
SDMX Technical Working Group 1

VTL Task Force 2

 3

 4

 5

 6

 7

VTL – version 2.0 8

(Validation & Transformation Language) 9

 10

Part 1 - User Manual 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

April 2018 24

 25

Version 1.1 Page: 2

Foreword 26

 27

The Task force for the Validation and Transformation Language (VTL), created in 2012-2013 28
under the initiative of the SDMX Secretariat, is pleased to present the draft version of VTL 2.0. 29

The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the 30
consideration that SDMX already had a package for transformations and expressions in its 31
information model, while a specific implementation language was missing. To make this 32
framework operational, a standard language for defining validation and transformation rules 33
(operators, their syntax and semantics) had to be adopted, while appropriate SDMX formats 34
for storing and exchanging rules, and web services to retrieve them, had to be designed. The 35
present VTL 2.0 package is only concerned with the first element, i.e., a formal definition of 36
each operator, together with a general description of VTL, its core assumptions and the 37
information model it is based on. 38

The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM 39
communities and the work started in summer 2013. The intention was to provide a language 40
usable by statisticians to express logical validation rules and transformations on data, 41
described as either dimensional tables or unit-record data. The assumption is that this logical 42
formalization of validation and transformation rules could be converted into specific 43
programming languages for execution (SAS, R, Java, SQL, etc.), and would provide at the same 44
time, a “neutral” business-level expression of the processing taking place, against which 45
various implementations can be mapped. Experience with existing examples suggests that 46
this goal would be attainable. 47

An important point that emerged is that several standards are interested in such a kind of 48
language. However, each standard operates on its model artefacts and produces artefacts 49
within the same model (property of closure). To cope with this, VTL has been built upon a 50
very basic information model (VTL IM), taking the common parts of GSIM, SDMX and DDI, 51
mainly using artefacts from GSIM 1.1, somewhat simplified and with some additional detail. In 52
this way, existing standards (GSIM, SDMX, DDI, others) would be allowed to adopt VTL by 53
mapping their information model against the VTL IM. Therefore, although a work-product of 54
SDMX, the VTL language in itself is independent of SDMX and will be usable with other 55
standards as well. Thanks to the possibility of being mapped with the basic part of the IM of 56
other standards, the VTL IM also makes it possible to collect and manage the basic definitions 57
of data represented in different standards. 58

For the reason described above, the VTL specifications are designed at logical level, 59
independently of any other standard, including SDMX. The VTL specifications, therefore, are 60
self-standing and can be implemented either on their own or by other standards (including 61
SDMX). In particular, the work for the SDMX implementation of VTL is going in parallel with 62
the work for designing this VTL version, and will entail a future update of the SDMX 63
documentation. 64

The first public consultation on VTL (version 1.0) was held in 2014. Many comments were 65
incorporated in the VTL 1.0 version, published in March 2015. Other suggestions for 66
improving the language, received afterwards, fed the discussion for building the draft version 67
1.1, which contained many new features, was completed in the second half of 2016 and 68
provided for public consultation until the beginning of 2017. 69

Version 1.1 Page: 3

The high number and wide impact of comments and suggestions induced a high workload on 70
the VTL TF, which agreed to proceed in two steps for the publication of the final 71
documentation, taking also into consideration that some first VTL implementation initiatives 72
had already been launched. The first step, the current one, is dedicated to fixing some high-73
priority features and making them as much stable as possible. A second step, scheduled for 74
the next period, is aimed at acknowledging and fixing other features considered of minor 75
impact and priority, which will be added hopefully without affecting either the features 76
already published in this documentation, or the possible relevant implementations. Moreover, 77
taking into account the number of very important new features that have been introduced in 78
this version in respect to the VTL 1.0, it was agreed that the current VTL version should be 79
considered as a major one and thus named VTL 2.0. 80

The VTL 2.0 package contains the general VTL specifications, independently of the possible 81
implementations of other standards; in its final release, it will include: 82

a) Part 1 – the user manual, highlighting the main characteristics of VTL, its core 83
assumptions and the information model the language is based on; 84

b) Part 2 – the reference manual, containing the full library of operators ordered by 85
category, including examples; this version will support more validation and 86
compilation needs compared to VTL 1.0. 87

c) eBNF notation (extended Backus-Naur Form) which is the technical notation to be 88
used as a test bed for all the examples. 89

The present document is the part 1. 90

The latest version of VTL is freely available online at https://sdmx.org/?page_id=5096 91

 92

Acknowledgements 93

The VTL specifications has been prepared thanks to the collective input of experts from Bank 94
of Italy, Bank for International Settlements (BIS), European Central Bank (ECB), Eurostat, ILO, 95
INEGI-Mexico, ISTAT-Italy, OECD, Statistics Netherlands, and UNESCO. Other experts from the 96
SDMX Technical Working Group, the SDMX Statistical Working Group and the DDI initiative 97
were consulted and participated in reviewing the documentation. 98

The list of contributors and reviewers includes the following experts: Sami Airo, Foteini 99
Andrikopoulou, David Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio Capaccioli, 100
Vincenzo Del Vecchio, Fabio Di Giovanni, Jens Dossé, Heinrich Ehrmann, Bryan Fitzpatrick, 101
Tjalling Gelsema, Luca Gramaglia, Arofan Gregory, Gyorgy Gyomai, Edgardo Greising, Dragan 102
Ivanovic, Angelo Linardi, Juan Munoz, Chris Nelson, Stratos Nikoloutsos, Stefano Pambianco, 103
Marco Pellegrino, Michele Romanelli, Juan Alberto Sanchez, Roberto Sannino, Angel Simon 104
Delgado, Daniel Suranyi, Olav ten Bosch, Laura Vignola, Fernando Wagener and Nikolaos 105
Zisimos. 106

Feedback and suggestions for improvement are encouraged and should be sent to the SDMX 107
Technical Working Group (twg@sdmx.org). 108

https://sdmx.org/?page_id=5096
mailto:twg@sdmx.org

Version 1.1 Page: 4

Table of contents 109

 110

FOREWORD ... 2 111

TABLE OF CONTENTS .. 4 112

INTRODUCTION ... 7 113

Structure of the document ... 7 114

GENERAL CHARACTERISTICS OF THE VTL ... 9 115

USER ORIENTATION ... 9 116

INTEGRATED APPROACH ... 9 117

ACTIVE ROLE FOR PROCESSING ... 11 118

INDEPENDENCE OF IT IMPLEMENTATION .. 12 119

EXTENSIBILITY, CUSTOMIZABILITY .. 13 120

LANGUAGE EFFECTIVENESS ... 14 121

EVOLUTION OF VTL 2.0 IN RESPECT TO VTL 1.0 ... 16 122

THE INFORMATION MODEL .. 16 123

STRUCTURAL ARTEFACTS AND REUSABLE RULES .. 16 124

THE CORE LANGUAGE AND THE STANDARD LIBRARY ... 17 125

THE USER DEFINED OPERATORS... 17 126

THE VTL DEFINITION LANGUAGE ... 17 127

THE FUNCTIONAL PARADIGM .. 18 128

THE OPERATORS ... 19 129

VTL INFORMATION MODEL ... 20 130

INTRODUCTION.. 20 131

GENERIC MODEL FOR DATA AND THEIR STRUCTURES ... 22 132

Data model diagram ... 23 133

Explanation of the Diagram .. 24 134

Functional Integrity ... 25 135

Relationships between VTL and GSIM ... 26 136

Examples ... 27 137

The data artefacts .. 30 138

GENERIC MODEL FOR VARIABLES AND VALUE DOMAINS .. 31 139

Variable and Value Domain model diagram ... 31 140

Version 1.1 Page: 5

Explanation of the Diagram .. 32 141

Relations and operations between Code Items ... 34 142

Conditioned Code Item Relations .. 37 143

The historical changes .. 37 144

The Variables and Value Domains artefacts .. 39 145

GENERIC MODEL FOR TRANSFORMATIONS .. 41 146

Transformations model diagram .. 44 147

Explanation of the diagram ... 44 148

Examples ... 45 149

Functional paradigm .. 46 150

Transformation Consistency .. 46 151

VTL DATA TYPES ... 48 152

DATA TYPES OVERVIEW .. 49 153

Data Types model diagram .. 49 154

Explanation of the diagram ... 50 155

General conventions for describing the types .. 50 156

SCALAR TYPES ... 51 157

Basic Scalar Types .. 51 158

Value Domain Scalar Types ... 54 159

Set Scalar Types ... 55 160

External representations and literals used in the VTL Manuals ... 55 161

Conventions for describing the scalar types ... 58 162

COMPOUND DATA TYPES .. 60 163

Component Types .. 60 164

Data Set Types .. 62 165

Product Types ... 64 166

Operator Types... 64 167

Ruleset Types .. 65 168

Universal Set Types .. 66 169

Universal List Types ... 66 170

VTL TRANSFORMATIONS ... 67 171

THE EXPRESSION .. 68 172

THE ASSIGNMENT ... 69 173

THE RESULT .. 70 174

Version 1.1 Page: 6

THE NAMES.. 71 175

The artefact names .. 71 176

The environment name .. 72 177

The connection to the persistent storage .. 73 178

VTL OPERATORS ... 74 179

THE CATEGORIES OF VTL OPERATORS ... 74 180

THE INPUT PARAMETERS ... 75 181

THE INVOCATION OF VTL OPERATORS ... 76 182

LEVEL OF OPERATION .. 77 183

THE OPERATORS’ BEHAVIOUR .. 78 184

The Join operators .. 78 185

Other operators: default behaviour on Identifiers, Measures and Attributes .. 79 186

The Identifier Components and the Data Points matching ... 80 187

The operations on the Measure Components ... 83 188

Operators which change the basic scalar type ... 88 189

Boolean operators .. 90 190

Set operators ... 90 191

BEHAVIOUR FOR MISSING DATA .. 90 192

BEHAVIOUR FOR ATTRIBUTE COMPONENTS .. 92 193

The Attribute propagation rule ... 93 194

Properties of the Attribute propagation algorithm.. 96 195

GOVERNANCE, OTHER REQUIREMENTS AND FUTURE WORK .. 97 196

RELATIONS WITH THE GSIM INFORMATION MODEL ... 98 197

ANNEX - EBNF .. 100 198

PROPERTIES OF VTL GRAMMAR.. 100 199

 200

Version 1.1 Page: 7

Introduction 201

This document presents the Validation and Transformation Language (also known as ‘VTL’) 202
version 2.0. 203

The purpose of VTL is to allow a formal and standard definition of algorithms to validate 204
statistical data and calculate derived data. 205

The first development of VTL aims at enabling, as a priority, the formalisation of data 206
validation algorithms rather than tackling more complex algorithms for data compilation. In 207
fact, the assessment of business cases showed that the majority of the institutions ascribes 208
(prescribes) a higher priority to a standard language for supporting the validation processes 209
and in particular to the possibility of sharing validation rules with the respective data 210
providers, in order to specify the quality requirements and allow validation also before 211
provision. 212

This document is the outcome of a second iteration of the first phase, and therefore still 213
presents a version of VTL primarily oriented to support the data validation. However, as the 214
features needed for validation also include simple calculations, this version of VTL can 215
support basic compilation needs as well. In general, validation is considered as a particular 216
case of transformation; therefore, the term “Transformation” is meant to be more general, 217
including validation as well. The actual operators included in this version of VTL are 218
described in the Reference Manual. 219

Although VTL is developed under the umbrella of the SDMX governance, DDI and GSIM users 220
may also be highly interested in adopting a language for validation and transformation. In 221
particular, organizations involved in the SDMX, DDI and GSIM communities and in the High-222
Level Group for the modernisation of statistical production and services (HLG) expressed 223
their wish of having a unique language, usable in SDMX, DDI and GSIM. 224

Accordingly, the task-force working for the VTL development agreed on the objective of 225
adopting a common language, in the hope of avoiding the risk of having diverging variants. 226

As a consequence, VTL is designed as a language relatively independent of the details of 227
SDMX, DDI and GSIM. It is based on an independent information model (IM), made of the very 228
basic artefacts common to these standards. Other models can inherit the VTL language by 229
unequivocally mapping their artefacts to those of the VTL IM. 230

Structure of the document 231

The following main sections of the document describe the following topics: 232

The general characteristics of the VTL, which are also the main requirements that the VTL is 233
aimed to fulfil. 234

The changes of VTL 2.0 in respect to VTL 1.0. 235

The Information Model on which the language is based. In particular, it describes the generic 236
model of the data artefacts for which the language is aimed to validate and transform, the 237
generic model of the variables and value domains used for defining the data artefacts and the 238
generic model of the transformations. 239

The Data Types that the VTL manipulates, i.e. types of artefacts that can be passed in input to 240
or are returned in output from the VTL operators. 241

Version 1.1 Page: 8

The general rules for defining the Transformations, which are the algorithms that describe 242
how the operands are transformed into the results. 243

The characteristics, the invocation and the behaviour of the VTL Operators, taking into 244
account the perspective of users that need to learn how to use them. 245

A final part highlights some issues related to the governance of VTL developments and to 246
future work, following a number of comments, suggestions and other requirements which 247
were submitted to the task-force in order to enhance the VTL package. 248

A short annex gives some background information about the BNF (Backus-Naur Form) syntax 249
used for providing a context-free representation of VTL. 250

The Extended BNF (EBNF) representation of the VTL 1.0 package is available at 251
https://sdmx.org/?page_id=5096. The VTL 2.0 representation will be added as soon as it is 252
available. 253

 254

Version 1.1 Page: 9

General characteristics of the VTL 255

This section lists and briefly illustrates some general high-level characteristics of the 256
validation and transformation language. They have been discussed and shared as 257
requirements for the language in the VTL working group since the beginning of the work and 258
have been taken into consideration for the design of the language. 259

User orientation 260

 The language is designed for users without information technology (IT) skills, who 261
should be able to define calculations and validations independently, without the 262
intervention of IT personnel; 263

o The language is based on a “user” perspective and a “user” information model 264
(IM) and not on possible IT perspectives (and IMs) 265

o As much as possible, the language is able to manipulate statistical data at an 266
abstract/conceptual level, independently of the IT representation used to 267
store or exchange the data observations (e.g. files, tables, xml tags), so 268
operating on abstract (from IT) model artefacts to produce other abstract 269
(from IT) model artefacts 270

o It references IM objects and does not use direct references to IT objects 271

 The language is intuitive and friendly (users should be able to define and understand 272
validations and transformations as easily as possible), so the syntax is: 273

o Designed according to mathematics, which is a universal knowledge; 274

o Expressed in English to be shareable in most countries; 275

o As simple, intuitive and self-explanatory as possible; 276

o Based on common mathematical expressions, which involve “operands” 277
operated on by “operators” to obtain a certain result; 278

o Designed with minimal redundancies (e.g. possibly avoiding operators 279
specifying the same operation in different ways without concrete reasons). 280

 The language is oriented to statistics, and therefore it is capable of operating on 281
statistical objects and envisages the operators needed in the statistical processes and 282
in particular in the data validation phases, for example: 283

o Operators for data validations and edit; 284

o Operators for aggregation, even according to hierarchies; 285

o Operators for dimensional processing (e.g. projection, filter); 286

o Operators for statistics (e.g. aggregation, mean, median, variance …); 287

Integrated approach 288

 The language is independent of the statistical domain of the data to be processed; 289

Version 1.1 Page: 10

o VTL has no dependencies on the subject matter (the data content); 290

o VTL is able to manipulate statistical data in relation to their structure. 291

 The language is suitable for the various typologies of data of a statistical environment 292
(for example dimensional data, survey data, registers data, micro and macro, 293
quantitative and qualitative) and is supported by an information model (IM) which 294
covers these typologies; 295

o The IM allows the representation of the various typologies of data of a 296
statistical environment at a conceptual/logical level (in a way abstract from IT 297
and from the physical storage); 298

o The various typologies of data are described as much as possible in an 299
integrated way, by means of common IM artefacts for their common aspects; 300

o The principle of the Occam’s razor is applied as an heuristic principle in 301
designing the conceptual IM, so keeping everything as simple as possible or, in 302
other words, unifying the model of apparently different things as much as 303
possible. 304

 The language (and its IM) is independent of the phases of the statistical process and 305
usable in any one of them; 306

o Operators are designed to be independent of the phases of the process, their 307
syntax does not change in different phases and is not bound to some 308
characteristic restricted to a specific phase (operators’ syntax is not aware of 309
the phase of the process); 310

o In principle, all operators are allowed in any phase of the process (e.g. it is 311
possible to use the operators for data validation not only in the data collection 312
but also, for example, in data compilation for validating the result of a 313
compilation process; similarly it is possible to use the operators for data 314
calculation, like the aggregation, not only in data compilation but also in data 315
validation processes); 316

o Both collected and calculated data are equally permitted as inputs of a 317
calculation, without changes in the syntax of the operators/expression; 318

o Collected and calculated data are represented (in the IM) in a homogeneous 319
way with regards to the metadata needed for calculations. 320

 The language is designed to be applied not only to SDMX but also to other standards; 321

o VTL, like any consistent language, relies on a specific information model, as it 322
operates on the VTL IM artefacts to produce other VTL IM artefacts. In 323
principle, a language cannot be applied as-is to another information model 324
(e.g. SDMX, DDI, GSIM); this possibility exists only if there is a unambiguous 325
correspondence between the artefacts of those information models and the 326
VTL IM (that is if their artefacts correspond to the same mathematical notion); 327

o The goal of applying the language to more models/standards is achieved by 328
using a very simple, generic and conceptual Information Model (the VTL IM), 329
and mapping this IM to the models of the different standards (SDMX, DDI, 330
GSIM, …); to the extent that the mapping is straightforward and unambiguous, 331

Version 1.1 Page: 11

the language can be inherited by other standards (with the proper 332
adjustments); 333

o To achieve an unambiguous mapping, the VTL IM is deeply inspired by the 334
GSIM IM and uses the same artefacts when possible1; in fact, GSIM is designed 335
to provide a formal description of data at business level against which other 336
information models can be mapped; moreover, loose mappings between GSIM 337
and SDMX and between GSIM and DDI are already available2; a very small 338
subset of the GSIM artefacts is used in the VTL IM in order to keep the model 339
and the language as simple as possible (Occam’s razor principle); these are the 340
artefacts strictly needed for describing the data involved in Transformations, 341
their structure and the variables and value domains; 342

o GSIM artefacts are supplemented, when needed, with other artefacts that are 343
necessary for describing calculations; in particular, the SDMX model for 344
Transformations is used; 345

o As mentioned above, the definition of the VTL IM artefacts is based on 346
mathematics and is expressed at an abstract user level. 347

Active role for processing 348

 The language is designed to make it possible to drive in an active way the execution of 349
the calculations (in addition to documenting them) 350

 For the purpose above, it is possible either to implement a calculation engine that 351
interprets the VTL and operates on the data or to rely on already existing IT tools (this 352
second option requires a translation from the VTL to the language of the IT tool to be 353
used for the calculations) 354

 The VTL grammar is being described formally using the universally known Backus 355
Naur Form notation (BNF), because this allows the VTL expressions to be formally 356
parsed and then processed; the formal description allow the expressions: 357

o To be parsed against the rules of the formal grammar; on the IT level, this 358
requires the implementation of a parser that compiles the expressions and 359
checks their correctness; 360

o To be translated from the VTL to the language of the IT tool to be used for the 361
calculation; on the IT level, this requires the implementation of a proper 362
translator; 363

o To be translated from/to other languages if needed (through the 364
implementation of a proper translator. 365

 The inputs and the outputs of the calculations and the calculations themselves are 366
artefacts of the IM 367

1 See the next section (VTL Information Model) and the section “Relationships between VTL and GSIM”

2 See at: http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards;

http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards

Version 1.1 Page: 12

o This is a basic property of any robust language because it allows calculated 368
data to be operands of further calculations; 369

o If the artefacts are persistently stored, their definition is persistent as well; if 370
the artefacts are non-persistently stored (used only during the calculation 371
process like input from other systems, intermediate results, external outputs) 372
their definition can be non-persistent; 373

o Because the definition of the algorithms of the calculations is based on the 374
definition of their input artefacts (in particular on the data structure of the 375
input data), the latter must be available when the calculation is defined; 376

o The VTL is designed to make the data structure of the output of a calculation 377
deducible from the calculation algorithm and from the data structure of the 378
operands (this feature ensures that the calculated data can be defined 379
according to the IM and can be used as operands of further calculations); 380

o In the IT implementation, it is advisable to automate (as much as possible) the 381
structural definition of the output of a calculation, in order to enforce the 382
consistency of the definitions and avoid unnecessary overheads for the 383
definers. 384

 The VTL and its information model make it possible to check automatically the overall 385
consistency of the definitions of the calculations, including with respect to the artefact 386
of the IM, and in particular to check: 387

o the correctness of the expressions with respect to the syntax of the language 388

o the integrity of the expressions with respect to their input and output artefacts 389
and the corresponding structures and properties (for example, the input 390
artefacts must exist, their structure components referenced in the expression 391
must exist, qualitative data cannot be manipulated through quantitative 392
operators, and so on) 393

o the consistency of the overall graph of the calculations (for example, in order 394
to avoid that the result of a calculation goes as input to the same calculation, 395
there should not be cycles in the sequence of calculations, thus eliminating the 396
risk of producing unpredictable and erroneous results); 397

Independence of IT implementation 398

 According to the “user orientation” above, the language is designed so that users are 399
not required to be aware of the IT solution; 400

o To use the language, the users need to know only the abstract view of the data 401
and calculations and do not need to know the aspects of the IT 402
implementation, like the storage structures, the calculation tools and so on. 403

 The language is not oriented to a specific IT implementation and permits many 404
possible different implementations (this property is particularly important in order to 405
allow different institutions to rely on different IT environments and solutions); 406

Version 1.1 Page: 13

o The VTL provides only for a logical/conceptual layer for defining the data 407
transformations, which applies on a logical/conceptual layer of data 408
definitions 409

o The VTL does not prescribe any technical/physical tool or solution, so that it 410
is possible to implement the VTL by using many different IT tools 411

o The link between the logical/conceptual layer of the VTL definitions and the IT 412
implementation layer is out of the scope of the VTL; 413

 The language does not require to the users the awareness of the storage data 414
structure; the operations on the data are specified according to the conceptual/logical 415
structure, and so are independent of the storage structure; this ensures that the 416
storage structure may change without necessarily affecting the conceptual structure 417
and the user expressions; 418

o Data having the same conceptual/logical structure may be accessed using the 419
same statements, even if they have different storage structures; 420

o The VTL provides for data storage and retrieval at a conceptual/logical level; 421
the mapping and the conversion between the conceptual and the storage 422
structures of the data is left to the IT implementation (and users need not be 423
aware of it); 424

o By mapping the logical and the storage data structures, the IT 425
implementations can make it possible to store/retrieve data in/from different 426
IT data stores (e.g. relational databases, dimensional databases, xml files, 427
spread-sheets, traditional files); 428

 The language is not strictly connected with some specific IT tool to perform the 429
calculations (e.g. SQL, statistical packages, other languages, XML tools,…); 430

o The syntax of the VTL is independent of existing IT calculation tools; 431

o On the IT level, this may require a translation from the VTL to the language of 432
the IT tool to be used for the calculation; 433

o By implementing the proper translations at the IT level, different institutions 434
can use different IT tools to execute the same algorithms; moreover, it is 435
possible for the same institution to use different IT tools within an integrated 436
solution (e.g. to exploit different abilities of different tools); 437

o VTL instructions do not change if the IT solution changes (for example 438
following the adoption of another IT tool), so avoiding impacts on users as 439
much as possible; 440

Extensibility, customizability 441

 The language is made of few “core” constructs, which are the fundamental building 442
blocks into which any operation can be decomposed, and a “standard library”, which 443
contains a number of standard operators built from the core constructs; these are the 444
standard parts of the language, which can be extended gradually by the VTL 445
maintenance body, enriching the available operators according to the evolution of the 446
business needs, so progressively making the language more powerful; 447

Version 1.1 Page: 14

 Other organizations can define additional operators having a customized behaviour 448
and a functional syntax, so extending their own library by means of custom-designed 449
operators. As obvious, these additional operators are not part of the standard VTL 450
library. To exchange VTL definitions with other institutions, the possible custom 451
libraries need to be pre-emptively shared. 452

 In addition, it is possible to call external routines of other languages/tools, provided 453
that they are compatible with the IM; this requisite is aimed to fulfil specific 454
calculation needs without modifying the operators of the language, so exploiting the 455
power of the other languages/tools if necessary for specific purposes. In this case: 456

o The external routines should be compatible with, and relate back to, the 457
conceptual IM of the calculations as for its inputs and outputs, so that the 458
integrity of the definitions is ensured 459

o The external routines are not part of the language, so their use is subject to 460
some limitations (e.g. it is impossible to parse them as if they were operators 461
of the language) 462

o The use of external routines compromises the IT implementation 463
independence, the abstraction and the user orientation; therefore external 464
routines should be used only for specific needs and in limited cases, whereas 465
widespread and generic needs should be fulfilled through the operators of the 466
language; 467

 Whilst an Organisation adopting VTL can extend its own library by defining 468
customized parts, on its own total responsibility, in order to improve the standard 469
language for specific purposes (e.g. for supporting possible algorithms not permitted 470
by the standard part), it is important that the customized parts remain compliant with 471
the VTL IM and the VTL fundamentals. Adopting Organizations are totally in charge of 472
any activity for maintaining and sharing their customized parts. Adopting 473
Organizations are also totally in charge of any possible maintenance activity to 474
maintain the compliance between their customized parts and the possible VTL future 475
versions. 476

Language effectiveness 477

 The language is oriented to give full support to the various typologies of data of a 478
statistical environment (for example dimensional data, survey data, registers data, 479
micro and macro, quantitative and qualitative, …) described as much as possible in a 480
coherent way, by means of common IM artefacts for their common aspects, and 481
relying on mathematical notions, as mentioned above. The various types of statistical 482
data are considered as mathematical functions, having independent variables 483
(Identifiers) and dependent variables (Measures, Attributes3), whose extensions can 484
be thought as logical tables (DataSets) made of rows (Data Points) and columns 485
(Identifiers, Measures, Attributes). 486

3 The Measures bear information about the real world and the Attributes about the Data Set or some part of it.

Version 1.1 Page: 15

 The language supports operations on the Data Sets (i.e. mathematical functions) in 487
order to calculate new Data Sets from the existing ones, on their structure components 488
(Identifiers, Measures, Attributes), on their Data Points. 489

 The algorithms are specified by means of mathematical expressions which compose 490
the operands (Data Sets, Components …) by means of operators (e.g. +,-,*,/,>,<) to 491
obtain a certain result (Data Sets, Components …); 492

 The validation is considered as a kind of calculation having as an operand the Data 493
Sets to be validated and producing a Data Set containing information about the result 494
of the validation; 495

 Calculations on multiple measures are supported by most operators, as well as 496
calculations on the attributes of the Data Sets and calculations involving missing 497
values; 498

 The operations are intended to be consistent with the real world historical changes 499
which induce changes of the artefacts (e.g. of the code lists, of the hierarchies …); 500
however, because different standards may represent historical changes in different 501
ways, the implementation of this aspect is left to the standards (e.g. SDMX, DDI …), to 502
the institutions and to the implementers adopting the VTL and therefore the VTL 503
specifications does not prescribe any particular methodology for representing the 504
historical changes of the artefacts (e.g. versioning, qualification of time validity); 505

 Almost all the VTL operators can be nested, meaning that in the invocation of an 506
operator any operand can be the result of the invocation of other operators which 507
calculate it; 508

 The results of the calculations can be permanently stored or not, according to the 509
needs; 510

 511

Version 1.1 Page: 16

Evolution of VTL 2.0 in respect to VTL 1.0 512

Important contributions gave origin to the work that brought to this VTL 2017 version. 513

Firstly, it was not possible to acknowledge immediately - in VTL 1.0 - all of the remarks 514
received during the 1.0 public review. Secondly, the publication of VTL 1.0 triggered the 515
launch of other reviews and proofs of concepts, by several institutions and organizations, 516
aimed at assessing the ability of VTL of supporting properly their real use cases. 517

The suggestions coming from these activities had a fundamental role in designing the new 518
version of the language. 519

The main improvements are described below. 520

The Information Model 521

The VTL Information Model describes the artefacts that VTL manipulates (i.e. it provides a 522
generic model for defining Data and their structures, Variables, Value Domains and so on) and 523
the structural metadata which define validations and transformations (i.e. a generic model for 524
Transformations). 525

In VTL 2.0, some mistakes of VTL 1.0 have been corrected and new kinds of artefacts have 526
been introduced in order to make the representation more complete and to facilitate the 527
mapping with the artefacts of other standards (e.g. SDMX, DDI …). 528

As already said, VTL is intended to operate at logical/conceptual level and independently of 529
the implementation, actually allowing different implementations. For this reason, VTL-IM 2.0 530
provides only for a core abstract view of data and calculations and leaves out the 531
implementation aspects. 532

Some other aspects, even if logically related to the representation of data and calculations, are 533
intentionally left out because they can depend on the actual implementation too. Some of 534
them are mentioned hereinafter (for example the representation of real-world historical 535
changes that impact model artefacts). 536

The operational metadata needed for supporting real processing systems are also out of VTL 537
scope. 538

The implementation of the VTL-IM 2.0 abstract model artefacts needs to take into account the 539
specificities of the standards (like SDMX, DDI …) and the information systems for which it is 540
used. 541

Structural artefacts and reusable rules 542

The structural artefacts of the VTL IM (e.g. a set of code items) as well as the artefacts of other 543
existing standards (like SDMX, DDI, or others) are intrinsically reusable. These so-called 544
“structural” artefacts can be referenced as many times as needed. 545

In order to empower the capability of reusing definitions, a main requirement for VTL 2.0 has 546
been the introduction of reusable rules (for example, validation or aggregation rules defined 547
once and applicable to different cases). 548

Version 1.1 Page: 17

The reusable rules are defined through the VTL definition language and applied through the 549
VTL manipulation language. 550

The core language and the standard library 551

VTL 1.0 contains a flat list of operators, in principle not related one to another. A main 552
suggestion for VTL 2.0 was to identify a core set of primitive operators able to express all of 553
the other operators present in the language. This was done in order to specify the semantics 554
of available operators more formally, avoiding possible ambiguities about their behaviour and 555
fostering coherent implementations. The distinction between ‘core’ and ‘standard’ library is 556
not important to the VTL users but is largely of interest of the VTL technical implementers. 557

The suggestion above has been acknowledged, so VTL 2.0 manipulation language consists of a 558
core set of primitive operators and a standard library of derived operators, definable in term 559
of the primitive ones. The standard library contains essentially the VTL 1.0 operators 560
(possibly enhanced) and the new operators introduced with VTL 2.0 (see below). 561

In particular, the VTL core includes an operator called “join” which allows to extend the 562
common scalar operations to the Data Sets. 563

The user defined operators 564

VTL 1.0 does not allow to define new operators from existing ones, and thus the possible 565
operators are predetermined. Besides, thanks to the core operators and the standard library, 566
VTL 2.0 allows to define new operators (also called “user-defined operators”) starting from 567
existing ones. This is achieved by means of a specific statement of the VTL-DL (the “define 568
operator” statement, see the Reference Manual). 569

This a main mechanism to enforce the requirements of having an extensible and customizable 570
language and to introduce custom operators (not existing in the standard library) for specific 571
purposes. 572

As obvious, because the user-defined operators are not part of the standard library, they are 573
not standard VTL operators and are applicable only in the context in which they have been 574
defined. In particular, if there is the need of applying user-defined operators in other contexts, 575
their definitions need to be pre-emptively shared. 576

The VTL Definition Language 577

VTL 1.0 contains only a manipulation language (VTL-ML), which allows to specify the 578
transformations of the VTL artefacts by means of expressions. 579

A VTL Definition Language (VTL-DL) has been introduced in version 2.0. 580

In fact, VTL 2.0 allows reusable rules and user-defined operators, which do not exist in VTL 581
1.0 and need to be defined beforehand in order to be invoked in the expressions of the VTL 582
manipulation language. The VTL-DL provides for their definition. 583

Second, VTL 1.0 was initially intended to work on top of an existing standard, such as SDMX, 584
DDI or other, and therefore the definition of the artefacts to be manipulated (Data and their 585

Version 1.1 Page: 18

structures, Variables, Value Domains and so on) was assumed to be made using the 586
implementing standards and not VTL itself. 587

During the work for the VTL 1.1 draft version, it was proposed to make the VTL definition 588
language able to define also those VTL-IM artefacts that have to be manipulated. A draft 589
version of a possible artefacts definition language was included in VTL 1.1 public consultation, 590
held until the beginning of 2017. The comments received and the following analysis 591
evidenced that the artefact definition language cannot include the aspects which are left out of 592
the IM (for example the representation of the historical changes of the real world impacting 593
the model artefacts) yet are: i. needed in the implementations; ii. influenced by other 594
implementation-specific aspects; iii. in real applications, bound to be extended by means of 595
other context-related metadata and adapted to the specific environment. 596

In conclusion, the artefact definition language has been excluded from this VTL version and 597
the opportunity of introducing it will be further explored in the near future. 598

In respect to VTL 1.0, VTL 2.0 definition language (VTL-DL) is completely new (there is no 599
definition language in VTL 1.0). 600

The functional paradigm 601

In the VTL Information Model, the various types of statistical data are considered as 602
mathematical functions, having independent variables (Identifiers) and dependent variables 603
(Measures, Attributes), whose extensions can be thought of as logical tables (Data Sets) made 604
of rows (Data Points) and columns (Identifiers, Measures, Attributes). Therefore, the main 605
artefacts to be manipulated using VTL are the logical Data Sets, i.e., first-order mathematical 606
functions4. 607

Accordingly, VTL uses a functional programming paradigm, meaning a paradigm that treats 608
computations as the evaluation of higher-order mathematical functions5, which manipulate 609
the first-order ones (i.e., the logical Data Sets), also termed “operators” or “functionals”. The 610
functional paradigm avoids changing-state and mutable data and makes use of expressions for 611
defining calculations. 612

It was observed, however, that the functional paradigm was not sufficiently achieved in VTL 613
1.0 because in some particular cases a few operators could have produced non-functional 614
results. In effects, even if this regarded only temporary results (not persistent), in specific 615
cases, this behaviour could have led to unexpected results in the subsequent calculation chain. 616

Accordingly, some VTL 1.0 operators have been revised in order to enforce their functional 617
behaviour. 618

4 A first-order function is a function that does not take other functions as arguments and does not provide
another function as result.

5 A higher-order function is a function that takes one or more other functions as arguments and/or provides
another function as result.

Version 1.1 Page: 19

The operators 619

The VTL 2.0 manipulation language (VTL-ML) has been upgraded in respect to the VTL 1.0. In 620
fact VTL 2.0 introduces a number of new powerful operators, like the analytical and the 621
aggregate functions, the data points and hierarchy checks, various clauses and so on, and 622
improve many existing operators, first of all the “join”, which substitutes the “merge” of the 623
VTL 1.0. The complete list of the VTL 2.0 operators is in the reference manual. 624

Some rationalisations have brought to the elimination of some operators whose behaviour 625
can be easily reproduced through the use of other operators. Some examples are the “attrcalc” 626
operator which is now simply substituted by the already existing “calc” and the “query 627
syntax” that was allowed for accessing a subset of Data Points of a Data Set, which on one side 628
was not coherent with the rest of the VTL syntax conventions and on the other side can be 629
easily substituted by the “filter” operator. 630

Even in respect to the draft VTL 1.1 many rationalisations have been applied, also following 631
the very numerous comments received during the relevant public consultation. 632

Version 1.1 Page: 20

VTL Information Model 633

Introduction 634

The VTL Information Model (IM) is a generic model able to describe the artefacts that VTL can 635
manipulate, i.e. to give the definition of the artefact structure and relationships with other 636
artefacts. 637

The knowledge of the artefacts definition is essential for parsing VTL expressions and 638
performing VTL operations correctly. Therefore, it is assumed that the referenced artefacts 639
are defined before or at the same time the VTL expressions are defined. 640

The results of VTL expressions must be defined as well, because it must always be possible to 641
take these results as operands of further expressions to build a chain of transformations as 642
complex as needed. In other words, VTL is meant to be “closed”, meaning that operands and 643
results of the VTL expressions are always artefacts of the VTL IM. As already mentioned, the 644
VTL is designed to make it possible to deduce the data structure of the result from the 645
calculation algorithm and the data structure of the operands. 646

VTL can manage persistent or temporary artefacts, the former stored persistently in the 647
information system, the latter only used temporarily. The definition of the persistent artefact 648
must be persistent as well, while the definition of temporary artefacts can be temporary6. 649

The VTL IM provides a formal description at business level of the artefacts which VTL can 650
manipulate, which is the same purpose as the Generic Statistical Information Model (GSIM) 651
with a broader scope. As a matter of fact, the VTL Information Model uses GSIM artefacts as 652
much as possible (GSIM 1.1 version) 7. Besides, GSIM already provides a first mapping with 653
SDMX and DDI that can be used for the technical implementation8. Note that the description of 654
the GSIM 1.1 classes and relevant definitions can be consulted in the “Clickable GSIM” of the 655
UNECE site9. However, the detailed mapping between the VTL IM and the IMs of the other 656
standards is out of the scope of this document and is left to the competent bodies of the other 657
standards. 658

Like GSIM, the VTL IM provides for a model at a logical/conceptual level, which is 659
independent of the implementation and allows different possible implementations. 660

The VTL IM provides for an abstract view of the core artefacts used in the VTL calculations 661
and intentionally leaves out implementation aspects. Some other aspects, even if logically 662
related to the representation of data and calculations, are also left out because they can 663

6 The definition of a temporary artefact can be also persistent, if needed.

7 See also the section “Relations with the GSIM Information model”

8 For the GSIM – DDI and GSIM – SDMX mappings, see also the relationships between GSIM and other standards
at the UNECE site http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards. About the
mapping with SDMX, however, note that here it is assumed that the SDMX artefacts Data Set and Data Structure
Definition may represent both dimensional and unit data (not only dimensional data) and may be mapped
respectively to the VTL artefacts Data Set and Data Structure.

9 Hyperlink “http://www1.unece.org/stat/platform/display/GSIMclick/Clickable+GSIM”

http://www1.unece.org/stat/platform/display/gsim/GSIM+and+standards
http://www1.unece.org/stat/platform/display/GSIMclick/Clickable+GSIM

Version 1.1 Page: 21

depend on the actual implementation too (for example, the textual descriptions of the VTL 664
artefacts, the representation of the historical changes of the real world). 665

The operational metadata needed for supporting real processing systems are also left out 666
from the VTL scope (for example the specification of the way data are managed, i.e. collected, 667
stored, validated, calculated/estimated, disseminated ...). 668

Therefore the VTL IM cannot autonomously support real processing systems, and for this 669
purpose needs to be properly integrated and adapted, also adding more metadata (e.g., other 670
classes of artefacts, properties of the artefacts, relationships among artefacts …). 671

Even the possible VTL implementations in other standards (like SDMX and DDI) would 672
require proper adjustments and improvements of the IM described here. 673

The VTL IM is inspired to the modelling approach that consists in using more modelling levels, 674
in which a model of a certain level models the level below and is an instance of a model of the 675
level above. 676

For example, assuming conventionally that the level 0 is the level of the real world to be 677
modelled and ignoring possible levels higher than the one of the VTL IM, the VTL modelling 678
levels could be described as follows: 679

Level 0 – the real world 680

Level 1 – the extensions of the data which model some aspect of the real world. For 681
example, the content of the data set “population from United Nations”: 682

 Year Country Population 683

2016 China 1,403,500,365 684
2016 India 1,324,171,354 685
2016 USA 322,179,605 686
… 687
2017 China 1,409,517,397 688
2017 India 1,339,180.127 689
2017 USA 324,459,463 690
… 691

Level 2 – the definitions of specific data structures (and relevant transformations) 692
which are the model of the level 1. An example: the data structure of the data set 693
“population from United Nations” has one measure component called “population” and 694
two identifier components called Year and Country. 695

Level 3 – the VTL Information Model, i.e. the generic model which the specific data 696
structures (and relevant transformations) must conform. An example of IM rule about 697
the data structure: a Data Set may be structured by just one Data Structure, a Data 698
Structure may structure any number of Data Sets. 699

A similar approach is very largely used, in particular in the information technology and for 700
example by the Object Management Group10, even if the terminology and the enumeration of 701
the levels is different. The main correspondences are: 702

VTL Level 1 (extensions) – OMG M0 (instances) 703

10 For example in the Common Warehouse Metamodel and Meta-Object Facility specifications

Version 1.1 Page: 22

VTL Level 2 (definitions) – OMG M1 (models) 704

VTL Level 3 (information model) – OMG M2 (metamodels) 705

Often the level 1 is seen as the level of the data, the level 2 of the metadata and the level 3 of 706
the meta-metadata, even if the term metadata is too generic and somewhat ambiguous. In fact 707
“metadata” is any data describing another data, while “definition” is a particular metadata 708
which is the model of another data. For example, referring to the example above, a possible 709
other data set which describes how the population figures are obtained is certainly a 710
metadata, because it gives information about another data (the population data set), but it is 711
not at all its definition, because it does not describe the information structure of the 712
population data set. 713

The VTL IM is illustrated in the following sections. 714

The first section describes the generic model for defining the statistical data and their 715
structures, which are the fundamental artefacts to be transformed. In fact, the ultimate goal of 716
the VTL is to act on statistical data to produce other statistical data. 717

In turn, data items are characterized in terms of variables, value domains, code items and 718
similar artefacts. These are the basic bricks that compose the data structures, fundamental to 719
understand the meaning of the data, ensuring harmonization of different data when needed, 720
validating and processing them. The second section presents the generic model for these 721
kinds of artefacts. 722

Finally, the VTL transformations, written in the form of mathematical expressions, apply the 723
operators of the language to proper operands in order to obtain the needed results. The third 724
section depicts the generic model of the transformations. 725

Generic Model for Data and their structures 726

This Section provides a formal model for the structure of data as operated on by the 727
Validation and Transformation Language (VTL). 728

As already said, GSIM artefacts are used as much as possible. Some differences between this 729
model and GSIM are because, in the VTL IM, both unit and dimensional data are considered as 730
first-order mathematical functions having independent and dependent variables and are 731
treated in the same way. 732

For each Unit (e.g. a person) or Group of Units of a Population (e.g. groups of persons of a 733
certain age and civil status), identified by means of the values of the independent variables 734
(e.g. either the “person id” or the age and the civil status), a mathematical function provides 735
for the values of the dependent variables, which are the properties to be known (e.g. the 736
revenue, the expenses …). 737

A mathematical function can be seen as a logical table made of rows and columns. Each 738
column holds the values of a variable (either independent or dependent); each row holds the 739
association between the values of the independent variables and the values of the dependent 740
variables (in other words, each row is a single “point” of the function). 741

In this way, the manipulation of any kind of data (unit and dimensional) is brought back to the 742
manipulation of very simple and well-known objects, which can be easily understood and 743
managed by users. According to these assumptions, there would no longer be the need of 744
distinguishing between unit and dimensional data, and in fact VTL does not introduces such a 745

Version 1.1 Page: 23

distinction at all. Nevertheless, even if such a distinction is not part of the VTL IM, this aspect 746
is illustrated hereinafter in order to make it easier to map the VTL IM to the GSIM IM and the 747
DDI IM, which have such a distinction. 748

Starting from this assumption, each mathematical function (logical table) may be defined 749
likewise a GSIM Dimensional Data Set and the function structure likewise a GSIM Dimensional 750
Data Structure, having Identifier, Measure and Attribute Components. The Identifier 751
components are the independent variables of the function, the Measures and Attribute 752
Components are the dependent variables. Obviously, the GSIM artefacts “Data Set” and “Data 753
Set Structure” have to be strictly interpreted as logical artefacts on a mathematical level, not 754
necessarily corresponding to physical data sets and physical data structures. 755

In order to avoid any possible misunderstanding with respect to SDMX, also take note that the 756
VTL Data Set in general does not correspond to the SDMX Dataset. In fact, a SDMX Dataset is a 757
physical set of data (the data exchanged in a single interaction), while the VTL Data Set is a 758
logical set of data, in principle independent of its possible physical representation and 759
handling (like the exchange of part of it). The right mapping is between the VTL Data Set and 760
the SDMX Dataflow. 761

 762

Data model diagram 763

 764

 765

 766

 767

 768

 769

 770

 771

 772

 773

 774

 775

 776

 777

 778

 779

White box: same artefact as in GSIM 1.1 780
Light grey box: similar to GSIM 1.1 781
 782

Data Point

Data Set

Data Structure

Data Structure
Component

Identifier

Attribute

Measure

has

structured
by

0..N

1..1

0..N

0..N

0..N

0..N

1..1

has

Is su
p

er-ty
p

e o
f

Version 1.1 Page: 24

Explanation of the Diagram 783

Data Set: a mathematical function (logical table) that describes some properties of some 784
groups of units of a population. In general, the groups of units may be composed of one or 785
more units. For unit data, each group is composed of a single unit. For dimensional data, each 786
group may be composed of any number of units. A VTL Data Set is considered as a logical set 787
of observations (Data Points) having the same logical structure and the same general 788
meaning, independently of the possible physical representation or storage. Between the VTL 789
Data Sets and the physical datasets there can be relationships of any cardinality: for example, 790
a VTL Data Set may be stored either in one or in many physical data sets, as well as many VTL 791
Data Sets may be stored in the same physical datasets (or database tables). The mapping 792
between the VTL logical artefacts and the physical artefacts is left to the VTL implementations 793
and is out of scope of this document. The VTL Data Set is similar to the GSIM Data Set, the 794
relationship between them is described in a following section. 795

Data Point: a single value of the function, i.e. a single association between the values of the 796
independent variables and the values of the dependent variables. A Data Point corresponds to 797
a row of the logical table that describes the function, therefore the extension of the function 798
(Data Set) is a set of Data Points. Some Data Points of the function can be unknown (i.e. 799
missing or NULL), for example the possible ones relevant to future dates. The single Data 800
Points do not need to be individually defined, because their definition is the definition of the 801
function (i.e. the Data Set definition). This artefact is the same as the GSIM Data Point. 802

Data Structure: the structure of a mathematical function, having independent and dependent 803
variables. The independent variables are called “Identifier components”, the dependent 804
variables are called either “Measure Components” or “Attribute Components”. The distinction 805
between Measure and Attribute components is conventional and essentially based on their 806
meaning: the Measure Components give information about the real world, while the Attribute 807
components give information about the function itself. The VTL Data Structure is similar to 808
the GSIM Data Structure, the relationship between them is described in a following section. 809

Data Structure Component: any component of the data structure, which can be either an 810
Identifier, or a Measure, or an Attribute Component. This artefact is the same as in GSIM. 811

Identifier Component (or simply Identifier): a component of the data structure that is 812
an independent variable of the function. This artefact is the same as in GSIM. In respect 813
to SDMX, an Identifier Component may be either a Group Identifier, which contributes 814
to identify a group of statistical units and correspond to a SDMX Dimension, or a 815
Measure Identifier, which contributes to identify a Measure and corresponds to a 816
SDMX Measure Dimension. 817

Measure Component (or simply Measure): a component of the data structure that is a 818
dependent variable of the function and gives information about the real world. This 819
artefact is the same as in GSIM. 820

Attribute Component (or simply Attribute): a component of the data structure that is 821
a dependent variable of the function and gives information about the function itself. 822
This artefact is the same as in GSIM. In case the automatic propagation of the Attributes 823
is supported (see the section “Behaviour for Attribute Components”), the Attributes 824
can be further classified in normal Attributes (not automatically propagated) and Viral 825
Attributes (automatically propagated). 826

Version 1.1 Page: 25

There can be from 0 to N Identifiers in a Data Structure. A Data Set having no identifiers can 827
contain just one Data Point, whose independent variables are not explicitly represented. 828

There can be from 0 to N Measures in a Data Structure. A Data Set without Measures is 829
allowed because the Identifiers can be considered as functional dependent from themselves 830
(so having also the role of Measure). In an equivalent way, the combinations of values of the 831
Identifiers can be considered as “true” (i.e. existing), therefore it can be thought that there is 832
an implicit Boolean measure having value “TRUE” for all the Data Points. 11 833

The extreme case of a Data Set having no Identifiers, Measures and Attributes is allowed. A 834
Data Set of this kind is assumed to contain just one scalar Value whose meaning is specified 835
only through the Data Set name. As for the VTL operations, these Data Sets are managed like 836
the scalar Values. 837

Note that the VTL in most cases manages Measure and Attribute Components in different 838
ways, as explained in the section “The general behaviour of operations on datasets” below, 839
therefore the distinction between Measures and Attributes may be significant for the VTL. 840

Represented Variable: a characteristic of a statistical population (e.g. the country of birth) 841
represented in a specific way (e.g. through the ISO numeric country code). This artefact is the 842
same as in GSIM. A represented variable may contribute to define any number of Data 843
Structure Components. 844

Functional Integrity 845

The VTL data model requires a functional dependency between the Identifier Components 846
and all the other Components of a Data Set. It follows that a Data Set can also be seen as a 847
tabular structure with a finite number of columns (which correspond to its Components) and 848
rows (which correspond to its individual Data Points), in fact for each combination of values 849
of the Identifier Components’ columns (which identify an individual Data Point), there is just 850
one value for each Measure and Attribute (contained in the corresponding columns). 851

The functional dependency translates into the following functional integrity requirements: 852

 Each Component has a distinct name in the Data Structure of the Data Set and contains 853

one scalar value for each Data Point. 854

 All the Identifier Components of the Data Set must contain a significant value for all the 855

Data Points (i.e. such value cannot be unknown (“NULL”)). 856

 In a Data Set there cannot exist two or more Data Points having the same values for all 857

the Identifier Components (i.e. the same Data Point key). 858

 When a Measure or Attribute Component has no significant value (i.e. “NULL”) for a 859

Data Point, it is considered unknown for that Data Point. 860

11 For example, this is the case of a relationship that does not have properties: imagine a Data Set containing the
relationship between the students and the courses that they have followed, without any other information: the
corresponding Data Set would have StudentId and CourseId as Identifiers and would not have any explicit
measure.

Version 1.1 Page: 26

 When a Data Point is missing (i.e. a possible combination of values of the independent 861

variables is missing), all its Measure and Attribute Components are by default 862

considered unknown (unless otherwise specified). 863

The VTL expects the input Data Sets to be functionally integral and is designed to ensure that 864
the resulting Data Set are functionally integral too. 865

 866

Relationships between VTL and GSIM 867

As mentioned earlier, the VTL Data Set and Data Structure artefacts are similar to the 868
corresponding GSIM artefact. VTL, however, does not make a distinction between Unit and 869
Dimensional Data Sets and Data Structures. 870

In order to explain the relationships between VTL and GSIM, the distinction between Unit and 871
Dimensional Data Sets can be introduced virtually even in the VTL artefacts. In particular, the 872
GSIM Data Set may be a GSIM Dimensional Data Set or a GSIM Unit Data Set, while a VTL Data 873
Set may (virtually) be: 874

either a (virtual) VTL Dimensional Data Set: a kind of (Logical) Data Set describing 875
groups of units of a population that may be composed of many units. This (virtual) 876
artefact would be the same as the GSIM Dimensional Data Set; 877

or a (virtual) VTL Unit Data Set: a kind of (Logical) Data Set describing single units of 878
a population. This (virtual) artefact would be the same as the Unit Data Record in 879
GSIM, which has its own structure and can be thought of as a mathematical function. 880
The difference is that the VTL Unit Data Set would not correspond to the GSIM Unit 881
Data Set, because the latter cannot be considered as a mathematical function: in fact it 882
can have many GSIM Unit Data Records with different structures. 883

A similar relationship exists between VTL and GSIM Data Structures. In particular, introducing 884
in VTL the virtual distinction between Unit and Dimensional Data Structures, while a GSIM 885
Data Structure may be a GSIM Dimensional Data Structure or a GSIM Unit Data Structure, a 886
VTL Data Structure may (virtually) be: 887

either a (virtual) VTL Dimensional Data Structure: the structure of (0..n) 888
Dimensional Data Sets. This artefact would be the same as in GSIM; 889

or a (virtual) VTL Unit Data Structure: the structure of (0..n) Unit Data Sets. This 890
artefact would be the same as the Logical Record in GSIM, which corresponds to a 891
single structure and can be thought as the structure of a mathematical function. The 892
difference is that the VTL Unit Data Structure would not correspond to the GSIM Unit 893
Data Structure, because the latter cannot be considered as the structure of a 894
mathematical function: in fact, it can have many Logical Records with different 895
structures. 896

The following diagram summarizes the relationships between the GSIM and the VTL Data Sets 897
and Data Structures, according to the explanation given above. 898

Please take into account that the distinction between Dimensional and Unit Data Set and Data 899
Structure is not used by the VTL language and is not part of the VTL IM. This virtual 900
distinction is highlighted here and in the diagram below just for clarifying the mapping of the 901
VTL IM with GSIM and DDI. 902

Version 1.1 Page: 27

 903

GSIM – VTL mapping diagram about data structures: 904

 905

 906

 907

 908

 909

 910

 911

 912

 913

 914

 915

 916

 917

 918

Examples 919

As a first simple example of Data Sets seen as mathematical functions, let us consider the 920
following table: 921

 922

Production of the American Countries 923

 924

 925

 926

 927

 928

 929

 930

 931

 932

 933

This table is equivalent to a proper mathematical function: in fact, it fulfils the functional 934
integrity requirements above. The Table can be defined as a Data Set, whose name can be 935

Ref.Date Country Meas.Name Meas.Value Status

2013 Canada Population 50 Final

2013 Canada GNP 600 Final

2013 USA Population 250 Temporary

2013 USA GNP 2400 Final

… … … … …

2014 Canada Population 51 Unavailable

2014 Canada GNP 620 Temporary

… … … … …

VTL
Data Set

VTL
Data Structure

structured
by

1..1

0..N

GSIM
Unit DataRecord

GSIM
Logical Record

GSIM Dimens.
Data Set

GSIM Dimens.
Data Structure

VTL Unit Data
Set

VTL Unit Data
Structure

VTL Dimens.
Data Set

VTL Dimens.
Data Structure

Virtual VTL artefacts

mappings

Version 1.1 Page: 28

“Production of the American Countries”. Each row of the table is a Data Point belonging to the 936
Data Set. The Data Structure of this Data Set has five Data Structure Components: 937

 Reference Date (Identifier Component) 938
 Country (Identifier Component) 939
 Measure Name (Identifier Component - Measure Identifier) 940
 Measure Value (Measure Component) 941
 Status (Attribute Component) 942

 943
As a second example, let us consider the following physical table, in which the symbol “###” 944
denotes cells that are not allowed to contain a value or contain the “NULL” value. 945
 946

Institutional Unit Data 947

 948

 949

 950

 951

 952

 953

 954

 955

 956

 957

 958

 959

 960

This table does not fulfil the functional integrity requirements above because its rows (i.e. the 961
Data Points) either have different structures (in term of allowed columns) or have NULL 962
values in the Identifiers. However, it is easy to recognize that there exist two possible 963
functional structures (corresponding to the Row Types I and II), so that the original table can 964
be split in the following ones: 965

 966

Row Type I - Institutional Unit register 967

 968

 969

 970

 971

 972

Row Type I.U. ID Ref.Date
I.U.

Name

I.U.

Sector
Assets Liabilities

I A ### AAAAA Private ### ###

II A 2013 ### ### 1000 800

II A 2014 ### ### 1050 750

I B ### BBBBB Public ### ###

II B 2013 ### ### 1200 900

II B 2014 ### ### 1300 950

I C ### CCCCC Private ### ###

II C 2013 ### ### 750 900

II C 2014 ### ### 800 850

… … … … … … …

I.U. ID I.U. Name I.U. Sector

A AAAAA Private

B BBBBB Public

C CCCCC Private

… … …

Version 1.1 Page: 29

 973

Row Type II - Institutional Unit Assets and Liabilities 974

 975

 976

 977

 978

 979

 980

 981

 982

 983

Each of these two tables corresponds to a mathematical function and can be represented like 984
in the first example above. Therefore, they would be 2 distinct logical Data Sets according to 985
the VTL IM, even if stored in the same physical table. 986

In correspondence to one physical table (the former) there are two logical tables (the latter), 987
so that the definitions will be the following ones: 988

 989

VTL Data Set 1: Record type I - Institutional Units register 990

Data Structure 1: 991
 I.U. ID (Identifier Component) 992
 I.U. Name (Measure Component) 993
 I.U. Sector (Measure Component) 994

 995

VTL Data Set 2: Record type II - Institutional Units Assets and Liabilities 996

Data Structure 2: 997
 I.U. ID (Identifier Component) 998
 Reference Date (Identifier Component) 999
 Assets (Measure Component) 1000
 Liabilities (Measure Component) 1001

 1002

These examples clarify the meaning of “logical” table or Data Set in VTL, that is a set of data 1003
that can be considered as the extensional form of a mathematical function, whichever 1004
technical format is used, regardless it is persistent or not and, in case, wherever it is stored. 1005

In the example above, one physical data set corresponds to more than one logical VTL Data 1006
Sets, with a 1 to many correspondence. In the general case, between physical and logical data 1007
sets there can be any correspondence (1 to 1, 1 to many, many to 1, many to many). 1008

 1009

I.U. ID Ref.Date Assets Liabilities

A 2013 1000 800

A 2014 1050 750

B 2013 1200 900

B 2014 1300 950

C 2013 750 900

C 2014 800 850

… … … …

Version 1.1 Page: 30

The data artefacts 1010

The list of the VTL artefacts related to the manipulation of the data is given here, together 1011
with the information that the VTL may need to know about them12. 1012

For the sake of simplicity, the names of the artefacts can be abbreviated in the VTL manuals 1013
(in particular the parts of the names shown between parentheses can be omitted). 1014

As already mentioned, this list provides an abstract view of the core metadata needed for the 1015
manipulation of the data structures but leaves out implementation and operational aspects. 1016
For example, textual descriptions of the artefacts are left out, as well as any specification of 1017
temporal validity of the artefacts, procedural metadata (specification of the way data are 1018
processed, i.e., collected, stored, validated, calculated/estimated, disseminated ...) and so on. 1019
In order to support real systems, the implementers can conveniently adjust this model to their 1020
environments and integrate it by adding additional metadata (e.g. other properties of the 1021
artefacts, other classes of artefacts, other relationships among artefacts …). 1022

Data Set 1023

Data Set name name of the Data Set 1024

Data Structure name reference to the data structure of the Data Set 1025

Data Structure 1026

Data Structure name name of the Data Structure (the Structure Components are 1027
specified in the following artefact) 1028

(Data) Structure Component 1029

Data Structure name the data structure which the Data Structure Component 1030
belongs to 1031

Component name the name of the Component 1032

Component Role IDENTIFIER or MEASURE or ATTRIBUTE (or also VIRAL 1033
ATTRIBUTE if the automatic propagation is supported) 1034

Represented Variable the Represented Variable which defines the Component (see 1035
also below) 1036

 1037

The Data Points have the same information structure as the Data Sets they belong to, in fact 1038
they form the extensions of the relevant Data Sets; VTL does not require to define them 1039
explicitly. 1040

 1041

12 For example, for ensuring correct operations, the knowledge of the Data Structure of the input Data Sets is
essential at parsing time, in order to check the correctness of the VTL expression and determine the Data
Structure of the result, and at execution time to perform the calculations

Version 1.1 Page: 31

Generic Model for Variables and Value Domains 1042

This Section provides a formal model for the Variables, the Value Domains, their Values and 1043
the possible (Sub)Sets of Values. These artefacts can be referenced in the definition of the VTL 1044
Data Structures and as parameters of some VTL Operators. 1045

Variable and Value Domain model diagram 1046
 1047
 1048
 1049

 1050
 1051
 1052
 1053

 1054

 1055

 1056

 1057

 1058

 1059

 1060

 1061

 1062

 1063

 1064

 1065

 1066

 1067

 1068

 1069

 1070
 1071
 1072
 1073
 1074
 1075
White box: same as in GSIM 1.1 1076
Light grey: similar to GSIM 1.1 1077
Dark grey additional detail (in respect to GSIM 1.1) 1078

 1079

Data Set
Component

includes
as

match to

0..N 1..1

Value Domain

Represented
Variable

measures

1..1

0..N

Value Domain
Subset (Set) 1..1 0..N 1..1

0..N

Takes
values in

1..N

Is super-class of
classtype of

Is super-class of

Has

1..1

1..1

0..N

1..1

1..1

Enumerated
Value Domain

Described
Value Domain

Code Item

1..1

1..N

Code List

Has

Contains

 Described
Set

Enumerated
Set

Set List

Has

Contains

Value

Is super-class of

Has

1..1 1..1

1..N 1..N

Data Set

1..N

Has

Data Structure
Component

1..1 0..N

defined by

Set Item

1..1

1..1

Data Structure

1..N

1..1 0..N

Version 1.1 Page: 32

Explanation of the Diagram 1080

Even in the case of Variables and Value Domains, the GSIM artefacts are used as much as 1081
possible. The differences are mainly due to the fact that GSIM does not distinguish explicitly 1082
between Value Domains and their (Sub)Sets, while in the VTL IM this is made more explicit in 1083
order to allow different Data Set Components relevant to the same aspect of the reality (e.g. 1084
the geographic area) to share the same Value Domain and, at the same time, to take values in 1085
different Subsets of it. This is essential for VTL for several operations and in particular for 1086
validation purposes. For example, it may happen that the same Represented Variable, say the 1087
“place of birth”, in a Data Set takes values in the Set of the European Counties, in another one 1088
takes values in the set of the African countries, and so on, even at different levels of details 1089
(e.g. the regions, the cities). The definition of the exact Set of Values that a Data Set 1090
Component can take may be very important for VTL, in particular for validation purposes. 1091
The specification of the Set of Values that the Data Set Components may assume is equivalent, 1092
on the mathematical plane, to the specification of the domain and the co-domain of the 1093
mathematical function corresponding to the Data Set. 1094

Data Set: see the explanation given in the previous section (Generic Model for Data and their 1095
structures). 1096

Data Set Component: a component of the Data Set, which matches with just one Data 1097
Structure Component of the Data Structure of such a Data Set and takes values in a (sub)set of 1098
the corresponding Value Domain13; this (sub)set of allowed values may either coincide with 1099
the set of all the values belonging to the Value Domain or be a proper subset of it. In respect to 1100
a Data Structure Component, a Data Set Component bears the important additional 1101
information of the set of allowed values of the Component, which can be different Data Set by 1102
Data Set even if their data structure is the same. 1103

Data Structure: a Data Structure; see the explanation already given in the previous section 1104
(Generic Model for Data and their structures). 1105

Data Structure Component: a component of a Data Structure; see the explanation already 1106
given in the previous section (Generic Model for Data and their structures). A Data Structure 1107
Component is defined by a Represented Variable. 1108

Represented Variable: a characteristic of a statistical population (e.g. the country of birth) 1109
represented in a specific way (e.g. through the ISO code). This artefact is the same as in GSIM. 1110
A represented variable may take value in (or may be measured by) just one Value Domain. 1111

Value Domain: the domain of allowed values for one or more represented variables. This 1112
artefact is very similar to the corresponding artefact in GSIM. Because of the distinction 1113
between Value Domain and its Value Domain Subsets, a Value Domain is the wider set of 1114
values that can be of interest for representing a certain aspect of the reality like the time, the 1115
geographical area, the economic sector and so on. As for the mathematical meaning, a Value 1116
Domain is meant to be the representation of a “space of events” with the meaning of the 1117

13 This is the Value Domain which measures the Represented Variable, which defines the Data Structure
Component, which the Data Set Component matches to.

Version 1.1 Page: 33

probability theory14. Therefore, a single Value of a Value Domain is a representation of a 1118
single “event” belonging to this space of events. 1119

Described Value Domain: a Value Domain defined by a criterion (e.g. the domain of 1120
the positive integers). This artefact is the same as in GSIM. 1121

Enumerated Value Domain: a Value Domain defined by enumeration of the allowed 1122
values (e.g. domain of ISO codes of the countries). This artefact is the same as in GSIM. 1123

Code List: the list of all the Code Items belonging to an enumerated Value Domain, 1124
each one representing a single “event” with the meaning of the probability theory. As 1125
for its mathematical meaning, this list is unique for a Value Domain, cannot contain 1126
repetitions (each Code Item can be present just once) and cannot contain ambiguities 1127
(each Code Item must have a univocal meaning, i.e., must represent a single event of 1128
the space of the events). This artefact is the same as in GSIM except for the 1129
multiplicity of the relationship with the Enumerated Value Domain which is 1:1. In fact 1130
like it happens for the Data Set, the VTL considers the Code List as an artefact at a 1131
logical level, corresponding to its mathematical meaning. A logical VTL Code List, 1132
however, may be obtained as the composition of more physical lists of codes if needed: 1133
the mapping between the logical and the physical lists is out of scope of this document 1134
and is left to the implementations, provided that the basic conceptual properties of the 1135
VTL Code List are ensured (unicity, no repetitions, no ambiguities). In practice, as for 1136
the VTL IM, the Code List artefact matches 1:1 with the Enumerated Value Domain 1137
artefact, therefore they can be considered as the same artefact. 1138

Code Item: an allowed Value of an enumerated Value Domain. A Code Item is the association 1139
of a Value with the relevant meaning (called “category” in GSIM). An example of Code Item is a 1140
single country ISO code (the Value) associated to the country it represents (the category). As 1141
for the mathematical meaning, a Code Item is the representation of an “event” of a space of 1142
events (i.e. the relevant Value Domain), according to the notions of “event” and “space of 1143
events” of the probability theory (see also the note above). 1144

Value: an allowed value of a Value Domain. Please note that on a logical / mathematical level, 1145
both the Described and the Enumerated Value Domains contain Values, the only difference is 1146
that the Values of the Enumerated Value Domains are explicitly represented by enumeration, 1147
while the Values of the Described Value Domains are implicitly represented through a 1148
criterion. 1149

 1150

The following artefacts are aimed at representing possible subsets of the Value Domains. This 1151
is needed for validation purposes, because very often not all the values of the Value Domain 1152
are allowed in a Data Structure Component, but only a subset of them (e.g. not all the 1153
countries but only the European countries). This is needed also for transformation purposes, 1154

14 According to the probability theory, a random experiment is a procedure that returns a result belonging a
predefined set of possible results (for example, the determination of the “geographic location” may be
considered as a random experiment that returns a point of the Earth surface as a result). The “space of results” is
the space of all the possible results. Instead an “event” is a set of results (going back to the example of the
geographic location, the event “Europe” is the set of points of the European territory and more in general an
“event” corresponds to a “geographical area”). The “space of events” is the space of all the possible “events” (in
the example, the space of the geographical areas).

Version 1.1 Page: 34

for example to filter the Data Points according to a subset of Values of a certain Data Structure 1155
Component (e.g. extract only the European Countries from some data relevant to the World 1156
Countries) . Although this detail does not exist in GSIM, these artefacts are compliant with the 1157
GSIM artefacts described above, aimed at representing the Value Domains: 1158

Value Domain Subset (or simply Set): a subset of Values of a Value Domain. This artefact 1159
does not exist in GSIM, however it is compliant with the GSIM Value Domain. Hereinafter a 1160
Value Domain Subset is simply called Set, because it can be any set of Values belonging to the 1161
Value Domain (even the set of all the values of the Value Domain). 1162

Described Value Domain Subset (or simply Described Set): a described (defined by 1163
a criterion) subset of Values of a Value Domain (e.g. the countries having more than 1164
100 million inhabitants, the integers between 1 and 100). This artefact does not exist 1165
in GSIM, however it is compliant with the GSIM Described Value Domain. 1166

Enumerated Value Domain Subset (or simply Enumerated Set): an enumerated 1167
subset of a Value Domain (e.g. the enumeration of the European countries). This 1168
artefact does not exist in GSIM, however it is compliant with the GSIM Enumerated 1169
Value Domain. 1170

Set List: the list of all the Values belonging to an Enumerated Set (e.g. the list of the ISO 1171
codes of the European countries), without repetitions (each Value is present just once). 1172
As obvious, these Values must belong to the Value Domain of which the Set is a subset. 1173
This artefact does not exist in GSIM, however, it is compliant with the Code List in GSIM 1174
which has a similar role. The Set List enumerates the Values contained in the Set (e.g. 1175
the European country codes), without the associated categories (e.g. the names of the 1176
countries), because the latter are already maintained in the Code List / Code Items of 1177
the relevant Value Domain (which enumerates all the possible Values with the 1178
associated categories). In practice, as for the VTL IM, the Set List artefact coincides 1:1 1179
with the Enumerated Set artefact, therefore they can be considered as the same 1180
artefact. 1181

Set Item: an allowed Value of an enumerated Set. The Value must belong to the same Value 1182
Domain the Set belongs to. Each Set Item refers to just one Value and just one Set. A Value can 1183
belong to any number of Sets. A Set can contain any number of Values. 1184

Relations and operations between Code Items 1185

The VTL allows the representation of logical relations between Code Items, considered as 1186
events of the probability theory and belonging to the same enumerated Value Domain (space 1187
of events). The VTL artefact that allows expressing the Code Item Relations is the Hierarchical 1188
Ruleset, which is described in the reference manual. 1189

As already explained, each Code Item is the representation of an event, according to the 1190
notions of “event” and “space of events” of the probability theory. The relations between Code 1191
Items aim at expressing the logical implications between the events of a space of events (i.e. in 1192
a Value Domain). The occurrence of an event, in fact, may imply the occurrence or the non-1193
occurrence of other events. For example: 1194

 The event UnitedKingdom implies the event Europe (e.g. if a person lives in UK he/she 1195
also lives in Europe), meaning that the occurrence of the former implies the occurrence 1196
of the latter. In other words, the geo-area of UK is included in the geo-area of the 1197
Europe. 1198

Version 1.1 Page: 35

 The events Belgium, Luxembourg, Netherlands are mutually exclusive (e.g. if a person 1199
lives in one of these countries he/she does not live in the other ones), meaning that the 1200
occurrence of one of them implies the non-occurrence of the other ones (Belgium AND 1201
Luxembourg = impossible event; Belgium AND Netherlands = impossible event; 1202
Luxembourg AND Netherlands = impossible event). In other words, these three geo-1203
areas do not overlap. 1204

 The occurrence of one of the events Belgium, Netherlands or Luxembourg (i.e. Belgium 1205
OR Netherlands OR Luxembourg) implies the occurrence of the event Benelux (e.g. if a 1206
person lives in one of these countries he/she also lives in Benelux) and vice-versa (e.g. 1207
if a person lives in Benelux, he/she lives in one of these countries). In other words, the 1208
union of these three geo-areas coincides with the geo-area of the Benelux. 1209

The logical relationships between Code Items are very useful for validation and 1210
transformation purposes. Considering for example some positive and additive data, like for 1211
example the population, from the relationships above it can be deduced that: 1212

 The population of United Kingdom should be lower than the population of Europe. 1213
 There is no overlapping between the populations of Belgium, Netherlands and 1214

Luxembourg, so that these populations can be added in order to obtain aggregates. 1215
 The sum of the populations of Belgium, Netherlands and Luxembourg gives the 1216

population of Benelux. 1217

A Code Item Relation is composed of two members, a 1st (left) and a 2nd (right) member. The 1218
envisaged types of relations are: “is equal to” (=), “implies” (<), “implies or is equal to” (<=), 1219
“is implied by” (>), and “is implied by or is equal to” (>=). “Is equal to” means also “implies 1220
and is implied”. For example: 1221

UnitedKingdom < Europe means (UnitedKingdom implies Europe) 1222

In other words, this means that if a point of space belongs to United Kingdom it also 1223
belongs to Europe. 1224

The left members of a Relation are single Code Items. The right member can be either a single 1225
Code Item, like in the example above, or a logical composition of Code Items: these are the 1226
Code Item Relation Operands. The logical composition can be defined by means of 1227
Operators, whose goal is to compose some Code Items (events) in order to obtain another 1228
Code Item (event) as a result. In this simple algebra, two operators are envisaged: 1229

 the logical OR of mutually exclusive Code Items, denoted “+”, for example: 1230

Benelux = Belgium + Luxembourg + Netherlands 1231

This means that if a point of space belongs to Belgium OR Luxembourg OR Netherlands 1232
then it also belongs to Benelux and that if a point of space belongs to Benelux then it 1233
also belongs either to Belgium OR to Luxembourg OR to Netherlands (disjunction). In 1234
other words, the statement above says that territories of Belgium, Netherland and 1235
Luxembourg are non-overlapping and their union is the territory of Benelux. 1236
Consequently, as for the additive measures (and being equal the other possible 1237
Identifiers), the sum of the measure values referred to Belgium, Luxembourg and 1238
Netherlands is equal to the measure value of Benelux. 1239

 the logical complement of an implying Code Item in respect to another Code Item 1240
implied by it, denoted “-“, for example: 1241

Version 1.1 Page: 36

EUwithoutUK = EuropeanUnion - UnitedKingdom 1242

In simple words, this means that if a point of space belongs to the European Union and 1243
does not belong to the United Kingdom, then it belongs to EUwithoutUK and that if a 1244
point of space belongs to EUwithoutUK then it belongs to the European Union and not 1245
to the United Kingdom. In other words, the statement above says that territory of the 1246
United Kingdom is contained in the territory of the European Union and its 1247
complement is the territory of EUwithoutUK. As a consequence, considering a positive 1248
and additive measure (and being equal the other possible Identifiers), the difference of 1249
the measure values referred to EuropeanUnion and UnitedKingdom is equal to the 1250
measure value of EUwithoutUK. 1251

Please note that the symbols “+” and “-“ do not denote the usual operations of sum and 1252
subtraction, but logical operations between Code Items seen as events of the probability 1253
theory. In other words, two or more Code Items cannot be summed or subtracted to obtain 1254
another Code Item, because they are events (and not numbers), and therefore they can be 1255
manipulated only through logical operations like “OR” and “Complement”. 1256

Note also that the “+” also acts as a declaration that all the Code Items denoted by “+” are 1257
mutually exclusive (i.e. the corresponding events cannot happen at the same time), as well as 1258
the “-“ acts as a declaration that all the Code Items denoted by “-” are mutually exclusive. 1259
Furthermore, the “-“ acts also as a declaration that the relevant Code item implies the result of 1260
the composition of all the Code Items denoted by the “+”. 1261

At intuitive level, the symbol “+” means “with” (Benelux = Belgium with Luxembourg with 1262
Netherland) while the symbol “-“ means “without” (EUwithoutUK = EuropeanUnion without 1263
UnitedKingdom). 1264

When these relations are applied to additive numeric Measures (e.g. the population relevant 1265
to geographical areas), they allow to obtain the Measure Values of the left member Code Items 1266
(i.e. the population of Benelux and EUwithoutUK) by summing or subtracting the Measure 1267
Values relevant to the component Code Items (i.e. the population of Belgium, Luxembourg and 1268
Netherland in the former case, EuropeanUnion and UnitedKingdom in the latter). This is why 1269
these logical operations are denoted in VTL through the same symbols as the usual sum and 1270
subtraction. Please note also that this is valid whichever the Data Set and the additive 1271
Measure are (provided that the possible other Identifiers of the Data Set Structure have the 1272
same Values). 1273

These relations occur between Code Items (events) belonging to the same Value Domain 1274
(space of events). They are typically aimed at defining aggregation hierarchies, either 1275
structured in levels (classifications), or without levels (chains of free aggregations) or a 1276
combination of these options. These hierarchies can be recursive, i.e. the aggregated Code 1277
Items can in their turn be the components of more aggregated ones, without limitations to the 1278
number of recursions. 1279

For example, the following relations are aimed at defining the continents and the whole world 1280
in terms of individual countries: 1281

 World = Africa + America + Asia + Europe + Oceania 1282
 Africa = Algeria + … + Zimbabwe 1283
 America = Argentina + … + Venezuela 1284
 Asia = Afghanistan + … + Yemen 1285

Version 1.1 Page: 37

 Europe = Albania + … + Vatican City 1286
 Oceania = Australia + … + Vanuatu 1287

A simple model diagram for the Code Item Relations and Code Item Relation Operands is the 1288
following: 1289

 1290

 1291

 1292

 1293

 1294

 1295

 1296

 1297

This diagram tells that a Code Item Relation has a first and a second member. The first 1298
member (the left one) refers to just one Code Item, the second member (the right one) may 1299
refer to one or more Code Item Relation Operands; each Code Item Relation Operand refers 1300
to just one Code Item. 1301

Conditioned Code Item Relations 1302

The Code Items (coded events) of a Code Item Relation can be conditioned by the Values 1303
(events) of other Value Domains (spaces of events). Both the Code Items belonging to the first 1304
and the second member of the Relation can be conditioned. 1305

A common case is the conditioning relevant to the reference time, which allows to express the 1306
historical validity of a Relation (see also the section about the historical changes below). For 1307
example, the European Union (EU) changed its composition in terms of countries many times, 1308
therefore the Code Item Relationship between EU and its component countries depends on 1309
the reference time, i.e. is conditioned by the Values of the “reference time” Value Domain. 1310

The VTL allows to express the conditionings by means of Boolean expressions which make 1311
reference to the Values of the conditioning Value Domains (for more details, see the 1312
Hierarchical Rulesets in the Reference Manual). 1313

The historical changes 1314

The changes in the real world may induce changes in the artefacts of the VTL-IM and in the 1315
relationships between them, so that some definitions may be considered valid only with 1316
reference to certain time values. For example, the birth of a new country as well as the split 1317
or the merge of existing countries in the real world would induce changes in the Code Items 1318
belonging to the Geo Area Value Domain, in the composition of the relevant Sets, in the 1319
relationships between the Code Items and so on. The same may obviously happen for other 1320
Value Domains. 1321

A correct representation of the historical changes of the artefacts is essential for VTL, because 1322
the VTL operations are meant to be consistent with these historical changes, in order to 1323
ensure a proper behaviour in relation to each time. With regard to this aspect, VTL must face a 1324

Code Item

Code Item
Relation

Code Item Rel.
Operand

1..1 1..N

Contains in
2nd member

Refers

Refers as the
1st member

0..N

1..1 1..1

0..N

Version 1.1 Page: 38

complex environment, because it is intended to work also on top of other standards, whose 1325
assumptions for representing historical changes may be heterogeneous. Moreover, different 1326
institutions may use different conventions in different systems. 1327

Naturally, adopting a common convention for representing the historical changes of the 1328
artefacts would be a good practice, because the definitions made by different bodies would be 1329
given through the same methodology and therefore would be easily comparable one another. 1330
In practice, however, different conventions are already in place and have to be taken into 1331
account, because there can also be strong motivations to maintain them. For this reason, the 1332
VTL does not impose any definite representation for the historical changes and leaves users 1333
free of maintaining their own conventions, which are considered as part of the data content to 1334
be processed rather than of the language. 1335

As a matter of fact, the VTL-IM intentionally does not include any mechanism for representing 1336
historical changes and needs to be properly integrated to this purpose. This aspect is left to 1337
the standards and the institutions adopting VTL and the implementers of VTL systems, which 1338
can adapt and enrich the VTL-IM as needed. 1339

Even if presented here for association of ideas with the relations between Code Items, whose 1340
temporal dependency is intuitive, these considerations about the temporal validity of the 1341
definitions are valid in general. 1342

Moreover, as already mentioned, the possibility of integrating the VTL-IM with additional 1343
metadata is needed also for other purposes, and not only for dealing with the temporal 1344
validity. 1345

It is appropriate here to highlight some relationships between the VTL artefacts and some 1346
possible temporal conventions, because this can guide VTL implementers in extending the 1347
VTL-IM according to their needs. 1348

First, we want to distinguish between two main temporal aspects: the so-called validity time 1349
and operational time. Validity time is the time during which a definition is assumed to be true 1350
as an abstraction of the real world (for example, Estonia belongs to EU “from 1st May 2004 to 1351
current date”). Operational time is the time period during which a definition is available in the 1352
processing system and may produce operational effects. The following considerations refers 1353
only to the former. 1354

The assignment of identifiers to the abstractions of the real world is strictly related to the 1355
possible basic temporal assumptions. Two main options can be considered: 1356

a) The same identifier is assigned to the abstraction even if some aspects of such an 1357
abstraction change in time. For example, the identifier EU is assigned to the European 1358
Union even if the participant countries change. Under this option, a single identifier 1359
(e.g. EU) is used to represent the whole history of an abstraction, following the 1360
intuitive conceptualization in which abstractions are identified independently of time 1361
and maintain the same identity even if they change with time. The variable aspects of 1362
an abstraction are therefore described by specifying their validity periods (for 1363
example, the participation of Estonia in the EU can be specified through the relevant 1364
start and end dates). 1365

b) Different Identifiers are assigned to the abstraction when some aspects of the 1366
abstraction change in time. For example, more Identifiers (e.g. EU1, … , EU9) represent 1367
the European Union, one for each period during which its participant countries remain 1368

Version 1.1 Page: 39

stable. This option is based on the conceptualization in which the abstractions are 1369
identified in connection with the time period in which they do not change, so that an 1370
Code Item (e.g. EU1) corresponds to an abstraction (e.g. the European Union) only for 1371
the time period in which the abstraction remain stable (e.g. EU1 represents the 1372
European Union from when it was created by the founder countries, to the first time it 1373
changed composition). An example of adoption of this option b) is the common 1374
practice of giving versions to Code Lists or Code Items for representing time changes 1375
(e.g. EUv1, … , EUv9 where v=version), being each version assumed as invariable. 1376

As a consequence, the general assumptions of VTL for the representation of the historical 1377
changes are the following: 1378

 The choice of adopting the options described above is left to the implementations. 1379
 The VTL Identifiers are different depending on the two options above; for example in 1380

the option a) there would exist one Identifier for the European Union (e.g. EU) while in 1381
the option b) there would exist many different Identifiers, corresponding to the 1382
different versions of the European Union (e.g. EU1, … , EU9). 1383

 If the Code Items are versioned for managing temporal changes (option b), the version 1384
is considered to be part of the VTL univocal identifier of the Code Item, therefore 1385
different versions are equivalent to different Code Items. As explained above, in fact, 1386
the European Union would be represented by many Code Items (e.g. EUv1, … , EUv9). 1387
The same applies if the Code Items are versioned by means of dates (e.g. start/end 1388
dates …) or other conventions instead than version numbers. As obvious, the temporal 1389
validity of EUv1, … , EUv9, if represented, should not overlap. 1390

The implementers of VTL systems can add the temporal validity (through validity dates or 1391
versions) to any class of artefacts or relations of the VTL-IM (as well as any other additional 1392
characteristic useful for the implementation, like the textual descriptions of the artefacts or 1393
others). If the temporal validity is not added, the occurrences of the class are assumed to be 1394
valid “ever”. 1395

The Variables and Value Domains artefacts 1396

The list of the VTL artefacts related to Variables and Value Domains is given here, together 1397
with the information that the VTL need to know about them. For the sake of simplicity, the 1398
names of some artefacts are often abbreviated in the VTL manuals (in particular the parts of 1399
the names shown between parentheses can be omitted). 1400

As already mentioned, this model provides an abstract view of the core metadata supporting 1401
the definition of the data structures but leaves out implementation and operational aspects. 1402
For example, the textual descriptions of the artefacts are left out, as well as the specification of 1403
the temporal validity of the artefacts, the procedural metadata (the specification of the way 1404
data are processed, i.e. collected, stored, validated, calculated/estimated, disseminated ...) and 1405
so on. In order to support real systems, the implementers can conveniently adjust this model 1406
and integrate it by adding other metadata (e.g. other properties of the artefacts, other classes 1407
of artefacts, other relationships among artefacts …). 1408

 1409

(Represented) Variable 1410

Variable name name of the Represented Variable 1411

Version 1.1 Page: 40

Value Domain name reference to the Value Domain which measures the Variable, 1412
i.e. in which the Variable takes values 1413

 1414

(Data Set) Component 1415

Data Set name the Data set which the Component belongs to 1416

Component name the name of the Component 1417

 (Sub) Set name reference to the (sub)Set containing the allowed values for 1418
the Component 1419

 1420

Value Domain 1421

Value Domain name name of the Value Domain 1422

Value Domain sub-class if it is an Enumerated or Described Value Domain 1423

Basic Scalar Type the basic scalar type of the Values of the Value Domain, for 1424
example string, number … and so on (see also the section 1425
“VTL data types”) 1426

Value Domain Criterion a criterion for restricting the Values of a basic scalar type, 1427
for example by specifying a max length of the 1428
representation, an upper or/and a lower value, and so on 1429

 1430

Code List this artefact is comprised in the previous one, in fact it 1431
corresponds one to one to the enumerated Value Domain 1432
(see above) 1433

 1434

Value this artefact has no explicit representation, because the 1435
Values of described Value Domains are not represented by 1436
definition, while the Values of the enumerated Value 1437
Domains are represented via the Code Item artefact (see 1438
below) 1439

 1440

Code Item this artefact specifies the Code Items of the Enumerated 1441
Value Domains 1442

Value Domain name the Value Domain which the Value belongs to 1443

Value the univocal name of the Value within the Value Domain it 1444
belongs to 1445

 1446

(Value Domain Sub)Set 1447

Value Domain name the Value Domain which the set belongs to 1448

Set name the name of the Set, which must be univocal within the 1449
Value Domain 1450

Version 1.1 Page: 41

Set sub-class if it is an Enumerated or Described Set 1451

Set Criterion a criterion for identifying the Values belonging to the Set 1452

 1453

Set List this artefact is comprised in the previous one, in fact it 1454
corresponds one to one to the enumerated Set 1455

 1456

Set Item this artefact specifies the Code Items of the Enumerated Sets 1457

Value Domain name reference to the Value Domain which the Set and the Value 1458
belongs to 1459

Set name the Set that contains the Value 1460

Value Value element of the Set 1461

 1462

Code Item Relation 1463

1stMember Domain name Value Domain of the first member of the Relation; e.g. 1464
Geo_Area 1465

1stMember Value the first member of the Relation; e.g. Benelux 1466

1stMember Composition conventional name of the composition method, which 1467
distinguishes possible different compositions methods 1468
related to the same first member Value. It must be univocal 1469
within the 1stMember. Not necessarily it has to be 1470
meaningful, it can be simply a progressive number ; e.g. “1” 1471

Relation Type type of relation between the first and the second member, 1472
having as possible values =, <, <=, >, >= 1473

 1474

Code Item Relation Operand 1475

1stMember Domain name Value Domain of the first member of the Relation; e.g. 1476
Geo_Area 1477

1stMember Value the first member of the Relation; e.g. Benelux 1478

1stMember Composition see the description already given above 1479

2ndMember Value an operand of the Relation; e.g. Belgium] 1480

Operator the operator applied on the 2ndMember Value, it can be “+” 1481
or ”- “; the default is “+” 1482

 1483

Generic Model for Transformations 1484

The purpose of this section is to provide a formal model for describing validation and 1485
transformation of data. 1486

Version 1.1 Page: 42

A Transformation is assumed to be an algorithm to produce a new model artefact (typically a 1487
Data Set) starting from existing ones. It is also assumed that the data validation is a particular 1488
case of transformation, therefore the term “transformation” is meant to be more general and 1489
to include the validation case as well. 1490

This model is essentially derived from the SDMX IM15, as DDI and GSIM do not have an explicit 1491
transformation model at the moment16. In its turn, the SDMX model for Transformations is 1492
similar in scope and content to the Expression metamodel that is part of the Common 1493
Warehouse Metamodel (CWM) 17 developed by the Object Management Group (OMG). 1494

The model represents the user logical view of the definition of algorithms by means of 1495
expressions. In comparison to the SDMX and CWM models, some technical details are omitted 1496
for the sake of simplicity, including the way expressions can be decomposed in a tree of nodes 1497
in order to be executed (if needed, this detail can be found in the SDMX and CWM 1498
specifications). 1499

The basic brick of this model is the notion of Transformation. 1500

A Transformation specifies the algorithm to obtain a certain artefact of the VTL information 1501
model, which is the result of the Transformation, starting from other existing artefacts, which 1502
are its operands. 1503

Normally the artefact produced through a Transformation is a Data Set (as usual considered 1504
at a logical level as a mathematical function). Therefore, a Transformation is mainly an 1505
algorithm for obtaining derived Data Sets starting from already existing ones. 1506

The general form of a Transformation is the following: 1507

result assignment_operator expression 1508

meaning that the outcome of the evaluation of expression in the right-hand side is assigned to 1509
the result of the Transformation in the left-hand side (typically a Data Set). The assignment 1510
operators are two, ” <-” and “:=“ (for the assignment to a persistent or a non-persistent 1511
result, respectively). A very simple example of Transformation is: 1512

Dr <- D1 (Dr , D1 are assumed to be Data Sets) 1513

In this Transformation, the Data Set D1 is assigned without changes (i.e. is copied) to Dr, 1514
which is persistently stored. 1515

In turn, the expression in the right-hand side composes some operands (e.g. some input Data 1516
Sets, but also Sets or other artefacts) by means of some operators (e.g. sum, product …) to 1517
produce the desired results (e.g. the validation outcome, the calculated data). 1518

For example: Dr := D1 + D2 (Dr , D1 , D2 are assumed to be Data Sets) 1519

15 The SDMX specification can be found at https://sdmx.org/?page_id=5008 (see Section 2 - Information Model,

package 13 - “Transformations and Expressions”).

16 The Transformation model described here is not a model of the processes, like the ones that both SDMX and
GSIM have, and has a different scope. The mapping between the VTL Transformation and the Process models is
out of the scope of the present document.

17 This specification can be found at http://www.omg.org/cwm.

http://www.omg.org/cwm

Version 1.1 Page: 43

In this example the measure values of the Data Set Dr are calculated as the sum of the measure 1520
values of the Data Sets D1 and D2, by composing the Data Points having the same Values for 1521
the Identifiers. In this case Dr is not persistently stored. 1522

A validation is intended to be a kind of Transformation. For example, the simple validation 1523
that D1 = D2 can be made through an “if” operator, with an expression of the type: 1524

Dr := if (D1 = D2 , then TRUE, else FALSE) 1525

In this case, the Data Set Dr would have a Boolean measure containing the value TRUE if the 1526
validation is successful and FALSE if it is unsuccessful. 1527

These are only fictitious examples for explanation purposes. The general rules for the 1528
composition of Data Sets (e.g. rules for matching their Data Points, for composing their 1529
measures …) are described in the sections below, while the actual Operators of the VTL and 1530
their behaviours are described in the VTL reference manual. 1531

The expression in the right-hand side of a Transformation must be written according to a 1532
formal language, which specifies the list of allowed operators (e.g. sum, product …), their 1533
syntax and semantics, and the rules for composing the expression (e.g. the default order of 1534
execution of the operators, the use of parenthesis to enforce a certain order …). The Operators 1535
of the language have Parameters18, which are the a-priori unknown inputs and output of the 1536
operation, characterized by a given role (e.g. dividend, divisor or quotient in a division). 1537

Note that this generic model does not specify the formal language to be used. As a matter of 1538
fact, not only the VTL but also other languages might be compliant with this specification, 1539
provided that they manipulate and produce artefacts of the information model described 1540
above. This is a generic and formal model for defining Transformations of data through 1541
mathematical expressions, which in this case is applied to the VTL, agreed as the standard 1542
language to define and exchange validation and transformation rules among different 1543
organizations 1544

Also, note that this generic model does not actually specify the operators to be used in the 1545
language. Therefore, the VTL may evolve and may be enriched and extended without impact 1546
on this generic model. 1547

In the practical use of the language, Transformations can be composed one with another to 1548
obtain the desired outcomes. In particular, the result of a Transformation can be an operand 1549
of other Transformations, in order to define a sequence of calculations as complex as needed. 1550

Moreover, the Transformations can be grouped into Transformations Schemes, which are sets 1551
of Transformations meaningful to the users. For example, a Transformation Scheme can be 1552
the set of Transformations needed to obtain some specific meaningful results, like the 1553
validations of one or more Data Sets. A Transformation Scheme is meant to be the smaller set 1554
of Transformations to be executed in the same run. 1555

A set of Transformations takes the structure of a graph, whose nodes are the model artefacts 1556
(usually Data Sets) and whose arcs are the links between the operands and the results of the 1557
single Transformations. This graph is directed because the links are directed from the 1558
operands to the results and is acyclic because it should not contain cycles (like in the 1559
spreadsheets), otherwise the result of the Transformations might become unpredictable. 1560

18 The term is used with the same meaning of “argument”, as usual in computer science.

Version 1.1 Page: 44

The ability of generating this graph is a main feature of the VTL, because the graph documents 1561
the operations performed on the data, just like a spreadsheet documents the operations 1562
among its cells. 1563

Transformations model diagram 1564

 1565

 1566

 1567

 1568

 1569

 1570

 1571

 1572

 1573

 1574

 1575

 1576

 1577

 1578

 1579
 1580
 1581
 1582
 1583
 1584
 1585

White box: same as in GSIM 1.1 1586
Dark grey box: additional detail (in respect to GSIM 1.1) 1587

 1588

Explanation of the diagram 1589

Transformation: the basic element of the calculations, which consists of a statement which 1590
assigns the outcome of the evaluation of an Expression to an Artefact of the Information 1591
Model; 1592

Expression: a finite combination of symbols that is well-formed according to the syntactical 1593
rules of the language. The goal of an Expression is to compose some Operands in a certain 1594
order by means of the Operators of the language, in order to obtain the desired result. 1595
Therefore, the symbols of the Expression designate Operators, Operands and the order of 1596
application of the Operators (e.g. the parenthesis); an expression is defined as a text string 1597
and is a property of a Transformation; 1598

0..N

Operand

uses

1..1

Operator Transformation

1..1

0..N

 Identifiable
Artefact

Result

Transformation
Scheme

references

1..N

produces acts on
poonas

references

Parameter

0..N 1..1

input output

0..N 0..1

1..1 1..1

1..1

0..N

Is sub-type of Is sub-type of

Non Persistent
Operand

Persistent
Operand

Non Persistent
Result

Persistent
Result

Version 1.1 Page: 45

Transformation Scheme: a set of Transformations aimed at obtaining some meaningful 1599
results for the user (like the validation of one or more Data Sets); the Transformation Scheme 1600
is meant to be the smaller set of Transformations to be executed in the same run and 1601
therefore may also be considered as a VTL program; 1602

Operator: the specification of a type of operation to be performed on some Operands (e.g. 1603
sum (+), subtraction (-), multiplication (*), division (/)); 1604

Parameter: a-priori unknown input or output of an Operator, having a definite role in the 1605
operation (e.g. dividend, divisor or quotient for the division) and corresponding to a certain 1606
type of artefact (e.g. a “Data Set”, a “Data Structure Component” …), for a deeper explanation 1607
see also the Data Type section below. When an Operator is invoked, the actual input passed in 1608
correspondence to a certain input Parameter, or the actual output returned by the Operator, 1609
is called Argument. 1610

Operand: a specific Artefact referenced in the expression as an input (e.g. a specific input 1611
Data Set); a Persistent Operand references a persistent artefact, i.e. an artefact maintained in a 1612
persistent storage, while a Non Persistent Operand references a temporary artefact, which is 1613
produced by another Transformation and not stored. 1614

Result: a specific Artefact to which the result of the expression is assigned (e.g. the calculated 1615
Data Set); a Persistent Result is put away in a persistent storage while a Non Persistent Result 1616
is not stored. 1617

Identifiable Artefact: a persistent Identifiable Artefact of the VTL information model (e.g. a 1618
persistent Data Set); a persistent artefact can be operand of any number of Transformations 1619
but can be the result of no more than one Transformation. 1620

 1621

Examples 1622

Imagine that D1, D2 and D3 are Data Sets containing information on some goods, specifically: 1623
D1 the stocks of the previous date, D2 the flows in the last period, D3 the current stocks. 1624
Assume that it is desired to check the consistency of the Data Sets using the following 1625
statement: 1626

Dr := If ((D1 + D2) = D3 , then “true”, else “false”) 1627

In this case: 1628

The Transformation may be called “basic consistency check between stocks and flows” and is 1629
formally defined through the statement above. 1630

 Dr is the Result 1631
 D1, D2 and D3 are the Operands 1632
 If ((D1 + D2) = D3 , then TRUE, else FALSE) is the Expression 1633
 “:=”, “If”, “+” , “=” are Operators 1634

Each operator has some predefined parameters, for example in this case: 1635

 input parameters of “+”: two numeric Data Sets (to be summed) 1636
 output parameters of “+”: a numeric Data Sets (resulting from the sum) 1637
 input parameters of “=”: two Data Sets (to be compared) 1638
 output parameter of “=”: a Boolean Data Set (resulting from the comparison) 1639

Version 1.1 Page: 46

 input parameters of “If”: an Expression defining a condition, i.e. (D1+D2)=D3 1640
 output parameter of “If”: a Data Set (as resulting from the “then”, “else” clauses) 1641

 1642

Functional paradigm 1643

As mentioned, the VTL follows a functional programming paradigm, which treats 1644
computations as the evaluation of mathematical functions, so avoiding changing-state and 1645
mutable data in the specification of the calculation algorithm. On one side the statistical data 1646
are considered as mathematical functions (first order functions), on the other side the VTL 1647
operators are considered as functions as well (second order functions), applicable to some 1648
data in order to obtain other data. 1649

According to the functional paradigm, the output value of a (second order) function depends 1650
only on the input arguments of the function, is calculated in its entirety and once for all by 1651
applying the function, and cannot be altered or modified once calculated (immutable) unless 1652
the input arguments change. 1653

And in fact the VTL operators, and the expressions built using these operators, specify the 1654
algorithm for calculating the results in their entirety, once for all, and never for updating 1655
them. When some change in the operands occurs (e.g. the input data change), the VTL 1656
assumes that the results are recalculated in their entirety according to the correspondent 1657
expressions19. 1658

Coherently, a VTL artefact can be result of just one Transformation and cannot be updated by 1659
other Transformations, a Transformation cannot update either its own operands or the result 1660
of other Transformations and the result of a new Transformation is always a new artefact. 1661

 1662

Transformation Consistency 1663

The Transformation model requires that the Transformations follow some consistency rules, 1664
similar to the ones typical of the spreadsheets; in fact there is a strict analogy between the 1665
generic models of Transformations and spreadsheets. 1666

In this analogy, a VTL artefact corresponds to a non-empty cell of a spreadsheet, a 1667
Transformation to the formula defined in a cell (which references other cells as operands), a 1668
Result to the content of the cell in which the formula is defined 20. 1669

The model artefacts involved in Transformations can be divided into “collected / primary” or 1670
“calculated / derived” ones. The former are original artefacts of the information system, not 1671
result of any Transformation, fed from some external source or by the users (they are 1672
analogous to the spreadsheet cells which are not calculated). The latter are produced as 1673
results of some Transformations (they are analogous to the spreadsheet cells calculated 1674
through a formula). 1675

19 At the implementation level, which is out of the scope of this document, the update operations are obviously
possible

20 The main difference between the two cases is the fact that a cell of a spreadsheet may contain only a scalar
value while a VTL artefact may have also a more complex data structure, being typically a Data Set

Version 1.1 Page: 47

As already said, a Transformation calculates just one result (“derived” model artefact) and a 1676
result is calculated by just one Transformation. Both “primary” and “derived” model artefacts 1677
can be operands of any number of Transformations. An artefact cannot be operand and 1678
result of the same Transformation. 1679

A Transformation belongs to just one Transformation Scheme, which is analogous to a whole 1680
spreadsheet, in fact it is a set of Transformations executed in the same run and may contain 1681
any number of Transformations in order to produce any number of results. 1682

Because a “derived” model artefact is produced by just one Transformation and a 1683
Transformation belongs to just one Transformation Scheme, it follows also that a “derived” 1684
model artefact is produced in the context of just one Transformation Scheme. 1685

The operands of a Transformation may come either from the same Transformation Scheme 1686
which the Transformation belongs to or from other ones. 1687

Within a Transformation Scheme, it can be built a graph of the Transformations by assuming 1688
that each model artefact is a node and each Transformation is a set of arcs, starting from the 1689
Operand nodes and ending in the Result node; 1690

This graph must be a directed acyclic graph (DAG): in particular, each arc is oriented from the 1691
operand to the result; the absence of cycles makes it possible to unambiguously calculate the 1692
“derived” nodes by applying the Transformations by following the topological order of the 1693
graph. 1694

Therefore, like in the spreadsheet, not necessarily the Transformations are performed in the 1695
same order as they are written, because the order of execution depends on their input-output 1696
relationships (a Transformation which calculates a result that is operand of other 1697
Transformations must be executed first). 1698

In the analogy between VTL and a spreadsheet, the correspondences would be the following:1699
 1700

 VTL model artefact  non-empty cell of a spreadsheet; 1701

 VTL “collected / primary” model artefact  non-empty cell of a spreadsheet whose 1702
value is fed from an external source or by the user; 1703

 A “calculated / derived” model artefact  a non-empty cell of a spreadsheet 1704
whose value is calculated by a formula; 1705

 A VTL Transformation  A spreadsheet formula assigned to a cell 1706

 a VTL Transformation Scheme  A whole spreadsheet 1707

 1708

Version 1.1 Page: 48

VTL Data Types 1709

The possible operations in VTL depend on the data types of the artefacts. For example, 1710
numbers can be multiplied but text strings cannot. 1711

When an Operator is invoked, for each (formal) input Parameter, an actual argument 1712
(operand) is passed to the Operator, and for the output Parameter, an actual argument 1713
(result) is returned by the Operator. The data type of the argument must comply with the 1714
allowed data types of the corresponding Parameter (the allowed data types of each Parameter 1715
for each Operator are specified in the Reference Manual). 1716

Every possible argument for a VTL Operator (with special attention to artefacts of the 1717
Information Model, e.g., Values, Sets, Data Sets) must be typed and such type deterministically 1718
inferable. 1719

In other words, VTL Operators are strongly typed and type compliance is statically checked, 1720
i.e., violations result in compile-time errors. 1721

Data types can be related one another, and in particular a data type can have sub-types and 1722
super-types. For example integer number is a sub-type of the type number, and number is in 1723
turn a super-type of integer number: this means that any integer number is also a number but 1724
not the reverse, because there is no guarantee that a generic number is also an integer 1725
number. More in general, an object of a certain type is also of the respective super-types, but 1726
there is no guarantee that an object of a super-type is of any of its sub-types. 1727

As a consequence, if a Parameter is required to be of certain type, the arguments have either 1728
this very type or any of its sub-types; arguments of its super-types are not allowed (e.g. if a 1729
Parameter is a number, an argument of type integer is accepted; vice versa, if it is an integer, 1730
an argument of type number will not be accepted). 1731

The data types depend on two main factors: the kind of values adopted for the representation 1732
(e.g. text strings, numbers, dates, Boolean values) and the kind of structure of the data (e.g. 1733
elementary scalar values or compound values organized in more complex structures like Sets, 1734
Components, Data Sets …). 1735

The data types for scalar values also called “scalar types” (e.g. the scalar 15 is of the scalar 1736
type “number”, while “hello” is of the scalar type “string”). The scalar types are elementary 1737
because they are not defined in term of other data types. All the other data types are 1738
compound. 1739

For the sake of simplicity, hereinafter the term “data type” is sometimes abbreviated to “type” 1740
and the term “scalar type” to “scalar”. 1741

A particular meta-syntax is used to specify the type of the Parameters. For example, the 1742
symbol :: means “is of the type …” or simply “is a …” (e.g. “15 :: number” means “15 is of 1743
the type number”). 1744

In the following sections, the classes of the VTL types are illustrated, as well as some 1745
relationships between the types and the artefacts of the Information Model. 1746

 1747

Version 1.1 Page: 49

Data Types overview 1748

Data Types model diagram 1749

 1750

 1751

 1752

 1753

 1754

 1755

 1756

 1757

 1758

 1759

 1760

 1761

 1762

 1763

 1764

 1765

 1766

 1767

 1768

 1769

 1770

 1771

 1772

 1773

 1774

 1775

 1776

 1777

 1778

 1779

 1780

0..N

1..1

Value Domain
Scalar Type

Refers
 to

Is super-class of

Data Type

Is super-class of

Scalar Type
Compound

Type

Is sub-type of

0..N

0..N

Universal Set
Type

Product
Type

Component
Type

Data Set
Type

Ruleset
Type

Universal List
Type

Set Scalar Type

Basic Scalar
Type

Is super-class of

Operator
Type

1..1

0..N

Restricts

Version 1.1 Page: 50

Explanation of the diagram 1781

Data Type: this is the class of all the data types manipulated by the VTL. As already said, the 1782
actual data type of an object depends on its kind of representation and structure. As for the 1783
structure, a Data Type may be a Scalar Data Type or a Compound Data Type. 1784

Scalar Type: the class of all the scalar types, i.e., the possible types of scalar Values. The scalar 1785
types are elementary because they are not defined in terms of other types. The Scalar Types 1786
can be Basic Scalar Types, Value Domain Scalar Types and Set Scalar Types. 1787

Compound Data Type: the class of the compound types, i.e. the types that are defined in 1788
terms of other types. 1789

Basic Scalar Type: the class of the scalar types which exist by default in VTL (namely, string, 1790
number, integer, time, date, time_period, duration, boolean). 1791

Value Domain Scalar Type: the class of the scalar types corresponding to all the scalar 1792
Values belonging to a Value Domain. 1793

Set Scalar Type: the class of the scalar types corresponding to all the scalar Values belonging 1794
to a Set (i.e., Value Domain Subset). 1795

Component Type: the class of the types which the Components of the Data Sets belong to, i.e. 1796
Represented Variables which assume a certain Role in the Data Set Structure. 1797

Data Set Type: the class of the Data Sets’ types, which are the more common input types of 1798
the VTL operators. 1799

Operator Type: the class of the Operators’ types, i.e., the functions which convert the types 1800
of the input operands in the type of the result. 1801

Ruleset Type: the class of the Rulesets’ types, i.e. the set of Rules defined by users which 1802
specify the behaviour of other operators (like the check and the hierarchy operators). 1803

Product Type: the class of the types which contain Cartesian products of artefacts belonging 1804
to other generic types. 1805

Universal Set Type: the class of the types that contain unordered collections of other 1806
artefacts which belong to another generic type and do not have repetitions. 1807

Universal List Type: the class of the types that contain ordered collections of other artefacts 1808
which belong to another generic type and can have repetitions. 1809

General conventions for describing the types 1810

 The name of the type is written in lower cases and without spaces (for example the Data 1811
Set type is named “dataset”). 1812

 The double colon :: means “is of the type …” or simply “is a …”; for example the 1813
declaration 1814

 operand :: string 1815

means that the operand is a string. 1816

 The vertical bar | indicates mutually exclusive type options, for example 1817

operand :: scalar | component | dataset 1818

means that “operand” can be either scalar, or component, or dataset. 1819

Version 1.1 Page: 51

 The angular parenthesis < type2 > indicates that type2 (included in the parenthesis) 1820
restricts the specification of the preceding type, for example: 1821

 operand :: component <string> 1822

means “the operand is a component of string basic scalar type”. 1823

If the angular parenthesis are omitted, it means that the preceding type is already 1824
completely specified, for example: 1825

operand :: component 1826

means “the operand is a component without other specifications” and therefore it can be 1827
of any scalar type, just the same as writing operand :: component<scalar> (in fact as 1828
already said, “scalar” means “any scalar type”). 1829

 The underscore _ indicates that the preceding type appears just one time, for example: 1830

measure<string> _ 1831

indicates just one Measure having the scalar type string; the underscore also mean that 1832
this is a non-predetermined generic element, which therefore can be any (in the example 1833
above, the string Measure can be any) 1834

 A specific element_name in place of the underscore denotes a predetermined element of 1835
the preceding type, for example 1836

measure<string not null> my_text 1837

means just one Measure Component, which is a not-null string type and whose name is 1838
“my_text”. 1839

 The symbol _+ means that the preceding type may appear from 1 to many times, for 1840
example: 1841

measure<string> _+ 1842

means one or more generic Measures having the scalar type string (these Measures are 1843
not predetermined). 1844

 The symbol _* means that the preceding type may appear from 0 to many times, for 1845
example: 1846

measure<string> _* 1847

means zero or more generic Measures having the scalar type string (these Measures are 1848
not predetermined). 1849

Scalar Types 1850

Basic Scalar Types 1851

The Basic Scalar Types are the scalar types on which VTL is founded. 1852

The VTL has various basic scalar types (namely, string, number, integer, time, date, 1853
time_period, duration, boolean). The super-type of all the scalar types is the type scalar, which 1854
means “any scalar value”. The type number has the sub-type integer and the type time has two 1855
independent sub-types, namely date and time_period. 1856

Version 1.1 Page: 52

The hierarchical tree of the basic scalar types is the following: 1857

Scalar 1858

 String 1859

 Number 1860

 Integer 1861

 Time 1862

 Date 1863

 Time_period 1864

 Duration 1865

 Boolean 1866

 1867

A scalar Value of type string is a sequence of alphanumeric characters of any length. On string 1868
Values, all the string operations are allowed, such as: concatenation of strings, splitting of 1869
strings, extraction of a part of a string (substring) and so on. 1870

A Scalar Value of type number is a rational number of any magnitude and precision, also used 1871
as approximation of a real number. On values of type number, the numeric operations are 1872
allowed, such as: addition, subtraction, multiplication, division, power, square root and so on. 1873
The type integer (positive and negative integer numbers and zero) is a subtype of the type 1874
number. 1875

A Scalar Value of type time denotes time intervals of any duration and expressed with any 1876
precision. According to ISO 8601 (ISO standard for the representation of dates and times), a 1877
time interval is the intervening time between two time points. This type can allow operations 1878
like shift of the time interval, change of the starting/ending times, split of the interval, 1879
concatenation of contiguous intervals and so on (not necessarily all these operations are 1880
allowed in this VTL version). 1881

The type date is a subtype of the type time which denotes time points expressed at any 1882
precision, which are time intervals starting and ending in the same time point (i.e. 1883
intervals of zero duration). A value of type date includes all the parts needed to identify 1884
a time point at the desired precision, like the year, the month, the day, the hour, the 1885
minute and so on (for example, 2018-04-05 is the fifth of April 2018, at the precision of 1886
the day). 1887

The type time_period is a subtype of the type time as well and denotes non-1888
overlapping time intervals having a regular duration (for example the years, the 1889
quarters of years, the months, the weeks and so on). A value of the type time_period is 1890
composite and must include all the parts needed to identify a regular time period at 1891
the desired precision; in particular, the time-period type includes the explicit indication 1892
of the kind of regular period considered (e.g., “day”, “week”, “month”, “quarter” …). For 1893
example, the value 2018M04, assuming that “M” stands for “month”, denotes the 1894
month n.4 of the 2018 (April 2018). Moreover, 2018Q2, assuming that “Q” stands for 1895
“quarter”, denotes the second quarter of 2018. In these examples, the letters M and Q 1896
are used to denote the kind of period through its duration. 1897

Version 1.1 Page: 53

A Scalar Value of type duration denotes the length of a time interval expressed with any 1898
precision and without connection to any particular time point (for example one year, half 1899
month, one hour and fifteen minutes). According to ISO 8601, in fact, a duration is the amount 1900
of intervening time in a time interval. The duration is the scalar type of possible Value 1901
Domains and Components representing the period (frequency) of periodical data. 1902

A Scalar Value of type boolean denotes a logical binary state, meaning either “true” or “false”. 1903
Boolean Values allow logical operations, such as: logical conjunction (and), disjunction (or), 1904
negation (not) and so on. 1905

All the scalar types are assumed by default to contain the conventional value “NULL”, which 1906
means “no value”, or “absence of known value” or “missing value” (in other words, the scalar 1907
types by default are “nullable”). Note that the “NULL” value, therefore, is the only value of 1908
multiple different types (i.e., all the nullable scalar types). 1909

The scalar types have corresponding non-nullable sub-types, which can be declared by adding 1910
the suffix “not null” to the name of the type. For example, string not null is a string that 1911
cannot be NULL, as well as number not null is a number that cannot be NULL. 1912

The VTL assumes that a basic scalar type has a unique internal representation and more 1913
possible external representations. 1914

The internal representation is the reference representation of a scalar type in a VTL system, 1915
used to process the scalar values. The use of a unique internal representation allows to 1916
operate on values possibly having different external formats: the values are converted in the 1917
reference representation and then processed. Although the unique internal representation 1918
can be very important for the operation of a VTL system, not necessarily users need to know 1919
it, because it can be hidden in the VTL implementation. The VTL does not prescribe any 1920
predefined internal representation for the various scalar types, leaving different VTL systems 1921
free to using they preferred or already existing ones. Therefore, the internal representations 1922
to be used for the VTL scalar types are left to the VTL implementations. 1923

The external representations are the ones provided by the Value Domains which refer to a 1924
certain scalar type (see also the following sections). These are also the representations used 1925
for the Values of the Components defined on such Value Domains. As obvious, the users have 1926
to know the external representations and formats, because these are used in the Data Point 1927
Values. Obviously, the VTL does not prescribe any predefined external representation, leaving 1928
different VTL systems free to using they preferred or already existing ones. 1929

Examples of possible different choices for external representations: 1930

 for the strings, various character sets can be used; 1931
 for the numbers, it is possible to use the dot or the comma as decimal separator, a fixed 1932

or a floating point representation; non-decimal or non-positional numeral systems and 1933
so on; 1934

 for the time, date, time_period, duration it can be used one of the formats suggested by 1935
the ISO 8601 standard or other possible personalized formats; 1936

 the “boolean” type can use the values like TRUE and FALSE, or 0 and 1, or YES and NO 1937
or other possible binary options. 1938

It is assumed that a VTL system knows how to convert an external representation in the 1939
internal one and vice-versa, provided that the format of the external representation is known. 1940

Version 1.1 Page: 54

For example, the external representation of dates can be associated to the internal one 1941
provided that the parts that specify year, month and day are recognizable21. 1942

 1943

Value Domain Scalar Types 1944

This is the class of the scalar Types corresponding to the scalar Values belonging to the same 1945
Value Domains (see also the section “Generic Model for Variables and Value Domains”). 1946

The super-type of all the Value Domain Scalar Types is valuedomain, which means any Value 1947
Domain Scalar Type. A specific Value Domain Scalar Type is identified by the name of the 1948
Value Domain. 1949

As said in the IM section, a Value Domain is the domain of allowed Values for one or more 1950
represented variables. In other words, a Value Domain is the space in which the abstractions 1951
of a certain category of the reality (population, age, country, economic sector, …) are 1952
represented. 1953

A Value Domain refers to one of the Basic Scalar Types, which is the basic type of all the 1954
Values belonging to the Value Domain. A Value Domain provides an external representation of 1955
the corresponding Basic Scalar Type and can also restrict the possible (abstract) values of the 1956
latter. Therefore a Value Domain defines a customized scalar type. 1957

For example, assuming that the “population” is represented by means of numbers from zero 1958
to 100 billion, the (possible) “population” Value Domain refers to the “integer” basic scalar 1959
type, provides a representation for it (e.g., the number is expressed in the positional decimal 1960
number system without the decimal point) and allows only the integer numbers from zero up 1961
to 100 billion (and not all the possible numbers). Numeric operations are allowed on the 1962
population Values. 1963

As another example, assuming that the “classes of population” are represented by means of 1964
the characters from A to C (e.g. A for population between 0 and 1 million, B for population 1965
greater that 1million until 1 billion, C for population greater than 1 billion), the “classes of 1966
population” Value Domain refers to the “string” basic scalar type and allows only the strings 1967
“A”, “B” or “C”. String operations are possible on these values. 1968

As usual, even if many operations are possible from the syntactical point of view, they not 1969
necessarily make sense in semantics terms: the evaluation of the meaningfulness of the 1970
operations remains up to the users. In fact, the same abstractions, in particular if enumerated 1971
and coded, can be represented by using different possible Value Domains, also using different 1972
scalar types. For example, the country can be represented through the ISO 3166-1 numeric 1973
codes (type number), or ISO alpha-2 codes (type string), or ISO alpha-3 codes (type string), or 1974
other coding systems. Even if numeric operations are possible on ISO 3166-1 country numeric 1975
codes, as well as string operations are possible on ISO 3166-1 alpha-2 or alpha-3 country 1976
codes, not necessarily these operations make sense. 1977

21 This can be achieved in many ways that depend on the data type and on the adopted internal and external
representations. For example, there can exist a default correspondence (e.g., 0 means always False and 1 means
always True for Boolean), or the parts of the external representation can be specified through a mask (e.g., for
the dates, DD-MM-YYYY or YYYYMMDD specify the position of the digits representing year, month and day).

Version 1.1 Page: 55

While the Basic Scalar Types are the types on which VTL is founded and cannot be changed, 1978
all the Value Domains are user defined, therefore their names and their contents can be 1979
assigned by the users. 1980

Some VTL Operators assume that a VTL system have certain kinds of Value Domains which 1981
are needed to perform the correspondent operations22. In the VTL manuals. definite names 1982
and representations are assigned to such Value Domains for explanatory purposes; however 1983
these names and representations are not mandatory and can be personalised if needed. If 1984
VTL rules are exchanged between different VTL systems, the partners of the exchange must 1985
be aware of the names and representations adopted by the counterparties. 1986

 1987

Set Scalar Types 1988

This is the class of the scalar types corresponding to the scalar Values belonging to the same 1989
Sets (see also the section “Generic Model for Variables and Value Domains”). 1990

The super-type of all the Set Scalar Types is set, which means any Set Scalar Type. A specific 1991
Set Scalar Type is identified by the name of the Set. 1992

A Set is a (proper or improper) subset of the Values belonging to a Value Domain (the Set of 1993
all the values of the Value Domain is an improper subset of it). A scalar Set inherits from its 1994
Value Domain the Basic Scalar Type and the representation and can restrict the possible 1995
Values of its Value Domain (as a matter of fact, except the Set which contains all the values of 1996
its Value Domain and can also be assumed to exist by default, the other Sets are defined just to 1997
restrict the Values of the Value Domain). 1998

 1999

External representations and literals used in the VTL Manuals 2000

The Values of the scalar types, when written directly in the VTL definitions or expressions, are 2001
called literals. 2002

The literals are written according to the external representations adopted by the specific VTL 2003
systems for the VTL basic data types (i.e., the representations of their Value Domains). As 2004
already said, the VTL does not prescribe any particular external representation. 2005

In these VTL manuals, anyway, there is the need to write literals of the various data types in 2006
order to explain the behaviour of the VTL operators and give proper examples. The 2007
representation of these literals are not intended to be mandatory and are not part of the VTL 2008
standard specifications, these are only the representations used in the VTL manuals for 2009
explanatory purposes and many other representations are possible and legal. 2010

The representations adopted in these manuals are described below. 2011

The string values are written according the Unicode and ISO/IEC 10646 standards. 2012

22 For example, at least one default Value Domain should exists for each basic scalar type, the Value Domains

needed to represent the results of the checks should exist, and so on.

Version 1.1 Page: 56

The number values use the positional numeral system in base 10. 2013

o a fixed-point number begins with the integer part, which is a sequence of 2014
numeric characters from 0 to 9 (at least one digit) optionally prefixed by 2015
plus or minus for the sign (no symbol means plus), a dot is always present 2016
in the end of the integer part and separates the (possible) fractional part, 2017
which is another sequence of numeric characters. 2018

o A floating point number, has a mantissa written like a fixed-point number, 2019
followed by the capital letter E (for “Exponent”) and by the exponent, 2020
written like a fixed-point integer; 2021

For example: 2022
 Fixed point numbers: 123.4567 +123.45 -8.901 0.123 -0.123 2023
 Floating point numbers: 1.23E2 +123.E-2 -0.89E1 0.123E0 2024

The integer values are represented like the number values with the following 2025
differences: 2026

o A fixed-point integer is written like a fixed-point number but without the 2027
dot and the fractional part. 2028

o A floating point integer is written like a floating-point number but cannot 2029
have a negative mantissa. 2030

For example: 2031

 Fixed point integers: 123 +123 -123 2032
 Floating point integers: 123E0 1E3 2033

The time values are conventionally represented through the initial and final Gregorian dates 2034
of the time interval separated by a slash. The accuracy is reduced at the level of the day 2035
(therefore omitting the time units shorter than the day like hours, minutes, seconds, decimals 2036
of second). The following format is used (this is one of the possible options of the ISO 8601 2037
standard): 2038

YYYY-MM-DD/YYYY-MM-DD 2039

Where YYYY indicates 4 digits for the year, MM indicates two digits for the month, DD 2040
indicates two digits for the day. For example: 2041

2000-01-01/2000-12-31 the whole year 2000 2042

2000-01-01/2009-12-31 the first decade of the XXI century 2043

The date values are conventionally represented through one Gregorian date. The 2044
accuracy is reduced at the level of the day (therefore omitting the time units shorter 2045
than the day like hours, minutes, seconds, decimals of second). The following format is 2046
used (this is one of the possible options of the ISO 8601 standard): 2047

YYYY-MM-DD 2048

The meaning of the symbols is the same as above. For example: 2049

2000-12-31 the 31st December of the year 2000 2050

2010-01-01 the first of January of the year 2010 2051

The time_period values are represented for sake of simplicity with accuracy equal to 2052
the day or less (week, month …) and a periodicity not higher than the year. In the VTL 2053

Version 1.1 Page: 57

manuals the following format is used (this is a personalized format not compliant with 2054
the ISO 8601 standard): 2055

 YYYYPppp 2056

Where YYYY are 4 digits for the year, P is one character for specifying which is the 2057
duration of the regular period (e.g. D for day, W for week, M for month, Q for quarter, S 2058
for semester, Y for the whole year, see the codes of the duration data type below), ppp 2059
denotes from zero two three digits which contain the progressive number of the period 2060
in the year. For example: 2061

2000M12 the month of December of the year 2000 2062

2010Q1 the first quarter of the year 2010 2063

2020Y the whole year 2010 2064

The duration values in these manuals are conventionally restricted to very few predefined 2065
durations which are codified through just one character as follows: 2066

Code Duration 2067

 D Day 2068
 W Week 2069
 M Month 2070
 Q Quarter 2071
 S Semester 2072
 A Year (Annual) 2073

This is a very simple format not compliant with the ISO 8601 standard, which allows 2074
representing durations in a much more complete, even if more complex, way. As mentioned, 2075
the real VTL systems may adopt any other external representation. 2076

The boolean values used in the VTL manuals are TRUE and FALSE (without quotes). 2077

When a literal is written in a VTL expression, its basic scalar type is not explicitly declared 2078
and therefore is unknown. 2079

For ensuring the correctness of the VTL operations, it is important to assess the scalar type of 2080
the literals when the expression is parsed. For this purpose, there is the need for a mechanism 2081
for the disambiguation of the literals types, because often the same literal might in itself 2082
belong to many types, for example: 2083

 the word “true” may be interpreted as a string or a boolean, 2084
 the symbol “0“ may be interpreted as a string, a number or a boolean, 2085
 the word “20171231” may be interpreted as a string, a number or a date. 2086

The VTL does not prescribe any predefined mechanism for the disambiguation of the scalar 2087
types of the literals, leaving different VTL systems free to using they preferred or already 2088
existing ones. The disambiguation mechanism, in fact, may depend also on the conventions 2089
adopted for the external representation of the scalar types in the VTL systems, which can be 2090
various. 2091

In these VTL manuals, anyway, there is the need to use a disambiguation mechanism in order 2092
to explain the behaviour of the VTL operators and give proper examples. This mechanism, 2093
therefore, is not intended to be mandatory and, strictly speaking, is not part of the VTL 2094
standard. 2095

Version 1.1 Page: 58

If VTL rules are exchanged between different VTL systems, the partners of the exchange must 2096
be aware of the external representations and the disambiguation mechanisms adopted by the 2097
counterparties. 2098

The disambiguation mechanism adopted in these VTL manuals is the following: 2099

 The string literals are written between double quotes, for example the literal “123456” 2100
is a string, even if its characters are all numeric, as well as “I am a string! “. 2101

 The numeric literals are assumed to have some pre-definite patterns, which are the 2102
numeric patterns used for the external representation of the numbers described above. 2103
A literal having one of these patterns is assumed to be a number. 2104

 The boolean literals are assumed to be the values TRUE and FALSE (capital letters 2105
without quotes). 2106

In these manuals, it is also assumed that the types time, date, time_period and duration do not 2107
directly support literals. Literal values of such types can be anyway built from literals of other 2108
types (for example they can be written as strings) and converted in the desired type by the 2109
cast operator (type conversion). In some cases the conversion can be made automatically, 2110
(i.e., without the explicit invocation of the cast operator – see the Reference Manual for more 2111
details). 2112

As mentioned, the VTL implementations may personalize the representation of the literals 2113
and the disambiguation mechanism of the basic scalar types as desired, provided that the 2114
latter work properly and no ambiguities in understanding the type of the literals arise. For 2115
example, in some cases the type of a literal can also be deduced from the context in which it 2116
appears. As already pointed out, the possible personalised mechanism should be 2117
communicated to the counterparties if the VTL rules are exchanged. 2118

Conventions for describing the scalar types 2119

 The keywords which identify the basic scalar types are the following: scalar, string, 2120
number, integer, time, date, time_period, duration, boolean. 2121

 By default, the basic scalar types are considered as nullable, i.e., allowing NULL values. 2122

 The keyword not null following the type (and the “literal” keyword if present), means that 2123
the scalar type does not allow the NULL value, for example: 2124

operand :: string literal not null 2125

means that the operand is a literal of string scalar type and cannot be NULL; if not null is 2126
omitted the NULL value is meant to be allowed. 2127

 An expression within square brackets following the previous keywords, means that the 2128
preceding scalar type is restricted by the expression. This is a VTL boolean expression23 2129
(whose result can be TRUE or FALSE) which specifies a membership criterion, that is a 2130
condition that discriminates the values which belong to the restriction (sub-type) from the 2131
others (the value is assumed to belong to the sub-type only if the expression evaluates to 2132
TRUE). The keyword “value” stands for the generic value of the preceding scalar type and 2133
is used in the expression to formulate the restrictive condition. For example: 2134

integer [value <= 6] 2135

23 I.e., an expressions whose result is boolean

Version 1.1 Page: 59

is a sub-type of integer which contains only the integers lesser than or equal to 6. 2136

The following examples show some particular cases: 2137

o The generic expression [between (value, x, y)] 24 restricts a scalar type by 2138
indicating a closed interval of possible values going from the value x to the value y, 2139
for example 2140

integer [between (value, 1, 100)] 2141

is the sub-type which contains the integers between 1 and 100. 2142

o The generic expression [(value > x) and (value < y)] restricts a scalar type by 2143
indicating an open interval of possible values going from the value x to the value y, 2144
for example 2145

integer [(value > 1) and (value < 100)] 2146

means integer greater than 1 and lesser than 100 (i.e., between 2 and 99). 2147

o By using >= or <= in the expressions above, the intervals can be declared as open 2148
on one side and closed on the other side, for example 2149

integer [(value >= 1) and (value < 100)] 2150

means integer greater than or equal to one and lesser than 100. 2151

o The generic expressions [value >= x] or [value > x] or [value <= y] or [value 2152
< y] restrict a scalar type by indicating an interval having one side unbounded, for 2153
example 2154

integer [value >= 1] 2155

means integer equal to or greater than 1, while “integer[value < 100]” means an 2156
integer lesser than 100. 2157

o The generic expression [value in { v1, … , vN }] 25 restricts a scalar type by 2158
specifying explicitly a set of possible values, for example 2159

integer { 1, 2, 3, 4, 5, 6 } 2160

means an integer which can assume only the integer values from 1 to 6. The same 2161
result is obtained by specifying [value in set_name], where in is the “Element of” 2162
VTL operator and set_name is the name of an existing Set (Value Domain Subset) 2163
of the VTL IM. 2164

o By using in the expression the operator length 26 it is possible to restrict a scalar 2165
type by specifying the possible number of digits that the values can have, for 2166
example 2167

integer [between (length (value), 1, 10)] 2168

24 “between (x, y, z)” is the VTL operator which returns TRUE if x is comprised between y and z

25 “in” is the VTL operator which returns TRUE if an element (in this case the value) belongs to a Set; the symbol
{ … , … , … } denotes a set defined as the list of its elements (separated by commas)

26 “length” is the VTL Operator that returns the length of a string (in the example, the integer operand of the
length operator is automatically cast to a string and its length is determined)

Version 1.1 Page: 60

means an integer having a length from one to 10 digits; 2169

As obvious, other kinds of conditions are possible by using other VTL operators and more 2170
conditions can be combined in the restricting expression by using the VTL boolean 2171
operators (and, or, not …) 2172

 Like in the general case, a restricted scalar type is considered by default as including the 2173
NULL value. If the NULL value must be excluded, the type specification must be followed 2174
by the symbol not null; for example 2175

integer [between (length (value), 1, 10)] not null 2176

means a not-null integer having from one to 10 digits 2177

Compound Data Types 2178

The Compound data types are the types defined in terms of more elementary types. 2179

The compound data types are relevant to artefacts like Components, Data Sets and to other 2180
compound structures. For example, the a type Component is defined in terms of the scalar 2181
type of its values, besides some characteristics of the Component itself (for example the role it 2182
assumes in the Data Set, namely Identifier, Measure or Attribute). Similarly, the type of a Data 2183
Set (i.e. of a mathematical function) is defined in terms of the types of its Components. 2184

The compound Data Types are described in the following sections. 2185

Component Types 2186

This is the class of the Component types, i.e. of the Components of the Data Structures (for 2187
example the “country of residence” in the role of Identifier, the “resident population” in the 2188
role of Measure …). 2189

A Component is essentially a Variable (i.e. an unknown scalar Value with a certain meaning, 2190
e.g. the resident population) which takes Values in a Value Domain and plays a definite role in 2191
a Data Structure (e.g., Identifier, Measure, Attribute). A Component inherits the scalar type 2192
(e.g. number) from the relevant Value Domain. 2193

The main sub-types of the Component Type depend on the role of the Component in the data 2194
structure and are the identifier, measure and attribute types (if the automatic propagation of 2195
the Attributes is supported, another sub-type is the viral attribute). These types reflect the 2196
fact that the VTL behaves differently on Components of different roles. Their common super-2197
type is component, which means “a Component having any role”. 2198

Moreover, a Component type can be restricted by an associated scalar type (e.g. number, 2199
string, …), therefore the complete specification of a Component type takes the form 2200

role_type < scalar_type > 2201

where the scalar type included in angular parenthesis, restricts the specification of the 2202
preceding type (the role type); omitted angular parenthesis mean “any scalar type”, which is 2203
the same as writing <scalar>. Examples of Component types are the following: 2204

 component (or component<scalar>) any Component 2205

o component<number> any Component of scalar type number 2206

o identifier (or identifier<scalar>) any Identifier 2207

Version 1.1 Page: 61

 identifier<time not null> Identifier of scalar type time not null 2208

o measure (or measure<scalar>) any Measure 2209

 measure<boolean> Measure of scalar type boolean 2210

o attribute (or attribute<scalar>) any Attribute 2211

 attribute<string> Attribute of scalar type string 2212

In the list above, the more indented types are sub-types of the less indented ones. 2213

According to the functional paradigm, the Identifiers cannot contain NULL values, therefore 2214
the scalar type of the Identifiers Components must be “not null”. 2215

In summary, the following conventions are used for describing Component types. 2216

 As already said, the more general type is “component” which indicates any component, 2217
for example 2218

operand :: component 2219

means that “operand” may be any component. 2220

 The main sub-types of the component type correspond to the roles that the Component 2221
may assume in the Data Set, i.e., identifier, measure, attribute; for example 2222

operand :: measure 2223

means that the operand must be a Measure. 2224

The additional role viral attribute exists if the automatic propagation of the Attributes is 2225
supported.27 The type viral_attribute is a sub-type of attribute. 2226

 By default, a Component can be either specified directly through its name or indirectly 2227
through a sub-expression which calculates it. 2228

 The optional keyword name following the type keyword means that a component name 2229
must be specified and that the component cannot be obtained through a sub-expression; 2230
For example: 2231

operand :: measure name <string> 2232

means that the name of a string Measure must be specified and not a string sub-2233
expression28. If the name keyword is omitted the sub-expression is allowed. 2234

 The symbol < scalar type > means that the preceding type is restricted to the scalar type 2235
specified within the angular brackets”, for example 2236

operand :: component < string > 2237

means that the operand is a Component having any role and belonging to the string scalar 2238
type; if the restriction is not specified, then the scalar type can be any (for 2239
example operand:: attribute means that the operand is an Attribute of any scalar type). 2240

 In turn, the scalar type of a Component can be restricted; for example 2241

27 See the section “Behaviour for Attribute Components”

28 I.e., a sub-expressions whose result is string

Version 1.1 Page: 62

operand:: measure < integer [value between 1 and 100] not null > 2242

means that the operand can be a not-null integer Measure whose values are comprised 2243
between 1 and 100; 2244

Data Set Types 2245

This is the class of the Data Sets types. The Data Sets are the main kind of artefacts 2246
manipulated by the VTL and their types depend on the types of their Components. 2247

The super-type of all the Data Set types is dataset, which means “any dataset” (according to 2248
the definition of Data Set given in the IM, as obvious). 2249

A sub-type of dataset is the Data Sets of time series, which fulfils the following restrictive 2250
conditions: 2251

 The Data Set structure must contain one Identifier Component that acts as the reference 2252
time, which must belong to one of the basic scalar types time, date or time_period. 2253

 The possible values of the reference time Identifier Component must be regularly spaced 2254
o For the type time, the time intervals must start (or end) at a regular periodicity and 2255

have the same duration 2256
o For the type date, the time values must have a regular periodicity 2257
o For the type time_period there are no additional conditions to fulfil, because the 2258

time_period values comprise by construction the indication of the period and 2259
therefore are regularly spaced by default 2260

 It is assumed that it exist the information about which is Identifier Components that acts 2261
as the reference time and about which is the period (frequency) of the time series and that 2262
such information is represented in some way in the VTL system. The VTL does not 2263
prescribe any predefined representation, leaving different VTL systems free to using they 2264
preferred or already existing ones. It is assumed that the VTL operators acting on time 2265
series know which is the reference time Identifier and the period of the time series and 2266
use these information to perform correct operations. 2267
Usually, the information about which is the reference time is included in the data structure 2268
definition of the Data Sets or in the definition of the Data Set Components. 2269
Some commonly used representations of the periodicity are the following: 2270

o For the types time and date, the period is often represented through an additional 2271
Component of the Data Set (of any possible role) or an additional metadata relevant 2272
to the whole Data Set or some parts of it. This Component (or other metadata) is of 2273
the “duration” type and is often called “frequency”. 2274

o For the type time_period, the periodicity is embedded in the time_period values. 2275
In any case, if some periodical data exist in the system, it is assumed that a Value Domain 2276
representing the possible periods exists and refers to the duration scalar type. 2277

Within a Data Set of Time Series, a single Time Series is the set of Data Points which have the 2278
same values for all the Identifier Components except the reference time29. A Data Set of time 2279
series can also contain more time series relevant to the same phenomenon but having 2280
different periodicities, provided that one or more Identifiers (other than the reference time) 2281
distinguish the Time Series having different periodicity. 2282

29 Therefore each combination of values of the Identifier Components except the reference time identifies a Time
Series.

Version 1.1 Page: 63

The Data Sets of time series are the possible operands of the time series operators (they are 2283
described in the Reference Manual). 2284

More specific Data Set types can be defined by constraining the dataset type, for example by 2285
specifying the number and the type of the possible Components in the different roles 2286
(Identifiers, Measures and Attributes), and even their names if needed. Therefore the general 2287
syntax for specifying a Data Set type is 2288

dataset { type_constraint } or dataset_ts { type_constraint } 2289

where the type_constraint may assume many different forms which are described in detail in 2290
the following section. Examples of Data Set types are the following: 2291

dataset Any Data Set (according to the IM) 2292

dataset { measure <number> _* } A Data Set having one or more Measures of 2293
type number, without constraints on 2294
Identifiers and Attributes 2295

dataset { measure <boolean> _ , attribute<string> _* } 2296

A Data Set having one boolean Measure, one 2297
or more string Attributes and no constraints 2298
on Identifiers 2299

In summary, the following conventions are used for describing Data Set types. 2300

 The more general type is “dataset” which means any possible Data Set of the VTL IM (in 2301
other words, a Data Set having any possible components allowed by the IM integrity rules) 2302

 By default, a Data Set can be either specified directly through its name or indirectly 2303
through a sub-expression which calculates it. 2304

 The optional keyword name following dataset means that a Data Set name must be 2305
specified and that the Data Set cannot be obtained through a sub-expression; For 2306
example: 2307

operand:: dataset name 2308

means that a Data Set name must be specified and not a sub-expression. If the name 2309
keyword is omitted the sub-expression is allowed. 2310

 The symbol dataset { type_constraint } indicates that the type_constraint included in 2311
curly parenthesis restricts the specification of the preceding dataset type without giving a 2312
complete type specification, but indicating only the constraints in respect to the general 2313
structure of the artefact of the Information Model corresponding to such type. For 2314
example, given that the generic structure of a Data Set in the IM may have any number of 2315
Identifiers, Measures and Attributes and that these Components may be of any scalar type, 2316
the declaration 2317

operand :: dataset { measure<string> _ } 2318

means that the operand is of type Data Set having any number of Identifiers (like in the 2319
IM), just one Measure of string type (as declared in the type declaration) and any number 2320
of Attributes (like in the IM). 2321

 Some or all the Data Set Components can also be predetermined. For example writing 2322

Version 1.1 Page: 64

operand:: dataset { identifier<st_Id1> Id1, …, identifier<st_IdN> IdN, 2323
measure<st_Me1> Me1, … , measure<st_MeL> MeL, attribute<st_At1> 2324
At1, … , attribute<st_AtK> AtK }” 2325

means that the operand is of Data Set type and has the identifier, measure and attribute 2326
types and names specified within the curly brackets (in the example, <st_Id1> stands for 2327
the scalar type of the Component named Id1 and so on). This is the example of an 2328
extremely specific Data Set type in which all the component types and names are fixed in 2329
advance. 2330

 If a certain role (i.e. identifier, measure, attribute) is not specified, it means that there are 2331
no restrictions on it, for example 2332

operand:: dataset { me<st_Me1 > Me1, … , me<st_MeL > MeL } 2333

means that the operand is of Data Set type and has the measure types and names specified 2334
within the curly brackets, while the Identifier and Attribute components have no 2335
restrictions and therefore can be any. 2336

Product Types 2337

This is the class of the Cartesian products of other types; a product type is written in the form 2338
t1 * t2 * … * tn where ti (i = 1 … n) is another arbitrary type; the elements of a Product type are 2339
n-tuples whose i-th element belongs to the type ti. For instance, the product type 2340

string * integer * boolean 2341

includes elements like30 ("PfgTj", 7, true), ("kj-o", 80, false), ("", 4, false) but does not include 2342
for example ("qwe", 2017-12-31, true), ("kj-o", 80, 92). 2343

The superclass is product, which means any product type 2344

Product types can be used in practice for several reasons. They allow: 2345

i. the natural expression of exclusion or inclusion criteria (i.e., constraints) over 2346
values of two or more dataset components, 2347

ii. the definition of the domain of the Operators in term of types of their Parameters 2348
iii. the definition of more complex data types. 2349

Operator Types 2350

This is the class of the Operators’ types, i.e., the higher-levels functions that allow 2351
transformations from the type t1 (the type of the input Parameters), to the type t2 (the type of 2352
the output Parameter). An Operator Type is written in the form ‘t1 -> t2’, where t1 and t2 are 2353
arbitrary types. For example, the type of the following operator says that it takes as input two 2354
integer Parameters and returns a number. 2355

Op1 :: integer * integer -> number 2356

The superclass is operator, which means any operator type 2357

 2358

30 In the VTL syntax the symbol () allows to define a tuple in-line by enumeration of its elements.

Version 1.1 Page: 65

Ruleset Types 2359

The class of the Ruleset types, i.e. the set of Rules that are used by some operators like 2360
“check_hierarchy”, “check_hatapoint”, “hierarchy”, “transcode”. The general syntax for 2361
specifying a Ruleset type is main_type_of_ruleset {type_constraint}. 2362

The main Rulesets types are the datapoint and the hierarchical Rulesets. Their super-type is 2363
ruleset which means “any Ruleset”. Moreover, Rulesets can be defined either on Value 2364
domains or on Variables, therefore the main_type_of_rulesets are: 2365

 ruleset 2366

o datapoint 2367

 datapoint_on_value domains 2368
 datapoint_on_variables 2369

o hierarchical 2370

 hierarchical_on_value_domains 2371
 hierarchical_on_variables 2372

In the list above, the more indented types are sub-types of the less indented ones. 2373

The type_constraint is optional and may assume many different forms which depends on the 2374
main_type_of_ruleset. If the type_constraint is present, the main_type_of_ruleset must 2375
specify if the ruleset is defined on Value Domains or Variables (i.e., it must be one of the more 2376
indented types above). 2377

A datapoint Ruleset is defined on a Cartesian product of Value Domains or Variables, 2378
therefore the type_constraint can contain such a list. Examples of constrained datapoint types 2379
are: 2380

datapoint on value domains {(geo_area * sector * time_period * numeric_value)} 2381

datapoint on variables {(ref_date * import_currency * import_country)} 2382

datapoint on value domains {date * _+} 2383

The last one is the type of the Data Point Rulesets that are defined on the “date” Value Domain 2384
and on one to many other Value Domains (“_+” means “one or more”). 2385

A hierarchical Ruleset is defined on one Value Domain or Variable and can contain conditions 2386
referred to other Value Domains or Variables, therefore the type_constraint for hierarchical 2387
Rulesets can take one of the following forms: 2388

{value_domain * (conditioningValueDomain1 * … * conditioningValueDomainN)} 2389

{variable * (conditioningVariable1 * … * conditioningVariableN)}. 2390

Examples of hierarchical types are: 2391

hierarchical on value domains {geo_area * (time_period) } 2392

hierarchical on variables { currency * (date * country) } 2393

hierarchical on value domains { _ } 2394

hierarchical on value domains { _ * (reference_date)} 2395

The last one is the type of the Hierarchical Rulesets that are defined on any Value Domain and 2396
are conditioned by the reference date Value Domain. 2397

Version 1.1 Page: 66

 2398

Universal Set Types 2399

The Universal Sets are unordered collections of other objects that belong to the same type t 2400
and do not have repetitions (each object can belong to a Set just once). The Universal Sets are 2401
denoted as set < t >, where t is another arbitrary type. If < t > is not specified it means any 2402
universal set type. 2403

Possible examples are the Sets of product types. For instance, the Universal Set Type: 2404

set < string * integer * boolean > 2405

includes the sets31 : 2406

{ ("PfgTj", 7, true), ("kj-o", 80, false), ("", 4, false) } 2407

{ ("duo9", 67, true), ("io/p", 540, true) } 2408

But does not includes the sets: 2409

{ ("PfgTj", 7, true), 80, ("", 4, false) } in fact 80 is not a product type 2410

{ ("duo9", 67, true), (50, true) } in fact (50, true) is not the right product type 2411

{ ("", 4, false), (“F”, 8, true), ("", 4, false) } in fact ("", 4, false) is repeated 2412

Universal List Types 2413

The Universal Lists are ordered collections of other objects that belong to the same type t and 2414
can have repetitions (an object can appear in a list more than once). The Universal Lists are 2415
denoted as list < t >, where t is an arbitrary type. If < t > is not specified it means any 2416
universal list type. 2417

For instance, the following Universal List type: 2418

list < component> 2419

includes elements like32 [reference date, import, export] but does not include elements like 2420
[dataset1, country, sector] and [import, “text”] because dataset1 and “text” are not 2421
Components. 2422

31 In the VTL syntax, the symbol {…} denotes a set defined as the list of its elements (separated by commas)

32 In the VTL syntax, the symbol [] allows to define a List in-line by enumeration of its elements.

Version 1.1 Page: 67

VTL Transformations 2423

This section describes the key concepts, assumptions and characteristics of the VTL which are 2424
needed to a VTL user to define Transformations. As mentioned in the section about the 2425
general characteristics above, the language is oriented to users without deep information 2426
technology (IT) skills, who should be able to define calculations and validations 2427
independently, without the intervention of IT personnel. Therefore, the VTL has been 2428
designed to make the definition of the Transformations as intuitive as possible and to reduce 2429
the chances of errors. 2430

As already said, a Transformation consists of a statement which assigns the outcome of the 2431
evaluation of an Expression to an Artefact of the Information Model. Then, transformations 2432
are made of the following components: 2433

● A right-hand side, which contains the expression to be evaluated, whose inputs are the 2434
operands of the Transformation 2435

● An assignment operator 2436
● A left-hand side, which specifies the Artefact which the outcome of the expression is 2437

assigned to (this is the result of the Transformation) 2438

Examples of assignments are (assuming that Di (i=1…n) are Data Sets): 2439

 D1 := D2 2440
 D3 := D4 + D5 2441

Assuming that E is the expression, R is the result and IOi (i=1,… n) the input Operands, the 2442
mathematical form of a Transformation based on E can be written as follows: 2443

 R := E (IO1, IO2, … , IOn) 2444

The expression uses any number of VTL operators in combination to specify a compound 2445
operation. Because all the VTL operators are functional, the whole expression is functional 2446
too. 2447

Transformations are properly chained for their execution, in fact the result Ri of a 2448
Transformation Ti can be referenced as the operand of another Transformation Tj. In this case, 2449
the former Transformation is evaluated first in order to provide the input for the latter. To 2450
enforce the consistency of the results, cycles are not allowed, therefore in the case above the 2451
result Rj of the Transformation Tj cannot be operand of the Transformation Ti and cannot 2452
contribute to the calculation of any operand of Ti, even indirectly through a chain of other 2453
Transformations. 2454

The order in which the user defines the Transformations may be important for a better 2455
understanding but cannot override the order of execution determined according their input-2456
output relationships. 2457

For the rules for the Transformation consistency, see also the section “Generic Model for 2458
Transformation” above. 2459

A VTL program is a set of Transformations executed in the same run, which is defined as a 2460
Transformation Scheme. 2461

 2462

Version 1.1 Page: 68

The Expression 2463

A VTL expression constitutes the right-hand side of a Transformation. It takes one or more 2464
input operands and returns one output artefact. 2465

An expression is the invocation of one or more operators in combination, in which the result 2466
of an operator is passed as input parameter to another operator, and so on, in a tree structure. 2467
The root of the tree structure is last operator to be applied and gives the final result. 2468

For example, for the expression a + b - c the result of the addition a + b is passed to the 2469
following subtraction, which gives the final result. 2470

An expression is built from the following ingredients: 2471

 Operators, which specify the operation to be performed (e.g. +, - and so on). As 2472
mentioned, the standard VTL operators are described in detail in the Reference 2473
Manual, moreover the VTL allows defining and then invoking “user defined operators” 2474
(see the Reference Manual). Each operator envisages a certain number of input 2475
parameters of definite data types and produces an outcome having a definite data type 2476
(the types parameter are described in detail in the Reference Manual for each 2477
operator). 2478
 2479

● Operands, which are the actual arguments passed to the invoked Operators, for 2480
example in the expression D1 + D2 the Operator “+” is invoked and the Operands D1 2481
and D2 are passed to it. The Operands can be: 2482

o Named artefacts, which are VTL artefacts specified through their names. Their 2483
actual values are obtained either referring to an external persistent source 2484
(persistent artefacts) or as result of previous Transformations (non-persistent 2485
artefacts) of the same Transformation Scheme; they are identified by means of a 2486
symbolic name (e.g. in D1 + D2 the Operands D1 and D2 are identified by the 2487
names D1 and D2). Examples of identified artefacts are the Data Sets (like D1 2488
and D2 above) and the Data Set Components (like D1#C1, D1#C2, D1#C3, where # 2489
means that Cj is a Component of the Data Set Di). 2490

o Literals, which are VTL artefacts whose actual values are directly written in the 2491
expression; for example, in the invocation D1 + 7 the second operand (7) is a 2492
literal, in this case a scalar literal. Also other kind of artefacts can be written in 2493
the expressions, for example the curly brackets denote the value of a Set (for 2494
example {1, 2, 3, 4, 5, 6} is the set of the integers from 1 to 6) and the square 2495
brackets denote a list (for example [7, 5, 3, 6, 3] is a list of numbers). 2496
 2497

 Parentheses, which specify the order of evaluation of the operators; for example in 2498
the expression D1 * (D2 + D3) first the sum D2 + D3 is evaluated and then their 2499
product for D1. In case the parenthesis are not used, the default order of evaluation 2500
(described in the Reference Manual) is applied (in the example, first the product and 2501
then the sum). 2502

An expression implies different steps of calculation, for example the expression: 2503

R := O1 + O2 / (O3 – O4 / O5) 2504

Can be calculated in the following steps: 2505

I. (O4 / O5) 2506

Version 1.1 Page: 69

II. (O3 - I) 2507
III. (O2 / II) 2508
IV. (O1 + III) 2509

The intermediate and final outputs (I, II, III, IV) of the expression are assumed to be non-2510
persistent (temporary). The persistency of the result Data Set R is controlled by the 2511
assignment operator, as described below. 2512

An intermediate result within the expression can be only the input of other operators in the 2513
same expression. 2514

In general, unless differently specified in the Reference Manual, in the invocation of an 2515
operator any operand can be the result of a sub-expression which calculates it. For example, 2516
taking the exponentiation whose syntax is 2517

power(base, exponent), 2518

the invocation power(D1 + D2 , 2) is allowed and means that first D1 + D2 is calculated and then 2519
the result is squared. As usual, the data type of the calculated operand must comply with the 2520
allowed data types of the corresponding Parameter (in the example above, D1 + D2 must have 2521
a numeric data type, otherwise it cannot be squared). 2522

The nesting capabilities allow writing from very simple to very complex expressions. Users 2523
can manage the complexity of the expressions by splitting or merging transformations. For 2524
example, taking again the example above, the following two options would give the same 2525
result: 2526

Option 1: 2527

Dr := power(D1 + D2 , 2) 2528

Option 2: 2529

D3 := D1 + D2 2530

Dr := power(D3 , 2) 2531

In both cases, in fact, first D1 + D2 is evaluated and then the power operator is applied to obtain 2532
Dr. 2533

In general, it is possible either to have simpler expressions splitting and chaining 2534
Transformations or to have a minor number of Transformations writing more complex 2535
expressions. 2536

The Assignment 2537

The assignment of an expression to an artefact is done through an assignment operator. The 2538
VTL has two assignment operators, the persistent and the non-persistent assignment: 2539

<- persistent assignment 2540

:= non-persistent assignment 2541

The former assigns the outcome of the expression on the left side to a persistent artefact, the 2542
latter to a non-persistent one; therefore the choice of the assignment operator allows to 2543
control the persistency of the artefact which is result of the Transformation. 2544

Version 1.1 Page: 70

The only artefact that can be made persistent is the result (the left side artefact). In fact, as 2545
already mentioned, the intermediate and final results of the right side expression are always 2546
considered as non-persistent. 2547

For example, taking again the example of Transformation above: 2548

Dr := power(D1 + D2 , 2) 2549

The result Dr can be declared as persistent by writing: 2550

Dr <- power(D1 + D2 , 2) 2551

Instead to make persistent also the intermediate result of D1 + D2 it is necessary to split the 2552
Transformation like in the option 2 above: 2553

D3 <- D1 + D2 2554

Dr <- power(D3 , 2) 2555

The persistent assignment operator is also called Put, because it is used to specify that a result 2556
must be put in a persistent store. The Put has two parameters, the first is the final result of the 2557
expression on the right side that has to be made persistent, the second is the reference to the 2558
persistent Data Set which will contain such a result. 2559

The Result 2560

The left side artefact, i.e., the result of the Transformation, is always a named Data Set (i.e. a 2561
Data Set identified by means of a symbolic name like explained in the previous section). 2562

The data type and structure of the left side Data Set coincide with the data type and structure 2563
of the outcome of the expression, which must be a Data Set as well. 2564

Almost all VTL operators act on Data Sets. Many VTL operators can act also on Data Set 2565
Components to produce other Data Set Components, however even in this case the outcome of 2566
the expression is a new Data Set which contains the calculated Components. 2567

An expression can result also in scalar Value, because many VTL operators can act on scalar 2568
Values to obtain other scalar Values, furthermore some particular operations on Data Sets can 2569
eliminate Identifiers, Measures and Attributes and obtain scalar Values (see the Reference 2570
Manual). The result of such expressions is considered as a named Data Set which does not 2571
have Components (Identifiers, Measures and Attributes) and therefore contains just one 2572
scalar Value. The Data Sets without Components can be manipulated and possibly stored like 2573
any other Data Set. Because the VTL notion of Data Set is logical and not physical, more Data 2574
Set without Components can be stored in the same physical Data Set if appropriate. 2575

The current VTL version does not include operators which produce other output data types, 2576
for example there are not operators which manipulate Sets (however this is a possible future 2577
development). 2578

As a matter of fact, the Data Set at the moment is the only type of Artefact that can be 2579
produced and stored permanently through a command of the language. 2580

Version 1.1 Page: 71

The Names 2581

The artefact names 2582

The names are the labels which identify the “named” artefacts which are operands or result of 2583
the transformations. 2584

For ensuring the correctness of the VTL operations, it is important to distinguish the names 2585
from the scalar literals when the expression is parsed. For this purpose, the disambiguation 2586
mechanism that distinguishes the types of the scalar literals must also be able of 2587
distinguishing names and scalar literals. 2588

As already mentioned in the section about the scalar literals, the VTL does not prescribe any 2589
predefined disambiguation mechanism, leaving different VTL systems free to using they 2590
preferred or already existing ones. In these VTL manuals, anyway, there is the need to use 2591
some disambiguation mechanisms in order to explain the behaviour of the VTL operators and 2592
give proper examples. These mechanisms are not intended to be mandatory and therefore, 2593
strictly speaking, they are not part of the VTL standard specifications. If no drawbacks exist, 2594
however, their adoption is encouraged to foster the convergence between possible different 2595
practices. If VTL rules are exchanged, the disambiguation mechanisms should be 2596
communicated to the counterparties, at least if they are different from the one suggested 2597
hereinafter. 2598

The general rules for the names are given below. As said above, these rules can be 2599
personalized (for example restricted) in some implementations (e.g. a particular 2600
implementation can require that an name starts with a letter). 2601

The names are strings of characters no more than 128 characters long and are classified in 2602
regular and non-regular names. 2603

The regular names: 2604

 can contain alphabetic and numeric characters and the special characters underscore 2605
(_) and dot (.) , 2606

 must begin with an alphanumeric character and not with a special character 2607
 must contain at least one alphabetic character 2608
 cannot be a VTL reserved word 2609

Examples or regular names are abcdef, 1ab_cde, a.b.c_d_e, 1234_5. 2610

The regular names are: 2611

 written in the Transformations / Expressions without quoting them 2612
 case insensitive 2613

The non-regular names: 2614

 can contain alphanumeric characters and, in addition to the underscore and the dot, 2615
any other Unicode character 2616

 can contain blanks 2617
 can begin with special characters 2618
 can contain only numeric characters 2619
 can be equal to the VTL reserved words 2620

The non-regular names are: 2621

Version 1.1 Page: 72

 written in the Transformations / Expressions surrounded by single quotes 2622
 case sensitive 2623

Examples of non-regular names, which therefore are enclosed in single quotes, are ’_abcdef’, 2624
‘1ab-cde’, ‘12345’, ‘power’ (the first begins with a special character, the second contains the “-“ 2625
character that is not allowed, the third contains only numeric characters, the fourth coincides 2626
to a VTL reserved word (the name of the exponentiation operator). These names would not 2627
be recognized by VTL if not enclosed between single quotes. 2628

The VTL reserved words (and symbols) are: 2629

 the keywords of the VTL-ML and VTL-DL operators and of their parameters (e.g. <- , 2630
:= , # , inner_join, as, using, filter, apply, rename, to, + , - , power, and, or, not, group by, 2631
group except, group all, having …) 2632

 the names of the classes of VTL artefacts of the VTL-IM (e.g., value, value domain, value 2633
domain subset, set, variable, component, data set, data structure, operator, operand 2634
parameter, transformation …) 2635

 additional keywords for possible future use like get, put, join, map, mapping, merge, 2636
transcode and the names of commonly used mathematical and statistical functions. 2637

 2638

The environment name 2639

In order to ensure non-ambiguous definitions and operations, the names of the artefacts must 2640
be unique, meaning that an name cannot be assigned to more than one artefact. 2641

In practice, the unicity of the names is ensured in a certain environment, that can be also 2642
called namespace (i.e. the space in which the names are assigned without ambiguities). For 2643
examples, Institutions (agencies) that operate independently can assign the same name to 2644
different artefacts, therefore they cannot be considered as part of the same environment. 2645

The artefacts which input of a Transformation can come also from other environments than 2646
the one in which the Transformation is defined. In these cases the artefact name must be 2647
accompanied by a Namespace, which specifies the Data Set environment, to univocally 2648
identify the artefact to retrieve (for example the Data Set). 2649

Therefore, the reference to an artefact belonging to a different environment assumes the 2650
following form: 2651

Namespace\Name 2652

Namespace is the name of the environment and Name is the name of the artefact within the 2653
environment. The separator is the backslash (\). 2654

When the Namespace is not specified, the artefact is assumed to belong to the same 2655
environment as the Transformation. 2656

The result of a Transformation is always assumed to belong to the same environment as the 2657
Transformation, therefore the specification of the namespace of the result is not allowed. 2658

Within a given environment, the names of all the VTL artefacts (such as Value Domains, Sets, 2659
Variables, Compopnents, Data Sets) are assigned by the users. 2660

Some VTL Operators assume that a VTL environment have certain default names for some 2661
kinds of Variables or Value Domains which are needed to perform the correspondent 2662
operations (for example, the operators which transform the data type of the Measure of the 2663

Version 1.1 Page: 73

input Data Sets assign a default name to the resulting Measure, the check operators assign 2664
default names to Components and Value Domains needed to represent the results of the 2665
checks). In the VTL manuals, some definite default names are adopted for explanatory 2666
purposes, however these names are not mandatory and can be personalised if needed. If VTL 2667
rules are exchanged between different VTL systems, the partners of the exchange must be 2668
aware of the names adopted by the counterparties. 2669

 2670

The connection to the persistent storage 2671

As described in the VTL IM, the Data Set is considered as an artefact at logical level, equivalent 2672
to a mathematical function. A VTL Data Set contains the set of Data Points which are the 2673
instances of the function. Each Data Point is interpreted as an association between a 2674
combination of values of the independent variables (the Identifiers) and the corresponding 2675
values of the dependent variables (the Measures and Attributes). 2676

Therefore, the VTL statements reference the conceptual/logical Data Sets and not the objects 2677
in which they are persistently stored. As already mentioned, there can be any relationships 2678
between the VTL logical Data Sets and the corresponding persistent objects (one VTL Data Set 2679
in one storage object, more VTL Data Sets in one storage object, one VTL Data Set in more 2680
storage objects, more VTL Data Sets in more storage objects). The mapping between the VTL 2681
Data Sets and the storage objects is out of the scope of the VTL and is left to the 2682
implementations. 2683

 2684

Version 1.1 Page: 74

VTL Operators 2685

As mentioned, the VTL is made of Operators, which are the basic operations that the language 2686
can do. For example, the VTL has mathematical operators (e.g. sum (+), subtraction (-), 2687
multiplication (*), division (/)…), string operators (e.g. string concatenation, substring …), 2688
comparison operators (e.g. equal (=), greater than (>), lesser than (<) …), logical operators 2689
(e.g. and, or, not …) and so on. 2690

An Operator has some input and output Parameters, which are its a-priori unknown operands 2691
and result, have a definite role in the operation (e.g. dividend, divisor or quotient for the 2692
division) and correspond to a certain type of artefact (e.g. a “Data Set”, a “Data Set 2693
Component”, a “scalar Value” …). 2694

The VTL operators are considered as functions (higher-order functions33), which manipulate 2695
one or more input first-order functions (the operands) to produce one output first-order 2696
function (the result). 2697

Assuming that F is the function corresponding to an operator, that Po is its output parameter 2698
and that Pi (i=1,… n) are its input parameters, the mathematical form of an operator can be 2699
written as follows: 2700

 Po = F (P1, … , Pn) 2701

The function F composes the Parameters Pi to obtain Po (as mentioned, Pi (i=1,…,n) and Po must 2702
be first order functions). In the common case in which the Parameters are Data Sets, F 2703
composes the Data Points of the input Data Sets Di (i=1,… n) to obtain the Data Points of the 2704
output Data Set Do. 2705

When an Operator is invoked, for each input Parameter an actual argument (operand) is 2706
passed to the Operator, which returns an argument (result) for the output Parameter. 2707

Each parameter has a data type, which is the data type of the possible arguments that can be 2708
passed or returned for it. For example, the parameters of a multiplication are of type number, 2709
because only the numbers can be multiplied (in fact for example the strings cannot). For a 2710
deeper explanation of the data types see the corresponding section. 2711

 2712

The categories of VTL operators 2713

The VTL operators are classified according to the following categories. 2714

1. The VTL standard library contains the standard VTL operators: they are described in 2715
detail in the Reference Manual. 2716

On the technical perspective, the standard VTL operations can be divided into the 2717
following two sub-categories: 2718

33 A higher-order function is a function which takes one or more other functions as arguments and/or provides
another function as result.

Version 1.1 Page: 75

a. The core set of operations; they are the primitive operations, in the sense that all 2719
the other operations can be defined in their terms. The core operations are: 2720

i. The operations that accept scalar arguments as operands and return a scalar 2721
value (for example the sum between numeric scalar values, the 2722
concatenation between string scalar values, a logical operation between 2723
boolean scalar values …). 2724

ii. The various kinds of Join operators, which allow to lift the scalar operations 2725
to the Data Set level, i.e., to compose Data Sets with scalar values or with 2726
other Data Sets. 2727

iii. Other special operators which cannot be defined by means of the previous 2728
two categories (for example the analytical functions). 2729

b. The non-core standard operations; they are standard VTL operations as well but 2730
are not “primitive” and can be derived from the core operations. Examples of these 2731
operations are the ones that allow to compose Data Sets and scalar values or Data 2732
Sets and other Data Sets (besides the various kinds of Join operators and the 2733
special operators mentioned above). Examples of non-core operations are the sum 2734
between numeric Data Sets, the concatenation between string Data Sets, the logical 2735
operations between boolean Data Sets, the union operator, some postfix operators 2736
like calc, filter, rename (see the Reference Manual). 2737

Most VTL Operators of the standard library (for example numerical, string, logical 2738
operators and others) can operate both on scalar Values and on Data Sets, and thus 2739
they have two variants: a scalar and a Data Set variant. The scalar variant is part of the 2740
VTL core, while the Data Set variant is usually not. 2741

Anyway, VTL users do not need to distinguish between core and non-core operators, 2742
because in the practice, the use of either these categories of Operators is the same. 2743

2. The user-defined operators are non-standard VTL operators that can be defined by the 2744
users in order to enhance and personalize the language if needed. VTL provides a special 2745
operator, called “define operator” (see the Reference Manual), for the creation of user-2746
defined operators as well as a special syntax to invoke them. 2747

The input parameters 2748

The input parameters may have various goals and in particular: 2749

 identify the model artefacts to be manipulated 2750
 specify possible options for the operator behaviour 2751
 specify additional scalar values required to perform the operator’s behaviour 2752

For example, in the “Join” operator, the first N parameters identify the Data Sets to be joined 2753
while the “using” parameter specifies the components on which the join must operate. 2754

Depending on the number of the input parameters, the Operators can be classified in: 2755

Unary having just one input parameter 2756

Binary having two input parameters 2757

N-ary having more input parameters 2758

Examples of unary Operators are the change of sign, the minimum, the maximum, the absolute 2759
value. Examples of binary Operators are the common arithmetical operators (+, -, *, /). 2760

Version 1.1 Page: 76

Examples of N-ary operators are the substring, the string replacement, the Join. It is also 2761
possible the extreme case of operators having zero input parameters (e.g., an operator 2762
returning the current time). 2763

The invocation of VTL operators 2764

Operators have different invocation styles : 2765

o Prefix, only for unary operators. The operator appears before the operand; the general 2766
forms of invocation is: 2767

Operator Operand (e.g. -D2 which changes the sign of D2) 2768

o Infix, only for binary operators. The operator symbol appears between the operands; 2769
the general form of invocation is: 2770

FirstOperand Operator SecondOperand (e.g. D1 + D2) 2771

o Postfix, only for unary operators. The operator appears in square brackets and follows 2772
its operand; the general forms of invocation is: 2773

Operand [Operator] 2774

(e.g. DS2 [filter M1>0] which selects from Data Set DS2 only the Data Points having 2775
values greater than zero for measure M1 and returns such values in the result Data 2776
Set. 2777

Postfix operators are also called “clause operators” or simply “clauses”. 2778

o Functional, for N-ary operators. The operator is invoked using a functional notation; 2779
the general form of invocation is: 2780

 Operator(IO1, … , ION) where IO1, … , ION are the input operands; 2781

For example, the syntax for the exponentiation is power(base, exponent) and a possible 2782
invocation to calculate the square of the numeric Data Set D1 is power(D1, 2). 2783

The comma (“,”) is the separator between the operands. Parameter binding is fully 2784
positional: in the invocation, actual parameters are passed to the Operator in the same 2785
positional order as the corresponding formal parameters in the Operator syntax. 2786
Parameters can be mandatory or optional: usually the mandatory ones are in the first 2787
positions and the optional ones in the last positions. An underscore (“_”) must be used 2788
to denote that optional operand is omitted in the invocation; for example, this is a 2789
possible invocation of Operator1(P1, P2, P3), where P2, P3 are optional and P2 is omitted: 2790

Operator1 (IO1, _ , IO3). 2791

One or more unspecified operands in the last positions can be simply omitted 2792
(including the relevant commas); for example, if both P2, P3 are omitted, the invocation 2793
can be simply: 2794

Operator1 (IO1). 2795

o Functional with keywords (a functional syntax in which some parameters are 2796
denoted by special keywords); in this case, each operator has its own form of 2797
invocation, which is described in the Reference Manual. For example, a possible 2798
invocation of the Join operator is the following: 2799

Version 1.1 Page: 77

inner_join (D1 , D2 using [Id1, Id2]) 2800

In this example, the Data Sets D1 and D2 are joined on their Identifiers Id1 and Id2. The 2801
first two parameters do not have keywords, then the keyword “using” is used to 2802
specify the list of Components to join (the square brackets denote a list). A keyword 2803
can be composed of more words, substitutes the comma separator and identifies the 2804
actual parameter of the Operator. The unspecified optional parameters identified by 2805
keywords can be simply omitted (including the relevant keywords, i.e., the underscore 2806
“_” is not required). The actual syntax of this kind of operators and the relevant 2807
keywords are described in detail in the Reference Manual. 2808

The syntax for the invocation of the user-defined operators is functional. 2809

Independently of the kind of their syntax, the behaviour of the VTL operators is always 2810
functional, i.e., they behave as higher-order mathematical functions which manipulate one or 2811
more input first-order functions (the operand Data Sets) to produce one output first-order 2812
function (the result Data Set). 2813

Level of operation 2814

The VTL Operators can operate at various levels: 2815

 Scalar level, when all the operands and the result are scalar Values 2816
 Data Set level, when at least one operand is a Data Set 2817
 Component level, when the operands and the result are Data Set Components 2818

At the scalar level, the Operators compose scalar literals to obtain other scalar Values. The 2819
sum, for example, allows summing two scalar numbers and obtaining another scalar number. 2820
The behaviour at the scalar level depends on the operator, does not need a general 2821
explanation and is described in detail in the Reference Manual. Examples of operations at the 2822
scalar level are: 2823

Dr := 3 + 7 3 and 7 are scalar literals of number type 2824
Dr := “abcde” || “fghij” “abcde” and “fghij” are scalar literals of string type 2825

As already mentioned, the outcome of an operation at the scalar level is a Data Set without 2826
Components which contains only a scalar Value. 2827

At the Data Set level, the Operators compose Data Sets and possibly scalar literals in order to 2828
obtain other Data Sets. As mentioned, the VTL is designed primarily to operate on Data Sets 2829
and produce other Data Sets, therefore almost all VTL operators can act on Data Sets, apart 2830
some few trivial exceptions (e.g. the parenthesis). The behaviour at the Data Set level 2831
deserves a general explanation which is given in the following sections. Examples of 2832
operations at the Data Set level are: 2833

Dr := D1 + 7 D1 is a Data Set with numeric Measures, 7 is a scalar number 2834
Dr := D1 + D2 D1 and D2 are Data Sets having Measures of number type 2835
Dr := D3 || “fghij” D3 is a Data Set with string Measures, “fghij” is a scalar string 2836
Dr := D3 || D4 D3 and D4 are Data Sets having Measures of string type 2837

At the Component level, the Operators compose Data Set Components and possibly scalar 2838
literals in order to obtain other Data Set Components. A Component level operation may 2839
happen only in the context of a Data Set operation, so that the calculated Component belongs 2840

Version 1.1 Page: 78

to the calculated Data Set. The behaviour at the Data Set level deserves a general explanation 2841
which is given in the following sections. Examples of operations at the Component level are: 2842

Dr := D1 [calc C3 := C1 + C2] C1 and C2 are numeric Components of D1 2843
Dr := D1 [calc C3 := C1 + 7] C1 is a numeric Component of D1, 7 is a scalar 2844

number 2845
Dr := D3 [calc C6 := C4 || C5] C4 and C5 are string Components of D3 2846
Dr := D3 [calc C6 := C4 || “fghij”] C4 is a string Component of D3, “fghij” is a scalar 2847

string 2848

In these examples, the postfix operator calc is applied to the input Data Sets D1 and D3, takes 2849
in input some of their components and produces in output the components C3 and C6 2850
respectively, which become part of the result Data Set Dr. 2851

The operations at a component level are performed row by row and in the context of one 2852
specific Data Set, so that one input Data point results in no more than one output Data Point. 2853

In these last examples the assignment is used both at the Data Set level (when the outcome of 2854
the expression is assigned to the result Data Set) and at the Component level (when the 2855
outcome of the operations at the Component level is assigned to the resulting Components). 2856
The assignment at Data Set level can be either persistent or non-persistent, while the 2857
assignment at the Component level can be only non-persistent, because a Component exists 2858
only within a Data Set and cannot be stored on its own. 2859

The Operators’ behaviour 2860

As mentioned, the behaviour of the VTL operators is always functional, i.e., they behave as 2861
higher-order mathematical functions, which manipulate one or more input first-order 2862
functions (the operands) to produce one output first-order function (the result). 2863

The Join operators 2864

The more general and powerful behaviour is supplied by the Join operators, which operates at 2865
Data Set level and allow to compose one or more Data Sets in many possible ways. 2866

In particular, the Join operators allow to: 2867

 match the Data Points of the input Data Sets by means of various matching options 2868
(inner/left/full/cross join) and by specifying the Components to match (“using” 2869
clause). For example the sentence 2870

inner_join D1, D2 using [reference_date, geo_area] 2871

matches the Data Points of D1, D2 which have the same values for the Identifiers 2872
reference_date and geo_area. 2873

 filter the result of the match according to a condition, for example the sentence 2874

filter D1#M1 > 0 2875

maintains the matched Data Points for which the Measure M1 of D1 is positive. 2876

 aggregate according to the values of some Identifier, for example the sentence 2877

group by [Id1 , Id2] 2878

Version 1.1 Page: 79

eliminates the Identifiers save than Id1 and Id2 and aggregate the Data Points having 2879
the same values for Id1 and Id2 2880

 combine homonym measures of the matched Data Points according to a formula, for 2881
example the sentence 2882

apply D1 + D2 2883

sums the homonymous Measures of the matched Data Points of D1 and D2 2884

 calculate new Components (or new values for existing Components) according to the 2885
desired formulas, also assigning or changing the Component role (Identifier, Measure, 2886
Attribute), for example: 2887

calc measure M3 := M1 + M2 , attribute A1 := A2 || A3 2888

calculates the Measure M3 and the Attribute A1 according to the formulas above 2889

 keep or drop the specified Measures or Attributes, for example the sentence 2890
 keep [M1 , M3, A1] 2891

maintains only the specified measures and attributes, instead the sentence 2892
drop [M2 , A2, A3] 2893

drops only the specified measures and attributes 2894

 rename the specified Components, for example: 2895
 rename [M1 to M10 , I1 to I10] 2896

As shown above, the Join operator, together with the other operators applied at scalar or at 2897
Component level, allows to reproduce the behaviour of the other operators at a Data Set level 2898
(save than some special operator) and also to achieve many other behaviours which are 2899
impossible to achieve otherwise. 2900

Anyway, even if the join would cover most of the VTL manipulation needs, the VTL provides 2901
for a number of other Operators which are designed to support the more common 2902
manipulation needs in a simpler way, in order to make the use of the VTL simpler in the more 2903
recurrent situations. Their features are naturally more limited than the ones of the join and a 2904
number of default behaviours are assumed. 2905

The following sections explain the more common default behaviours of the Operators other 2906
than the Join. 2907

Other operators: default behaviour on Identifiers, Measures and Attributes 2908

The default behaviour of the operators other than the Join, when they operate at Data Set 2909
level, is different for Identifiers, Measures and Attributes. 2910

In fact, unless differently specified, the Operators at Data Set level act only on the Values of 2911
the Measures. The Values of Identifiers are usually left unchanged, except for few special 2912
operators specifically aimed at manipulating Identifiers (for example the operators which 2913
make aggregations, either dropping some Identifiers or according the hierarchical links 2914
between the Code Items of an Identifier). The Values of the Attributes, instead, are 2915
manipulated by default through specific Attribute propagation rules explained in a following 2916
section. 2917

For example, considering the Transformation Dr := ln (D1), the operation is applied for each 2918
Data Point of D1, the values of the Identifiers are left unchanged and the values of all the 2919

Version 1.1 Page: 80

Measures are substituted by their natural logarithm (it is assumed that the Measures of D1 2920
are all numerical). 2921

Similarly, considering the simple operation Dr := D1 + 7, the addition is done for each Data 2922
Point of D1, the values of the Identifiers are left unchanged and the number 7 is added to the 2923
values of all the Measures (it is assumed that the Measures of D1 are all numerical). 2924

As for the structure, like in the examples above, the Identifiers of the result Data Set Dr are the 2925
same as the Identifiers of the input Data Set D1 (save for the special operators specifically 2926
aimed at manipulating Identifiers), and by default also the Measures of Dr remain the same as 2927
D1 (save for the operator which change the basic scalar type of the operand, this case is 2928
described in a following section). The Attribute Components of the result depend instead on 2929
the Attribute propagation rule. 2930

In the previous examples, only one Data Set is passed in input to the Operator (other possible 2931
operands are not Data Sets). The operations on more Data Sets, like Dr := D1 + D2, behave in 2932
the same way than the operations on one Data Set, save that there is the additional need of a 2933
preliminary matching of the Identifiers of the Data Points of the input Data Sets: the operation 2934
applies on the matched Data Points. 2935

For example, the addition D1 + D2 above happens between each couple of Data Points, one 2936
from D1 and the other from D2, whose Identifiers match according to a default rule (which is 2937
better explained in a following section). The values of the homonymous Measures of D1 and D2 2938
are added, taken respectively from the D1 and D2 Data Points (the default rule for composing 2939
the measure is better explained in a following section). 2940

The Identifier Components and the Data Points matching 2941

This section describes the default Data Points matching rules for the Operators which operate 2942
at Data Set level and which do not manipulate the Identifiers (for example, the behaviour of 2943
the Operators which make aggregations is not the same, and is described in the Reference 2944
Manual). 2945

As shown in the examples above, the actual behaviour depends also on the number of the 2946
input Data Sets. 2947

If just one input Data Set is passed to the operator, the operation is applied for each input 2948
Data Point and produces a corresponding output Data Point. This case happens for all the 2949
unary operators, which have just one input parameter and therefore cannot operate on more 2950
than one Data Set (e.g. ln (D1)), and for the invocations of Nary operators in which just one 2951
Data Set is passed to the operator (e.g. D1 + 7). 2952

If more input Data Sets are passed to the operator (e.g. D1 + D2), a preliminary match 2953
between the Data Points of the various input Data Sets is needed, in order to compose their 2954
measures (e.g. summing them) and obtain the Data Points of the result (i.e. Dr). The default 2955
matching rules envisage that the Data Points are matched when the values of their 2956
homonimous Identifiers are the same. 2957

For example, let us assume that D1 and D2 contain the population and the gross product of the 2958
United States and the European Union respectively and that they have the same Structure 2959
Components, namely the Reference Date and the Measure Name as Identifier Components, 2960
and the Measure Value as Measure Component: 2961

Version 1.1 Page: 81

D1 = United States Data 2962

 2963

 2964

 2965

 2966

 2967

D2 = European Union Data 2968

 2969

 2970

 2971

 2972

 2973

 2974

The desired result of the sum is the following: 2975

Dr = United States + European Union 2976

 2977

 2978

 2979

 2980

 2981

 2982

In this operation, the Data Points having the same values for the Identifier Components are 2983
matched, then their Measure Components are combined according to the semantics of the 2984
specific Operator (in the example the values are summed). 2985

The example above shows what happens under a strict constraint: when the input Data Sets 2986
have exactly the same Identifier Components. The result will also have the same Identifier 2987
Components as the operands. 2988

However, various Data Set operations are possible also under a more relaxed constraint, 2989
which is when the Identifier Components of one Data Set are a superset of those of the other 2990
Data Set.34 2991

For example, let us assume that D1 contains the population of the European countries (by 2992
reference date and country) and D2 contains the population of the whole Europe (by reference 2993
date): 2994

34 This corresponds to the "outer join" form of the join expressions, explained in details in the Reference Manual.

Ref.Date Meas.Name Meas.Value

2013 Population 200

2013 Gross Prod. 800

2014 Population 250

2014 Gross Prod. 1000

Ref.Date Meas.Name Meas.Value

2013 Population 300

2013 Gross Prod. 900

2014 Population 350

2014 Gross Prod. 1000

Ref.Date Meas.Name Meas.Value

2013 Population 500

2013 Gross Prod. 1700

2014 Population 600

2014 Gross Prod. 2000

Version 1.1 Page: 82

D1 = European Countries 2995

 2996

 2997

 2998

 2999

 3000

D2 = Europe 3001

 3002

 3003

 3004

 3005

In order to calculate the percentage of the population of each single country on the total of 3006
Europe, the Transformation will be: 3007

Dr := D1 / D2 * 100 3008

The Data Points will be matched according to the Identifier Components common to D1 and D2 3009
(in this case only the Ref.Date), then the operation will take place. 3010

The result Data Set will have the Identifier Components of both the operands: 3011

Dr = European Countries / Europe * 100 3012

 3013

 3014

 3015

 3016

 3017

 3018

When the relaxed constraint is applied, therefore, the Data Points are matched when the 3019
values of their common Identifiers are the same. 3020

More formally, let F be a generic n-ary VTL Data Set Operator, Dr the result Data Set and Di 3021
(i=1,… n) the input Data Sets, so that: Dr := F(D1, D2, … , Dn) 3022

The “strict” constraint requires that the Identifier Components of the Di (i=1,… n) are the same. 3023
The result Dr will also have the same Identifier components. 3024

The “relaxed” constraint requires that at least one input Data Set Dk exists such that for each 3025
Di (i=1,… n) the Identifier Components of Di are a (possibly improper) subset of those of Dk. The 3026
output Data Set Dr will have the same Identifier Components than Dk. 3027

The n-ary Operator F will produce the Data Points of the result by matching the Data Points of 3028
the operands that share the same values for the common Identifier Components and by 3029
operating on the values of their Measure Components according to its semantics. 3030

Ref.Date Country Population

2012 U.K. 60

2012 Germany 80

2013 U.K. 62

2013 Germany 81

Ref.Date Population

2012 480

2013 500

Ref.Date Country Population

2013 U.K. 12.5

2013 Germany 16.7

2014 U.K. 12.4

2014 Germany 16.2

Version 1.1 Page: 83

The actual constraint for each operator is specified in the Reference Manual. 3031

Naturally, it is possible that not all the Data Sets contain the same combinations of values of 3032
the Identifiers to be matched. In these cases the match does not happen, the operation is not 3033
performed and no output Data Point is produced. In other words, the measures 3034
corresponding to the missing combinations of Values of the Identifiers are assumed to be 3035
unknown and to have the value NULL, therefore the result of the operation is NULL as well 3036
and the output Data Point is not produced. 3037

This default matching behaviour is the same as the one of the inner join Operator, which 3038
therefore is able to perform the same operation. The join operation equivalent to D1 + D2 is: 3039

inner_join (D1 , D2 apply D1 + D2) 3040

Different matching behaviours can be obtained through the use of the other join Operators, 3041
for example writing: 3042

 full_join (D1 , D2 apply D1 + D2) 3043

the full join returns in the output also the combination of Values of the Identifiers which are 3044
only in one Data Set, the operation is applied considering the missing value of the Measure as 3045
the neutral element of the operation to be done (e.g. 0 for the sum, 1 for the product, empty 3046
string for the string concatenation …) and the output Data Point is produced. 3047

The operations on the Measure Components 3048

This section describes the default composition of the Measure Components for the Operators 3049
which operate at Data Set level and which do not change the basic scalar type of the input 3050
Measure (for example, the behaviour of the Operators which convert one type in another, say 3051
for example a number in a string, is not the same and is described in a following section). 3052

As shown in the examples below, the actual behaviour depends also on the number of the 3053
input Data Sets and the number of their Measures. 3054

An Operator applied to one mono-measure Data Set is intended to be applied to the only 3055
Measure of the input Data Set. The result Data Set will have the same Measure Component, 3056
whose values are the result of the operation. 3057

For example, let us assume that D1 contains the salary of the employees (the only Identifier is 3058
the Employee ID and the only Measure is the Salary): 3059

 3060

D1 = Salary of Employees 3061

 3062

 3063

 3064

 3065

 3066

 3067

The Transformation Dr := D1 * 1.10 applies to the only Measure (the salary) 3068
and calculates a new value increased by 10%, so the result will be: 3069

Employee ID Salary

A 1000

B 1200

C 800

D 900

Version 1.1 Page: 84

 3070

Dr = Increased Salary of Employees 3071

 3072

 3073

 3074

 3075

 3076

 3077

In case of Operators applied to one multi-measure Data Set, by default the operation is 3078
performed on all its Measures. The result Data Set will have the same Measure Components as 3079
the operand Data Set. 3080

For example, given the import and export and number of operations by reference date: 3081

D1 = Import, Export, Operations 3082

 3083

 3084

 3085

 3086

The Transformation Dr := D1 * 0.80 applies to all the Measures (e.g. to the 3087
Import, the Export and the Balance) and calculates their 80%: 3088

Dr = 80% of Import & Export 3089

 3090

 3091

 3092

 3093

 3094

An Operator can be applied only on Measures of a certain basic data type, corresponding to its 3095
semantics35. For example, the multiplication requires the Measures to be of type number, 3096
while the substring will require them to be string. Expressions which violate this constraint 3097
are considered in error. 3098

In general, all the Measures of the Operand Data Set must be compatible with the allowed data 3099
types of the Operator, otherwise (i.e. if at least one Measure is incompatible) the operation is 3100
not allowed. The possible input data types of each operator are specified in the Reference 3101
Manual. 3102

35 As obvious, the data type depends on the parameter for which the Data Set is passed

Employee ID Salary

A 1100

B 1320

C 880

D 990

Ref.Date Import Export Operations

2011 1000 1200 5000

2012 1300 1100 6400

2013 1200 1300 4800

Ref.Date Import Export Operations

2011 800 960 4000

2012 1040 880 5120

2013 960 1040 3840

Version 1.1 Page: 85

Therefore, the operation of the previous example (Dr := D1 * 0.80) , which is assumed to act on 3103
all the Measures of D1, would not be allowed and would return an error if D1 would contain 3104
also a Measure which is not number (e.g. string). 3105

In case of inputs having Measures of different types, the operation can be done either using 3106
the join operators, which allows to calculate each measure with a different formula (see the 3107
calc operator) or, in two steps, first keeping only the Measures of the desired type and then 3108
applying the desired compliant operator; the explanation, as explained in the following cases. 3109

If there is the need to apply an Operator only to one specific Measure, the membership (#) 3110
operator can be used, which allows keeping just one specific Components of a Data Set. The 3111
syntax is: dataset_name#component_name (for a better description see the corresponding 3112
section in the Part 2). 3113

For example, in the Transformation Dr := D1#Import * 0.80 3114

the operation keeps only the Import and then calculates its 80%): 3115

Dr = 80% of the Import 3116

 3117

 3118

 3119

 3120

 3121

If there is the need to apply an Operator only to some specific Measures, the keep 3122
operator (or the drop)36 can be used, which allows keeping in the result (or dropping) the 3123
specified Measures (or also Attributes) of the input Data Set. Their invocations are: 3124

dataset_name [keep component_name , component_name …] 3125
dataset_name [drop component_name, component_name …] 3126

For example, in the Transformation Dr := D1[keep Import, Export] * 0.80 3127

the operation keeps only the Import and the Export and then calculates its 80%): 3128

Dr = 80% of the Import 3129

 3130

 3131

 3132

 3133

 3134

If there is the need to perform some operations on some specific Measures and keep the 3135
others measures unchanged, the calc operator can be used, which allows to calculate each 3136

36 to preserve the functional behaviour keep and drop can be applied only on Measures and Attributes, for a
deeper description of these operators see the corresponding section in the Reference Manual

Ref.Date Import

2011 800

2012 1040

2013 960

Ref.Date Import Export

2011 800 960

2012 1040 880

2013 960 1040

Version 1.1 Page: 86

Measure with a dedicated formula leaving the other Measures as they are. A simple kind of 3137
invocation is37: 3138

dataset_name [calc component_name ::= cmp_expr, component_name ::= cmp_expr …] 3139

The component expressions (cmp_expr) can reference only other components of the input 3140
Data Set. 3141

For example, in the Transformation Dr := D1 [calc Import * 0.80, Export * 0.50] 3142

the operations apply only to Import and Export (and calculate their 80% and 50% 3143
respectively), while the Operations values remain unchanged: 3144

Dr = 80% of the Import, 50% of the Export and Operations 3145

 3146

 3147

 3148

 3149

 3150

In case of Operators applied on more Data Sets, by default the operation is performed 3151
between the Measures having the same names (in other words, on the same Measures). To 3152
avoid ambiguities and possible errors, the input Data Sets must have only these Measures and 3153
the result Data Set is assumed to have only those Measures. 3154

For example, let us assume that D1 and D2 contain the births and the deaths of the United 3155
States and the European Union respectively. 3156

D1 = Births & Deaths of the United States 3157

 3158

 3159

 3160

 3161

D2 = Birth & Deaths of the European Union 3162

 3163

 3164

 3165

 3166

 3167

The Transformation Dr := D1 + D2 will produce: 3168

Dr = Births & Deaths of United States + European Union 3169

37 The calc Operator can be used also to calculate Attributes: for a more complete description of this operator see
the corresponding section in the Reference Manual

Ref.Date Import Export Operations

2011 800 1200 5000

2012 1040 1100 6400

2013 960 1300 4800

Ref.Date Births Deaths

2011 1000 1200

2012 1300 1100

2013 1200 1300

Ref.Date Births Deaths

2011 1100 1000

2012 1200 900

2013 1050 1100

Version 1.1 Page: 87

 3170

 3171

 3172

 3173

 3174

The Births of the first Data Set will be summed up with the Births of the second to calculate 3175
the Births of the result (and the same for the Deaths). 3176

If there is the need to apply an Operator on Measures having different names, the 3177
“rename” operator can be used to make their names equal (for a complete description of the 3178
operator see the corresponding section in the Part 2). 3179

For example, given these two Data Sets: 3180

D1 (Residents in the United States) 3181

 3182

 3183

 3184

 3185

 3186

D2 (Inhabitants of the European Union) 3187

 3188

 3189

 3190

 3191

 3192

A Transformation for calculating the population of United States + European Union is: 3193

Dr := D1[rename Residents to Population] + D2[rename Inhabitants to Population] 3194

The result will be: 3195

Dr (Population of United States + European Union) 3196

 3197

 3198

 3199

 3200

 3201

Note again that the number and the names of the Measure Components of the input Data Sets 3202
are assumed to match (following their possible renaming), otherwise the invocation of the 3203
Operator is considered in error. 3204

Ref.Date Births Deaths

2011 2100 2200

2012 2500 2000

2013 2250 2400

Ref.Date Residents

2011 1000

2012 1300

2013 1200

Ref.Date Inhabitants

2011 1100

2012 1200

2013 1050

Ref.Date Population

2011 2100

2012 2500

2013 1250

Version 1.1 Page: 88

To avoid a potentially excessive renaming, and only when just one component is explicitly 3205
specified for each dataset by using the membership notation, the VTL allows the operation 3206
even if the names are different. For instance, this operation is allowed: 3207

Dr := D1#Residents + D2#Inhabitants 3208

The result Data Set would have a single Measure named like the Measure of the leftmost 3209
operand (i.e. Residents), which in turn can be renamed, if convenient: 3210

Dr := (D1#Residents + D2#Inhabitants)[rename Residents to Population] 3211

The following options and presctiption, already described for the operations on just one 3212
multi-measure Data Sets, are valid also for operations on two (or more) multi-measure Data 3213
Sets and are repeated here for convenience: 3214

 If there is the need to apply an Operator only to specific Measures, it is possible first to 3215
apply the membership, keep or drop operators to the input Data Sets in order to maintain 3216
only the needed Measures, and then the desired operation can be performed. 3217

 If there is the need to apply some Operators to some specific Measures and keep the 3218
other ones unchanged, one of the join operators can be used (the choice depends on the 3219
desired matching method). The join operations, in fact, provides also for a calc option 3220
which can be invoked and behaves exactly like the calc operator explained above. 3221

 Even in the case of operations on more than one Data Set, all the Measures of the input 3222
Data Sets must be compatible with the allowed data types of the Operator38, otherwise (i.e. 3223
even if only one Measure is incompatible) the operation is not allowed. 3224

In conclusion, the operation is allowed if the input Data Sets have the same Measures and 3225
these are all compliant with the input data type of the parameter which the Data Sets are 3226
passed for. 3227

Operators which change the basic scalar type 3228

Some operators change the basic data type of the input Measure (e.g. from number to string, 3229
from string to date, from number to boolean …). Some examples are the cast operator which 3230
converts the data types, the various comparison operators whose output is always boolean, 3231
the length operator which returns the length of a string. 3232

When the basic data type changes, also the Measure must change, because a Variable (in this 3233
case used with the role of Measure in a Data Structure) has just one type, which is the same 3234
wherever the Variable is used39. 3235

Therefore, when an operator which changes the basic scalar type is applied, the output 3236
Measure cannot be the same as the input Measure. In these cases, the VTL systems must 3237
provide for a default Measure Variable for each basic data type to be assigned to the output 3238
Data Set, which in turn can be changed (renamed) by the user if convenient. 3239

The VTL does not prescribe any predefined name or representation for the default Measure 3240
Variable of the various scalar types, leaving different organisations free to using they 3241

38 As obvious, the data type depends on the parameters for which the Data Set are passed

39 In fact according to the IM, a Variable takes values in one Value Domain which represents just one basic data
type, independently of where the Variable or the Value Domain are used (e.g. if they have the same type
everywhere)

Version 1.1 Page: 89

preferred or already existing ones. Therefore the definition of the default Measure Variables 3242
corresponding to the VTL basic scalar types is left to the VTL implementations. 3243

In the VTL manuals, just for explanatory purposes, the following default Measures will be 3244
used: 3245

 3246

Basic Scalar Types Default Measure Variable 3247

 String string_var 3248

 Number num_var 3249

 Integer int_var 3250

 Time time_var 3251

 Date date_var 3252

 Time_period period_var 3253

 Boolean bool_var 3254

In some cases, in the examples of the Manuals, the default Boolean variable is also called 3255
“condition”, 3256

When the operators which change the basic data type of the input Measure are applied 3257
directly at Data Set level, the VTL does not allow to perform multi-Measure operations. In 3258
other words, the input Data Set cannot have more than one Measure. In case it has more 3259
Measures, a single Measure must be selected, for example by means of the membership 3260
operator (e.g. dataset_name#measure_name). 3261

The multi-measure operations remain obviously possible when the operators which change 3262
the basic data type of the input Measure are applied at Component Level, for example by using 3263
the calc operator. 3264

For example, taking again the example of import, export and number of operations by 3265
reference date: 3266

D1 = Import_Export_Operations 3267

 3268

 3269

 3270

 3271

 3272

and assuming that the conversion from number to string of all the Measure Variables is 3273
desired, the following statement expressed at Data Set level cast (D1, string) is not allowed 3274
because the Data Set D1 is multi-measure, while the following one, which makes the 3275
conversion at the Component level, is allowed: 3276

 D1 [calc 3277
 import_string := cast (import, string) 3278
, export_string := cast (export, string) 3279
, operations_string := cast (operations, string) 3280

Ref.Date Import Export Operations

2011 1000 1200 5000

2012 1300 1100 6400

2013 1200 1300 4800

Version 1.1 Page: 90

] 3281

For completeness, it is worth saying that also the various Join operators allow the same 3282
operation that, for example, for the inner join would be written as: 3283

inner_join (D1 calc 3284
 import_string := cast (import, string) 3285
, export_string := cast (export, string) 3286
, operations_string := cast (operations, string) 3287

) 3288
The join operators is designed primarily to act on many Data Sets and allow applying these 3289
operations also when more Data Sets are joined. 3290

Boolean operators 3291

The Boolean operators (and, or, not …) take in input boolean Measures and return booolean 3292
Measures. The VTL Boolean operators behave like the operators which change the basic scalar 3293
type: if applied at the Data Set level they are allowed only on mono-measure Data Sets, if 3294
applied at the Component level they are allowed on mono and multi-measure Data Sets. 3295

Set operators 3296

The Set operators (union, intersection …) apply the classical set operations (union, 3297
intersection, difference, symmetric differences) to the input Data Sets, considering them as 3298
mathematical functions (sets of Data Points). 3299

These operations are possible only if the Data Sets to be operated have the same data 3300
structure, i.e. the same Identifiers, Measures and Attributes. 3301

For these operators the rules for the Attribute propagation are not applied and the Attributes 3302
are managed like the Measures. 3303

The Data Points common (or not common) to the input Data Sets are determined by taking 3304
into account only the values of the Identifiers: the common Data Points are the ones which 3305
have the same values for all the Identifiers. 3306

If for a common Data Point one or more dependent variables (Measures and Attributes) have 3307
different values in different Data Sets, the Data Point of the leftmost Data Set are returned in 3308
the result. 3309

Behaviour for Missing Data 3310

The awareness of missing data is very important for correct VTL operations, because the 3311
knowledge of the Data Points of the result depends on the knowledge of the Data Points of the 3312
operands. For example, assume Dr := D1 + D2 and suppose that some Data Points of D2 3313
are unknown, it follows that the corresponding Data Points of Dr cannot be calculated and 3314
are unknown too. 3315

Missing data are explicitly represented when some Measures or Attributes of a Data Point 3316
have the value “NULL”, which denotes the absence of a true value (the “NULL” value is not 3317
allowed for the Identifier Components, in order to ensure that the Data Points are always 3318
identifiable). 3319

Version 1.1 Page: 91

Missing data may also show as the absence of some expected Data Point in the Data Set. For 3320
example, given a Data Set containing the reports to an international organization relevant to 3321
different countries and different dates, and having as Identifier Components the Country and 3322
the Reference Date, this Data Set may lack the Data Points relevant to some dates (for example 3323
the future dates) or some countries (for example the countries that didn’t send their data) or 3324
some combination of dates and countries. 3325

The absence of Data Points, however, does not necessarily denote that the phenomenon under 3326
measure is unknown. In some cases, in fact, it means that a certain phenomenon did not 3327
happen. 3328

The handling of missing Data Points in VTL operations can be handled in several ways. One 3329
way is to require all participating Data Points used in a computation to be present and known, 3330
this is the correct approach if the absence of a Data Point means that the phenomenon is 3331
unknown and corresponds with the matching method of the inner join operator. Another way 3332
is to allow some, but not all, Data Points to be absent, when the absence does not mean that 3333
the phenomenon is unknown; this corresponds to the behaviour of the left and full join 3334
Operator. 3335

On the basic level, most of the scalar operations (arithmetic, logical, and others) return NULL 3336
when any of their arguments is NULL. 3337

The general properties of the NULL are the following ones: 3338

 Data type: the NULL value is the only value of multiple different types (i.e., all the 3339
nullable scalar types). 3340

 Testing. A built-in Boolean operator is null can be used to test if a scalar value is NULL. 3341

 Comparisons. Whenever a NULL value is involved in a comparison (>, <, >=, <=, in, not 3342
in, between) the result of the comparison is NULL. 3343

 Arithmetic operations. Whenever a NULL value is involved in a mathematical 3344
operation (+, -, *, /, …), the result is NULL. 3345

 String operations. In operations on Strings, NULL is considered an empty String (“”). 3346
 Boolean operations. VTL adopts 3VL (three-value logic). Therefore the following 3347

deduction rules are applied: 3348
TRUE or NULL → TRUE 3349

FALSE or NULL → NULL 3350

TRUE and NULL → NULL 3351

FALSE and NULL → FALSE 3352

 Conditional operations. The NULL is considered equivalent to FALSE; for example in 3353
the control structures of the type (if (p) -then -else), the action specified in –then is 3354
executed if the predicate p is TRUE, while the action -else is executed if the p is FALSE 3355
or NULL; 3356

 Filter clauses. The NULL is considered equivalent to FALSE; for example in the filter 3357
clause [filter p], the Data Points for which the predicate p is TRUE are selected and 3358
returned in the output, while the Data Points for which p is FALSE or NULL are 3359
discarded. 3360

 Aggregations. The aggregations (like sum, avg and so on) return one Data Point in 3361
correspondence to a set of Data Points of the input. In these operations, the input Data 3362
Points having a NULL value are in general not considered. In the average, for example, 3363

Version 1.1 Page: 92

they are not considered both in the numerator (the sum) and in the denominator (the 3364
count). Specific cases for specific operators are described in the respective sections. 3365

 Implicit zero. Arithmetic operators assuming implicit zeros (+,-,*,/) may generate 3366
NULL values for the Identifier Components in particular cases (superset-subset relation 3367
between the set of the involved Identifier Components). Because NULL values are in 3368
general forbidden in the Identifiers, the final outcome of an expression must not 3369
contain Identifiers having NULL values. As a momentary exception needed to allow 3370
some kinds of calculations, Identifiers having NULL values are accepted in the partial 3371
results. To avoid runtime error, possible NULL values of the Identifiers have to be fully 3372
eliminated in the outcome of the expression (through a selection, or other operators), 3373
so that the operation of “assignment” (:=) does not encounter them. 3374

 3375

If a different behaviour is desired for NULL values, it is possible to override the default 3376
behaviour. This can be achieved with the combination of the calc clauses and is null 3377
operators. 3378

For example, suppose that in a specific case the NULL values of the Measure Component M1 of 3379
the Data Set D1 have to be considered equivalent to the number 1, the following 3380
Transformation can be used to multiply the Data Sets D1 and D2, preliminarily converting 3381
NULL values of D1.M1 into the number 1. For detailed explanations of calc and is null refer to 3382
the specific sections in the Reference Manual. 3383

Dr := D1 [M1 := if M1 is NULL then 1 else M1] * D2 3384

Behaviour for Attribute Components 3385

Given an invocation of one Operator F, which can be written as Dr := F(D1, D2, … , Dn), and 3386
considering that the input Data Sets Di (i=1,… n) may have any number of Attribute 3387
Components, there can be the need of calculating the desired Attribute Components of Dr. 3388
This Section describes the general VTL assumptions about how Attributes are handled (the 3389
specific behaviours of the various operators are described in the Reference Manual). 3390

It should be noted that the Attribute Components of a Data Set are dependent variables of the 3391
corresponding mathematical function, just like the Measures. In fact, the difference between 3392
Attribute and Measure Components lies only in their meaning: it is implicitly intended that the 3393
Measures give information about the real world and the Attributes about the Data Set itself 3394
(or some part of it, for example about one of its measures), however the real uses of the 3395
Attribute Components are very heterogeneous. 3396

The VTL has different default behaviours for Attributes and for Measures, to comply as much 3397
as possible with the relevant manipulation needs. 3398

At the Data Set level, the VTL Operators manipulate by default only the Measures and not the 3399
Attributes. 3400

At the Component level, instead, Attributes are calculated like Measures, therefore the 3401
algorithms for calculating Attributes, if any, can be specified explicitly in the invocation of the 3402
Operators. This is the behaviour of clauses like calc, keep, drop, rename, and so on, either 3403
inside or outside the join (see the detailed description of these operators in the Reference 3404
Manual). 3405

Version 1.1 Page: 93

The Attribute propagation rule 3406

The users which want also to automatize the propagation of the Attributes’ Values when no 3407
operation is explicitly defined can optionally enforce a mechanism, called Attribute 3408
Propagation rule, whose behaviour is explained here. The adoption of this mechanism is 3409
optional, users are free to allow the attribute propagation rule or not. The users that do not 3410
want to allow Attribute propagation rules simply will not implement what follows. 3411

The Attribute propagation rule is made of two main components, namely the “virality” and 3412
the “default propagation algorithm”. 3413

The “virality” is a characteristic to be assigned to the Attributes Components which 3414
determines if the Attribute is propagated automatically in the result or not: a “viral” Attribute 3415
is propagated while a “non-viral” Attribute is not (being a default behaviour, the virality is 3416
applied when no explicit indication about the keeping of the Attribute is provided in the 3417
expression). If the virality is not defined, the Attribute is considered as non-viral. 3418

The virality is also assigned to the Attribute propagated in the result Data Set. By default, a 3419
viral Attribute in the input generates an homonymous viral Attribute also in the result. Vice-3420
versa, by default a non-viral Attribute in the input generates a non-viral Attribute also in the 3421
result (this happens when the Attribute in the result is calculated through an explicitly 3422
expression but without specifying explicitly its virality). The default assignation of the virality 3423
can be overridden by operations at Component level as mentioned above, for example keep 3424
(i.e., to keep a non-viral Attribute or not to keep a viral one) and calc to alter the virality in the 3425
result Data Set, (from viral to non-viral or vice-versa).40 3426

The “default propagation algorithm” is the specification of the calculus to be performed to 3427
propagate a viral Attribute when no explicit calculation is defined, always in the context of the 3428
Data Set level operations. A default propagation algorithm should be associated to each 3429
Variable that can assume the role of viral Attribute Component in a Data Set. The default 3430
propagation algorithm is an aggregation function which produces the Attribute’s value for a 3431
generic output Data Point starting from the Attribute’s values of the input Data Points that 3432
contribute to it. If the Attribute is viral and no default propagation algorithm is provided for it, 3433
the invocation of the Operators at Data Set level is considered in error. 3434

Hence, the Attribute propagation rule behaves as follows: 3435

 the non-viral Attributes are not kept in the result and their values are not considered; 3436
 the viral Attributes of the operands are kept and are considered viral also in the result; 3437

in other words, if an operand has a viral Attribute V, the result will have V as viral 3438
Attribute too; 3439

 The Attributes, like the Measures, are combined according to their names, e.g. the 3440
Attributes having the same names in more input Data Sets are combined, while the 3441
Attributes having different names are considered as different Attributes; 3442

 Whenever in the application of a VTL operator the input Data Points are not combined 3443
as for their Measures (i.e., one input Data Point can result in no more than one output 3444
Data Point), the values of the viral Attributes are simply copied from the input Data 3445

40 In particular the keep clause allows the specification of whether or not an attribute is kept in the result while
the calc clause make it possible to define calculation formulas for specific attributes. They can be used both for
Measures and for Attributes and operate on Components of just one Data Set to obtain new Measures /
Attributes.

Version 1.1 Page: 94

Point to the (possible) output Data Point (obviously, this applies always in the case of 3446
unary Operators which do not make aggregations); 3447

 Whenever in the application of a VTL operator two or more Data Points (belonging to 3448
the same or different Data Sets) are combined as for their Measures to give one output 3449
Data Point, the default propagation algorithm associated to the viral Attribute is 3450
applied, producing the Attribute value of the output Data Point. This happens for 3451
example for the unary Operators which aggregate Data Points and for Operators which 3452
combine the Data Points of more input Data Sets; in the latter case, the Attributes 3453
having the same names in such Data Sets are combined. 3454
 3455

Extending an example already given for unary Operators, let us assume that D1 contains the 3456
salary of the employees of a multinational enterprise (the only Identifier is the Employee ID, 3457
the only Measure is the Salary, and there are two other Components defined as viral 3458
Attributes, namely the Currency and the Scale of the Salary): 3459

 3460
D1 = Salary of Employees 3461

 3462

 3463

 3464

 3465

 3466

 3467

The Transformation Dr := D1 * 1.10 applies only to the Measure (the salary) 3468
and calculates a new value increased by 10%, the viral Attributes are kept and left unchanged, 3469
so the result will be: 3470

Dr = Increased Salary of Employees 3471

 3472

 3473

 3474

 3475

 3476

 3477

The Currency and the Scale of Dr will be considered viral too and therefore would be kept also 3478
in case Dr becomes operand of other Transformations. 3479

Another example can be given for operations involving more input Data Sets (e.g. Dr := D1 + 3480
D2). Let us assume that D1 and D2 contain the births and the deaths of the United States and 3481
the Europe respectively, plus a viral Attribute that qualifies if the Value is estimated or not 3482
(having values True or False). 3483

 3484

D1 = Births & Deaths of the United States 3485

Employee ID Salary Currency Scale

A 1000 U.S. $ Unit

B 1200 € Unit

C 800 yen Thousands

D 900 U.K. Pound Unit

Employee ID Salary Currency Scale

A 1100 U.S. $ Unit

B 1320 € Unit

C 880 yen Thousands

D 990 U.K. Pound Unit

Version 1.1 Page: 95

 3486

 3487

 3488

 3489

D2 = Birth &
Deaths of the European Union 3491

 3492

 3493

 3494

 3495

 3496

Suppose that the default propagation algorithm associated to the “Estimate” variable works as 3497
follows: 3498

 each value of the Attribute is associated to a default weight; 3499
 the result of the combination is the value having the highest weight; 3500
 if multiple values have the same weight, the result of the combination is the first in 3501

lexicographical order. 3502

Assuming the weights 1 for “false” and 2 for “true”, the Transformation Dr := D1 + D2 3503
will produce: 3504

Dr = Births & Deaths of United States + European Union 3505

 3506

 3507

 3508

 3509

Note also that: 3510

 if the attribute Estimate was non-viral in both the input Data Sets, it would not be kept 3511
in the result 3512

 if the attribute Estimate was viral only in one Data Set, it would be kept in the result 3513
with the same values as in the viral Data Set 3514

In an expression, the default propagation of the Attributes is performed always in the same 3515
order of execution of the Operators of the expression, which is determined by their 3516
precedence and associativity rules, as already explained in the relevant section. 3517

For example, recalling the example already given exampe: 3518

Dr := D1 + D2 / (D3 – D4 / D5) 3519

The evaluation of the Attributes will follow the order of composition of the Measures: 3520

I. A(D4 / D5) (default precedence order) 3521
II. A(D3 - I) (explicitly defined order) 3522

Ref.Date Births Deaths Estimate

2011 1000 1200 False

2012 1300 1100 False

2013 1200 1300 True

Ref.Date Births Deaths Estimate

2011 1100 1000 False

2012 1200 900 True

2013 1050 1100 False

Ref.Date Births Deaths Estimate

2011 2100 2200 False

2012 2500 2000 True

2013 2250 2400 True

Version 1.1 Page: 96

III. A(D2 / II) (default precedence order) 3523
IV. A(D1 + III) (default precedence order) 3524

 3525

Properties of the Attribute propagation algorithm 3526

An Attribute default propagation algorithm is a user-defined operator which has a group of 3527
Values of an Attribute as operands and returns just one Value for the same Attribute. 3528

An Attribute default propagation algorithm (here called A) must ensure the following 3529
properties (in respect to the application of a generic Data Set operator “§” which applies on 3530
the measures): 3531

Commutative law (1) 3532

A(D1 § D2) = A(D2 § D1) 3533

The application of A produces the same result (in term of Attributes) independently of 3534
the ordering of the operands. For example, A(D1 + D2) = A(D2 + D1). This may seem 3535
quite intuitive for “sum”, but it is important to point out that it holds for every 3536
operator, also for non-commutative operations like difference, division, logarithm and 3537
so on; for example A(D1 / D2) = A(D2 / D1) 3538

Associative law (2) 3539

A(D1 § A(D2 § D3) = A(A(D1 § D2) § D3) 3540

Within one operator, the result of A (in term of Attributes) is independent of the 3541
sequence of processing. 3542

Reflexive law (3) 3543

A(§(D1)) = A(D1) 3544

The application of A to an Operator having a single operand gives the same result (in 3545
term of Attributes) that its direct application to the operand (in fact the propagation 3546
rule keeps the viral attributes unchanged). 3547

With these properties in place, it is always possible to avoid ambiguities and circular 3548
dependencies in the determination of the Attributes’ values of the result. Moreover, it is 3549
sufficient without loss of generality to consider only the case of binary operators (i.e. having 3550
two Data Sets as operands), as more complex cases can be easily inferred by applying the 3551
Attribute propagation rule recursively (following the order of execution of the operations in 3552
the VTL expression). 3553

Version 1.1 Page: 97

Governance, other requirements and future work 3554

The SDMX Technical Working Group, as mandated by the SDMX Secretariat, is responsible for 3555
ensuring the technical maintenance of the Validation and Transformation Language through a 3556
dedicated VTL task-force. The VTL task-force is open to the participation of experts from 3557
other standardisation communities, such as DDI and GSIM, as the language is designed to be 3558
usable within different standards. 3559

The governance of the extensions and personalisations 3560

According to the requirements, it is envisaged that the language can be enriched and made 3561
more powerful in future versions according to the evolution of the business needs. For 3562
example, new operators and clauses can be added, and the language syntax can be upgraded. 3563

The VTL governance body will take care of the evolution process, collecting and prioritising 3564
the requirements, planning and designing the improvements, releasing future VTL versions. 3565

The release of new VTL versions is considered as the preferred method of fulfilling the 3566
requirements of the user communities. In this way the possibility of exchanging standard 3567
validation and transformation rules would be preserved to the maximum extent possible. 3568

In order to fulfil specific calculation features not yet supported, the VTL provides for an 3569
operator which allows to define new custom operators by means of the existing ones and 3570
another operator (Evaluate) whose purpose is to invoke an external calculation function 3571
(routine), provided that this is compatible with the VTL IM, basic principles and data types. 3572

As already mentioned, because the user-defined operators does not belong to the standard 3573
library, they are not standard VTL operators and are applicable only in the context in which 3574
they have been defined. In particular, if there is the need of applying user-defined operators 3575
in other contexts, their definitions need to be pre-emptively shared. 3576

The operator “Evaluate” (also “Eval”) allows defining and making customized calculations 3577
(also reusing existing routines) without upgrading or extending the language, because the 3578
external calculation function is not considered as an additional operator. The expressions 3579
containing Eval are standard VTL expressions and can be parsed through a standard parser. 3580
For this reason, when it is not possible or convenient to use other VTL operators, Eval is the 3581
recommended method of customizing the language operations. 3582

However, as explained in the section “Extensibility and Customizability” of the “General 3583
Characteristics of VTL” above, calling external functions has some drawbacks in respect to the 3584
use of the proper VTL operators. The transformation rules would be not understandable 3585
unless such external functions are properly documented and shared and could become 3586
dependent on the IT implementation, less abstract and less user oriented. Moreover, the 3587
external functions cannot be parsed (as if they were built through VTL operators) and this 3588
could make the expressions more error-prone. External routines should be used only for 3589
specific needs and in limited cases, whereas widespread and generic needs should be fulfilled 3590
through the operators of the language. 3591

While the “Eval” operator is part of VTL, the invoked external calculation functions are not. 3592
Therefore, they are considered as customized parts under the governance, and are 3593
responsibility and charge of the organizations which use it. 3594

Version 1.1 Page: 98

Organizations possibly extending VTL through non-standard operators/clauses would 3595
operate on their own total risk and responsibility, also for any possible maintenance activity 3596
deriving from VTL modifications. 3597

As mentioned, whilst an Organisation adopting VTL can extend its own library by defining 3598
customized parts and by implementing external routines, on its own total responsibility, in 3599
order to improve the standard language for specific purposes (e.g. for supporting possible 3600
algorithms not permitted by the standard part), it is important that the customized parts 3601
remain compliant with the VTL IM and the VTL fundamentals. Adopting Organizations are 3602
totally in charge of any activity for maintaining and sharing their customized parts. Adopting 3603
Organizations are also totally in charge of any possible maintenance activity to maintain the 3604
compliance between their customized parts and the possible standard VTL future evolutions 3605

Relations with the GSIM Information Model 3606

As explained in the section “VTL Information Model”, VTL 1.0 is inspired by GSIM 1.1 as much 3607
as possible, in order to provide a formal model at business level against which other 3608
information models can be mapped, and to facilitate the implementation of VTL with 3609
standards like SDMX, DDI and possibly others. 3610

GSIM faces many aspects that are out of the VTL scope; the latter uses only those GSIM 3611
artefacts which are strictly related to the representation of validations and transformations. 3612
The referenced GSIM artefacts have been assessed against the requirements for VTL and, in 3613
some cases, adapted or improved as necessary, as explained earlier. No assessment was made 3614
about those GSIM artefacts which are out of the VTL scope. 3615

In respect to GSIM, VTL considers both unit and dimensional data as mathematical functions 3616
having a certain structure in term of independent and dependent variables. This leads to a 3617
simplification, as unit and dimensional data can be managed in the same way, but it also 3618
introduces some slight differences in data representation. The aim of the VTL Task Force is to 3619
foster the adoption of this adjustment for the next GSIM versions. 3620

The VTL IM allows defining the Value Domains (as in GSIM) and their subsets (not explicitly 3621
envisaged in GSIM), needed for validation purposes. In order to be compliant, the GSIM 3622
artefacts are used for modelling the Value Domains and a similar structure is used for 3623
modelling their subsets. Even in this case, the VTL task force will propose the explicit 3624
introduction of the Value Domain Subsets in future GSIM versions. 3625

VTL is based on a model for defining mathematical expressions which is called 3626
"Transformation model", while GSIM does not have a Transformation model. The VTL IM has 3627
been built on the SDMX Transformation model, with the intention of suggesting its 3628
introduction in future GSIM versions. 3629

Some misunderstanding may arise from the fact that GSIM, DDI, SDMX and other standards 3630
also have a Business Process model. The connection between the Transformation model and 3631
the Business Process model has been neither analysed nor modelled in VTL 1.0. One reason is 3632
that the business process models available in GSIM, DDI and SDMX are not yet fully 3633
compatible and univocally mapped. 3634

It is worth nothing that the Transformation and the Business Process models address 3635
different matters. In fact, the former allows defining validation and calculation rules in the 3636
form of mathematical expressions (like in a spreadsheet) while the latter allows defining a 3637

Version 1.1 Page: 99

business process, made of tasks to be executed in a certain order. The two models may 3638
coexist and be used together as complementary. For example, a certain task of a business 3639
process (say the validation of a data set) may require the execution of a certain set of 3640
validation rules, expressed through the Transformation model used in VTL. Further progress 3641
in this reconciliation can be part of the future work on VTL. 3642

Version 1.1 Page: 100

Annex - EBNF 3643

The VTL language is also expressed in EBNF (Extended Backus-Naur Form). 3644

EBNF is a standard41 meta-syntax notation, typically used to describe a Context-Free grammar 3645
and represents an extension to BNF (Backus-Naur Form) syntax. Indeed, any language 3646
described with BNF notation can also be expressed in EBNF (although expressions are 3647
typically lengthier). 3648

Intuitively, the EBNF consists of terminal symbols and non-terminal production rules. 3649
Terminal symbols are the alphanumeric characters (but also punctuation marks, whitespace, 3650
etc.) that are allowed singularly or in a combined fashion. Production rules are the rules 3651
governing how terminal symbols can be combined in order to produce words of the language 3652
(i.e. legal sequences). 3653

More details can be found at http://en.wikipedia.org/wiki/Extended_Backus–Naur_Form 3654

Properties of VTL grammar 3655

VTL can be described in terms of a Context-Free grammar42, with productions of the form V 3656
w, where V is a single non-terminal symbol and w is a string of terminal and non-terminal 3657
symbols. 3658

VTL grammar aims at being unambiguous. An ambiguous Context-Free grammar is such that 3659
there exists a string that can be derived with two different paths of production rules, 3660
technically with two different leftmost derivations. 3661

In theoretical computer science, the problem of understanding if a grammar is ambiguous is 3662
undecidable. In practice, many languages adopt a number of strategies to cope with 3663
ambiguities. This is the approach followed in VTL as well. Examples are the presence of 3664
associativity and precedence rules for infix operators (such as addition and subtraction), and 3665
the existence of compulsory else branch in if-then-else operator. 3666

These devices are reasonably good to guarantee the absence of ambiguity in VTL grammar. 3667
Indeed, real parser generators (for instance YACC43), can effectively exploit them, in particular 3668
using the mentioned associativity and precedence constrains as well as the relative ordering 3669
of the productions in the grammar itself, which solves ambiguity by default. 3670

41 ISO/IEC 14977

42 http://en.wikipedia.org/wiki/Context-free_grammar

43 http://en.wikipedia.org/wiki/Yacc

http://en.wikipedia.org/wiki/Terminal_symbol
http://en.wikipedia.org/wiki/Extended_Backus–Naur_Form
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Yacc

