
Head First SDMX-ML
Using SDMX-ML to publish the euro foreign exchange reference rates on the ECB website

European Central Bank
2006-11-28

Abstract

The aim of this tutorial is to introduce you to SDMX-ML, using a "real world"
task, the publication of the euro foreign exchange reference rates in SDMX-ML.

Table of Contents
Objectives and prerequisites .. 1
A brief overview of SDMX ... 1

The SDMX information model in a nutshell ... 2
The various SDMX-ML formats .. 2

Data provider: Publishing the euro foreign exchange reference rates in SDMX-ML 3
The Data Structure Definition .. 3
Creation of the SDMX-ML Structure Definition file .. 5
Creation of the schema file .. 8
Creation of the SDMX-ML data file for the time-series view 8

Data consumer: retrieving and displaying exchange rates ...10
Parsing the SDMX-ML data file using SAX ..11
Using XSLT to create an (X)HTML table with the daily rates11

Objectives and prerequisites
The aim of this tutorial is to introduce you to SDMX-ML, using a "real world" task, the publication
of the euro foreign exchange reference rates [ht-
tp://www.ecb.int/stats/exchange/eurofxref/html/index.en.html] in SDMX-ML.

The tutorial will look at the technology from both sides of the fence: the side of the data provider
(how can we use SDMX-ML to publish statistical data on our website?) and the side of the data con-
sumer (what kind of useful things can we do with an SDMX-ML data file?). Before doing this
however, we will present, in a nutshell, the SDMX information model and some of the SDMX-ML
formats.

To make the most out of this tutorial, basic knowledge of XML and XML-related technologies
(such as XML Schemas, XSLT and SAX) is expected. Some of the tasks described in the tutorial
will also require the use an XML validating parser (for instance Apache Xerces [ht-
tp://xerces.apache.org/] or xmllint from libxml2 [http://xmlsoft.org/]) and an XSLT processor (such
as Apache Xalan [http://xalan.apache.org/], Saxon [http://saxon.sourceforge.net/] or xsltproc from
libxml2).

Most of the exercises can be run using the supplied build file, for those who use Ant [ht-
tp://ant.apache.org/] as their build system.

A brief overview of SDMX
The Statistical Data and Metadata Exchange initiative [http://www.sdmx.org/] is sponsored by 7 in-

1

http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html
http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html
http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html
http://xerces.apache.org/
http://xerces.apache.org/
http://xerces.apache.org/
http://xmlsoft.org/
http://xmlsoft.org/
http://xalan.apache.org/
http://xalan.apache.org/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://www.sdmx.org/
http://www.sdmx.org/

1 For a detailed description of the SDMX information model, see section 02 of the SDMX Standards Version 2.0 Complete
Package [http://www.sdmx.org/standards/standards_package_2_0.aspx]. A very useful introduction to the basic concepts is
available at the end of this document.
2 For a detailed description of SDMX-ML, see section 03 of the SDMX Standards Version 2.0 Complete Package

stitutions (BIS, ECB, Eurostat, IMF, OECD, UN, World Bank) to foster standards for the exchange
of statistical information. The version 1 of the standard is an ISO standard (ISO/Technicial Specific-
ation 17369:2005). It offers an information model to represent statistical data and metadata, as well
as several formats to represent the model (SDMX-EDI and several SDMX-ML formats). It also pro-
poses a standard way of implementing web services, including the use of registries.

The SDMX information model in a nutshell
The list below describes the minimal knowledge needed about the SDMX information model 1 so
that we can start developing an application based on the SDMX standard:

1. Descriptor concepts: In order to make sense of some statistical data, we need to know the con-
cepts associated to it (for example, the figure 1.2953 alone is pretty meaningless, but if we know
that this is an exchange rate for the US dollar against the euro on the 23 November 2006, it starts
to make more sense).

2. Packaging structure: Statistical data can be grouped together. The following levels are defined:
the observation level (the measurement of some phenomenon), the series level (the measurement
over time of some phenomenon, usually following a regular interval), the group level (group of
series. A well-known example is the sibling group which contains a set of series which are
identical except that they are measured with different frequencies) and the data set level (made
up of several groups, for instance to cover a specific statistical domain). The descriptor concepts
mentioned in point 1 can be attached at various levels in this hierarchy.

3. Dimensions and attributes: There are two types of descriptor concepts: the ones which both
identify and describe the data are called dimensions, and those which are purely descriptive are
called attributes.

4. Keys: Dimensions are grouped into keys, which allow the identification of a particular set of data
(for example, a series). The key values are attached at the series level, and are given in a fixed se-
quence. By convention, frequency is the first descriptor concept, and the other concepts are as-
signed an order for that particular data set. Partial keys can be attached to groups.

5. Code lists: Each possible value for a dimension is defined in a code list. Each value on that list is
given a language-independent abbreviation (a code) and a language-specific description. Attrib-
utes are sometimes represented with codes, but sometimes represented by free-text values. This is
fine as the purpose of an attribute is solely to describe and not to identify the data.

6. Data Structure Definitions: A Data Structure Definition (key family) specifies a set of concepts
which describe and identify a set of data. It tells which concepts are dimensions (identification
and description), and which are attributes (just description), and it gives the attachment level for
each of these concepts, based on the packaging structure (Data Set, Group, Series, Observation)
as well as their status (mandatory versus conditional). It also specifies which code lists provide
possible values for the dimensions, as well as the possible values for the attributes, either as code
lists or free text fields.

The various SDMX-ML formats
SDMX-ML supports various use cases and therefore defines several XML formats 2. For the scope
of this tutorial, the two following formats will be used:

1. The Structure Definition format . This format will be used to define the structure (concepts,
code lists, dimensions, attributes, etc) of the key families.

Head First SDMX-ML

2

http://www.sdmx.org/standards/standards_package_2_0.aspx
http://www.sdmx.org/standards/standards_package_2_0.aspx
http://www.sdmx.org/standards/standards_package_2_0.aspx

3 It is similar to the official ECB_EXR1 key family but has been slightly simplified for the scope of this exercise.

2. The Compact format. This format will be used to define the data file. It is not a generic format
(it is specific to a Data Structure Definition), but it is designed to support validation and is much
more compact so as to support the exchange of large datasets.

Now that we know the basics, we can start developing our application.

Data provider: Publishing the euro foreign
exchange reference rates in SDMX-ML

We want to publish the euro foreign exchange reference rates data on our website. The first step is
to analyze the kind of data we are dealing with, and then to create the Structure Definition file to
represent this data. We will then generate a schema out of the Structure Definition file, which we
will use to validate the data file. Finally, we will create the XML data file to be published on the
website.

The Data Structure Definition
For the purpose of this exercise, the Data Structure Definition defined in the table below will be
used 3.

Table 1. The Data Structure Definition: dimensions, measures and attributes

Dimensions

Type Concept Representation Description

Dimension 1 (role is
frequency)

FREQ CL_FREQ Interval of time
between observations
(daily in this case).

Dimension 2 CURRENCY CL_CURRENCY The currency whose
value is being measured
against the base cur-
rency (for instance, US
dollar).

Dimension 3 CURRENCY_DENOM CL_CURRENCY The base currency (the
euro in this case).

Dimension 4 EXR_TYPE CL_EXR_TYPE The exchange rate type
(spot in this case).

Dimension 5 EXR_SUFFIX CL_EXR_SUFFIX Exchange rate series
variation (Average or
standardised measure
for a given frequency in
this case).

Dimension (role is
time)

TIME_PERIOD Time Point Set The date at which an
observation was made.

Head First SDMX-ML

3

It is not part of the
series key but is at-
tached to the observa-
tion level.

Measure

OBS_VALUE (The measured value)

Attributes

Concept Assignment level Representation Description

OBS_STATUS
(mandatory)

Observation CL_OBS_STATUS The observation status
(normal, estimated,
forecast, etc). Normal
in this case.

OBS_CONF (optional) Observation CL_OBS_CONF The observation confid-
entiality. All published
data are free, but it’s
good practice to men-
tion it anyway.

TIME_FORMAT
(mandatory)

Series Time Duration Set ISO 8601 [ht-
tp://en.wikipedia.org/wi
ki/ISO_8601#Duration]
compliant way to de-
scribe duration (in this
case, P1D)

COLLECTION
(mandatory)

Series CL_COLLECTION When the information
was collected (end of
period etc). In this case,
A (Average of observa-
tions through period).

UNIT (mandatory) Group CL_UNIT The unit used (for ex-
ample, RUB for Russi-
an rouble).

UNIT_MULT
(mandatory)

Group CL_UNIT_MULT Whether the data is in
millions, billions, etc.
In this case, the value is
"0" (unit).

DECIMALS
(mandatory)

Group CL_DECIMALS The number of decim-
als.

TITLE_COMPL
(mandatory)

Group Up to 1050 characters A human-readable title
describing a certain
group of data (e.g.:
ECB reference ex-
change rate, Australian
dollar/Euro, 2:15 pm
(C.E.T.)).

Head First SDMX-ML

4

http://en.wikipedia.org/wiki/ISO_8601#Duration
http://en.wikipedia.org/wiki/ISO_8601#Duration
http://en.wikipedia.org/wiki/ISO_8601#Duration
http://en.wikipedia.org/wiki/ISO_8601#Duration

Creation of the SDMX-ML Structure Definition file
Now that we have a good overview of the structure of the data we want to make available on the
website, we can formally define this structure using SDMX-ML. The Structure Definition format is
the one to use for this kind of tasks, as it contains the description of structural metadata such as key
families, concepts, and code lists.

The header

Not taking into account the initial XML declaration, the XML file
(ecb_exr1_structure.xml) starts with the Structure element and the standard SDMX
Header.

<?xml version="1.0" encoding="UTF-8"?>
<Structure

xmlns="http://www.SDMX.org/resources/SDMXML/schemas/v2_0/message"
xmlns:message=

"http://www.SDMX.org/resources/SDMXML/schemas/v2_0/message"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.SDMX.org/resources/SDMXML/schemas/v2_0/message
SDMXMessage.xsd
http://www.SDMX.org/resources/SDMXML/schemas/v2_0/structure
SDMXStructure.xsd">

<Header>
<ID>IREF000506</ID>
<Test>false</Test>
<Name>ECB structural definitions</Name>
<Prepared>2006-10-25T14:26:00</Prepared>
<Sender id="4F0"/>

</Header>

The root element is defined (Structure), with the namespaces and schema definitions attached as
attributes (SDMXMessage.xsd and SDMXStructure.xsd). The SDMX Message namespace is
used by all other SDMX-ML namespace modules. It contains the common message constructs, in-
cluding the common Header information (Message ID, Name, Prepared date, etc). The id at-
tribute of the Sender element specifies the sender of the data, which is the European Central Bank
in this case (code 4F0 within this context of data sender, taken from the code list
CL_ORGANISATION).

Apart from the Header element, the XML file also contains the 3 following main elements, all be-
longing to the SDMX Structure namespace: CodeLists, Concepts and KeyFamilies.

The concepts

The Concepts element contains a list of concepts used to identify and describe the data. All the
concepts used in the Data Structure Definition are included in this list.

Each Concept element contains 2 attributes: the ID of the agency responsible for the concept
("ECB") and the concept ID (for example "UNIT_MULT"). Both are identifiers, and, as such, are
language independent. The Name element contains a language-dependent description of the concept
(as specified in the xml:lang attribute).

<Concept agencyID="ECB" id="COLLECTION">

Head First SDMX-ML

5

<Name xml:lang="en">Collection indicator</Name>
</Concept>

The code lists

The CodeLists element contains a list of CodeList elements. Each CodeList element con-
tains 2 attributes: the ID of the Agency responsible for the code list ("ECB") and the code list ID
(for example "CL_EXR_SUFFIX"). The Name element contains a description of the code list in a
specific language. Each code list also contains a list of codes, with an attribute for the code value
and a language-dependent description of the code. The code lists define the possible values taken by
the dimensions and by the coded attributes.

<CodeList agencyID="ECB" id="CL_EXR_SUFFIX">
<Name xml:lang="en">Exch. rate series variation code list</Name>
<Code value="A">

<Description xml:lang="en">Average or standardised
measure for given frequency</Description>

</Code>
<Code value="E">

<Description xml:lang="en">End-of-period</Description>
</Code>

</CodeList>

The key families

Now that we have our list of concepts and code lists, we can start defining the structure of our Data
Structure Definition.

The KeyFamily element contains the ID of the Agency responsible for the Data Structure Defini-
tion definition ("ECB"), the id for the Data Structure Definition ("ECB_EXR1"), a uri (we use the
Data Structure Definition namespace for this purpose) and the name of the Data Structure Definition
in a specific language.

<KeyFamily agencyID="ECB" id="ECB_EXR1"
uri="http://www.ecb.int/vocabulary/stats/exr/1">
<Name xml:lang="en">Exchange Rates</Name>

<Components>

Then the components of the Data Structure Definition are defined, starting with the dimensions.

<Dimension conceptRef="FREQ" codelist="CL_FREQ" isFrequencyDimension="true"/>
<Dimension conceptRef="CURRENCY" codelist="CL_CURRENCY"/>
<Dimension conceptRef="CURRENCY_DENOM" codelist="CL_CURRENCY"/>
<Dimension conceptRef="EXR_TYPE" codelist="CL_EXR_TYPE"/>
<Dimension conceptRef="EXR_SUFFIX" codelist="CL_EXR_SUFFIX"/>
<TimeDimension conceptRef="TIME_PERIOD"/>

Each Dimension element contains references to a descriptor concept and the code list from which
the dimension value has to be taken. For example, the dimension which represents the concept of
frequency takes its values from the CL_FREQ code list and, as such, can only take one of the fol-

Head First SDMX-ML

6

lowing values: A (Annual), B (Business), D (Daily), E (Event), H (Half-Yearly), M (Monthly), Q
(Quarterly) and W (Weekly). The isFrequencyDimension is attached to the dimension which
represents the frequency (FREQ in this case); there can be only one such dimension per Data Struc-
ture Definition.

The TimeDimension is a special dimension that must be included in any Data Structure Defini-
tion which will be used for time-series formats (such as the GenericData, CompactData and Utility-
Data).

The order of declaration of the dimensions is important as it describes the order in which the dimen-
sions will appear in the keys (except for the time dimension, which is not part of the key).

The Group element declares any useful groupings of data, such as sibling groups.

<Group id="Group">
<DimensionRef>CURRENCY</DimensionRef>
<DimensionRef>CURRENCY_DENOM</DimensionRef>
<DimensionRef>EXR_TYPE</DimensionRef>
<DimensionRef>EXR_SUFFIX</DimensionRef>

</Group>

Then, we indicate which attribute will contain the measured value. Conventionally, it is associated
with the OBS_VALUE concept.

<PrimaryMeasure conceptRef="OBS_VALUE"/>

Finally, we list the attributes. An Attribute element will contain information such as the concept
used for the attribute, the attachment level (i.e. "Observation", "Group", "Series", "DataSet") and
whether it is mandatory or not (i.e. "Mandatory" versus "Conditional"). Coded attributes will indic-
ate from which code list the values should be taken, while, for uncoded attributes, a specific format
may by specified using the TextFormat element. For attributes attached to the group level, we
specify the id of the group to which the attributes are attached with an AttachmentGroup ele-
ment. The concept of time format is identified with the isTimeFormat attribute with a value of
true and is typically a mandatory series level attribute whose value is taken from ISO8601.

<Attribute conceptRef="TIME_FORMAT" attachmentLevel="Series"
assignmentStatus="Mandatory" isTimeFormat="true">
<TextFormat textType="String" maxLength="3"/>

</Attribute>
<Attribute conceptRef="OBS_STATUS" attachmentLevel="Observation"

codelist="CL_OBS_STATUS" assignmentStatus="Mandatory"/>
<Attribute conceptRef="DECIMALS" attachmentLevel="Group"

codelist="CL_DECIMALS" assignmentStatus="Mandatory">
<AttachmentGroup>Group</AttachmentGroup>

</Attribute>

As a last step, we use an XML validating parser to validate our Structure Definition file and make
sure that it is compliant with the SDMX-ML standard 4. You can use the task validateStruc-
ture supplied in the Ant build file to perform this step.

Head First SDMX-ML

7

http://www.sdmx.org/data/2_0/SDMX_2_0_SECTION_03B_SDMX-ML_Schemas_and_Samples.zip
http://www.sdmx.org/data/2_0/SDMX_2_0_SECTION_03B_SDMX-ML_Schemas_and_Samples.zip

4 SDMX schemas are available on the SDMX website and can also be downloaded at the following location: ht-
tp://www.sdmx.org/data/2_0/SDMX_2_0_SECTION_03B_SDMX-ML_Schemas_and_Samples.zip [ht-
tp://www.sdmx.org/data/2_0/SDMX_2_0_SECTION_03B_SDMX-ML_Schemas_and_Samples.zip] . For the purpose of this
exercise, the schema files have been downloaded and placed in the same directory as the files written for this tutorial.
5 The tools can be downloaded (after registration) from: http://www.metadatatechnology.com/software/index.cgi
6 Currently, the tools work with version 1 of the standard only. We have adapted the XSL code, so as to work with version 2
of the standards as well. Changes between the original version and the ECB version are commented.
7 Due to some technical limitations (you cannot set the attribute xmlns in XSLT 1.0), we need to perform this step after the
XML schema file has been generated. For this tutorial, this step is performed manually.

bash$ ant validateStructure
Buildfile: build.xml

validateStructure:
[xmlvalidate] 1 file(s) have been successfully validated.

BUILD SUCCESSFUL
Total time: 2 seconds

Creation of the schema file
Now that we have a valid Structure Definition file, we can generate an XML schema file for our
Data Structure Definition. The SDMX initiative offers some free tools to developers 5 and one of
these tools is an XSL file (StructureToCompact.xsl) that creates an XML schema out of a
Structure Definition file for a selected Data Structure Definition 6.

To create our schema, we need to:

1. Use an XSL parser using our Structure Definition file (ecb_exr1_structure.xml) as XML
input file, the XSL file (StructureToCompact.xsl), and the desired filename for our XML
schema file (for example: ecb_exr1_compact.xsd) as parameters.

2. Open the file in an editor and add the default namespace in the xs:schema element (xm-
lns="http://www.ecb.int/vocabulary/stats/exr/1") 7.

You can use the task generateCompactSchema supplied in the Ant build file to perform this
step.

bash$ ant generateCompactSchema
Buildfile: build.xml

generateCompactSchema:
[xslt] Processing ecb_exr1_structure.xml to ecb_exr1_compact.xsd
[xslt] Loading stylesheet StructureToCompact.xsl

BUILD SUCCESSFUL
Total time: 2 seconds

We now have an XML Schema file (ecb_exr1_compact.xsd), which we will use to validate
the XML data file before publishing it on our website.

Creation of the SDMX-ML data file for the time-series
view

It’s now time to create our XML data file (ecb_exr1_compact.xml). This is normally done by
extracting the data out of a database and creating the XML data file.

Head First SDMX-ML

8

http://www.sdmx.org/data/2_0/SDMX_2_0_SECTION_03B_SDMX-ML_Schemas_and_Samples.zip
http://www.sdmx.org/data/2_0/SDMX_2_0_SECTION_03B_SDMX-ML_Schemas_and_Samples.zip
http://www.sdmx.org/data/2_0/SDMX_2_0_SECTION_03B_SDMX-ML_Schemas_and_Samples.zip
http://www.sdmx.org/data/2_0/SDMX_2_0_SECTION_03B_SDMX-ML_Schemas_and_Samples.zip

8 Multiple datasets may be merged in the same data file using an SDMX MessageGroup message.

The header

When we open the file, we should recognize some similarities with the Structure Definition file, as
all SDMX messages share some common constructs (i.e.: the elements from the SDMXMessage
namespace, such as the Header).

<CompactData
xmlns="http://www.SDMX.org/resources/SDMXML/schemas/v2_0/message"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.SDMX.org/resources/SDMXML/schemas/v2_0/message
SDMXMessage.xsd">

<Header>
<ID>EXR-HIST_2006-11-29</ID>
<Test>false</Test>
<Name xml:lang="en">Euro foreign exchange reference rates</Name>
<Prepared>2006-11-23T08:26:29</Prepared>
<Sender id="4F0">

<Name xml:lang="en">European Central Bank</Name>
<Contact>

<Department xml:lang="en">DG Statistics</Department>
<URI>mailto:statistics@ecb.int</URI>

</Contact>
</Sender>

</Header>

One difference is that the Header element contains a bit more information about contact informa-
tion.

The DataSet element

The message continues with the higher possible level of grouping 8, the DataSet. A namespace,
an XML schema and the dataset ID are added to the element.

<DataSet
xmlns="http://www.ecb.int/vocabulary/stats/exr/1"
xsi:schemaLocation="http://www.ecb.int/vocabulary/stats/exr/1
ecb_exr1_compact.xsd"
datasetID="ECB_EXR1">

The Group element

Then comes the next level of grouping, the Group element. As it is a sibling group, it contains all
dimensions (CURRENCY, CURRENCY_DENOM, EXR_TYPE and EXR_SUFFIX), except the
frequency (FREQ), which is wild carded, and the date/time information (TIME_PERIOD), which is
attached to the observation level. Apart from the dimensions, it also includes the attributes which are
attached to the group level (DECIMALS, UNIT, UNIT_MULT and TITLE_COMPL).

<Group CURRENCY="AUD" CURRENCY_DENOM="EUR" EXR_TYPE="SP00"
EXR_SUFFIX="A" DECIMALS="4" UNIT="AUD" UNIT_MULT="0"
TITLE_COMPL="ECB reference exchange rate, Australian dollar/Euro"/>

Head First SDMX-ML

9

9 Familiarity with XML technologies is expected, so only a brief overview of these technologies is offered. There are of
course other technologies that one could use to process an XML data file but we will limit ourselves to XSLT, SAX and the
DOM, for the purpose of this tutorial, as these are probably the most frequently used ones, that are not language or platform
dependent.

The Series element

Going further down into the package grouping, we reach the Series level, which contains the
same dimensions as the group plus the frequency. It also includes the attributes which are attached
to the series level (TIME_FORMAT and COLLECTION).

<Series FREQ="D" CURRENCY="AUD" CURRENCY_DENOM="EUR"
EXR_TYPE="SP00" EXR_SUFFIX="A" TIME_FORMAT="P1D" COLLECTION="A">

The Observation element

The Series element also contains the list of observations, and we have now reached the lower
possible level in the package grouping. The observations contain the time dimension
(TIME_PERIOD), the measured value (OBS_VALUE) and the attributes attached to the observa-
tions level (OBS_STATUS and OBS_CONF).

<Obs TIME_PERIOD="1999-01-04" OBS_VALUE="1.9100" OBS_STATUS="A" OBS_CONF="F" />

These last three elements (Group, Series and Obs) will be repeated for all group of data to be
published.

Now that we have our data file ready, we should validate it using an XML validating parser, before
publishing it on our website. You can use the task validateData supplied in the Ant build file to
perform this step.

bash$ ant validateData
Buildfile: build.xml

validateData:
[xmlvalidate] 1 file(s) have been successfully validated.

BUILD SUCCESSFUL
Total time: 6 seconds

Once this has been done, the job of the data publisher is over and we have reached our goal of pub-
lishing an SDMX-ML data file on our website. We can now use it to retrieve and display exchange
rates data.

Data consumer: retrieving and displaying ex-
change rates

Several XML technologies are available for processing an XML data file 9.

Head First SDMX-ML

10

10 XSLT [http://www.w3.org/TR/xslt] is a standard endorsed by the W3C.
11 DOM [http://www.w3.org/DOM/] is a standard endorsed by the W3C.
12 Although not endorsed by the W3C, SAX [http://www.saxproject.org/] is a de facto standard for the XML industry.
13 We have also created a small DOM class that performs the same operation so that we can compare how the 2 technologies
perform for the same task.
14The code used for this purpose is very primitive and is merely made available to offer simple examples on how we can ex-
tract data out of an SDMX-ML data file. It should by no mean be considered quality code or even useful for any other pur-
pose than the one described above.
15 Interested readers may find the SUN J2EE tutorial [http://java.sun.com/j2ee/1.4/docs/tutorial/doc/] useful.

1. The XSL Transformation language 10. XSLT can be used to transform the XML data file (or
parts of it) into other formats, such as (X)HTML, CSV, PDF, WML, etc. For instance, we could
use this technology to create an (X)HTML table displaying the rates for all currencies at a specif-
ic period.

2. The Document Object model (DOM) 11. DOM is an object-oriented model of an XML docu-
ment, which represents it as a tree structure. You can use the DOM to read from and write to an
XML data file. However, DOM stores the entire document tree in memory, which means that it is
resource intensive, especially for large XML data files. If all we need is a sequential read or a
one-time selective read, DOM might be overkill.

3. The Simple API for XML (SAX) 12. SAX uses an event-driven model and handles an XML file
as a unidirectional stream of data. SAX parsing is usually faster and the memory footprint is
much smaller compared to a DOM construct. The price to pay is limitation: you cannot write to
an XML data file, reading is unidirectional (so you can't go back in the XML file if needed, and
you have to start from the beginning again) and there is no representation of the structure of the
XML data file.

For the scope of this tutorial, we will use SAX to display the exchange rate for a certain currency at
a certain date 13, and XSLT to extract some data out of the SDMX-ML data file and create an
HTML table with the rates for all currencies at a specific period 14.

Parsing the SDMX-ML data file using SAX
The first step of the process, before we use the SDMX-ML data file, is to validate it. Once this is
done, we may use a SAX parser to extract the exchange rate for a specific currency at a specific
point in time.

A SAX parser is event-based. It will call one method in the application when it encounters an ele-
ment tag and another one when it encounters, for instance, some text. So it’s up to the developer to
write the call-back methods. Java provides classes and methods to work with SAX, but a tutorial of
using SAX in Java is beyond the scope of this exercise 15.

Apart from the setup code needed (see the main method in the SAXGetRate.java file), the
startElement method shows what we are after: when we find the series for the selected cur-
rency, we search for the observation that matched the supplied period and exit when the value has
been found.

Just open a shell and try it out following this syntax:

bash$ java -cp tutorial.jar SAXGetRate ecb_exr1_compact.xml currency period

So, for example

bash$ java -cp tutorial.jar SAXGetRate ecb_exr1_compact.xml USD 2006-11-21
Exchange rate value for USD on 2006-11-21: 1.2814

Head First SDMX-ML

11

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.saxproject.org/
http://www.saxproject.org/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

Using XSLT to create an (X)HTML table with the daily
rates

We now want to generate an (X)HTML table containing the exchange rates for all the currencies at
a specified period. We will also use the Structure Definition file so as to extract the name for the
currencies, which is nicer than just displaying the currency code.

Again, an introduction to XSLT is out of the scope of this tutorial but as one will notice, the XSL
script is fairly small. Apart from the output settings, we assign the value passed to the script for the
desired period to a variable and we get the list of currencies out of the Structure Definition file
(ecb_exr1_structure.xml). We then match the root of the SDMX-ML data file and output
the basic HTML information (head, body, table, etc). We then match all series, and for each series,
we get the observation value for the supplied date, and add it to the HTML table.

To generate the (X)HTML table, we use an XSLT processor, using the SDMX-ML data file
(ecb_exr1_compact.xml) as the input file, sdmxml2html.xsl for the XSL file and the de-
sired filename for the HTML table (for example ecb_exr1_table.html) as parameters. You
can use the task generateHTMLTable supplied in the Ant build file to perform this step.

bash$ ant generateHTMLTable
Buildfile: build.xml

generateHTMLTable:
[xslt] Processing ecb_exr1_compact.xml to ecb_exr1_table.html
[xslt] Loading stylesheet sdmxml2html.xsl

BUILD SUCCESSFUL
Total time: 5 seconds

We have now finished with the 2 utilities that needed to be created for the data consumer and we
now know enough to be able to build fully-fledge SDMX-based software.

Head First SDMX-ML

12

	Head First SDMX-ML
	Table of Contents
	Objectives and prerequisites
	A brief overview of SDMX
	The SDMX information model in a nutshell
	The various SDMX-ML formats

	Data provider: Publishing the euro foreign exchange reference rates in SDMX-ML
	The Data Structure Definition
	Creation of the SDMX-ML Structure Definition file
	The header
	The concepts
	The code lists
	The key families

	Creation of the schema file
	Creation of the SDMX-ML data file for the time-series view
	The header
	The DataSet element
	The Group element
	The Series element
	The Observation element

	Data consumer: retrieving and displaying exchange rates
	Parsing the SDMX-ML data file using SAX
	Using XSLT to create an (X)HTML table with the daily rates

