes 1407 
of artefacts, other relationships among artefacts …). 1408 

 1409 

(Represented) Variable   1410 

Variable name name of the Represented Variable 1411 
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Value Domain name reference to the Value Domain which measures the Variable, 1412 
i.e. in which the Variable takes values 1413 

 1414 

(Data Set) Component 1415 

Data Set name the Data set which the Component belongs to 1416 

Component name the name of the Component  1417 

 (Sub) Set name reference to the (sub)Set containing the allowed values for 1418 
the Component 1419 

 1420 

Value Domain    1421 

Value Domain name name of the Value Domain 1422 

Value Domain sub-class if it is an Enumerated or Described Value Domain 1423 

Basic Scalar Type the basic scalar type of the Values of the Value Domain, for 1424 
example string, number … and so on (see also the section 1425 
“VTL data types”)  1426 

Value Domain Criterion a criterion for restricting the Values of a basic scalar type, 1427 
for example by specifying a max length of the 1428 
representation, an upper or/and a lower value, and so on 1429 

 1430 

Code List  this artefact is comprised in the previous one, in fact it 1431 
corresponds one to one to the enumerated Value Domain 1432 
(see above) 1433 

 1434 

Value    this artefact has no explicit representation, because the 1435 
Values of described Value Domains are not represented by 1436 
definition, while the Values of the enumerated Value 1437 
Domains are represented via the Code Item artefact (see 1438 
below)  1439 

 1440 

Code Item  this artefact specifies the Code Items of the Enumerated 1441 
Value Domains 1442 

Value Domain name the Value Domain which the Value belongs to 1443 

Value the univocal name of the Value within the Value Domain it 1444 
belongs to 1445 

 1446 

(Value Domain Sub)Set    1447 

Value Domain name the Value Domain which the set belongs to 1448 

Set name the name of the Set, which must be univocal within the 1449 
Value Domain  1450 
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Set sub-class if it is an Enumerated or Described Set 1451 

Set Criterion a criterion for identifying the Values belonging to the Set 1452 

 1453 

Set List  this artefact is comprised in the previous one, in fact it 1454 
corresponds one to one to the enumerated Set 1455 

 1456 

Set  Item    this artefact specifies the Code Items of the Enumerated Sets  1457 

Value Domain name reference to the Value Domain which the Set and the Value 1458 
belongs to 1459 

Set name the Set that contains the Value 1460 

Value Value element of the Set 1461 

 1462 

Code Item Relation 1463 

1stMember Domain name Value Domain of the first member of the Relation; e.g. 1464 
Geo_Area 1465 

1stMember Value  the first member of the Relation; e.g. Benelux 1466 

1stMember Composition  conventional name of the composition method, which  1467 
distinguishes possible different compositions methods 1468 
related to the same first member Value. It must be univocal 1469 
within the 1stMember. Not necessarily it has to be 1470 
meaningful, it can be simply a progressive number ; e.g. “1” 1471 

Relation Type  type of relation between the first and the second member, 1472 
having as possible values =, <, <=, >, >= 1473 

 1474 

Code Item Relation Operand 1475 

1stMember Domain name Value Domain of the first member of the Relation; e.g. 1476 
Geo_Area  1477 

1stMember Value  the first member of the Relation; e.g. Benelux 1478 

1stMember Composition  see the description already given above 1479 

2ndMember Value an operand of the Relation; e.g. Belgium] 1480 

Operator the operator applied on the 2ndMember Value, it can be “+” 1481 
or ”- “; the default is “+” 1482 

  1483 

Generic Model for Transformations 1484 

The purpose of this section is to provide a formal model for describing validation and 1485 
transformation of data.  1486 
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A Transformation is assumed to be an algorithm to produce a new model artefact (typically a 1487 
Data Set) starting from existing ones. It is also assumed that the data validation is a particular 1488 
case of transformation, therefore the term “transformation” is meant to be more general and 1489 
to include the validation case as well.  1490 

This model is essentially derived from the SDMX IM15, as DDI and GSIM do not have an explicit 1491 
transformation model at the moment16. In its turn, the SDMX model for Transformations is 1492 
similar in scope and content to the Expression metamodel that is part of the Common 1493 
Warehouse Metamodel (CWM) 17 developed by the Object Management Group (OMG).  1494 

The model represents the user logical view of the definition of algorithms by means of 1495 
expressions.  In comparison to the SDMX and CWM models, some technical details are omitted 1496 
for the sake of simplicity, including the way expressions can be decomposed in a tree of nodes 1497 
in order to be executed (if needed, this detail can be found in the SDMX and CWM 1498 
specifications).  1499 

The basic brick of this model is the notion of Transformation. 1500 

A Transformation specifies the algorithm to obtain a certain artefact of the VTL information 1501 
model, which is the result of the Transformation, starting from other existing artefacts, which 1502 
are its operands. 1503 

Normally the artefact produced through a Transformation is a Data Set (as usual considered 1504 
at a logical level as a mathematical function). Therefore, a Transformation is mainly an 1505 
algorithm for obtaining derived Data Sets starting from already existing ones. 1506 

The general form of a Transformation is the following: 1507 

result     assignment_operator    expression 1508 

meaning that the outcome of the evaluation of expression in the right-hand side is assigned to 1509 
the result of the Transformation in the left-hand side (typically a Data Set).  The assignment 1510 
operators are two, ” <-”  and  “:=“  (for the assignment to a persistent or a non-persistent 1511 
result, respectively).      A very simple example of Transformation is:  1512 

Dr  <-  D1    (Dr ,  D1    are assumed to be Data Sets) 1513 

In this Transformation, the Data Set  D1 is assigned without changes (i.e. is copied) to Dr, 1514 
which is persistently stored.    1515 

In turn, the expression in the right-hand side composes some operands (e.g. some input Data 1516 
Sets, but also Sets or other artefacts) by means of some operators (e.g. sum, product …) to 1517 
produce the desired results (e.g. the validation outcome, the calculated data).  1518 

For example:  Dr  :=  D1  +  D2  (Dr ,  D1 ,  D2  are assumed to be Data Sets) 1519 

                                                        
15 The SDMX specification can be found at https://sdmx.org/?page_id=5008  (see Section 2 - Information Model, 

package 13 - “Transformations and Expressions”). 

16 The Transformation model described here is not a model of the processes, like the ones that both SDMX and 
GSIM have, and has a different scope. The mapping between the VTL Transformation and the Process models is 
out of the scope of the present document.  

17 This specification can be found at http://www.omg.org/cwm. 

http://www.omg.org/cwm
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In this example the measure values of the Data Set Dr are calculated as the sum of the measure 1520 
values of the Data Sets D1 and D2, by composing the Data Points having the same Values for 1521 
the Identifiers. In this case Dr  is not persistently stored.    1522 

A validation is intended to be a kind of Transformation. For example, the simple validation 1523 
that D1 = D2  can be made through an “if” operator, with an expression of the type: 1524 

Dr  :=   if  (D1 = D2 , then TRUE, else FALSE) 1525 

In this case, the Data Set Dr would have a Boolean measure containing the value TRUE if the 1526 
validation is successful and FALSE if it is unsuccessful. 1527 

These are only fictitious examples for explanation purposes. The general rules for the 1528 
composition of Data Sets (e.g. rules for matching their Data Points, for composing their 1529 
measures …) are described in the sections below, while the actual Operators of the VTL and 1530 
their behaviours are described in the VTL reference manual.  1531 

The expression in the right-hand side of a Transformation must be written according to a 1532 
formal language, which specifies the list of allowed operators (e.g. sum, product …), their 1533 
syntax and semantics, and the rules for composing the expression (e.g. the default order of 1534 
execution of the operators, the use of parenthesis to enforce a certain order …). The Operators 1535 
of the language have Parameters18, which are the a-priori unknown inputs and output of the 1536 
operation, characterized by a given role (e.g. dividend, divisor or quotient in a division).  1537 

Note that this generic model does not specify the formal language to be used. As a matter of 1538 
fact, not only the VTL but also other languages might be compliant with this specification, 1539 
provided that they manipulate and produce artefacts of the information model described 1540 
above. This is a generic and formal model for defining Transformations of data through 1541 
mathematical expressions, which in this case is applied to the VTL, agreed as the standard 1542 
language to define and exchange validation and transformation rules among different 1543 
organizations 1544 

Also, note that this generic model does not actually specify the operators to be used in the 1545 
language. Therefore, the VTL may evolve and may be enriched and extended without impact 1546 
on this generic model. 1547 

In the practical use of the language, Transformations can be composed one with another to 1548 
obtain the desired outcomes. In particular, the result of a Transformation can be an operand 1549 
of other Transformations, in order to define a sequence of calculations as complex as needed. 1550 

Moreover, the Transformations can be grouped into Transformations Schemes, which are sets 1551 
of Transformations meaningful to the users. For example, a Transformation Scheme can be 1552 
the set of Transformations needed to obtain some specific meaningful results, like the 1553 
validations of one or more Data Sets. A Transformation Scheme is meant to be the smaller set 1554 
of Transformations to be executed in the same run. 1555 

A set of Transformations takes the structure of a graph, whose nodes are the model artefacts 1556 
(usually Data Sets) and whose arcs are the links between the operands and the results of the 1557 
single Transformations. This graph is directed because the links are directed from the 1558 
operands to the results and is acyclic because it should not contain cycles (like in the 1559 
spreadsheets), otherwise the result of the Transformations might become unpredictable.   1560 

                                                        
18 The term is used with the same meaning of “argument”, as usual in computer science. 
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The ability of generating this graph is a main feature of the VTL, because the graph documents 1561 
the operations performed on the data, just like a spreadsheet documents the operations 1562 
among its cells. 1563 

Transformations model diagram 1564 

 1565 

 1566 

 1567 

 1568 

 1569 

 1570 

 1571 

 1572 

 1573 

 1574 

 1575 

 1576 

 1577 

 1578 

 1579 
 1580 
 1581 
 1582 
 1583 
 1584 
 1585 

White box:   same as in GSIM 1.1 1586 
Dark grey box: additional detail (in respect to GSIM 1.1)  1587 

 1588 

Explanation of the diagram  1589 

Transformation: the basic element of the calculations, which consists of a statement which 1590 
assigns the outcome of the evaluation of an Expression to an Artefact of the Information 1591 
Model; 1592 

Expression: a finite combination of symbols that is well-formed according to the syntactical 1593 
rules of the language. The goal of an Expression is to compose some Operands in a certain 1594 
order by means of the Operators of the language, in order to obtain the desired result. 1595 
Therefore, the symbols of the Expression designate Operators, Operands and the order of 1596 
application of the Operators (e.g. the parenthesis); an expression is defined as a text string 1597 
and is a property of a Transformation;  1598 
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Transformation Scheme: a set of Transformations aimed at obtaining some meaningful 1599 
results for the user (like the validation of one or more Data Sets); the Transformation Scheme 1600 
is meant to be the smaller set of Transformations to be executed in the same run and 1601 
therefore may also be considered as a VTL program;  1602 

Operator: the specification of a type of operation to be performed on some Operands (e.g. 1603 
sum (+), subtraction (-), multiplication (*), division (/));  1604 

Parameter: a-priori unknown input or output of an Operator, having a definite role in the 1605 
operation (e.g. dividend, divisor or quotient for the division) and corresponding to a certain 1606 
type of artefact (e.g. a “Data Set”, a “Data Structure Component” …), for a deeper explanation 1607 
see also the Data Type section below. When an Operator is invoked, the actual input passed in 1608 
correspondence to a certain input Parameter,  or the actual output returned by the Operator, 1609 
is called Argument. 1610 

Operand: a specific Artefact referenced in the expression as an input (e.g. a specific input 1611 
Data Set); a Persistent Operand references a persistent artefact, i.e. an artefact maintained in a 1612 
persistent storage, while a Non Persistent Operand references a temporary artefact, which is 1613 
produced by another Transformation and not stored.   1614 

Result: a specific Artefact to which the result of the expression is assigned (e.g. the calculated 1615 
Data Set);  a Persistent Result is put away in a persistent storage while a Non Persistent Result 1616 
is not stored. 1617 

Identifiable Artefact: a persistent Identifiable Artefact of the VTL information model (e.g. a 1618 
persistent Data Set); a persistent artefact can be operand of any number of Transformations 1619 
but can be the result of no more than one Transformation. 1620 

 1621 

Examples  1622 

Imagine that D1, D2 and D3 are Data Sets containing information on some goods, specifically:  1623 
D1 the stocks of the previous date, D2 the flows in the last period, D3 the current stocks. 1624 
Assume that it is desired to check the consistency of the Data Sets using the following 1625 
statement: 1626 

Dr  :=   If  ((D1 + D2) = D3 , then “true”, else “false”) 1627 

In this case: 1628 

The Transformation may be called “basic consistency check between stocks and flows” and is 1629 
formally defined through the statement above.  1630 

 Dr        is the Result  1631 
 D1, D2 and D3      are the Operands  1632 
 If  ((D1 + D2) = D3 , then TRUE, else FALSE)  is the Expression 1633 
 “:=”, “If”,   “+” ,  “=”     are Operators 1634 

Each operator has some predefined parameters, for example in this case: 1635 

 input parameters of “+”: two numeric Data Sets (to be summed)  1636 
 output parameters of “+”: a numeric Data Sets (resulting from the sum)  1637 
 input parameters of “=”: two Data Sets (to be compared) 1638 
 output parameter of “=”: a Boolean Data Set (resulting from the comparison)  1639 
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 input parameters of “If”: an Expression defining a condition, i.e. (D1+D2)=D3   1640 
 output parameter of “If”:    a Data Set (as resulting from the “then”, “else” clauses) 1641 

 1642 

Functional paradigm  1643 

As mentioned, the VTL follows a functional programming paradigm, which treats 1644 
computations as the evaluation of mathematical functions, so avoiding changing-state and 1645 
mutable data in the specification of the calculation algorithm. On one side the statistical data 1646 
are considered as mathematical functions (first order functions), on the other side the VTL 1647 
operators are considered as functions as well (second order functions), applicable to some 1648 
data in order to obtain other data.  1649 

According to the functional paradigm, the output value of a (second order) function depends 1650 
only on the input arguments of the function, is calculated in its entirety and once for all by  1651 
applying the function, and cannot be altered or modified once calculated (immutable) unless 1652 
the input arguments change.  1653 

And in fact the VTL operators, and the expressions built using these operators,  specify the 1654 
algorithm for calculating the results in their entirety, once for all, and never for updating 1655 
them. When some change in the operands occurs (e.g. the input data change), the VTL 1656 
assumes that the results are recalculated in their entirety according to the correspondent 1657 
expressions19.  1658 

Coherently, a VTL artefact can be result of just one Transformation and cannot be updated by 1659 
other Transformations, a Transformation cannot update either its own operands or the result 1660 
of other Transformations and the result of a new Transformation is always a new artefact.  1661 

 1662 

Transformation Consistency 1663 

The Transformation model requires that the Transformations follow some consistency rules, 1664 
similar to the ones typical of the spreadsheets; in fact there is a strict analogy between the 1665 
generic models of Transformations and spreadsheets.  1666 

In this analogy, a VTL artefact corresponds to a non-empty cell of a spreadsheet, a 1667 
Transformation to the formula defined in a cell (which references other cells as operands), a 1668 
Result to the content of the cell in which the formula is defined 20.  1669 

The model artefacts involved in Transformations can be divided into “collected / primary” or 1670 
“calculated / derived” ones. The former are original artefacts of the information system, not 1671 
result of any Transformation, fed from some external source or by the users (they are 1672 
analogous to the spreadsheet cells which are not calculated). The latter are produced as 1673 
results of some Transformations (they are analogous to the spreadsheet cells calculated 1674 
through a formula). 1675 

                                                        
19 At the implementation level, which is out of the scope of this document, the update operations are obviously 
possible 

20 The main difference between the two cases is the fact that a cell of a spreadsheet may contain only a scalar 
value while a VTL artefact may have also a more complex data structure, being typically a Data Set 
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As already said, a Transformation calculates just one result (“derived” model artefact) and a 1676 
result is calculated by just one Transformation. Both “primary” and “derived” model artefacts 1677 
can be operands of any number of Transformations. An artefact cannot be operand and   1678 
result of the same Transformation. 1679 

A Transformation belongs to just one Transformation Scheme, which is analogous to a whole 1680 
spreadsheet, in fact it is a set of Transformations executed in the same run and may contain 1681 
any number of Transformations in order to produce any number of results.  1682 

Because a “derived” model artefact is produced by just one Transformation and a 1683 
Transformation belongs to just one Transformation Scheme, it follows also that a “derived” 1684 
model artefact is produced in the context of just one Transformation Scheme.  1685 

The operands of a Transformation may come either from the same Transformation Scheme 1686 
which the Transformation belongs to or from other ones.  1687 

Within a Transformation Scheme, it can be built a graph of the Transformations by assuming 1688 
that each model artefact is a node and each Transformation is a set of arcs,  starting from the 1689 
Operand nodes and ending in the Result node;  1690 

This graph must be a directed acyclic graph (DAG): in particular, each arc is oriented from the 1691 
operand to the result; the absence of cycles makes it possible to unambiguously calculate the 1692 
“derived” nodes by applying the Transformations by following the topological order of the 1693 
graph. 1694 

Therefore, like in the spreadsheet, not necessarily the Transformations are performed in the 1695 
same order as they are written, because the order of execution depends on their input-output 1696 
relationships (a Transformation which calculates a result that is operand of other 1697 
Transformations must be executed first).  1698 

In the analogy between VTL and a spreadsheet, the correspondences would be the following:1699 
   1700 

 VTL model artefact      non-empty cell of a spreadsheet;  1701 

 VTL “collected / primary” model artefact     non-empty cell of a spreadsheet whose 1702 
value is fed from an external source or by the user; 1703 

 A “calculated / derived” model artefact          a non-empty cell of a spreadsheet 1704 
whose value is calculated by a formula; 1705 

 A VTL Transformation    A spreadsheet formula assigned to a cell   1706 

 a VTL Transformation  Scheme     A whole spreadsheet    1707 

 1708 
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VTL Data Types  1709 

The possible operations in VTL depend on the data types of the artefacts. For example, 1710 
numbers can be multiplied but text strings cannot.  1711 

When an Operator is invoked, for each (formal) input Parameter, an actual argument 1712 
(operand) is passed to the Operator, and for the output Parameter, an actual argument 1713 
(result) is returned by the Operator.  The data type of the argument must comply with the 1714 
allowed data types of the corresponding Parameter (the allowed data types of each Parameter 1715 
for each Operator are specified in the Reference Manual).  1716 

Every possible argument for a VTL Operator (with special attention to artefacts of the 1717 
Information Model, e.g., Values, Sets, Data Sets) must be typed and such type deterministically 1718 
inferable. 1719 

In other words, VTL Operators are strongly typed and type compliance is statically checked, 1720 
i.e., violations result in compile-time errors. 1721 

Data types can be related one another, and in particular a data type can have sub-types and 1722 
super-types. For example integer number is a sub-type of the type number, and number is in 1723 
turn a super-type of integer number: this means that any integer number is also a number but 1724 
not the reverse, because there is no guarantee that a generic number is also an integer 1725 
number. More in general, an object of a certain type is also of the respective super-types, but 1726 
there is no guarantee that an object of a super-type is of any of its sub-types.  1727 

As a consequence, if a Parameter is required to be of certain type, the arguments have either 1728 
this very type or any of its sub-types; arguments of its super-types are not allowed  (e.g. if a 1729 
Parameter is a number, an argument of type integer is accepted; vice versa, if it is an integer, 1730 
an argument of type number will not be accepted). 1731 

The data types depend on two main factors: the kind of values adopted for the representation 1732 
(e.g. text strings, numbers, dates, Boolean values) and the kind of  structure of the data (e.g. 1733 
elementary scalar values or compound values organized in more complex structures like Sets, 1734 
Components, Data Sets …). 1735 

The data types for scalar values also called “scalar types” (e.g. the scalar  15 is of the scalar 1736 
type “number”, while “hello” is of the scalar type “string”).  The scalar types are elementary 1737 
because they are not defined in term of other data types.  All the other data types are 1738 
compound.  1739 

For the sake of simplicity, hereinafter the term “data type” is sometimes abbreviated to “type” 1740 
and the term “scalar type” to “scalar”. 1741 

A particular meta-syntax is used to specify the type of the Parameters. For example, the 1742 
symbol    ::     means  “is of the type …”  or simply “is a …” (e.g.  “15 :: number”  means “15 is of 1743 
the type number”).   1744 

In the following sections, the classes of the VTL types are illustrated, as well as some 1745 
relationships between the types and the artefacts of the Information Model.  1746 

 1747 
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Data Types overview 1748 

Data Types model diagram 1749 
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Explanation of the diagram  1781 

Data Type: this is the class of all the data types manipulated by the VTL. As already said, the 1782 
actual data type of an object depends on its kind of representation and structure. As for the 1783 
structure, a Data Type may be a Scalar Data Type or a Compound Data Type.   1784 

Scalar Type: the class of all the scalar types, i.e., the possible types of scalar Values. The scalar 1785 
types are elementary because they are not defined in terms of other types.   The Scalar Types 1786 
can be Basic Scalar Types, Value Domain Scalar Types and Set Scalar Types.  1787 

Compound Data Type: the class of the compound types, i.e. the types that are defined in 1788 
terms of other types. 1789 

Basic Scalar Type: the class of the scalar types which exist by default in VTL (namely, string, 1790 
number, integer, time, date, time_period, duration, boolean). 1791 

Value Domain Scalar Type:  the class of the scalar types corresponding to all the scalar 1792 
Values belonging to a Value Domain. 1793 

Set Scalar Type: the class of the scalar types corresponding to all the scalar Values belonging 1794 
to a Set (i.e., Value Domain Subset).  1795 

Component Type:  the class of the types which the Components of the Data Sets belong to, i.e. 1796 
Represented Variables which assume a certain Role in the Data Set Structure.  1797 

Data Set Type:  the class of the Data Sets’ types,  which are the more common input types of 1798 
the VTL operators.  1799 

Operator Type:  the class of the Operators’ types, i.e., the functions which convert the types 1800 
of the input operands in the type of the result.  1801 

Ruleset Type:  the class of the Rulesets’ types, i.e. the set of Rules defined by users which 1802 
specify the behaviour of other operators (like the check and the hierarchy operators).  1803 

Product Type:  the class of the types which contain Cartesian products of artefacts belonging 1804 
to other generic types.  1805 

Universal Set Type:  the class of the types that contain unordered collections of other 1806 
artefacts which belong to another generic type and do not have repetitions.  1807 

Universal List Type:  the class of the types that contain ordered collections of other artefacts 1808 
which belong to another generic type and can have repetitions. 1809 

General conventions for describing the types 1810 

 The name of the type is written in lower cases and without spaces (for example the Data 1811 
Set type is named “dataset”). 1812 

 The double colon   ::     means  “is of the type …”  or simply “is a …”;   for example the 1813 
declaration 1814 

 operand  ::  string   1815 

means that the operand is a string. 1816 

 The vertical bar    |     indicates mutually exclusive type options, for example   1817 

operand  ::  scalar | component | dataset   1818 

means that “operand” can be either scalar, or  component, or dataset.  1819 
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 The angular parenthesis < type2 >  indicates that type2 (included in the parenthesis) 1820 
restricts the  specification of the preceding type, for example: 1821 

  operand :: component <string>   1822 

means “the operand is a component of string basic scalar type”.  1823 

If the angular parenthesis are omitted, it means that the preceding type is already 1824 
completely specified, for example: 1825 

operand :: component   1826 

means “the operand is a component without other specifications” and therefore it can be 1827 
of any scalar type, just the same as writing   operand :: component<scalar>  (in fact as 1828 
already said, “scalar” means “any scalar type”). 1829 

 The underscore _  indicates that the preceding type appears just one time, for example:    1830 

measure<string> _     1831 

indicates just one Measure having the scalar type string; the underscore also mean that 1832 
this is a non-predetermined generic element, which therefore can be any (in the example 1833 
above, the string Measure can be any) 1834 

 A specific element_name in place of the underscore denotes a predetermined element of 1835 
the preceding type, for example        1836 

measure<string not null> my_text   1837 

means just one Measure Component, which is a not-null string type and whose name is 1838 
“my_text”. 1839 

 The symbol   _+   means that the preceding type may appear from 1 to many times, for 1840 
example:    1841 

measure<string> _+    1842 

means one or more generic  Measures having the scalar type string (these Measures are 1843 
not predetermined). 1844 

 The symbol   _*   means that the preceding type may appear from 0 to many times, for 1845 
example:  1846 

measure<string> _*     1847 

means zero or more generic Measures having the scalar type string (these Measures are 1848 
not predetermined). 1849 

Scalar Types 1850 

Basic Scalar Types 1851 

The Basic Scalar Types are the scalar types on which VTL is founded. 1852 

The VTL has various basic scalar types (namely, string, number, integer, time, date, 1853 
time_period, duration, boolean). The super-type of all the scalar types is the type scalar, which 1854 
means “any scalar value”. The type number has the sub-type integer and the type time has two 1855 
independent sub-types, namely date and time_period. 1856 
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The hierarchical tree of the basic scalar types is the following: 1857 

Scalar   1858 

 String 1859 

 Number 1860 

  Integer 1861 

 Time 1862 

  Date 1863 

  Time_period 1864 

 Duration 1865 

 Boolean 1866 

 1867 

A scalar Value of type string is a sequence of alphanumeric characters of any length. On string 1868 
Values, all the string operations are allowed, such as: concatenation of strings, splitting of 1869 
strings, extraction of a part of a string (substring) and so on.    1870 

A Scalar Value of type number is a rational number of any magnitude and precision, also used 1871 
as approximation of a real number. On values of type number, the numeric operations are 1872 
allowed, such as: addition, subtraction, multiplication, division, power, square root and so on.  1873 
The type integer (positive and negative integer numbers and zero) is a subtype of the type 1874 
number.   1875 

A Scalar Value of type time denotes time intervals of any duration and expressed with any 1876 
precision. According to ISO 8601 (ISO standard for the representation of dates and times), a 1877 
time interval is the intervening time between two time points. This type can allow operations 1878 
like shift of the time interval, change of the starting/ending times, split of the interval, 1879 
concatenation of contiguous intervals and so on (not necessarily all these operations are 1880 
allowed in this VTL version).  1881 

The type date is a subtype of the type time which denotes time points expressed at any 1882 
precision, which are  time intervals starting and ending in the same time point (i.e. 1883 
intervals of zero duration). A value of type date includes all the parts needed to identify 1884 
a time point at the desired precision, like the year, the month, the day, the hour, the 1885 
minute and so on (for example, 2018-04-05 is the fifth of April 2018, at the precision of 1886 
the day).  1887 

The type time_period is a subtype of the type time as well and denotes non-1888 
overlapping time intervals having a regular duration  (for example the years, the 1889 
quarters of years, the months, the weeks and so on). A value of the type time_period is 1890 
composite and must include all the parts needed to identify a regular time period at 1891 
the desired precision; in particular, the time-period type includes the explicit indication 1892 
of the kind of regular period considered (e.g., “day”, “week”, “month”, “quarter” …).  For 1893 
example, the value 2018M04, assuming that “M” stands for “month”, denotes the 1894 
month n.4 of the 2018 (April 2018). Moreover, 2018Q2, assuming that “Q” stands for 1895 
“quarter”,  denotes the second quarter of 2018. In these examples, the letters M and Q 1896 
are used to denote the kind of period through its duration. 1897 
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A Scalar Value of type duration denotes the length of a time interval expressed with any 1898 
precision and without connection to any particular time point (for example one year, half 1899 
month, one hour and fifteen minutes). According to ISO 8601, in fact, a duration is the  amount 1900 
of intervening time in a time interval.  The duration is the scalar type of possible Value 1901 
Domains and Components representing the period (frequency) of periodical data. 1902 

A Scalar Value of type boolean denotes a logical binary state, meaning either “true” or “false”. 1903 
Boolean Values allow logical operations, such as: logical conjunction (and), disjunction (or), 1904 
negation (not) and so on.   1905 

All the scalar types are assumed by default to contain the conventional value “NULL”, which 1906 
means “no value”, or “absence of known value” or “missing value” (in other words, the scalar 1907 
types by default are “nullable”). Note that the “NULL” value, therefore, is the only value of 1908 
multiple different types (i.e., all the nullable scalar types).  1909 

The scalar types have corresponding non-nullable sub-types, which can be declared by adding 1910 
the suffix “not null” to the name of the type. For example, string not null is a string that 1911 
cannot be NULL, as well as number not null is a number that cannot be NULL. 1912 

The VTL assumes that a basic scalar type has a unique internal representation and more 1913 
possible external representations.  1914 

The internal representation is the reference representation of a scalar type in a VTL system, 1915 
used to process the scalar values. The use of a unique internal representation allows to 1916 
operate on values possibly having different external formats: the values are converted in the 1917 
reference representation and then processed. Although the unique internal representation 1918 
can be very important for the operation of a VTL system, not necessarily users need to know 1919 
it, because it can be hidden in the VTL implementation. The VTL does not prescribe any 1920 
predefined internal representation for the various scalar types, leaving different VTL systems 1921 
free to using they preferred or already existing ones. Therefore, the internal representations 1922 
to be used for the VTL scalar types are left to the VTL implementations.   1923 

The external representations are the ones provided by the Value Domains which refer to a 1924 
certain scalar type (see also the following sections). These are also the representations used 1925 
for the Values of the Components defined on such Value Domains. As obvious, the users have 1926 
to know the external representations and formats, because these are used in the Data Point 1927 
Values. Obviously, the VTL does not prescribe any predefined external representation, leaving 1928 
different VTL systems free to using they preferred or already existing ones. 1929 

Examples of possible different choices for external representations:  1930 

 for the strings, various character sets can be used;  1931 
 for the numbers, it is possible to use the dot or the comma as decimal separator, a fixed 1932 

or a floating point representation; non-decimal or non-positional numeral systems and 1933 
so on;  1934 

 for the time, date, time_period, duration it can be used one of the formats suggested by 1935 
the ISO 8601 standard or other possible personalized formats;  1936 

 the “boolean” type can use the values like TRUE and FALSE, or 0 and 1, or YES and NO 1937 
or other possible binary options.   1938 

It is assumed that a VTL system knows how to convert an external representation in the 1939 
internal one and vice-versa, provided that the format of the external representation is known. 1940 
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For example, the external representation of dates can be associated to the internal one 1941 
provided that the parts that specify year, month and day are recognizable21.    1942 

 1943 

Value Domain Scalar Types 1944 

This is the class of the scalar Types corresponding to the scalar Values belonging to the same 1945 
Value Domains (see also the section “Generic Model for Variables and Value Domains”).  1946 

The super-type of all the Value Domain Scalar Types is valuedomain, which means any Value 1947 
Domain Scalar Type. A specific Value Domain Scalar Type is identified by the name of the 1948 
Value Domain. 1949 

As said in the IM section, a Value Domain is the domain of allowed Values for one or more 1950 
represented variables. In other words, a Value Domain  is the space in which the  abstractions 1951 
of a certain category of the reality (population, age, country,  economic sector, …) are 1952 
represented.  1953 

A Value Domain refers to one of the Basic Scalar Types, which is the basic type of all the 1954 
Values belonging to the Value Domain. A Value Domain provides an external representation of 1955 
the corresponding Basic Scalar Type and can also restrict the possible (abstract) values of the 1956 
latter.  Therefore a Value Domain defines a customized scalar type.  1957 

For example, assuming that the “population” is represented by means of numbers from zero 1958 
to 100 billion, the (possible) “population” Value Domain refers to the “integer” basic scalar 1959 
type, provides a representation for it (e.g., the number is expressed in the positional decimal 1960 
number system without the decimal point) and allows only the integer numbers from zero up 1961 
to 100 billion (and not all the possible numbers). Numeric operations are allowed on the 1962 
population Values.  1963 

As another example, assuming that the “classes of population” are represented by means of 1964 
the characters from A to C (e.g. A for population between 0 and 1 million, B for population 1965 
greater that 1million until 1 billion, C for population greater than 1 billion), the “classes of 1966 
population” Value Domain refers to the “string” basic scalar type and allows only the strings 1967 
“A”, “B” or “C”. String operations are possible on these values.  1968 

As usual, even if many operations are possible from the syntactical point of view, they not 1969 
necessarily make sense in semantics terms: the evaluation of the meaningfulness of the 1970 
operations remains up to the users.   In fact, the same abstractions, in particular if enumerated 1971 
and coded, can be represented by using different possible Value Domains, also using different 1972 
scalar types. For example, the country can be represented through the ISO 3166-1  numeric 1973 
codes (type number), or ISO alpha-2 codes (type string), or ISO alpha-3 codes (type string), or 1974 
other coding systems. Even if numeric operations are possible on ISO 3166-1 country numeric 1975 
codes, as well as string operations are possible on ISO 3166-1 alpha-2 or alpha-3 country 1976 
codes, not necessarily these operations make sense.   1977 

                                                        
21 This can be achieved in many ways that depend on the data type and on the adopted internal and external 
representations.  For example, there can exist a default correspondence (e.g., 0 means always False and 1 means 
always True for Boolean), or the parts of the external representation can be specified through a mask (e.g., for 
the dates, DD-MM-YYYY or YYYYMMDD  specify the position of the digits representing year, month and day). 
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While the Basic Scalar Types are the types on which VTL is founded and cannot be changed,  1978 
all the Value Domains are user defined, therefore their names and their contents can be 1979 
assigned by the users.   1980 

Some VTL Operators  assume that a VTL system have certain kinds of Value Domains  which 1981 
are needed to perform the correspondent operations22. In the VTL manuals. definite names 1982 
and representations are assigned to such Value Domains for explanatory purposes; however 1983 
these names and representations are not mandatory and can be personalised if needed.  If 1984 
VTL rules are exchanged between different VTL systems, the partners of the exchange must 1985 
be aware of the names and representations adopted by the counterparties. 1986 

 1987 

Set Scalar Types 1988 

This is the class of the scalar types corresponding to the scalar Values belonging to the same 1989 
Sets (see also the section “Generic Model for Variables and Value Domains”).   1990 

The super-type of all the Set Scalar Types is set, which means any Set Scalar Type. A specific 1991 
Set Scalar Type is identified by the name of the Set. 1992 

A Set is a (proper or improper) subset of the Values belonging to a Value Domain (the Set of 1993 
all the values of the Value Domain is an improper subset of it). A scalar Set inherits from its 1994 
Value Domain the Basic Scalar Type and the representation and can restrict the possible 1995 
Values of its Value Domain (as a matter of fact, except the Set which  contains all the values of 1996 
its Value Domain and can also be assumed to exist by default, the other Sets are defined just to 1997 
restrict the Values of the Value Domain). 1998 

   1999 

External representations and literals used in the VTL Manuals 2000 

The Values of the scalar types, when written directly in the VTL definitions or expressions, are 2001 
called literals.   2002 

The literals are written according to the external representations adopted by the specific VTL 2003 
systems for the VTL basic data types (i.e., the representations of their Value Domains). As 2004 
already said, the VTL does not prescribe any particular external representation. 2005 

In these VTL manuals, anyway, there is the need to write literals of the various data types in 2006 
order to explain the behaviour of the VTL operators and give proper examples. The 2007 
representation of these literals are not intended to be mandatory and are not part of the VTL 2008 
standard specifications, these are only the representations used in the VTL manuals for 2009 
explanatory purposes and many other representations are possible and legal.  2010 

The representations adopted in these manuals are described below.  2011 

The string values are written according the Unicode and ISO/IEC 10646 standards. 2012 

                                                        
22 For example, at least one default Value Domain should exists for each basic scalar type, the Value Domains 

needed to represent the results of the checks should exist, and so on. 
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The number values use the positional numeral system in base 10. 2013 

o a fixed-point number  begins with the integer part, which is a sequence of 2014 
numeric characters from 0 to 9 (at least one digit) optionally prefixed by 2015 
plus or minus for the sign (no symbol means plus),  a dot is always present 2016 
in the end of the integer part and separates the (possible) fractional part, 2017 
which is another sequence of numeric characters.  2018 

o A floating point number, has a mantissa written like a fixed-point number, 2019 
followed by the capital letter E (for “Exponent”) and by the exponent, 2020 
written like a fixed-point integer;  2021 

For example: 2022 
 Fixed point numbers:   123.4567   +123.45    -8.901   0.123  -0.123 2023 
 Floating point numbers:   1.23E2   +123.E-2   -0.89E1   0.123E0 2024 

The integer values are represented like the number values with the following 2025 
differences: 2026 

o A fixed-point  integer is written like a fixed-point number but without the 2027 
dot and the fractional part.   2028 

o A floating point integer is written like a floating-point number but cannot 2029 
have a negative mantissa.  2030 

For example: 2031 

 Fixed point integers:   123   +123   -123 2032 
 Floating point integers:    123E0     1E3 2033 

The time values are conventionally represented through the initial and final Gregorian dates 2034 
of the time interval separated by a slash. The accuracy is reduced at the level of the day 2035 
(therefore omitting the time units shorter than the day like hours, minutes, seconds, decimals 2036 
of second). The following format is used (this is one of the possible options of the ISO 8601 2037 
standard):   2038 

YYYY-MM-DD/YYYY-MM-DD 2039 

Where YYYY indicates 4 digits for the year, MM indicates two digits for the month, DD 2040 
indicates two digits for the day.  For example: 2041 

2000-01-01/2000-12-31  the whole year 2000 2042 

2000-01-01/2009-12-31  the first decade of the XXI century   2043 

The date values are conventionally represented through one Gregorian date. The 2044 
accuracy is reduced at the level of the day (therefore omitting the time units shorter 2045 
than the day like hours, minutes, seconds, decimals of second). The following format is 2046 
used (this is one of the possible options of the ISO 8601 standard):   2047 

YYYY-MM-DD 2048 

The meaning of the symbols is the same as above. For example: 2049 

2000-12-31   the 31st December of the year 2000 2050 

2010-01-01   the first of January of the year 2010 2051 

The time_period values are represented for sake of simplicity with accuracy equal to 2052 
the day or less (week, month …) and a periodicity not higher than the year. In the VTL 2053 



Version 1.1 Page: 57 

 

manuals the following format is used (this is a personalized format not compliant with 2054 
the ISO 8601 standard): 2055 

  YYYYPppp 2056 

Where YYYY are 4 digits for the year, P is one character for specifying which is the 2057 
duration of the regular period (e.g. D for day, W for week, M for month, Q for quarter, S 2058 
for semester, Y for the whole year, see the codes of the duration data type below), ppp 2059 
denotes from zero two three digits which contain the progressive number of the period 2060 
in the year.  For example: 2061 

2000M12   the month of December of the year 2000 2062 

2010Q1   the first quarter of the year 2010 2063 

2020Y     the whole year 2010  2064 

The duration values in these manuals are conventionally restricted to very few predefined 2065 
durations which are codified through just one character as follows: 2066 

Code  Duration 2067 

  D  Day 2068 
  W  Week 2069 
  M  Month 2070 
  Q  Quarter  2071 
  S  Semester 2072 
  A  Year (Annual) 2073 

This is a very simple format not compliant with the ISO 8601 standard, which allows 2074 
representing durations in a much more complete, even if more complex, way. As mentioned, 2075 
the real VTL systems may adopt any other external representation. 2076 

The boolean values used in the VTL manuals are TRUE and FALSE (without quotes).   2077 

When a literal is written in a VTL  expression, its basic scalar type is not explicitly declared 2078 
and therefore is unknown.  2079 

For ensuring the correctness of the VTL operations, it is important to assess the scalar type of 2080 
the literals when the expression is parsed. For this purpose, there is the need for a mechanism 2081 
for the disambiguation of the literals types, because often the same literal might in itself 2082 
belong to many types, for example:  2083 

 the word “true” may be interpreted as a string or a boolean,  2084 
 the symbol “0“ may be interpreted as a string, a number or a boolean,  2085 
 the word  “20171231” may be interpreted as a string, a number or a date. 2086 

The VTL does not prescribe any predefined mechanism for the disambiguation of the scalar 2087 
types of the literals, leaving different VTL systems free to using they preferred or already 2088 
existing ones.  The disambiguation mechanism, in fact, may depend also on the conventions 2089 
adopted for the external representation of the scalar types in the VTL systems, which can be 2090 
various.  2091 

In these VTL manuals, anyway, there is the need to use a disambiguation mechanism in order 2092 
to explain the behaviour of the VTL operators and give proper examples. This mechanism, 2093 
therefore, is not intended to be mandatory and, strictly speaking, is not part of the VTL 2094 
standard.  2095 
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If VTL rules are exchanged between different VTL systems, the partners of the exchange must 2096 
be aware of the external representations and the disambiguation mechanisms adopted by the 2097 
counterparties. 2098 

The disambiguation mechanism adopted in these VTL manuals is the following: 2099 

 The string literals are written between double quotes, for example the literal “123456” 2100 
is a string, even if its characters are all numeric, as well as “I am a string! “. 2101 

 The numeric literals are assumed to have some pre-definite patterns, which are the 2102 
numeric patterns used for the external representation of the numbers described above. 2103 
A literal having one of these patterns is assumed to be a number.  2104 

 The boolean literals are assumed to be the values TRUE and FALSE (capital letters 2105 
without quotes).  2106 

In these manuals, it is also assumed that the types time, date, time_period and duration do not 2107 
directly support literals. Literal values of such types can be anyway built from literals of other 2108 
types (for example they can be written as strings) and converted in the desired type by the 2109 
cast operator (type conversion). In some cases the conversion can be made automatically, 2110 
(i.e., without the explicit invocation of the cast operator – see the Reference Manual for more 2111 
details).  2112 

As mentioned, the VTL implementations may personalize the representation of the literals 2113 
and the disambiguation mechanism of the basic scalar types as desired, provided that the 2114 
latter work properly and no ambiguities in understanding the type of the literals arise. For 2115 
example, in some cases the type of a literal can also be deduced from the context in which it 2116 
appears. As already pointed out, the possible personalised mechanism should be 2117 
communicated to the counterparties if the VTL rules are exchanged. 2118 

Conventions for describing the scalar types 2119 

 The keywords which identify the basic scalar types are the following: scalar, string, 2120 
number, integer, time, date, time_period, duration, boolean. 2121 

 By default, the basic scalar types are considered as nullable, i.e., allowing NULL values.  2122 

 The keyword not null following the type (and the “literal” keyword if present), means that 2123 
the scalar type does not allow the NULL value, for example:    2124 

operand :: string literal not null    2125 

means that the operand is a literal of string scalar type and cannot be NULL; if not null is 2126 
omitted the NULL value is meant to be allowed. 2127 

 An expression within square brackets  following the previous keywords, means that the 2128 
preceding scalar type is restricted by the expression. This is a VTL boolean expression23 2129 
(whose result can be TRUE or FALSE) which specifies a membership criterion, that is a 2130 
condition that discriminates the values which belong to the restriction (sub-type) from the 2131 
others (the value is assumed to belong to the sub-type only if the expression evaluates to 2132 
TRUE). The keyword “value”  stands for the generic value of the preceding scalar type and 2133 
is used in the expression to formulate the restrictive condition. For example:     2134 

integer [ value <= 6 ]    2135 

                                                        
23 I.e., an expressions whose result is boolean 
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is a sub-type of integer which contains only the integers lesser than or equal to 6.   2136 

The following examples show some particular cases: 2137 

o The generic expression [ between ( value, x,  y ) ]  24 restricts a scalar type by 2138 
indicating  a closed interval of possible values going from the value x to the value y, 2139 
for example    2140 

integer [between ( value, 1, 100 ) ]    2141 

is the sub-type which contains the integers between 1 and 100. 2142 

o The generic expression [ (value > x ) and (value < y) ] restricts a scalar type by 2143 
indicating  an open interval of possible values going from the value x to the value y, 2144 
for example  2145 

integer [ (value > 1 ) and (value < 100) ] 2146 

means integer greater than 1 and lesser than 100 (i.e., between 2 and 99). 2147 

o By using >= or <= in the expressions above, the intervals can be declared as open 2148 
on one side and closed on the other side, for example  2149 

integer [ (value >= 1 ) and (value < 100) ]    2150 

means  integer greater than or equal to one and lesser than 100.   2151 

o The generic expressions [ value >= x ] or [ value > x ] or [ value <= y ] or [ value 2152 
< y ] restrict a scalar type by indicating an interval having one side unbounded, for 2153 
example 2154 

integer  [ value >= 1 ]  2155 

means integer equal to or greater than 1, while  “integer[  value < 100 ]”  means an 2156 
integer lesser than 100. 2157 

o The generic expression [ value in  { v1, … , vN } ] 25  restricts a scalar type by 2158 
specifying explicitly a set of possible values, for example       2159 

integer { 1, 2, 3, 4, 5, 6 } 2160 

means  an integer which can assume only the integer values from 1 to 6.  The same 2161 
result is obtained by specifying [ value in  set_name ], where in is the “Element of” 2162 
VTL operator and set_name is the name of an existing Set (Value Domain Subset) 2163 
of the VTL IM. 2164 

o By using in the expression the operator   length 26  it is possible to  restrict a scalar 2165 
type by specifying   the possible number of digits that the values can have,  for 2166 
example    2167 

integer [ between ( length (value), 1, 10 ) ]    2168 

                                                        
24 “between ( x, y, z)” is the VTL operator which returns TRUE if  x is comprised between y and z  

25 “in” is the VTL operator which returns TRUE if an element (in this case the value) belongs to a Set; the symbol 
{ … , … , … } denotes a set defined as the list of its elements (separated by commas) 

26 “length” is the VTL Operator that returns the length of a string (in the example, the integer operand of the 
length operator  is automatically cast to a string and its length is determined) 
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means an integer having a length from one to 10 digits; 2169 

As obvious, other kinds of conditions are possible by using other VTL operators and more 2170 
conditions can be combined in the restricting expression by using the VTL boolean 2171 
operators (and, or, not …)   2172 

 Like in the general case, a restricted scalar type is considered by default as including the 2173 
NULL value. If the NULL value must be excluded, the type specification must be followed 2174 
by the symbol   not null; for example      2175 

integer [ between ( length (value), 1, 10 ) ]  not null    2176 

means a not-null integer having from one to 10 digits 2177 

Compound Data Types 2178 

The Compound data types are the types defined in terms of more elementary types.  2179 

The compound data types are relevant to artefacts like Components, Data Sets and to other 2180 
compound structures. For example, the a type Component is defined in terms of the scalar 2181 
type of its values, besides some characteristics of the Component itself (for example the role it 2182 
assumes in the Data Set, namely Identifier, Measure or Attribute). Similarly, the type of a Data 2183 
Set (i.e. of a mathematical function) is defined in terms of the types of its Components.  2184 

The compound Data Types are described in the following sections. 2185 

Component Types 2186 

This is the class of the Component types, i.e. of the Components of the Data Structures (for 2187 
example the “country of residence” in the role of Identifier, the “resident population” in the 2188 
role of Measure …).    2189 

A Component is essentially a Variable (i.e. an unknown scalar Value with a certain meaning,  2190 
e.g. the resident population) which takes Values in a Value Domain and plays a definite role in 2191 
a Data Structure (e.g., Identifier, Measure, Attribute). A Component inherits  the scalar type 2192 
(e.g. number) from the relevant Value Domain.  2193 

The main sub-types of the Component Type depend on the role of the Component in the data 2194 
structure and are the identifier, measure and attribute types (if the automatic propagation of 2195 
the Attributes is supported, another sub-type is the viral attribute).  These types reflect the 2196 
fact that the VTL behaves differently on Components of different roles. Their common super-2197 
type is component, which means “a Component having any role”.  2198 

Moreover, a Component type can be restricted by an associated scalar type (e.g. number, 2199 
string, …), therefore the complete specification of a Component type  takes the form    2200 

role_type < scalar_type >   2201 

where the scalar type included in angular parenthesis, restricts the  specification of the 2202 
preceding type (the role type); omitted angular parenthesis  mean “any scalar type”, which is 2203 
the same as writing <scalar>. Examples of Component types are the following: 2204 

 component  (or  component<scalar>) any Component  2205 

o component<number>  any Component of scalar type number 2206 

o identifier  (or  identifier<scalar>) any Identifier  2207 
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 identifier<time not null> Identifier of scalar type time not null 2208 

o measure  (or  measure<scalar>) any Measure  2209 

 measure<boolean>  Measure  of scalar type boolean 2210 

o attribute  (or  attribute<scalar>) any Attribute  2211 

 attribute<string>  Attribute of scalar type string 2212 

In the list above, the more indented types are sub-types of the less indented ones. 2213 

According to the functional paradigm, the Identifiers cannot contain NULL values, therefore 2214 
the scalar type of the Identifiers Components must be “not null”.  2215 

In summary, the following conventions are used for describing  Component types.  2216 

 As already said, the more general type is “component” which indicates any component, 2217 
for example  2218 

operand ::  component    2219 

means that “operand” may be any component. 2220 

 The main sub-types of the component type correspond to the roles that the Component 2221 
may assume in the Data Set, i.e., identifier, measure, attribute; for example  2222 

operand ::   measure   2223 

means that the operand must be a Measure.  2224 

The additional role viral attribute exists if the automatic propagation of the Attributes is 2225 
supported.27  The type viral_attribute is a sub-type of attribute. 2226 

 By default, a Component can be either specified directly through its name or indirectly 2227 
through a sub-expression which calculates it. 2228 

 The optional keyword name following the type keyword means that a component name 2229 
must be specified and that the component cannot be obtained through a sub-expression;  2230 
For example:    2231 

operand ::   measure name <string>  2232 

means that the name of a string Measure must be specified and not a string sub-2233 
expression28. If the name keyword is omitted the sub-expression is allowed. 2234 

 The symbol < scalar type >  means that the preceding type is restricted to the scalar type 2235 
specified within the angular brackets”, for example 2236 

operand ::   component < string >   2237 

means that the operand is a Component having any role and belonging to the string scalar 2238 
type;  if the restriction is not specified, then the scalar type can be any  (for 2239 
example    operand:: attribute   means that the operand is an Attribute of any scalar type).   2240 

 In turn, the scalar type of a Component can be restricted; for example  2241 

                                                        
27 See the section “Behaviour for Attribute Components” 

28 I.e., a sub-expressions whose result is string 
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operand::  measure < integer [ value between 1 and 100 ] not null > 2242 

means that the operand can be a not-null integer Measure whose values are comprised 2243 
between 1 and 100; 2244 

Data Set Types  2245 

This is the class of the Data Sets types. The Data Sets are the main kind of artefacts 2246 
manipulated by the VTL and their types depend on the types of their Components.  2247 

The super-type of all the Data Set types is dataset, which means “any dataset” (according to 2248 
the definition of Data Set given in the IM, as obvious).   2249 

A sub-type of dataset is the Data Sets of time series, which fulfils the following restrictive 2250 
conditions:  2251 

 The Data Set structure must contain one Identifier Component that acts as the reference 2252 
time, which must belong to one of the basic scalar types  time, date or time_period.   2253 

 The possible values of the reference time Identifier Component must be regularly spaced 2254 
o For the type time, the time intervals must start (or end) at a regular periodicity and 2255 

have the same duration 2256 
o For the type date, the time values must have a regular periodicity 2257 
o For the type time_period there are no additional conditions to fulfil, because the 2258 

time_period  values comprise by construction the indication of the period and 2259 
therefore are regularly spaced by default 2260 

 It is assumed that it exist the information about which is Identifier Components that acts 2261 
as the reference time and about which is the period (frequency) of the time series and that 2262 
such information is represented in some way in the VTL system. The VTL does not 2263 
prescribe any predefined representation, leaving different VTL systems free to using they 2264 
preferred or already existing ones. It is assumed that the VTL operators acting on time 2265 
series know which is the reference time Identifier and  the period of the time series and 2266 
use these information to perform correct operations.  2267 
Usually, the information about which is the reference time is included in the data structure 2268 
definition of the Data Sets or in the definition of the Data Set Components. 2269 
Some commonly used  representations of the periodicity are the following:  2270 

o For the types time and date, the period is often represented through an additional 2271 
Component of the Data Set (of any possible role) or an additional metadata relevant 2272 
to the whole Data Set or some parts of it. This Component (or other metadata) is of 2273 
the “duration” type and is often called “frequency”.  2274 

o For the type time_period, the periodicity is embedded in the time_period values. 2275 
In any case, if some periodical data exist in the system, it is assumed that a Value Domain 2276 
representing the possible periods exists and refers to the duration scalar type. 2277 

Within a Data Set of Time Series, a single Time Series is the set of Data Points which have the 2278 
same values for all the Identifier Components except the reference time29. A Data Set of time 2279 
series can also contain more time series relevant to the same phenomenon but having 2280 
different periodicities, provided that one or more Identifiers (other than the reference time) 2281 
distinguish the Time Series having different periodicity.  2282 

                                                        
29 Therefore each combination of values of the Identifier Components except the reference time identifies a Time 
Series. 
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The Data Sets of time series are the possible operands of the time series operators (they are 2283 
described in the Reference Manual). 2284 

More specific Data Set types can be defined by constraining the dataset type, for example by 2285 
specifying the number and the type of the possible Components in the different roles 2286 
(Identifiers, Measures and Attributes), and even their names if needed.  Therefore the general 2287 
syntax for specifying a Data Set type is    2288 

dataset { type_constraint }    or     dataset_ts { type_constraint }     2289 

where the type_constraint may assume many different forms which are described in detail in 2290 
the following section. Examples of Data Set types are the following: 2291 

dataset Any Data Set (according to the IM) 2292 

dataset { measure <number> _* } A Data Set having one or more Measures of 2293 
type number, without constraints on 2294 
Identifiers and Attributes 2295 

dataset { measure <boolean> _ ,    attribute<string> _* } 2296 

A Data Set having one boolean Measure, one 2297 
or more string Attributes and no constraints 2298 
on Identifiers  2299 

In summary, the following conventions are used for describing  Data Set types. 2300 

 The more general type is “dataset” which means any possible Data Set of the VTL IM (in 2301 
other words, a Data Set having any possible components allowed by the IM integrity rules) 2302 

 By default, a Data Set can be either specified directly through its name or indirectly 2303 
through a sub-expression which calculates it. 2304 

 The optional keyword name following dataset means that a Data Set name must be 2305 
specified and that the Data Set cannot be obtained through a sub-expression;  For 2306 
example:    2307 

operand::  dataset name    2308 

means that a Data Set name must be specified and not a sub-expression. If the name 2309 
keyword is omitted the sub-expression is allowed. 2310 

 The symbol  dataset { type_constraint }  indicates that the type_constraint included in 2311 
curly parenthesis restricts the  specification of the preceding dataset type without giving a 2312 
complete type specification, but indicating only the constraints in respect to the general 2313 
structure of the artefact of the Information Model corresponding to such type. For 2314 
example, given that the generic structure  of a Data Set in the IM may have any number of  2315 
Identifiers, Measures and Attributes and that these Components may be of any scalar type, 2316 
the declaration     2317 

operand ::   dataset { measure<string> _  }   2318 

means that the operand is of type Data Set having any number of Identifiers (like in the 2319 
IM), just one Measure of string type (as declared in the type declaration) and any number 2320 
of Attributes (like in the IM). 2321 

 Some or all the Data Set Components can also be predetermined. For example writing  2322 
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operand:: dataset { identifier<st_Id1> Id1, …, identifier<st_IdN> IdN, 2323 
measure<st_Me1> Me1, … , measure<st_MeL> MeL,  attribute<st_At1> 2324 
At1, … , attribute<st_AtK> AtK  }”   2325 

means that the operand is of Data Set type and has the identifier, measure and attribute 2326 
types and names specified within the curly brackets (in the example, <st_Id1> stands for 2327 
the scalar type of the Component named Id1 and so on). This is the example of an 2328 
extremely specific Data Set type in which all the component types and names are fixed in 2329 
advance. 2330 

 If a certain role (i.e. identifier, measure, attribute) is not specified, it means that there are 2331 
no restrictions on it, for example  2332 

operand:: dataset { me<st_Me1 > Me1, … , me<st_MeL > MeL  }   2333 

means that the operand is of Data Set type and has the measure types and names specified 2334 
within the curly brackets, while the Identifier and Attribute components have no 2335 
restrictions and therefore can be any. 2336 

Product Types 2337 

This is the class of the Cartesian products of other types; a product type is written in the form  2338 
t1 * t2  * … * tn   where  ti  (i = 1 … n) is another arbitrary type;  the elements of a Product type are 2339 
n-tuples whose i-th element  belongs to the type ti. For instance, the product type 2340 

string *  integer * boolean 2341 

includes elements like30  ("PfgTj", 7, true), ("kj-o", 80, false),  ("", 4, false)   but does not include 2342 
for example  ("qwe", 2017-12-31, true), ("kj-o", 80, 92).  2343 

The superclass is product, which means any product type 2344 

Product types can be used in practice for several reasons. They allow:  2345 

i. the natural expression of exclusion or inclusion criteria (i.e., constraints) over 2346 
values of two or more dataset components,  2347 

ii. the definition of the domain of the Operators in term of types of their Parameters  2348 
iii. the definition of more complex data types.  2349 

Operator Types 2350 

This is the class of the Operators’ types, i.e., the higher-levels functions that allow 2351 
transformations from the type t1 (the type of the input Parameters), to the type t2 (the type of 2352 
the output Parameter). An Operator Type is written in the form ‘t1 -> t2’, where t1 and t2 are 2353 
arbitrary types. For example, the type of the following operator says that it takes as input two 2354 
integer Parameters and returns a number. 2355 

Op1  ::   integer * integer -> number 2356 

The superclass is operator, which means any operator type 2357 

 2358 

                                                        
30 In the VTL syntax the symbol (  ) allows to define a tuple in-line by enumeration of its elements. 
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Ruleset Types 2359 

The class of the Ruleset types, i.e. the set of Rules that are used by some operators like 2360 
“check_hierarchy”, “check_hatapoint”, “hierarchy”, “transcode”. The general syntax for 2361 
specifying a Ruleset type is   main_type_of_ruleset {type_constraint}.   2362 

The main Rulesets types are the datapoint and the hierarchical Rulesets.  Their super-type is 2363 
ruleset which means “any Ruleset”. Moreover, Rulesets can be defined either on Value 2364 
domains or on Variables, therefore the main_type_of_rulesets are: 2365 

 ruleset      2366 

o datapoint      2367 

 datapoint_on_value domains 2368 
 datapoint_on_variables 2369 

o hierarchical 2370 

 hierarchical_on_value_domains 2371 
 hierarchical_on_variables 2372 

In the list above, the more indented types are sub-types of the less indented ones. 2373 

The type_constraint is optional and may assume many different forms which depends on the 2374 
main_type_of_ruleset.  If the type_constraint is present, the main_type_of_ruleset must 2375 
specify if the ruleset is defined on Value Domains or Variables (i.e., it must be one of the more 2376 
indented types above). 2377 

A datapoint Ruleset is defined on a Cartesian product of Value Domains or Variables, 2378 
therefore the type_constraint can contain such a list.  Examples of constrained  datapoint types 2379 
are: 2380 

datapoint on value domains {(geo_area * sector * time_period * numeric_value)} 2381 

datapoint on variables {(ref_date * import_currency * import_country)}  2382 

datapoint on value domains {date *  _+}  2383 

The last one is the type of the Data Point Rulesets that are defined on the “date” Value Domain 2384 
and on one to many other Value Domains (“_+” means “one or more”). 2385 

A hierarchical Ruleset is defined on one  Value Domain or Variable and can contain conditions 2386 
referred to other Value Domains or Variables, therefore the type_constraint for hierarchical 2387 
Rulesets can take one of the following forms:  2388 

{value_domain * (conditioningValueDomain1 * … * conditioningValueDomainN)}  2389 

{variable * (conditioningVariable1  *  …  *  conditioningVariableN)}.  2390 

Examples of  hierarchical types are: 2391 

hierarchical on value domains {geo_area * ( time_period ) } 2392 

hierarchical on variables { currency * ( date * country ) }  2393 

hierarchical on value domains {  _  } 2394 

hierarchical on value domains {  _   * ( reference_date )} 2395 

The last one is the type of the Hierarchical Rulesets that are defined on any Value Domain and 2396 
are conditioned by the reference date Value Domain. 2397 
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 2398 

Universal Set Types 2399 

The Universal Sets are unordered collections of other objects that belong to the same type t 2400 
and do not have repetitions (each object can belong to a Set just once). The Universal Sets are 2401 
denoted as  set < t >, where t is another arbitrary type. If  < t >  is not specified it means any 2402 
universal set type. 2403 

Possible examples are the Sets of product types.  For instance, the Universal Set Type:  2404 

set < string * integer * boolean >   2405 

includes the sets31  :  2406 

{ ("PfgTj", 7, true), ("kj-o", 80, false),  ("", 4, false) } 2407 

{ ("duo9", 67, true), ("io/p", 540, true) } 2408 

But does not includes the sets: 2409 

{ ("PfgTj", 7, true),  80,  ("", 4, false) } in fact 80 is not a product type 2410 

{ ("duo9", 67, true), (50, true) }  in fact (50, true) is not the right product type 2411 

{ ("", 4, false), (“F”, 8, true), ("", 4, false) } in fact ("", 4, false) is repeated 2412 

Universal List Types 2413 

The Universal Lists are ordered collections of other objects that belong to the same type t and 2414 
can have repetitions (an object can appear in a list more than once).  The Universal Lists are 2415 
denoted as list < t >, where t is an arbitrary type. If  < t >  is not specified it means any 2416 
universal list type. 2417 

For instance, the following Universal List type:  2418 

list < component>  2419 

includes elements like32  [reference date, import, export] but does not include elements like 2420 
[dataset1, country, sector] and [import, “text”] because dataset1 and “text” are not 2421 
Components.   2422 

                                                        
31 In the VTL syntax, the symbol {…} denotes a set defined as the list of its elements (separated by commas) 

32 In the VTL syntax, the symbol [ ] allows to define a List in-line by enumeration of its elements. 

 



Version 1.1 Page: 67 

 

VTL Transformations 2423 

This section describes the key concepts, assumptions and characteristics of the VTL which are 2424 
needed to a VTL user to define Transformations. As mentioned in the section about the 2425 
general characteristics above, the language is oriented to users without deep information 2426 
technology (IT) skills, who should be able to define calculations and validations 2427 
independently, without the intervention of IT personnel. Therefore, the VTL has been 2428 
designed to make the definition of the Transformations as intuitive as possible and to reduce 2429 
the chances of errors. 2430 

As already said, a Transformation consists of a statement which assigns the outcome of the 2431 
evaluation of an Expression to an Artefact of the Information Model. Then, transformations 2432 
are made of the following components: 2433 

● A right-hand side, which contains the expression to be evaluated, whose inputs are the 2434 
operands of the Transformation 2435 

● An assignment operator 2436 
● A left-hand side, which specifies the Artefact which the outcome of the expression is 2437 

assigned to (this is the result of the Transformation) 2438 

Examples of assignments are (assuming that Di (i=1…n) are Data Sets): 2439 

 D1 := D2 2440 
 D3 := D4 + D5 2441 

Assuming that E is the expression,  R is the result and IOi (i=1,… n) the input Operands, the 2442 
mathematical form of a Transformation based on  E  can be written as follows: 2443 

    R  := E (IO1, IO2, … , IOn) 2444 

The expression uses any number of VTL operators in combination to specify a compound 2445 
operation. Because all the VTL operators are functional, the whole expression is functional 2446 
too. 2447 

Transformations are properly chained for their execution, in fact the result Ri of a 2448 
Transformation Ti can be referenced as the operand of another Transformation Tj. In this case, 2449 
the former Transformation is evaluated first in order to provide the input for the latter.  To 2450 
enforce the consistency of the results, cycles are not allowed, therefore in the case above the 2451 
result Rj of the Transformation Tj cannot be operand of the Transformation Ti and cannot 2452 
contribute to the calculation of any operand of Ti, even  indirectly through a chain of other 2453 
Transformations. 2454 

The order in which the user defines the Transformations may be important for a better 2455 
understanding but cannot override the order of execution determined according their input-2456 
output relationships.  2457 

For the rules for the Transformation consistency, see also the section “Generic Model for 2458 
Transformation” above. 2459 

A VTL program is a set of Transformations executed in the same run, which is defined as a 2460 
Transformation Scheme. 2461 

 2462 
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The Expression 2463 

A VTL expression constitutes the right-hand side of a Transformation. It takes one or more 2464 
input operands and returns one output artefact.  2465 

An expression is the invocation of one or more operators in combination, in which the result 2466 
of an operator is passed as input parameter to another operator, and so on, in a tree structure. 2467 
The root of the tree structure is last operator to be applied and gives the final result.  2468 

For example, for the expression  a + b - c  the result of the addition  a + b  is passed to the 2469 
following subtraction, which gives the final result.  2470 

An expression is built from the following ingredients: 2471 

 Operators, which specify the operation to be performed (e.g. +, - and so on). As 2472 
mentioned, the standard VTL operators are described in detail in the Reference 2473 
Manual, moreover the VTL allows defining and then invoking “user defined operators” 2474 
(see the Reference Manual). Each operator envisages a certain number of input 2475 
parameters of definite data types and produces an outcome having a definite data type 2476 
(the types parameter are described in detail in the Reference Manual for each 2477 
operator).  2478 
 2479 

● Operands, which are the actual arguments passed to the invoked Operators, for 2480 
example in the expression  D1 + D2   the Operator “+” is invoked  and the Operands   D1  2481 
and  D2  are passed to it. The Operands can be: 2482 

o Named artefacts, which are VTL artefacts specified through their names. Their 2483 
actual values are obtained either referring to an external persistent source 2484 
(persistent artefacts) or as result of previous Transformations (non-persistent 2485 
artefacts) of the same Transformation Scheme; they are identified by means of a 2486 
symbolic name (e.g. in D1 + D2   the Operands D1  and  D2  are identified by the 2487 
names D1  and  D2).  Examples of identified artefacts are the Data Sets (like D1  2488 
and  D2  above) and the Data Set Components (like D1#C1, D1#C2, D1#C3, where # 2489 
means that Cj is a Component of the Data Set Di). 2490 

o Literals, which are VTL artefacts whose actual values are directly written in the 2491 
expression; for example, in the invocation D1 + 7 the second operand (7) is a 2492 
literal, in this case a scalar literal. Also other kind of artefacts can be written in 2493 
the expressions, for example the curly brackets denote the value of a Set (for 2494 
example {1, 2, 3, 4, 5, 6}  is the set of the integers from 1 to 6) and  the square 2495 
brackets denote a list (for example [7, 5, 3, 6, 3] is a list of numbers).  2496 
 2497 

 Parentheses, which specify the order of evaluation of the operators; for example in 2498 
the expression   D1 * ( D2  +  D3 )  first the sum  D2 + D3 is evaluated and then their 2499 
product for D1.  In case the parenthesis are not used, the default order of evaluation 2500 
(described in the Reference Manual) is applied (in the example, first the product and 2501 
then the sum).  2502 

An expression implies different steps of calculation, for example the expression:  2503 

R := O1 + O2  / (O3 – O4 / O5) 2504 

Can be calculated in the following steps: 2505 

I. (O4 / O5)     2506 
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II. (O3 - I)  2507 
III. (O2 / II)     2508 
IV. (O1 + III)  2509 

The intermediate and final outputs (I, II, III, IV) of the expression are assumed to be non-2510 
persistent (temporary). The persistency of the result Data Set R is controlled by the 2511 
assignment operator, as described below.  2512 

An intermediate result within the expression can be only the input of other operators in the 2513 
same expression. 2514 

In general, unless differently specified in the Reference Manual, in the invocation of an 2515 
operator any operand can be the result of a sub-expression which calculates it.   For example, 2516 
taking the exponentiation whose syntax is   2517 

power(base, exponent),  2518 

the invocation  power(D1 + D2 , 2) is allowed and means that first D1 + D2 is calculated and then 2519 
the result is squared. As usual, the data type of the calculated operand must comply with the 2520 
allowed data types of the corresponding Parameter  (in the example above, D1 + D2 must have 2521 
a numeric data type, otherwise it cannot be squared).   2522 

The nesting capabilities allow writing from very simple to very complex expressions. Users 2523 
can manage the complexity of the expressions by splitting or merging transformations. For 2524 
example, taking again the example above, the following two options would give the same 2525 
result:  2526 

Option 1: 2527 

Dr  :=  power(D1 + D2 , 2) 2528 

Option 2: 2529 

D3  :=  D1 + D2  2530 

Dr  :=  power( D3 , 2) 2531 

In both cases, in fact, first D1 + D2 is evaluated and then the power operator is applied to obtain 2532 
Dr. 2533 

In general, it is possible either to have simpler expressions splitting and chaining 2534 
Transformations or to have a minor number of Transformations writing more complex 2535 
expressions.  2536 

The Assignment 2537 

The assignment of an expression to an artefact is done through an assignment operator. The 2538 
VTL has two assignment operators, the persistent and the non-persistent assignment: 2539 

<- persistent assignment 2540 

:= non-persistent assignment 2541 

The former assigns the outcome of the expression on the left side to a persistent artefact, the 2542 
latter to a non-persistent one; therefore the choice of the assignment operator allows to 2543 
control the persistency of the artefact which is result of the Transformation.  2544 
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The only artefact that can be made persistent is the result (the left side artefact). In fact, as 2545 
already mentioned, the intermediate and final results of the right side expression are always 2546 
considered as non-persistent.  2547 

For example, taking again the example of Transformation above: 2548 

Dr  :=  power(D1 + D2 , 2) 2549 

The result Dr  can be declared as persistent by writing:  2550 

Dr  <-  power(D1 + D2 , 2) 2551 

Instead to make persistent also the intermediate result of   D1 + D2    it is necessary to split the 2552 
Transformation like in the option 2 above: 2553 

D3  <-  D1 + D2  2554 

Dr  <-  power( D3 , 2) 2555 

The persistent assignment operator is also called Put, because it is used to specify that a result 2556 
must be put in a persistent store. The Put has two parameters, the first is the final result of the 2557 
expression on the right side that has to be made persistent, the second is the reference to the 2558 
persistent Data Set which will contain such a result. 2559 

The Result  2560 

The left side artefact, i.e., the result of the Transformation, is always a named Data Set (i.e. a 2561 
Data Set identified by means of a symbolic name like explained in the previous section).  2562 

The data type and structure of the left side Data Set coincide with the data type and structure 2563 
of the outcome of the expression, which must be a Data Set as well. 2564 

Almost all VTL operators act on Data Sets. Many VTL operators can act also on Data Set 2565 
Components to produce other Data Set Components, however even in this case the outcome of 2566 
the expression is a new Data Set which contains the calculated Components.  2567 

An expression can result also in scalar Value, because many VTL operators can act on scalar 2568 
Values to obtain other scalar Values, furthermore some particular operations on Data Sets can 2569 
eliminate Identifiers, Measures and Attributes and obtain scalar Values (see the Reference 2570 
Manual).  The result of such expressions is considered as a named Data Set which does not 2571 
have Components (Identifiers, Measures and Attributes) and therefore contains just one 2572 
scalar Value.  The Data Sets without Components can be manipulated and possibly stored like 2573 
any other Data Set. Because the VTL notion of Data Set is logical and not physical, more Data 2574 
Set without Components can be stored in the same physical Data Set if appropriate. 2575 

The current VTL version does not include operators  which produce other output data types, 2576 
for example there are not operators which manipulate Sets (however this is a possible future 2577 
development).  2578 

As a matter of fact, the Data Set at the moment is the only type of Artefact that can be 2579 
produced and stored permanently through a command of the language.  2580 
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The Names 2581 

The artefact names 2582 

The names are the labels which identify the “named” artefacts which are operands or result of 2583 
the transformations.  2584 

For ensuring the correctness of the VTL operations, it is important to distinguish the names 2585 
from the scalar literals when the expression is parsed. For this purpose, the disambiguation 2586 
mechanism that distinguishes the types of the scalar literals must also be able of 2587 
distinguishing names and scalar literals.  2588 

As already mentioned in the section about the scalar literals, the VTL does not prescribe any 2589 
predefined disambiguation mechanism, leaving different VTL systems free to using they 2590 
preferred or already existing ones. In these VTL manuals, anyway, there is the need to use 2591 
some disambiguation mechanisms in order to explain the behaviour of the VTL operators and 2592 
give proper examples. These mechanisms are not intended to be mandatory and therefore, 2593 
strictly speaking, they are not part of the VTL standard specifications.  If no drawbacks exist, 2594 
however, their adoption is encouraged to foster the convergence between possible different 2595 
practices.  If VTL rules are exchanged, the disambiguation mechanisms should be 2596 
communicated to the counterparties, at least if they are different from the one suggested 2597 
hereinafter. 2598 

The general rules for the names are given below. As said above, these rules can be 2599 
personalized (for example restricted) in some implementations (e.g. a particular 2600 
implementation can require that an name starts with a letter). 2601 

The names are strings of characters no more than 128 characters long and are classified in 2602 
regular and non-regular names. 2603 

The regular names:  2604 

 can contain alphabetic and numeric characters and the special characters underscore 2605 
(_) and dot (.) ,  2606 

 must begin with an alphanumeric character and not with a special character 2607 
 must contain at least one alphabetic character   2608 
 cannot be a VTL reserved word 2609 

Examples or regular names are  abcdef,  1ab_cde,  a.b.c_d_e,  1234_5. 2610 

The regular names are: 2611 

 written in the Transformations / Expressions without quoting them 2612 
 case insensitive 2613 

The non-regular names:    2614 

 can contain alphanumeric characters and, in addition to the underscore and the dot,  2615 
any other Unicode character  2616 

 can contain blanks 2617 
 can begin with special characters 2618 
 can contain only numeric characters 2619 
 can be equal to the VTL reserved words 2620 

The non-regular names are: 2621 
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 written in the Transformations / Expressions surrounded by single quotes 2622 
 case sensitive 2623 

Examples of non-regular names, which therefore are enclosed in single quotes, are ’_abcdef’,  2624 
‘1ab-cde’, ‘12345’, ‘power’  (the first begins with a special character, the second contains the “-“ 2625 
character that is not allowed, the third contains only  numeric characters, the fourth coincides 2626 
to a VTL reserved word (the name of the exponentiation operator).  These names would not 2627 
be recognized by VTL if not enclosed  between single quotes. 2628 

The VTL reserved words (and symbols) are:  2629 

 the keywords of the VTL-ML and VTL-DL operators and of their parameters  (e.g.  <- , 2630 
:= , # , inner_join, as, using, filter, apply, rename, to,  + , - ,  power, and, or, not, group by, 2631 
group except, group all, having   …) 2632 

 the names of the classes of VTL artefacts of the VTL-IM (e.g., value, value domain, value 2633 
domain subset, set, variable, component, data set, data structure, operator, operand 2634 
parameter, transformation …) 2635 

 additional keywords for possible future use like  get, put, join, map, mapping, merge, 2636 
transcode and the names of commonly used mathematical and statistical functions. 2637 

 2638 

The environment name 2639 

In order to ensure non-ambiguous definitions and operations, the names of the artefacts must 2640 
be unique, meaning that an name cannot be assigned to more than one artefact.  2641 

In practice, the unicity of the names is ensured in a certain environment, that can be also 2642 
called namespace (i.e. the space in which the names are assigned without ambiguities). For 2643 
examples, Institutions (agencies) that operate independently can assign the same name to 2644 
different artefacts, therefore they cannot be considered as part of the same environment.  2645 

The artefacts which input of a Transformation can come also from other environments than 2646 
the one in which the Transformation is defined. In these cases the artefact name must be 2647 
accompanied by a Namespace, which specifies the Data Set environment, to univocally 2648 
identify the artefact to retrieve (for example the Data Set).    2649 

Therefore, the reference to an artefact belonging to a different environment assumes the 2650 
following form: 2651 

Namespace\Name  2652 

Namespace is the name of the environment and Name is the name of the artefact within the 2653 
environment. The separator is the backslash (\).  2654 

When the Namespace is not specified, the artefact is assumed to belong to the same 2655 
environment as the Transformation.  2656 

The result of a Transformation is always assumed to belong to the same environment as the 2657 
Transformation, therefore the specification of the namespace of the result is not allowed. 2658 

Within a given environment, the names of all the VTL artefacts (such as Value Domains, Sets, 2659 
Variables,  Compopnents, Data Sets) are assigned by the users.   2660 

Some VTL Operators  assume that a VTL environment have certain default names for some 2661 
kinds of Variables or Value Domains which are needed to perform the correspondent 2662 
operations (for example, the operators which transform the data type of the Measure of the 2663 
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input Data Sets assign a default name to the resulting Measure, the check operators assign 2664 
default names to Components and Value Domains  needed to represent the results of the 2665 
checks). In the VTL manuals, some definite default names are adopted for explanatory 2666 
purposes, however these names are not mandatory and can be personalised if needed.  If VTL 2667 
rules are exchanged between different VTL systems, the partners of the exchange must be 2668 
aware of the names adopted by the counterparties. 2669 

 2670 

The connection to the persistent storage 2671 

As described in the VTL IM, the Data Set is considered as an artefact at logical level, equivalent 2672 
to a mathematical function. A VTL Data Set contains the set of Data Points which are the 2673 
instances of the function. Each Data Point is interpreted as an association between a 2674 
combination of values of the independent variables (the Identifiers) and the corresponding 2675 
values of the dependent variables (the Measures and Attributes). 2676 

Therefore, the VTL statements reference the conceptual/logical Data Sets and not the objects 2677 
in which they are persistently stored. As already mentioned, there can be any relationships 2678 
between the VTL logical Data Sets and the corresponding persistent objects (one VTL Data Set 2679 
in one storage object, more VTL Data Sets in one storage object, one VTL Data Set in more 2680 
storage objects, more VTL Data Sets in more storage objects). The mapping between the VTL 2681 
Data Sets and the storage objects is out of the scope of the VTL and is left to the 2682 
implementations.  2683 

 2684 
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VTL Operators 2685 

As mentioned, the VTL is made of Operators, which are the basic operations that the language 2686 
can do.   For example, the VTL has mathematical operators  (e.g. sum (+), subtraction (-), 2687 
multiplication (*), division (/)…), string operators (e.g. string concatenation, substring …), 2688 
comparison operators (e.g. equal (=), greater than (>), lesser than (<) …), logical operators 2689 
(e.g. and, or, not …) and so on. 2690 

An Operator has some input and output Parameters, which are its a-priori unknown operands 2691 
and result, have a definite role in the operation (e.g. dividend, divisor or quotient for the 2692 
division) and correspond to a certain type of artefact (e.g. a “Data Set”, a “Data Set 2693 
Component”, a “scalar Value” …).  2694 

The VTL operators are considered as functions (higher-order functions33), which manipulate 2695 
one or more input first-order functions (the operands) to produce one output first-order 2696 
function (the result). 2697 

Assuming that F  is the function corresponding to an operator,  that Po is its output parameter 2698 
and that Pi (i=1,… n) are its input parameters, the mathematical form of an operator can be 2699 
written as follows: 2700 

    Po   =   F  (P1, … , Pn) 2701 

The function F composes the Parameters Pi to obtain Po  (as mentioned, Pi (i=1,…,n) and Po must 2702 
be first order functions). In the common case in which the Parameters are Data Sets, F 2703 
composes the Data Points of the input Data Sets Di (i=1,… n)  to obtain the Data Points of the 2704 
output Data Set  Do.    2705 

When an Operator is invoked, for each input Parameter an actual argument (operand) is 2706 
passed to the Operator, which returns an argument (result) for the output Parameter. 2707 

Each parameter has a data type, which is the data type of the possible arguments that can be 2708 
passed or returned for it. For example, the parameters of a multiplication are of type number, 2709 
because only the numbers can be multiplied  (in fact for example the strings cannot). For a 2710 
deeper explanation of the data types see the corresponding section. 2711 

 2712 

The categories of VTL operators 2713 

The VTL operators are classified according to the following categories.  2714 

1. The VTL standard library contains the standard VTL operators: they are described in 2715 
detail in the Reference Manual.   2716 

On the technical perspective, the standard VTL operations can be divided into the 2717 
following two sub-categories: 2718 

                                                        
33 A higher-order function is a function which takes one or more other functions as arguments and/or provides 
another function as result. 
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a. The core set of operations; they are the primitive operations, in the sense that all 2719 
the other operations can be defined in their terms. The core operations are: 2720 

i. The operations that accept scalar arguments as operands and return a scalar 2721 
value (for example the sum between numeric scalar values, the 2722 
concatenation between string scalar values, a logical operation between 2723 
boolean scalar values …).   2724 

ii. The various kinds of Join operators, which allow to lift the scalar operations 2725 
to the Data Set level, i.e., to compose  Data Sets with scalar values or with 2726 
other Data Sets. 2727 

iii. Other special operators which cannot be defined by means of the previous 2728 
two categories (for example the analytical functions).  2729 

b. The non-core standard operations; they are standard VTL operations as well but 2730 
are not “primitive” and can be derived from the core operations. Examples of these 2731 
operations are the ones that allow to compose Data Sets and scalar values or Data 2732 
Sets and other Data Sets (besides the various kinds of Join operators and the 2733 
special operators mentioned above). Examples of non-core operations are the sum 2734 
between numeric Data Sets, the concatenation between string Data Sets, the logical 2735 
operations between boolean Data Sets,  the union operator, some postfix operators 2736 
like calc, filter, rename (see the Reference Manual).  2737 

Most VTL Operators of the standard library (for example numerical, string, logical 2738 
operators and others) can operate both on scalar Values and on Data Sets, and thus 2739 
they have two variants: a scalar and a Data Set variant. The scalar variant is part of the 2740 
VTL core, while the Data Set variant is usually not.   2741 

Anyway, VTL users do not need to distinguish between core and non-core operators, 2742 
because in the practice, the use of either these categories of Operators is the same.  2743 

2. The user-defined operators are non-standard VTL operators that can be defined by the 2744 
users in order to enhance and personalize the language if needed. VTL provides a special 2745 
operator, called “define operator” (see the Reference Manual), for the creation of user-2746 
defined operators as well as a special syntax to invoke them.  2747 

The input parameters 2748 

The input parameters may have various goals and in particular: 2749 

 identify the model artefacts to be manipulated 2750 
 specify possible options for the operator behaviour  2751 
 specify additional scalar values required to perform the operator’s behaviour 2752 

For example, in the “Join” operator, the first N parameters identify the Data Sets to be joined 2753 
while the “using” parameter specifies the components on which the join must operate. 2754 

Depending on the number of the input parameters, the Operators can be classified in: 2755 

Unary  having just one input parameter 2756 

Binary having two input parameters 2757 

N-ary  having more input parameters 2758 

Examples of unary Operators are the change of sign, the minimum, the maximum, the absolute 2759 
value. Examples of binary Operators are the common arithmetical operators ( +, -, *, /). 2760 
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Examples of N-ary operators are the substring, the string replacement, the Join.  It is also 2761 
possible the extreme case of operators having zero input parameters (e.g., an operator 2762 
returning the current time). 2763 

The invocation of VTL operators 2764 

Operators have different invocation styles :   2765 

o Prefix, only for unary operators. The operator appears before the operand; the general 2766 
forms of invocation is:  2767 

Operator  Operand   (e.g.  -D2  which changes the sign of D2 ) 2768 

o Infix, only for binary operators. The operator symbol appears between the operands; 2769 
the general form of invocation is: 2770 

FirstOperand   Operator   SecondOperand  (e.g.   D1 + D2 )  2771 

o Postfix, only for unary operators. The operator appears in square brackets and follows 2772 
its operand; the general forms of invocation is:  2773 

Operand  [Operator]    2774 

(e.g.   DS2 [filter M1>0]   which selects from Data Set DS2 only the Data Points having 2775 
values greater than zero for measure  M1 and returns such values in the result Data 2776 
Set. 2777 

Postfix operators are also called  “clause operators” or simply “clauses”.     2778 

o Functional, for N-ary operators. The operator is invoked using a functional notation; 2779 
the general form of invocation is: 2780 

 Operator(IO1, … , ION)      where IO1, … , ION are the input operands;  2781 

For example, the syntax for the exponentiation is power(base, exponent) and a possible 2782 
invocation to calculate the square of the numeric Data Set D1  is   power(D1, 2).  2783 

The comma (“,”) is the separator between the operands. Parameter binding is fully 2784 
positional: in the invocation, actual parameters are passed to the Operator in the same 2785 
positional order as the corresponding formal parameters in the Operator syntax. 2786 
Parameters can be mandatory or optional: usually the mandatory ones are in the first 2787 
positions and the optional ones in the last positions. An underscore (“_”) must be used 2788 
to denote that optional operand is omitted in the invocation; for example, this is a 2789 
possible invocation of Operator1(P1, P2, P3), where P2, P3 are optional and P2 is omitted: 2790 

Operator1 ( IO1,  _ , IO3 ).  2791 

One or more unspecified operands in the last positions can be simply omitted 2792 
(including the relevant commas); for example, if both P2, P3 are omitted, the invocation 2793 
can be simply: 2794 

Operator1 ( IO1 ). 2795 

o Functional with keywords (a functional syntax in which some parameters are 2796 
denoted by special keywords); in this case, each operator has its own form of 2797 
invocation, which is described in the Reference Manual.  For example, a possible 2798 
invocation of the Join operator is the following: 2799 
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inner_join  (D1 ,  D2  using  [ Id1, Id2 ]) 2800 

In this example, the Data Sets D1 and D2 are joined on their Identifiers Id1 and Id2. The 2801 
first two parameters do not have keywords, then the keyword “using” is used to 2802 
specify the list of Components to join (the square brackets denote a list). A keyword 2803 
can be composed of more words, substitutes the comma separator and identifies the 2804 
actual parameter of the Operator.  The unspecified optional parameters identified by 2805 
keywords can be simply omitted (including the relevant keywords, i.e., the underscore 2806 
“_” is not required). The actual syntax of this kind of operators and the relevant 2807 
keywords are described in detail in the Reference Manual.  2808 

The syntax for the invocation of the user-defined operators is functional. 2809 

Independently of the kind of their syntax, the behaviour of the VTL operators is always 2810 
functional, i.e., they behave as higher-order mathematical functions which manipulate one or 2811 
more input first-order functions (the operand Data Sets) to produce one output first-order 2812 
function (the result Data Set). 2813 

Level of operation 2814 

The VTL Operators can operate at various levels: 2815 

 Scalar level, when all the operands and the result are scalar Values  2816 
 Data Set level, when at least one operand is a Data Set 2817 
 Component level, when the operands and the result are Data Set Components  2818 

At the scalar level, the Operators compose scalar literals to obtain other scalar Values. The 2819 
sum, for example, allows summing two scalar numbers and obtaining another scalar number.  2820 
The behaviour at the scalar level depends on the operator, does not need a general 2821 
explanation and is described in detail in the Reference Manual. Examples of operations at the 2822 
scalar level are: 2823 

Dr :=  3 + 7    3 and 7 are scalar literals of number type 2824 
Dr := “abcde” || “fghij”  “abcde” and “fghij” are scalar literals of string type  2825 

As already mentioned, the outcome of an operation at the scalar level is a Data Set without 2826 
Components which contains only a scalar Value. 2827 

At the Data Set level, the Operators compose Data Sets and possibly scalar literals in order to 2828 
obtain other Data Sets. As mentioned, the VTL is designed primarily to operate on Data Sets 2829 
and produce other Data Sets, therefore almost all VTL operators can act on Data Sets, apart 2830 
some few trivial exceptions (e.g. the parenthesis). The behaviour at the Data Set level 2831 
deserves a general explanation which is given in the following sections. Examples of 2832 
operations at the Data Set level are: 2833 

Dr := D1 + 7  D1 is a Data Set with numeric Measures,  7 is a scalar number  2834 
Dr := D1 + D2  D1 and D2 are Data Sets having Measures of number type 2835 
Dr := D3 || “fghij”  D3 is a Data Set with string Measures, “fghij” is a scalar string  2836 
Dr := D3 || D4  D3 and D4 are Data Sets having Measures of string type 2837 

At the Component level, the Operators compose Data Set Components and possibly scalar 2838 
literals in order to obtain other Data Set Components.  A Component level operation may 2839 
happen only in the context of a Data Set operation, so that the calculated Component belongs 2840 
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to the calculated Data Set.  The behaviour at the Data Set level deserves a general explanation 2841 
which is given in the following sections. Examples of operations at the Component level are: 2842 

Dr := D1 [ calc C3 := C1 + C2 ]   C1 and C2 are numeric Components of D1  2843 
Dr := D1 [ calc C3 := C1 + 7 ]  C1 is a numeric Component of D1, 7 is a scalar 2844 

number 2845 
Dr := D3 [ calc C6 := C4 || C5 ]   C4 and C5 are string Components of D3 2846 
Dr := D3 [ calc C6 := C4 || “fghij” ] C4 is a string Component of D3, “fghij” is a scalar 2847 

string 2848 

In these examples, the postfix operator calc is applied to the input Data Sets D1 and D3, takes 2849 
in input some of their components and produces in output the components C3 and C6 2850 
respectively, which become part of the result Data Set  Dr.  2851 

The operations at a component level are performed row by row and in the context of one 2852 
specific Data Set, so that one input Data point results in no more than one output Data Point. 2853 

In these last examples the assignment is used both at the Data Set level (when the outcome of 2854 
the expression is assigned to the result Data Set) and at the Component level  (when the 2855 
outcome of the operations at the Component level is assigned to the resulting Components). 2856 
The assignment at Data Set level can be either persistent or non-persistent, while the 2857 
assignment at the Component level can be only non-persistent, because a Component exists 2858 
only within a Data Set and cannot be stored on its own. 2859 

The Operators’ behaviour 2860 

As mentioned, the behaviour of the VTL operators is always functional, i.e., they behave as 2861 
higher-order mathematical functions, which manipulate one or more input first-order 2862 
functions (the operands) to produce one output first-order function (the result).  2863 

The Join operators 2864 

The more general and powerful behaviour is supplied by the Join operators, which operates at 2865 
Data Set level and allow to compose one or more Data Sets in many possible ways. 2866 

In particular, the Join operators allow to:  2867 

 match the Data Points of the input Data Sets by means of various matching options 2868 
(inner/left/full/cross join) and by specifying the Components to match (“using” 2869 
clause). For example the sentence 2870 

inner_join  D1, D2 using [ reference_date, geo_area ] 2871 

matches the Data Points of D1, D2 which have the same values for the Identifiers 2872 
reference_date and  geo_area. 2873 

 filter the result of the match according to a condition, for example the sentence 2874 

filter  D1#M1  >  0 2875 

maintains the matched Data Points for which the Measure M1 of D1 is positive.  2876 

 aggregate according to the values of some Identifier, for example the sentence 2877 

group by [ Id1 , Id2 ] 2878 
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eliminates the Identifiers save than Id1 and Id2 and aggregate the Data Points having 2879 
the same values for Id1 and Id2 2880 

 combine homonym measures of the matched Data Points according to a formula, for 2881 
example the sentence  2882 

apply  D1 + D2 2883 

sums the homonymous Measures of the matched Data Points of D1 and D2 2884 

 calculate new Components (or new values for existing Components) according to the 2885 
desired formulas, also assigning or changing the Component role (Identifier, Measure, 2886 
Attribute), for example:  2887 

calc  measure  M3 := M1 + M2 , attribute A1 := A2 || A3 2888 

calculates the Measure M3 and the Attribute A1 according to the formulas above 2889 

 keep or drop the specified Measures or Attributes, for example the sentence 2890 
 keep  [M1 , M3,  A1] 2891 

maintains only the specified measures and attributes, instead the sentence 2892 
drop  [M2 ,  A2,  A3 ] 2893 

drops only the specified measures and attributes 2894 

 rename the specified Components, for example: 2895 
 rename  [M1 to M10 ,  I1 to I10] 2896 

As shown above, the Join operator, together with the other operators applied at scalar or at 2897 
Component level, allows to reproduce the behaviour of the other operators at a Data Set level 2898 
(save than some special operator) and also to achieve many other behaviours which are 2899 
impossible to achieve otherwise. 2900 

Anyway, even if the join would cover most of the VTL manipulation needs, the VTL provides 2901 
for a number of other Operators which are designed to support the more common 2902 
manipulation needs in a simpler way, in order to make the use of the VTL simpler in the more  2903 
recurrent situations.  Their features are naturally more limited than the ones of the join and a 2904 
number of default behaviours are assumed. 2905 

The following sections explain the more common default behaviours of the Operators other 2906 
than the Join. 2907 

Other operators: default behaviour on Identifiers, Measures and Attributes  2908 

The default behaviour of the operators other than the Join, when they operate at Data Set 2909 
level, is different for Identifiers, Measures and Attributes. 2910 

In fact, unless differently specified, the Operators at Data Set level act only on the Values of 2911 
the Measures.  The Values of Identifiers are usually left unchanged, except for few special 2912 
operators specifically aimed at manipulating Identifiers (for example the operators which 2913 
make aggregations, either dropping some Identifiers or according the hierarchical links 2914 
between the Code Items of an Identifier). The Values of the Attributes, instead, are 2915 
manipulated by default through specific Attribute propagation rules explained in a following 2916 
section.  2917 

For example, considering the Transformation  Dr := ln (D1), the operation is applied for each 2918 
Data Point of D1, the values of the Identifiers are left unchanged and the values of all the 2919 
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Measures are substituted by their natural logarithm (it is assumed that the Measures of  D1  2920 
are all numerical).   2921 

Similarly, considering the simple operation Dr := D1 + 7, the addition is done for each Data 2922 
Point of D1, the values of the Identifiers are left unchanged and the number 7 is added to the 2923 
values of all the Measures (it is assumed that the Measures of  D1  are all numerical).   2924 

As for the structure, like in the examples above, the Identifiers of the result Data Set Dr are the 2925 
same as the Identifiers of  the input Data Set D1 (save for the special operators specifically 2926 
aimed at manipulating Identifiers), and by default  also the Measures of Dr remain the same as 2927 
D1 (save for the operator which change the basic scalar type of the operand,  this case is 2928 
described in a following section). The Attribute Components of the result depend instead on 2929 
the Attribute propagation rule.  2930 

In the previous examples,  only one Data Set is passed in input to the Operator (other possible 2931 
operands are not Data Sets). The operations on more Data Sets, like  Dr := D1 + D2,  behave in 2932 
the same way than the operations on one Data Set, save that there is the additional need of a 2933 
preliminary matching of the Identifiers of the Data Points of the input Data Sets: the operation 2934 
applies on the matched  Data Points.  2935 

For example, the addition D1 + D2 above happens between each couple of Data Points, one 2936 
from D1 and the other from D2, whose Identifiers match according to a default rule (which is 2937 
better explained in a following section). The values of the homonymous Measures of D1 and D2  2938 
are added, taken respectively from the D1 and D2 Data Points (the default rule for composing 2939 
the measure is better explained in a following section).  2940 

The Identifier Components and the Data Points matching  2941 

This section describes the default Data Points matching rules for the Operators which operate 2942 
at Data Set level and which do not manipulate the Identifiers (for example, the behaviour of 2943 
the Operators which make aggregations is not the same, and is described in the Reference 2944 
Manual).  2945 

As shown in the examples above, the actual behaviour depends also on the number of the 2946 
input Data Sets.  2947 

If just one input Data Set is passed to the operator, the operation is applied for each input 2948 
Data Point and produces a corresponding output Data Point.  This case happens for all the 2949 
unary operators, which have just one input parameter and therefore cannot operate on more 2950 
than one Data Set (e.g.  ln (D1) ), and for the invocations of Nary operators in which just one 2951 
Data Set is passed to the operator (e.g.  D1 + 7 ). 2952 

If more input Data Sets are passed to the operator (e.g.  D1 + D2 ), a preliminary match 2953 
between the Data Points of the various input Data Sets is needed, in order to compose their 2954 
measures (e.g. summing them) and obtain the Data Points of the result (i.e. Dr). The default 2955 
matching rules envisage that the Data Points are matched when the values of their 2956 
homonimous Identifiers are the same. 2957 

For example, let us assume that D1 and D2 contain the population and the gross product of the 2958 
United States and the European Union respectively and that they have the same Structure 2959 
Components, namely the Reference Date and the Measure Name as Identifier Components, 2960 
and the Measure Value as Measure Component: 2961 
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D1 = United States Data 2962 

 2963 

 2964 

 2965 

 2966 

 2967 

D2 = European Union Data 2968 

 2969 

 2970 

 2971 

 2972 

 2973 

 2974 

The desired result of the sum is the following: 2975 

Dr = United States + European Union 2976 

 2977 

 2978 

 2979 

 2980 

 2981 

 2982 

In this operation, the Data Points having the same values for the Identifier Components are 2983 
matched, then their Measure Components are combined according to the semantics of the 2984 
specific Operator (in the example the values are summed).  2985 

The example above shows what happens under a strict constraint: when the input Data Sets 2986 
have exactly the same Identifier Components. The result will also have the same Identifier 2987 
Components as the operands. 2988 

However, various Data Set operations are possible also under a more relaxed constraint, 2989 
which is when the Identifier Components of one Data Set are a superset of those of the other 2990 
Data Set.34 2991 

For example, let us assume that D1 contains the population of the European countries (by 2992 
reference date and country) and D2 contains the population of the whole Europe (by reference 2993 
date): 2994 

                                                        
34 This corresponds to the "outer join" form of the join expressions, explained in details in the Reference Manual. 

Ref.Date Meas.Name Meas.Value 

2013 Population 200 

2013 Gross Prod. 800 

2014 Population 250 

2014 Gross Prod. 1000 

Ref.Date Meas.Name Meas.Value 

2013 Population 300 

2013 Gross Prod. 900 

2014 Population 350 

2014 Gross Prod. 1000 

Ref.Date Meas.Name Meas.Value 

2013 Population 500 

2013 Gross Prod. 1700 

2014 Population 600 

2014 Gross Prod. 2000 
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D1 = European Countries 2995 

 2996 

 2997 

 2998 

 2999 

 3000 

D2 = Europe 3001 

 3002 

 3003 

 3004 

 3005 

In order to calculate the percentage of the population of each single country on the total of 3006 
Europe, the Transformation will be:    3007 

Dr  :=  D1  /  D2  * 100 3008 

The Data Points will be matched according to the Identifier Components common to D1 and D2 3009 
(in this case only the Ref.Date), then the operation will take place. 3010 

The result Data Set will have the Identifier Components of both the operands:  3011 

Dr = European Countries / Europe * 100 3012 

 3013 

 3014 

 3015 

 3016 

 3017 

 3018 

When the relaxed constraint is applied, therefore, the Data Points are matched when the 3019 
values of their common Identifiers are the same. 3020 

More formally, let F be a generic n-ary VTL Data Set Operator, Dr the result Data Set and Di 3021 
(i=1,… n)  the input Data Sets, so that:  Dr  := F(D1, D2, … , Dn) 3022 

The “strict” constraint requires that the Identifier Components of the Di  (i=1,… n) are the same. 3023 
The result Dr will also have the same Identifier components. 3024 

The “relaxed” constraint requires that at least one input Data Set Dk exists such that for each 3025 
Di (i=1,… n) the Identifier Components of Di are a (possibly improper) subset of those of Dk. The 3026 
output Data Set Dr will have the same Identifier Components than Dk.  3027 

The n-ary Operator F will produce the Data Points of the result by matching the Data Points of 3028 
the operands that share the same values for the common Identifier Components and by 3029 
operating on the values of their Measure Components according to its semantics. 3030 

Ref.Date Country Population 

2012 U.K. 60 

2012 Germany 80 

2013 U.K. 62 

2013 Germany 81 

Ref.Date Population 

2012 480 

2013 500 

Ref.Date Country Population 

2013 U.K. 12.5 

2013 Germany 16.7 

2014 U.K. 12.4 

2014 Germany 16.2 
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The actual constraint for each operator is specified in the Reference Manual.  3031 

Naturally, it is possible that not all the Data Sets contain the same combinations of values of 3032 
the Identifiers  to be matched.  In these cases the match does not happen, the operation is not 3033 
performed and no output Data Point is produced.  In other words, the measures 3034 
corresponding to the missing combinations of Values of the Identifiers are assumed to be 3035 
unknown and to have the value NULL, therefore the result of the operation is NULL as well 3036 
and the output Data Point is not produced. 3037 

This default matching behaviour is the same as the one of the inner join Operator, which 3038 
therefore is able to perform the same operation. The join operation equivalent to D1 + D2  is:  3039 

inner_join  ( D1 ,  D2    apply  D1 + D2  ) 3040 

Different matching behaviours can be obtained through the use of the other join Operators, 3041 
for example writing: 3042 

 full_join  ( D1 ,  D2    apply  D1 + D2  ) 3043 

the full join returns in the output also the combination of Values of the Identifiers which are 3044 
only in one Data Set,  the operation is applied considering the missing value of the Measure as 3045 
the neutral element of the operation to be done (e.g. 0 for the sum, 1 for the product, empty 3046 
string for the string concatenation …) and the output Data Point is produced.   3047 

The operations on the Measure Components  3048 

This section describes the default composition of the Measure Components for the Operators 3049 
which operate at Data Set level and which do not  change the basic scalar type of the input 3050 
Measure (for example, the behaviour of the Operators which convert one type in another, say 3051 
for example a number in a string,  is not the same and is described in a following section).  3052 

As shown in the examples below, the actual behaviour depends also on the number of the 3053 
input Data Sets and the number of their Measures.  3054 

An Operator applied to one mono-measure Data Set is intended to be applied to the only 3055 
Measure of the input Data Set. The result Data Set will have the same Measure Component, 3056 
whose values are the result of the operation. 3057 

For example, let us assume that D1 contains the salary of the employees (the only Identifier is 3058 
the Employee ID and the only Measure is the Salary): 3059 

 3060 

D1 = Salary of Employees 3061 

 3062 

 3063 

 3064 

 3065 

 3066 

 3067 

The Transformation   Dr  :=    D1  *  1.10   applies to the only Measure (the salary) 3068 
and calculates a new value increased by 10%, so the result will be: 3069 

Employee ID Salary 

A 1000 

B 1200 

C 800 

D 900 
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 3070 

Dr = Increased Salary of Employees 3071 

 3072 

 3073 

 3074 

 3075 

 3076 

 3077 

In case of Operators applied to one multi-measure Data Set, by default the operation is 3078 
performed on all its Measures. The result Data Set will have the same Measure Components as 3079 
the operand Data Set.  3080 

For example, given the import and export and number of operations by reference date: 3081 

D1 = Import, Export, Operations 3082 

 3083 

 3084 

 3085 

 3086 

The Transformation   Dr  :=    D1  *  0.80   applies to all the Measures (e.g. to the 3087 
Import, the Export and the Balance) and calculates their  80%: 3088 

Dr = 80% of Import & Export 3089 

 3090 

 3091 

 3092 

 3093 

 3094 

An Operator can be applied only on Measures of a certain basic data type, corresponding to its 3095 
semantics35.  For example, the multiplication requires the Measures to be of type number, 3096 
while the substring will require them to be string. Expressions which violate this constraint 3097 
are considered in error. 3098 

In general, all the Measures of the Operand Data Set must be compatible with the allowed data 3099 
types of the Operator, otherwise (i.e. if at least one Measure is incompatible) the operation is 3100 
not allowed. The possible input data types of each operator are specified in the Reference 3101 
Manual. 3102 

                                                        
35 As obvious, the data type depends on the parameter for which the Data Set is passed  

Employee ID Salary 

A 1100 

B 1320 

C 880 

D 990 

Ref.Date Import Export Operations 

2011 1000 1200 5000 

2012 1300 1100 6400 

2013 1200 1300 4800 

Ref.Date Import Export Operations 

2011 800 960 4000 

2012 1040 880 5120 

2013 960 1040 3840 
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Therefore, the operation of the previous example (Dr := D1 * 0.80) , which is assumed to act on 3103 
all the Measures of D1, would not be allowed and would return an error if D1 would contain 3104 
also a Measure which is not number (e.g. string).   3105 

In case of inputs having Measures of different types, the operation can be done either using 3106 
the join operators, which allows to calculate each measure with a different formula (see the 3107 
calc operator) or, in two steps, first keeping only the Measures of the desired type and then 3108 
applying the desired compliant operator; the explanation, as explained  in the following cases.  3109 

If there is the need to apply an Operator only to one specific Measure, the membership (#) 3110 
operator can be used, which allows keeping just one specific Components of a Data Set. The 3111 
syntax is: dataset_name#component_name (for a better description see the corresponding 3112 
section in the Part 2).  3113 

For example, in the Transformation   Dr  :=    D1#Import  *  0.80      3114 

the operation keeps only the Import and then calculates its 80%): 3115 

Dr = 80% of the Import 3116 

 3117 

 3118 

 3119 

 3120 

  3121 

If there is the need to apply an Operator only to some specific Measures, the keep  3122 
operator (or the drop)36 can be used, which allows keeping in the result (or dropping) the 3123 
specified Measures (or also Attributes) of the input Data Set. Their invocations are: 3124 

dataset_name [keep  component_name , component_name …]    3125 
dataset_name [drop component_name, component_name … ]  3126 

For example, in the Transformation   Dr  :=    D1[keep  Import, Export]  *  0.80     3127 

the operation keeps only the Import and the Export and then calculates its 80%): 3128 

Dr = 80% of the Import 3129 

 3130 

 3131 

 3132 

 3133 

 3134 

If there is the need to perform some operations on some specific Measures and keep the 3135 
others measures unchanged, the calc operator can be used, which allows to calculate each 3136 

                                                        
36 to preserve the functional behaviour keep and drop can be applied only on Measures and Attributes, for a 
deeper description of these operators see the corresponding section in the Reference Manual 

Ref.Date Import 

2011 800 

2012 1040 

2013 960 

Ref.Date Import Export 

2011 800 960 

2012 1040 880 

2013 960 1040 
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Measure with a dedicated formula leaving the other Measures as they are.  A simple kind of 3137 
invocation is37: 3138 

dataset_name [ calc   component_name  ::= cmp_expr,  component_name ::= cmp_expr …]    3139 

The component expressions (cmp_expr) can reference only other components of the input 3140 
Data Set. 3141 

For example, in the Transformation          Dr  :=    D1 [calc  Import * 0.80,  Export *  0.50]   3142 

the operations apply only to Import and Export (and calculate their  80% and 50% 3143 
respectively), while the Operations values remain unchanged: 3144 

Dr = 80% of the Import, 50% of the Export and Operations 3145 

 3146 

 3147 

 3148 

 3149 

 3150 

In case of Operators applied on more Data Sets, by default the operation is performed 3151 
between the Measures having the same names (in other words, on the same Measures). To 3152 
avoid ambiguities and possible errors, the input Data Sets must have only these Measures and 3153 
the result Data Set is assumed to have only those Measures. 3154 

For example, let us assume that D1 and D2 contain the births and the deaths of the United 3155 
States and the European Union respectively. 3156 

D1 = Births & Deaths of the United States 3157 

 3158 

 3159 

 3160 

 3161 

D2 = Birth & Deaths of the European Union 3162 

 3163 

 3164 

 3165 

 3166 

 3167 

The Transformation   Dr   :=  D1  +  D2        will produce: 3168 

Dr = Births & Deaths of United States + European Union 3169 
                                                        
37 The calc Operator can be used also to calculate Attributes: for a more complete description of this operator see 
the corresponding section in the Reference Manual 

Ref.Date Import Export Operations 

2011 800 1200 5000 

2012 1040 1100 6400 

2013 960 1300 4800 

Ref.Date Births Deaths 

2011 1000 1200 

2012 1300 1100 

2013 1200 1300 

Ref.Date Births Deaths 

2011 1100 1000 

2012 1200 900 

2013 1050 1100 
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 3170 

 3171 

 3172 

 3173 

 3174 

The Births of the first Data Set will be summed up with the Births of the second to calculate 3175 
the Births of the result (and the same for the Deaths). 3176 

If there is the need to apply an Operator on Measures having different names, the 3177 
“rename” operator can be used to make their names equal (for a complete description of the 3178 
operator see the corresponding section in the Part 2).  3179 

For example, given these two Data Sets: 3180 

D1   (Residents in the United States) 3181 

 3182 

 3183 

 3184 

 3185 

 3186 

D2   (Inhabitants of the European Union) 3187 

 3188 

 3189 

 3190 

 3191 

 3192 

A Transformation for calculating the population of United States + European Union is: 3193 

Dr := D1[rename Residents to Population] + D2[rename Inhabitants to Population]   3194 

The result will be: 3195 

Dr   (Population of United States + European Union) 3196 

 3197 

 3198 

 3199 

 3200 

 3201 

Note again that the number and the names of the Measure Components of the input Data Sets 3202 
are assumed to match (following their possible renaming), otherwise the invocation of the 3203 
Operator  is considered in error. 3204 

Ref.Date Births Deaths 

2011 2100 2200 

2012 2500 2000 

2013 2250 2400 

Ref.Date Residents 

2011 1000 

2012 1300 

2013 1200 

Ref.Date Inhabitants 

2011 1100 

2012 1200 

2013 1050 

Ref.Date Population 

2011 2100 

2012 2500 

2013 1250 
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To avoid a potentially excessive renaming, and only when just one component is explicitly 3205 
specified for each dataset by using the membership notation, the VTL  allows the operation 3206 
even if the names are different.  For instance, this operation is allowed: 3207 

Dr := D1#Residents + D2#Inhabitants  3208 

The result Data Set would have a single Measure named like the Measure of the leftmost 3209 
operand (i.e. Residents),  which in turn can be renamed, if convenient: 3210 

Dr := (D1#Residents + D2#Inhabitants)[rename Residents to Population]  3211 

The following options and presctiption, already described for the operations on just one 3212 
multi-measure Data Sets, are valid also for operations on two (or more) multi-measure Data 3213 
Sets and are repeated here for convenience: 3214 

 If there is the need to apply an Operator only to specific Measures, it is possible first to 3215 
apply the membership, keep or drop operators to the input Data Sets in order to maintain 3216 
only the needed Measures,  and then the desired operation can be performed.  3217 

 If there is the need to apply some Operators to some specific Measures and keep the 3218 
other ones unchanged,  one of the join operators can be used (the choice depends on the 3219 
desired matching method). The join operations, in fact, provides also for a calc option 3220 
which can be invoked and behaves exactly like the calc operator explained above.  3221 

 Even in the case of operations on more than one Data Set, all the Measures of the input 3222 
Data Sets must be compatible with the allowed data types of the Operator38, otherwise (i.e. 3223 
even if only one Measure is incompatible) the operation is not allowed.  3224 

In conclusion, the operation is allowed if the input Data Sets have the same Measures and 3225 
these are all compliant  with the input data type of the parameter which the Data Sets are 3226 
passed for.   3227 

Operators which change the basic scalar type  3228 

Some operators change the basic data type of the input Measure (e.g. from number to string, 3229 
from string to date, from number to boolean …). Some examples are the cast operator which 3230 
converts the data types, the various comparison operators whose output is always boolean, 3231 
the length operator which returns the length of a string.   3232 

When the basic data type changes, also the Measure must change, because a Variable (in this 3233 
case used with the role of Measure in a Data Structure) has just one type, which is the same 3234 
wherever the Variable is used39.  3235 

Therefore, when an operator which changes the basic scalar type is applied, the output 3236 
Measure cannot be the same as the input Measure.  In these cases, the VTL systems must 3237 
provide for a default Measure Variable for each basic data type to be assigned to the output 3238 
Data Set, which in turn can be changed (renamed) by the user if convenient.   3239 

The VTL does not prescribe any predefined name or representation for the default Measure 3240 
Variable of the various scalar types, leaving different organisations free to using they 3241 

                                                        
38 As obvious, the data type depends on the parameters for which the Data Set are passed 

39 In fact according to the IM, a Variable takes values in one Value Domain which represents just one basic data 
type, independently of where the Variable or the Value Domain are used (e.g. if they have the same type 
everywhere) 
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preferred or already existing ones. Therefore the definition of the default Measure Variables 3242 
corresponding to the VTL basic scalar types is left to the VTL implementations.  3243 

In the VTL manuals, just for explanatory purposes, the following default Measures will be 3244 
used: 3245 

 3246 

Basic Scalar Types  Default Measure Variable 3247 

 String    string_var 3248 

 Number   num_var 3249 

  Integer  int_var 3250 

  Time    time_var 3251 

  Date   date_var 3252 

  Time_period  period_var 3253 

 Boolean   bool_var    3254 

In some cases, in the examples of the Manuals, the default Boolean variable is also called  3255 
“condition”, 3256 

When the operators which change the basic data type of the input Measure are applied 3257 
directly at Data Set level, the VTL does not allow to perform multi-Measure operations. In 3258 
other words, the input Data Set cannot have more than one Measure. In case it has more 3259 
Measures, a single Measure must be selected, for example by means of the membership 3260 
operator (e.g. dataset_name#measure_name).  3261 

The multi-measure operations remain obviously possible when the operators which change 3262 
the basic data type of the input Measure are applied at Component Level, for example by using 3263 
the calc operator. 3264 

For example, taking again the example of  import, export and number of operations by 3265 
reference date: 3266 

D1 = Import_Export_Operations 3267 

 3268 

 3269 

 3270 

 3271 

 3272 

and assuming that the conversion from number to string of all the Measure Variables is 3273 
desired, the following statement expressed at Data Set level   cast (D1, string)  is not allowed 3274 
because the Data Set  D1 is multi-measure, while the following one, which makes the 3275 
conversion at the Component level, is allowed: 3276 

 D1 [ calc  3277 
   import_string := cast (import, string) 3278 
,  export_string := cast (export, string) 3279 
,  operations_string := cast ( operations, string ) 3280 

Ref.Date Import Export Operations 

2011 1000 1200 5000 

2012 1300 1100 6400 

2013 1200 1300 4800 
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] 3281 

For completeness, it is worth saying that also the various Join operators allow the same 3282 
operation that, for example, for the inner join would be written as: 3283 

inner_join  (    D1   calc  3284 
   import_string := cast (import, string) 3285 
,  export_string := cast (export, string) 3286 
,  operations_string := cast ( operations, string ) 3287 

) 3288 
The join operators is designed primarily to act on many Data Sets and allow applying  these 3289 
operations  also when more Data Sets are joined. 3290 

Boolean operators  3291 

The  Boolean operators (and, or, not …) take in input boolean Measures and return booolean 3292 
Measures. The VTL Boolean operators behave like the operators which change the basic scalar 3293 
type:  if applied at the Data Set level they are allowed only on mono-measure Data Sets, if 3294 
applied at the Component level they are allowed on mono and multi-measure Data Sets.  3295 

Set operators  3296 

The  Set operators (union, intersection …) apply the classical set operations (union, 3297 
intersection, difference, symmetric differences) to the input Data Sets, considering them as 3298 
mathematical functions (sets of Data Points).   3299 

These operations are possible only if the Data Sets to be operated have the same data 3300 
structure, i.e. the same Identifiers, Measures and Attributes.  3301 

For these operators the rules for the Attribute propagation are not applied and the Attributes 3302 
are managed like the Measures. 3303 

The Data Points common (or not common) to the input Data Sets are determined by taking 3304 
into account only the values of the Identifiers: the common Data Points are the ones which 3305 
have the same values for all the Identifiers.   3306 

If for a common Data Point one or more dependent variables (Measures and Attributes) have 3307 
different values in different Data Sets, the Data Point of the leftmost Data Set are returned in 3308 
the result.  3309 

Behaviour for Missing Data  3310 

The awareness of missing data is very important for correct VTL operations, because the 3311 
knowledge of the Data Points of the result depends on the knowledge of the Data Points of the 3312 
operands. For example, assume    Dr   :=  D1  +  D2  and suppose that some Data Points of  D2 3313 
are unknown, it follows that the corresponding Data Points of  Dr  cannot be calculated and 3314 
are unknown too. 3315 

Missing data are explicitly represented when some Measures or Attributes of a Data Point  3316 
have the value “NULL”,  which denotes the absence of a true value (the “NULL” value is not 3317 
allowed for the Identifier Components, in order to ensure that the Data Points are always 3318 
identifiable).  3319 
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Missing data may also show as the absence of some expected Data Point in the Data Set. For 3320 
example, given a Data Set containing the reports to an international organization relevant to 3321 
different countries and different dates, and having as Identifier Components the Country and 3322 
the Reference Date, this Data Set may lack the Data Points relevant to some dates (for example 3323 
the future dates) or some countries (for example the countries that didn’t send their data) or 3324 
some combination of dates and countries. 3325 

The absence of Data Points, however, does not necessarily denote that the phenomenon under 3326 
measure is unknown. In some cases, in fact, it means that a certain phenomenon did not 3327 
happen. 3328 

The handling of missing Data Points in VTL operations can be handled in several ways. One 3329 
way is to require all participating Data Points used in a computation to be present and known, 3330 
this is the correct approach if the absence of a Data Point means that the phenomenon is 3331 
unknown and corresponds with the matching method of the inner join operator. Another way 3332 
is to allow some, but not all, Data Points to be absent, when the absence does not  mean that 3333 
the phenomenon is unknown; this corresponds to the behaviour of the left and full  join 3334 
Operator.  3335 

On the basic level, most of the scalar operations (arithmetic, logical, and others) return NULL 3336 
when any of their arguments is NULL.  3337 

The general properties of the NULL are the following ones: 3338 

 Data type: the NULL value is the only value of multiple different types (i.e., all the 3339 
nullable scalar types).  3340 

 Testing. A built-in Boolean operator is null can be used to test if a scalar value is NULL. 3341 

 Comparisons. Whenever a NULL value is involved in a comparison (>, <, >=, <=, in, not 3342 
in, between) the result of the comparison is NULL.  3343 

 Arithmetic operations. Whenever a NULL value is involved in a mathematical 3344 
operation (+, -, *, /, …), the result is NULL. 3345 

 String operations. In operations on Strings, NULL is considered an empty String (“”). 3346 
 Boolean operations. VTL adopts 3VL (three-value logic). Therefore the following 3347 

deduction rules are applied: 3348 
TRUE      or   NULL  →  TRUE 3349 

FALSE     or  NULL →  NULL 3350 

TRUE     and  NULL  →  NULL 3351 

FALSE    and  NULL  →  FALSE 3352 

 Conditional operations. The NULL is considered equivalent to FALSE; for example in 3353 
the control structures of the type (if (p) -then -else), the action specified in –then is 3354 
executed if the predicate p is TRUE, while the action -else is executed if the p is FALSE 3355 
or NULL;  3356 

 Filter clauses. The NULL is considered equivalent to FALSE; for example in the filter 3357 
clause [filter p], the Data Points for which the predicate p is TRUE are selected and 3358 
returned in the output, while the Data Points for which p is FALSE or NULL are 3359 
discarded.  3360 

 Aggregations. The aggregations (like sum, avg and so on) return one Data Point in 3361 
correspondence to a set of Data Points of the input. In these operations, the input Data 3362 
Points having a NULL value are in general not considered. In the average, for example, 3363 
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they are not considered both in the numerator (the sum) and in the denominator (the 3364 
count). Specific cases for specific operators are described in the respective sections. 3365 

 Implicit zero. Arithmetic operators assuming implicit zeros (+,-,*,/) may generate 3366 
NULL values for the Identifier Components in particular cases (superset-subset relation 3367 
between the set of the involved Identifier Components). Because NULL values are in 3368 
general forbidden in the Identifiers, the final outcome of an expression must not 3369 
contain Identifiers having NULL values. As a momentary exception needed to allow 3370 
some kinds of calculations, Identifiers having NULL values are accepted in the partial 3371 
results. To avoid runtime error, possible NULL values of the Identifiers have to be fully 3372 
eliminated in the outcome of the expression (through a selection, or other operators), 3373 
so that the operation of “assignment” (:=) does not encounter them.  3374 

 3375 

If a different behaviour is desired for NULL values, it is possible to override the default 3376 
behaviour.  This can be achieved with the combination of the calc clauses and is null 3377 
operators. 3378 

For example, suppose that in a specific case the NULL values of the Measure Component M1 of 3379 
the Data Set D1 have to be considered equivalent to the number 1, the following 3380 
Transformation can be used to multiply the Data Sets D1 and D2, preliminarily converting 3381 
NULL values of D1.M1 into the number 1. For detailed explanations of calc and is null refer to 3382 
the specific sections in the Reference Manual. 3383 

Dr :=  D1 [M1 := if M1 is NULL then 1 else M1] * D2 3384 

Behaviour for Attribute Components 3385 

Given an invocation of one Operator F, which can be written as  Dr  := F(D1, D2, … , Dn), and 3386 
considering that the input Data Sets  Di (i=1,… n)  may have any number of Attribute 3387 
Components, there can be the need of calculating the desired Attribute Components of  Dr.  3388 
This Section describes the general VTL assumptions about how Attributes are handled (the 3389 
specific behaviours of the various operators are described in the Reference Manual). 3390 

It should be noted that the Attribute Components of a Data Set are dependent variables of the 3391 
corresponding mathematical function, just like the Measures. In fact, the difference between 3392 
Attribute and Measure Components lies only in their meaning: it is implicitly intended that the 3393 
Measures give information about the real world and the Attributes about the Data Set itself 3394 
(or some part of it, for example about one of its measures), however the real uses of the 3395 
Attribute Components are very heterogeneous. 3396 

The VTL has different default behaviours for Attributes and for Measures, to comply as much 3397 
as possible with the relevant  manipulation needs.  3398 

At the Data Set level, the VTL Operators manipulate by default only the Measures and not the 3399 
Attributes.  3400 

At the Component level, instead, Attributes are calculated like Measures, therefore the 3401 
algorithms for calculating Attributes, if any, can be  specified explicitly in the invocation of the 3402 
Operators.  This is the behaviour of clauses like calc, keep, drop, rename, and so on, either 3403 
inside or outside the join (see the detailed description of these operators in the Reference 3404 
Manual).   3405 
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The Attribute propagation rule  3406 

The users which want also to automatize the propagation of the Attributes’ Values when no 3407 
operation is explicitly defined can optionally enforce a mechanism, called Attribute 3408 
Propagation rule, whose behaviour is explained here. The adoption of this mechanism  is 3409 
optional, users are free to allow the attribute propagation rule or not. The users that do not 3410 
want to allow Attribute propagation rules simply will not implement what follows. 3411 

The Attribute propagation rule is made of two main components, namely the “virality” and 3412 
the “default propagation algorithm”. 3413 

The “virality” is a characteristic to be assigned to the Attributes Components which 3414 
determines if the Attribute is propagated automatically in the result or not: a “viral” Attribute 3415 
is propagated while a “non-viral” Attribute is not (being a default behaviour, the virality is 3416 
applied when no explicit indication about the keeping of the Attribute is provided in the 3417 
expression). If the virality is not defined, the Attribute is considered as non-viral.   3418 

The virality is also assigned to the Attribute propagated in the result Data Set. By default, a 3419 
viral Attribute in the input generates an homonymous viral Attribute also in the result. Vice-3420 
versa, by default a non-viral Attribute in the input generates a non-viral Attribute also in the 3421 
result (this happens when the Attribute in the result is calculated through an explicitly 3422 
expression but without specifying explicitly its virality). The  default assignation of the virality 3423 
can be overridden by operations at Component level as mentioned above, for example keep 3424 
(i.e., to keep a non-viral Attribute or not to keep a viral one) and calc to alter the virality in the 3425 
result Data Set, (from viral to non-viral or vice-versa).40   3426 

The “default propagation algorithm” is the specification of the calculus to be performed to 3427 
propagate a viral Attribute when no explicit calculation is defined, always in the context of the 3428 
Data Set level operations.  A default propagation algorithm should be associated to each 3429 
Variable that can assume the role of viral Attribute Component in a Data Set. The default 3430 
propagation algorithm is an aggregation function which produces the Attribute’s value for a 3431 
generic output Data Point starting from the Attribute’s values of the input Data Points that 3432 
contribute to it. If the Attribute is viral and no default propagation algorithm is provided for it, 3433 
the invocation of the Operators at Data Set level is considered in error.  3434 

Hence, the Attribute propagation rule behaves as follows: 3435 

 the non-viral Attributes are not kept in the result and their values are not considered; 3436 
 the viral Attributes of the operands are kept and are considered viral also in the result; 3437 

in other words, if an operand has a viral Attribute V, the result will have V as viral 3438 
Attribute too;   3439 

 The Attributes, like the Measures, are combined according to their names, e.g. the 3440 
Attributes having the same names in more input Data Sets are combined, while the 3441 
Attributes having different names are considered as different Attributes;   3442 

 Whenever in the application of a VTL operator the input Data Points are not combined 3443 
as for their Measures (i.e., one input Data Point can result in no more than one output 3444 
Data Point), the values of the viral Attributes are simply copied from the input Data 3445 

                                                        
40 In particular the keep clause allows the specification of whether or not an attribute is kept in the result while 
the calc clause make it possible to define calculation formulas for specific attributes. They can be used both for 
Measures and for Attributes and operate on Components of just one Data Set to obtain new Measures / 
Attributes. 
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Point to the (possible) output Data Point (obviously, this applies always in the case of 3446 
unary Operators which do not make aggregations); 3447 

 Whenever in the application of a VTL operator two or more Data Points (belonging to 3448 
the same or different Data Sets) are combined as for their Measures to give one output 3449 
Data Point, the default propagation algorithm associated to the viral Attribute is 3450 
applied, producing the Attribute value of the output Data Point. This happens for 3451 
example for the unary Operators which aggregate Data Points and for Operators which 3452 
combine the Data Points of more input Data Sets; in the latter case, the Attributes 3453 
having the same names in such Data Sets are combined.  3454 
 3455 

Extending an example already given for unary Operators, let us assume that D1 contains the 3456 
salary of the employees of a multinational enterprise (the only Identifier is the Employee ID, 3457 
the only Measure is the Salary, and there are two other Components defined as viral 3458 
Attributes, namely the Currency and the Scale of the Salary): 3459 

 3460 
D1 = Salary of Employees 3461 

 3462 

 3463 

 3464 

 3465 

 3466 

 3467 

The Transformation   Dr  :=    D1  *  1.10   applies only to the Measure (the salary) 3468 
and calculates a new value increased by 10%, the viral Attributes are kept and left unchanged, 3469 
so the result will be: 3470 

Dr = Increased Salary of Employees 3471 

 3472 

 3473 

 3474 

 3475 

 3476 

 3477 

The Currency and the Scale of Dr will be considered viral too and therefore would be kept also 3478 
in case Dr becomes operand of other Transformations. 3479 

Another example can be given for operations involving more input Data Sets (e.g. Dr  :=  D1  +  3480 
D2). Let us assume that D1 and D2 contain the births and the deaths of the United States and 3481 
the Europe respectively, plus a viral Attribute that qualifies if the Value is estimated or not 3482 
(having values True or False). 3483 

 3484 

D1 = Births & Deaths of the United States 3485 

Employee ID Salary Currency Scale 

A 1000 U.S. $ Unit 

B 1200 € Unit 

C 800 yen Thousands 

D 900 U.K. Pound Unit 

Employee ID Salary Currency Scale 

A 1100 U.S. $ Unit 

B 1320 € Unit 

C 880 yen Thousands 

D 990 U.K. Pound Unit 
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 3486 

 3487 

 3488 

 3489 

D2 = Birth & 
Deaths of the European Union 3491 

 3492 

 3493 

 3494 

 3495 

 3496 

Suppose that the default propagation algorithm associated to the “Estimate” variable works as 3497 
follows: 3498 

 each value of the Attribute is associated to a default weight; 3499 
 the result of the combination is the value having the highest weight;  3500 
 if multiple values have the same weight, the result of the combination is the first in 3501 

lexicographical order. 3502 

Assuming the weights 1 for “false” and 2 for “true”, the Transformation     Dr   :=  D1  +  D2  3503 
will produce: 3504 

Dr = Births & Deaths of United States + European Union 3505 

 3506 

 3507 

 3508 

 3509 

Note also that: 3510 

 if the attribute Estimate was non-viral in both the input Data Sets, it would not be kept 3511 
in the result 3512 

 if the attribute Estimate was viral only in one Data Set, it would be kept in the result 3513 
with the same values as in the viral Data Set 3514 

In an expression, the default propagation of the Attributes is performed always in the same 3515 
order of execution of the Operators of the expression, which is determined by their 3516 
precedence and associativity rules, as already explained in the relevant section.  3517 

For example, recalling the example already given exampe: 3518 

Dr := D1 + D2  / (D3 – D4 / D5) 3519 

The evaluation of the Attributes will follow the order of composition of the Measures: 3520 

I. A(D4 / D5)     (default precedence order) 3521 
II. A(D3 - I)  (explicitly defined order) 3522 

Ref.Date Births Deaths Estimate 

2011 1000 1200 False 

2012 1300 1100 False 

2013 1200 1300 True 

Ref.Date Births Deaths Estimate 

2011 1100 1000 False 

2012 1200 900 True 

2013 1050 1100 False 

Ref.Date Births Deaths Estimate 

2011 2100 2200 False 

2012 2500 2000 True 

2013 2250 2400 True 
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III. A(D2 / II)     (default precedence order) 3523 
IV. A(D1 + III)      (default precedence order) 3524 

 3525 

Properties of the Attribute propagation algorithm 3526 

An Attribute default propagation algorithm is a user-defined operator which has a group of 3527 
Values of an Attribute as operands and returns just one Value for the same Attribute.  3528 

An Attribute default propagation algorithm (here called A) must ensure the following 3529 
properties (in respect to the application of a generic Data Set operator “§” which applies on 3530 
the measures): 3531 

Commutative law (1) 3532 

A(D1 § D2) = A(D2 § D1) 3533 

The application of A produces the same result (in term of Attributes) independently of 3534 
the ordering of the operands. For example, A(D1 + D2) = A(D2 + D1). This may seem 3535 
quite intuitive for “sum”, but it is important to point out that it holds for every 3536 
operator, also for non-commutative operations like difference, division, logarithm and 3537 
so on; for example A(D1 / D2) = A(D2 / D1) 3538 

Associative law (2) 3539 

A(D1 § A(D2 § D3) = A(A(D1 § D2) § D3)  3540 

Within one operator, the result of A (in term of Attributes) is independent of the 3541 
sequence of processing.  3542 

Reflexive law (3) 3543 

A( §(D1)) = A(D1) 3544 

The application of A to an Operator having a single operand gives the same result (in 3545 
term of Attributes) that its direct application to the operand (in fact the propagation 3546 
rule keeps the viral attributes unchanged). 3547 

With these properties in place, it is always possible to avoid ambiguities and circular 3548 
dependencies in the determination of the Attributes’ values of the result. Moreover, it is 3549 
sufficient without loss of generality to consider only the case of binary operators (i.e. having 3550 
two Data Sets as operands), as more complex cases can be easily inferred by applying the 3551 
Attribute propagation rule recursively (following the order of execution of the operations in 3552 
the VTL expression). 3553 
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Governance, other requirements and future work 3554 

The SDMX Technical Working Group, as mandated by the SDMX Secretariat, is responsible for 3555 
ensuring the technical maintenance of the Validation and Transformation Language through a 3556 
dedicated VTL task-force. The VTL task-force is open to the participation of experts from 3557 
other standardisation communities, such as DDI and GSIM, as the language is designed to be 3558 
usable within different standards.   3559 

The governance of the extensions and personalisations 3560 

According to the requirements, it is envisaged that the language can be enriched and made 3561 
more powerful in future versions according to the evolution of the business needs.  For 3562 
example, new operators and clauses can be added, and the language syntax can be upgraded. 3563 

The VTL governance body will take care of the evolution process, collecting and prioritising 3564 
the requirements, planning and designing the improvements, releasing future VTL versions.   3565 

The release of new VTL versions is considered as the preferred method of fulfilling the 3566 
requirements of the user communities. In this way the possibility of exchanging standard 3567 
validation and transformation rules would be preserved to the maximum extent possible. 3568 

In order to fulfil specific calculation features not yet supported, the VTL provides for an 3569 
operator which allows to define new custom operators by means of the existing ones and 3570 
another operator (Evaluate) whose purpose is to invoke an external calculation function 3571 
(routine), provided that this is compatible with the VTL IM, basic principles and data types. 3572 

As already mentioned, because the user-defined operators does not belong to the standard 3573 
library, they are not standard VTL operators and are applicable only in the context in which 3574 
they have been defined.   In particular, if there is the need of applying user-defined operators 3575 
in other contexts, their definitions need to be pre-emptively shared. 3576 

The operator “Evaluate” (also “Eval”) allows defining and making customized calculations 3577 
(also reusing existing routines) without upgrading or extending the language, because the 3578 
external calculation function is not considered as an additional operator.  The expressions 3579 
containing Eval are standard VTL expressions and can be parsed through a standard parser. 3580 
For this reason, when it is not possible or convenient to use other VTL operators, Eval is the 3581 
recommended method of customizing the language operations. 3582 

However, as explained in the section “Extensibility and Customizability” of the “General 3583 
Characteristics of VTL” above, calling external functions has some drawbacks in respect to the 3584 
use of the proper VTL operators.  The transformation rules would be not understandable 3585 
unless such external functions are properly documented and shared and could become 3586 
dependent on the IT implementation, less abstract and less user oriented. Moreover, the 3587 
external functions cannot be parsed (as if they were built through VTL operators) and this 3588 
could make the expressions more error-prone.  External routines should be used only for 3589 
specific needs and in limited cases, whereas widespread and generic needs should be fulfilled 3590 
through the operators of the language. 3591 

While the “Eval” operator is part of VTL, the invoked external calculation functions are not.  3592 
Therefore, they are considered as customized parts under the governance, and are 3593 
responsibility and charge of the organizations which use it. 3594 
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Organizations possibly extending VTL through non-standard operators/clauses would 3595 
operate on their own total risk and responsibility, also for any possible maintenance activity 3596 
deriving from VTL modifications.   3597 

As mentioned, whilst an Organisation adopting VTL can extend its own library by defining 3598 
customized parts and by implementing external routines, on its own total responsibility, in 3599 
order to improve the standard language for specific purposes (e.g. for supporting possible 3600 
algorithms not permitted by the standard part), it is important that the customized parts 3601 
remain compliant with the VTL IM and the VTL fundamentals. Adopting Organizations are 3602 
totally in charge of any activity for maintaining and sharing their customized parts. Adopting 3603 
Organizations are also totally in charge of any possible maintenance activity to maintain the 3604 
compliance between their customized parts and the possible standard VTL future evolutions  3605 

Relations with the GSIM Information Model  3606 

As explained in the section “VTL Information Model”, VTL 1.0 is inspired by GSIM 1.1 as much 3607 
as possible, in order to provide a formal model at business level against which other 3608 
information models can be mapped, and to facilitate the implementation of VTL with 3609 
standards like SDMX, DDI and possibly others.  3610 

GSIM faces many aspects that are out of the VTL scope; the latter uses only those GSIM 3611 
artefacts which are strictly related to the representation of validations and transformations.  3612 
The referenced GSIM artefacts have been assessed against the requirements for VTL and, in 3613 
some cases, adapted or improved as necessary, as explained earlier. No assessment was made 3614 
about those GSIM artefacts which are out of the VTL scope.  3615 

In respect to GSIM, VTL considers both unit and dimensional data as mathematical functions 3616 
having a certain structure in term of independent and dependent variables. This leads to a 3617 
simplification, as unit and dimensional data can be managed in the same way, but it also 3618 
introduces some slight differences in data representation. The aim of the VTL Task Force is to 3619 
foster the adoption of this adjustment for the next GSIM versions. 3620 

The VTL IM allows defining the Value Domains (as in GSIM) and their subsets (not explicitly 3621 
envisaged in GSIM), needed for validation purposes. In order to be compliant, the GSIM 3622 
artefacts are used for modelling the Value Domains and a similar structure is used for 3623 
modelling their subsets. Even in this case, the VTL task force will propose the explicit 3624 
introduction of the Value Domain Subsets in future GSIM versions. 3625 

VTL is based on a model for defining mathematical expressions which is called 3626 
"Transformation model", while GSIM does not have a Transformation model.  The VTL IM has 3627 
been built on the SDMX Transformation model, with the intention of suggesting its 3628 
introduction in future GSIM versions.  3629 

Some misunderstanding may arise from the fact that GSIM, DDI, SDMX and other standards 3630 
also have a Business Process model. The connection between the Transformation model and 3631 
the Business Process model has been neither analysed nor modelled in VTL 1.0. One reason is 3632 
that the business process models available in GSIM, DDI and SDMX are not yet fully 3633 
compatible and univocally mapped.  3634 

It is worth nothing that the Transformation and the Business Process models address 3635 
different matters. In fact, the former allows defining validation and calculation rules in the 3636 
form of mathematical expressions (like in a spreadsheet) while the latter allows defining a 3637 
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business process, made of tasks to be executed in a certain order.  The two models may 3638 
coexist and be used together as complementary. For example, a certain task of a business 3639 
process (say the validation of a data set) may require the execution of a certain set of 3640 
validation rules, expressed through the Transformation model used in VTL. Further progress 3641 
in this reconciliation can be part of the future work on VTL.  3642 
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Annex - EBNF 3643 

The VTL language is also expressed in EBNF (Extended Backus-Naur Form). 3644 

EBNF is a standard41 meta-syntax notation, typically used to describe a Context-Free grammar 3645 
and represents an extension to BNF (Backus-Naur Form) syntax. Indeed, any language 3646 
described with BNF notation can also be expressed in EBNF (although expressions are 3647 
typically lengthier). 3648 

Intuitively, the EBNF consists of terminal symbols and non-terminal production rules. 3649 
Terminal symbols are the alphanumeric characters (but also punctuation marks, whitespace, 3650 
etc.) that are allowed singularly or in a combined fashion. Production rules are the rules 3651 
governing how terminal symbols can be combined in order to produce words of the language 3652 
(i.e. legal sequences). 3653 

More details can be found at http://en.wikipedia.org/wiki/Extended_Backus–Naur_Form 3654 

Properties of VTL grammar 3655 

VTL can be described in terms of a Context-Free grammar42, with productions of the form V 3656 
w, where V is a single non-terminal symbol and w is a string of terminal and non-terminal 3657 
symbols. 3658 

VTL grammar aims at being unambiguous. An ambiguous Context-Free grammar is such that 3659 
there exists a string that can be derived with two different paths of production rules, 3660 
technically with two different leftmost derivations. 3661 

In theoretical computer science, the problem of understanding if a grammar is ambiguous is 3662 
undecidable. In practice, many languages adopt a number of strategies to cope with 3663 
ambiguities. This is the approach followed in VTL as well. Examples are the presence of 3664 
associativity and precedence rules for infix operators (such as addition and subtraction), and 3665 
the existence of compulsory else branch in if-then-else operator. 3666 

These devices are reasonably good to guarantee the absence of ambiguity in VTL grammar. 3667 
Indeed, real parser generators (for instance YACC43), can effectively exploit them, in particular 3668 
using the mentioned associativity and precedence constrains as well as the relative ordering 3669 
of the productions in the grammar itself, which solves ambiguity by default. 3670 

                                                        
41 ISO/IEC 14977 

42 http://en.wikipedia.org/wiki/Context-free_grammar 

43 http://en.wikipedia.org/wiki/Yacc  
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